(整理)模具的力学性能要求

(整理)模具的力学性能要求
(整理)模具的力学性能要求

1.1

1.2

1.3模具的力学性能要求

1.3.1.2编辑: 上传时间:2006-6-29 10:45:13

模具的力学性能要求--常规力学性能

模具材料的性能是由模具材料的成分和热处理后的组织所决定的。模具钢的基本组织是由马氏体基体以及在基体上分布着的碳化物和金属间化合物等构成。

模具钢的性能应该满足某种模具完成额定工作量所具备的性能,但因各类模具使用条件及所完成的额定工作量指标均不相同,故对模具性能要求也不同。又因为不同钢的化学成分和组织对各种性能的影响不同,即使同一牌号的钢也不可能同时获得各种性能的最佳值,一般某些性能的改善会损失其他的性能。因而,模具工作者常根据模具工作条件及工作定额要求选用模具钢及最佳处理工艺,使之达到主要性能最优,而其他性能损失最小的目的。

对各类模具钢提出的性能要求主要包括:硬度、强度、塑性和韧性等。

模具的力学性能要求--硬度

硬度表征了钢对变形和接触应力的抗力。测硬度的试样易于制备,车间、试验室一般都配备有硬度计,因此,硬度是很容易测定的一种性能,而且硬度与强度也有一定关系,可通过硬度强度换算关系得到材料硬度值。按硬度范围划定的模具类别,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于热作模具。

钢的硬度与成分和组织均有密切关系,通过热处理,可以获得很宽的硬度变化范围。如新型模具钢012Al和CG-2可分别采用低温回火处理后硬度为60~62HRC,采用高温回火处理后硬度为50~52HRC,因此可用来制作硬度要求不同的冷、热作模具。因而这类模具钢可称为冷作、热作兼用型模具钢。

模具钢中除马氏体基体外,还存在更高硬度的其他相,如碳化物、金属间化合物等。表l为常见碳化物及合金相的硬度值。

表1 各种相的硬度值

相硬度HV

铁素体约100

马氏体:ωC0.2% 约530

马氏体:ωC0.4% 约560

马氏体:ωC0.6% 约920

马氏体:ωC0.8% 约980

渗碳体(Fe 3C) 850~1100

氮化物1000~3000

金属间化合物500

模具钢的硬度主要取决于马氏体中溶解的碳量(或含氮量),马氏体中的含碳量取决于奥氏体化温度和时间。当温度和时间增加时,马氏体中的含碳量增多马氏体硬度会增加,但淬火加热温度过高会使奥氏体晶粒增大,淬火后残留奥氏体量增多,又会导致硬度下降。因此,为选择最佳淬火温度,通常要先作出该钢的淬火温度—晶粒度—硬度关系曲线。

马氏体中的含碳量在一定程度上与钢的合金化程度有关,尤其当回火时表现更明显。随回火温度的增高,马氏体中的含碳量在减少,但当钢中合金含量越高时,由于猕散的合金碳化物折出及残留奥氏体向马氏体的转变,所发生的二次硬化效应越明显,硬化峰值越高。

常用硬度测量方法有以下几种:

1.洛氏硬度(HR)是最常用的一种硬度测量法,测量简便、迅速,数值可以从表盘上直接选出。洛氏硬度常用三种刻度,即HRC、HRA、HRB。三种刻度所用压头、试验力及适用范围见表1-2。

表1-2 洛氏硬度试验规范

硬度符号硬度头规格试验力/L 应用范围

HRC 120°金刚石圆锥1471 20~70

HRA 120°金刚石圆锥588.4 20~88

HRB φ1.588mm钢球980.6 20~100

2.布氏硬度(HB)用淬火钢球作硬度头,加上一定试验力压人工件表面,试验力卸掉以后测量压痕直径大小,再查表或计算,使得出相应的布氏硬度值HB。

布氏硬度测试主要用于退火、正火、调质等模具钢的硬度测定。

3.维氏硬度(HV)采用的压头是具有正方形底面的金刚石角锥体,锥体相对两面间的夹角为136°,硬度值等于试验力F与压痕表面积之比值。

此法可以测试任何金属材料的硬度,但最常用于测定显微硬度,即金属内部不同组织的硬度。

三种硬度大致有如下的关系:HRC≈1/10HB,HV≈HB(当<400HBS时)

模具的力学性能要求--强度

强度即钢材在服役过程中,抵抗变形和断裂的能力。对于模具来说则是整个型面

或各个部位在服役过程中抵抗拉伸力、压缩力、弯曲力、扭转力或综合力的能力。

衡量钢材强度常用的方法是进行拉伸试验。拉伸试验是在拉伸试验机上进行的,试棒需按规定的标准制备,拉伸过程中在记录纸上绘出拉伸力F与伸长量ΔL之间的关系图,即所谓的拉伸曲线图,分析拉伸曲线图就可以得出金属的强度指标。对于在压缩条件下工作的模具,还经常给出抗压强度。

对于模具钢,特别是含碳量高的冷作模具钢,因塑性很差,一般不用抗拉强度而是以抗弯强度作为实用指标。抗弯试验甚至对极脆的材料也能反映出一定的塑性。而且,弯曲试验产生的应力状态与许多模具工作表面产生的应力状态极相似,能比较精确地反映出材料的成分及组织因素对性能的影响。

在拉伸曲线图上有一个特殊点,当拉力到达这一点时,试棒在拉力不增加或有所下降情况下发生明显伸长变形,这种现象称为屈服。这时的应力称为这种材料的屈服点。而当外力去除后不能恢复原状的变形,这部分变形被保留下来,成为永久变形,称为塑性变形。屈服点是衡量模具钢塑性变形抗力的指标,也是最常用的强度指标。对模具材料要求具有高的屈服强度,如果模具产生了塑性变形,那么模具加工出来的零件尺寸和形状就会发生变化,产生废品,模具也就失效了。

模具的力学性能要求--塑性

淬硬的模具钢塑性较差,尤其是冷变形模具钢,在很小的塑性变形时即发生脆断。

衡量模具钢塑性好坏,通常采用断后伸长率和断面收缩率两个指标表示。

断后伸长率是指拉伸试样拉断以后长度增加的相对百分数,以δ表示。断后伸长率δ数值越大,表明钢材塑性越好。热模钢的塑性明显高于冷模钢。

断面收缩率是指拉伸试棒经拉伸变形和拉断以后,断裂部分截面的缩小量与原始截面之比,以ψ表示。塑性材料拉断以后有明显的缩颈,所以ψ值较大。而脆性材料拉断后,截面几乎没有缩小,即没有缩颈产生,ψ值很小,说明塑性很差。

模具的力学性能要求--韧性

韧性是模具钢的一种重要性能指标,韧性决定了材料在冲击试验力作用下对破裂的抗断能力。材料的韧性越高,脆断的危险性越小,热疲劳强度也越高。对于衡量模具脆断倾向,冲击韧度试验具有重要意义。

冲击韧度是指冲击试样缺口处截面积上的冲击吸收功,而冲击吸收功是指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。冲击试验有夏比U 形缺口冲击试验(试样开成U形缺口)、夏比V形缺口冲击试验(试样开成V 形缺口)以及艾式冲击试验。

影响冲击韧度的因素很多。不同材质的模具钢冲击韧度相差很大,即使同一种材料,因组织状态不同、晶粒大小不同、内应力状态不同冲击韧度也不相同。通常

是晶粒越粗大,碳化物偏析越严重(带状、网状等),马氏体组织越粗大等都会促使钢材变脆。温度不同,冲击韧度也不相同。一般情况是温度越高冲击韧度值越高,而有的钢常温下韧性很好,当温度下降到零下20~40℃时会变成脆性钢。

为了提高钢的韧性,必须采取合理的锻造及热处理工艺。锻造时应使碳化物尽量打碎,并减少或消除碳化物偏析,热处理淬火时防止晶粒过于长大,冷却速度不要过高,以防内应力产生。模具使用前或使用过程中应采取一些措施减少内应力。

模具的力学性能要求--特殊性能要求

由于模具种类繁多,工作条件差别很大,因此模具的常规性能及相互配合要求也各不相同,而且某种模具实际性能与试样在特定条件下测得的数据也不一致。所以,除测定材料的常规性能外,还必须根据所模拟的实际工况条件,对模具使用特性进行测量,并对模具的特殊性能提出要求,建立起正确评价模具性能的体系。

对热作模具必须测试在高温条件下的硬度、强度和冲击韧度。因为热作模具是在某一特定温度下服役,在室温下测定的性能数据,当温度升高时要发生变化。性能变化趋势和速率相差也很大,如A种材料在室温下硬度虽比材料B高,但随温度上升,硬度下降显著,到达—定温度后,硬度值反而会低于材料B。那么,当在较高温度工作条件下要求耐磨性高时,就不能选用A种材料,而需选用室温下硬度值虽较低但随温度上升,硬度下降缓慢的材料B。

对热作模具除要求室主高温条件下的硬度、强度、韧性外,还要求具有某些特殊性能。

模具的力学性能要求--热稳定性

热稳定性表征钢在受热过程中保持金相组织和性能的稳定能力。通常,钢的热稳定性用回火保温4h,硬度降到45HRC时的最高加热温度表示。这种方法与材料的原始硬度有关,有资料将达到预定强度级别的钢加热,保温2h,使硬度降到一般热锻模失效硬度35HRC的最高加热温度定为该钢稳定性指标。对于因耐热性不足而堆积塌陷失效的热作模具,可以根据热稳定性预测模具的寿命水平。

模具的力学性能要求--回火稳定性

回火稳定性指随回火温度升高,材料的强度和硬度下降快慢的程度,也称回火抗力或抗回火软化能力。通常以钢的回火温度-硬度曲线来表示,硬度下降慢则表示回火稳定性高或回火抗力大。回火稳定性也是与回火时组织变化相联系的,它与钢的热稳定性共同表征钢在高温下的组织稳定性程度,表征模具在高温下的变形抗力。

模具的力学性能要求-- 热疲劳抗力及断裂韧度

热疲劳抗力表征了材料热疲劳裂纹萌生前的工作寿命和萌生后的扩展速率。热疲

劳通常以20℃—750℃条件下反复加热冷却时所发生裂纹的循环次数或当循环一定次数后测定裂纹长度来确定。热疲劳抗力高的材料不易发生热疲劳裂纹,或当裂纹萌生后,扩展量小、扩展缓慢。断裂韧度则表征了裂纹失稳扩展抗力,断裂韧度高,则裂纹不易发生失稳扩展。

模具的力学性能要求-- 高温磨损与抗氧化性能

高温磨损是热作模具主要失效形式之一,正常情况下,绝大多数锤锻模及压力机模具都因磨损而失效。抗热磨损是对热作模具的使用性能的要求,是多种高温力学性能的综合体现。现在国内已有单位在自制的热磨损机上进行模具热磨损试验,收到较理想的试验效果。

实际使用表明,模具材料抗氧化性能的优劣,对模具使用寿命影响很大。因氧化会加剧模具工作过程中的磨损,导致模具型腔尺寸超差而报废。氧化还会使模具表面产生腐蚀沟,成为热疲劳裂纹起源.加剧模具热疲劳裂纹的萌生与扩展。因此,要求模具具备一定的抗氧化性能。

对冷作模具钢除常规力学性能外,还常要求具有下列性能:

耐磨性能,断裂抗力,抗咬合计抗氧化能力。

模具的力学性能要求-- 耐磨损性能

冷作模具服役时,被成形的坯料会沿着模具表面既滑动又流动,在模具与坯料间产生很大摩擦力。这种摩擦力使模具表面受到切应力作用,在其表面划刻出凹凸痕迹,这些痕迹与坯料不平整表面相咬合,逐渐在模具表面造成机械破损即磨损。冷作模具,特别是正常失效的冷作模具,多数因磨损而报废。因此,对冷作模具最基本的要求之一就是耐磨性。一般条件下材料硬度越高,耐磨性越好。但耐磨性与在软基体上存在的硬质点的形状、分布也有很大关系。

冷作模具的磨损包括磨料磨损、粘着磨损、腐蚀磨损与疲劳磨损。

模具的力学性能要求-- 断裂抗力

除常规力学性能如冲击韧度、抗压强度、抗弯强度等一次性断裂抗力指标外,小能量多次冲击断裂抗力更切合冷作模具实际使用状态性能。作为模具材料性能指标还包括抗压疲劳强度、接触疲劳强度等。这种疲劳断裂抗力指标是由在一定循环应力下测得的断裂循环次数,或在一定循环次数下导致断裂的载荷来表征的。关于是否把断裂韧度作为冷作模具材料的一项重要处能指标,尚待研究和探讨。

模具的力学性能要求-- 抗咬合能力及抗软化能力

抗咬合及抗软化能力分别表征了模具对发生“冷焊”及承载时因温度升高对硬度、耐磨性助抵抗能力。

耐热钢性能和耐腐蚀指标

耐热钢性能和耐腐蚀指标 在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢(或称高温不起皮钢)和热强钢两类。抗氧化钢一般要求较好的化学稳定性,但承受的载荷较低。热强钢则要求较高的高温强度和相应的抗氧化性。耐热钢常用于制造锅炉、汽轮机、动力、机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。此外,还发展出一些新的低铬镍抗氧化钢种。 耐热钢基本信息 简介: 耐热钢(heat-resisting steels) 在高温条件下,具有抗氧化性和足够的高温强度以及良好的耐热性能的钢称作耐热钢。 类别: 耐热钢按其性能可分为抗氧化钢和热强钢两类。抗氧化钢又简称不起皮钢。热强钢是指在高温下具有良好的抗氧化性能并具有较高的高温强度的钢。 耐热钢按其正火组织可分为奥氏体耐热钢、马氏体耐热钢、铁素体耐热钢及珠光体耐热钢等。

用途 耐热钢常用于制造锅炉、汽轮机、动力机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。 中国自1952年开始生产耐热钢。以后研制出一些新型的低合金热强钢,从而使珠光体热强钢的工作温度提高到600~620℃;此外,还发展出一些新的低铬镍抗氧化钢种。耐热钢和不锈耐酸 在使用范围上互有交叉,一些不锈钢兼具耐热钢特性,既可用作为不锈耐酸钢,也可作为耐热钢使用。合金元素的作用铬、铝、硅这些铁素体形成的元素,在高温下能促使金属表面生成致密的 氧化膜,防止继续氧化,是提高钢的抗氧化性和抗高温气体腐的主要元素。但铝和硅含量过高会使室温塑性和热塑性严重恶化。铬能显著提高低合金钢的再结晶温度,含量为2%时,强化效果最好。 镍、锰可以形成和稳定奥氏体。镍能提高奥氏体钢的高温强度和改善抗渗碳性。锰虽然可以代镍形成奥氏体,但损害了耐热钢的抗氧化性。钒、钛、铌是强碳化物形成元素,能形成细小弥散的碳化物,提高钢的高温强度。钛、铌与碳结合还可防止奥氏体钢在高温下或焊后产生晶间腐蚀。碳、氮可扩大和稳定奥氏体,从而提高耐热钢的高温强度。钢中含铬、锰较多时,可显著提高氮的溶解度,并可利用氮合金化以代替价格较贵的镍。硼、稀均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和晶

45钢力学性能

45钢: 特性 用中碳调质结构钢。该钢冷塑性一般,退火、正火比调质时要稍好,具有较高的强度和较好的切削加工性,经适当的热处理以后可获得一定的韧性、塑性和耐磨性,材料来源方便。适合于氢焊和氩弧焊,不太适合于气焊。焊前需预热,焊后应进行去应力退火。 正火可改善硬度小于160HBS毛坯的切削性能。该钢经调质处理后,其综合力学性能要优化于其他中碳结构钢,但该钢淬透性较低,水中临界淬透直径为12~17mm,水淬时有开裂倾向。当直径大于 80mm时,经调质或正火后,其力学性能相近,对中、小型模具零件进行调质处理后可获得较高的强度和韧性,而大型零件,则以正火处理为宜,所以,此钢通常在调质或正火状态下使用。 力学性能 正火:850 ;淬火:840 ;回火:600 ;抗拉强度:不小于600Mpa ;屈服强度:不小于355Mpa ;伸长率: 16[1] % ;收缩率:40% ;冲击功:39J ;钢材交货状态硬度[1]:热轧钢:≤229HB退火钢:≤197HB 成分 主要成分为Fe(铁元素),且含有以下少量元素:

C:0.42~0.50% Si:0.17~0.37% Mn:0.50~0.80% P:≤0.035% S:≤0.035% Cr:≤0.25% Ni:≤0.25% Cu:≤0.25%[1] 密度7.85g/cm3,弹性模量210GPa,泊松比0.269。 处理方法 热处理 推荐热处理温度:正火850,淬火840,回火600。 1. 45号钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。 实际应用的最高硬度为HRC55(高频淬火HRC58)。 2.45号钢不要采用渗碳淬火的热处理工艺。 渗碳处理 一般用于表面耐磨、芯部耐冲击的重载零件,其耐磨性比调质+表面淬火高。其表面含碳量0.8--1.2%,芯部一般在0.1--0.25%(特殊情况下采用0.35%)。经热处理后,表面可以获得很高的硬度(HRC58--62),芯部硬度低,耐冲击。

英制螺栓机械性能要求..

英制螺栓(SAE J429)的机械性质:

配合的螺帽为ASTM A563中的产品: These values are the as the over-tapping required for zinc coated nuts in Specification ASTM A563 1/4至1-1/2英寸普通产品配合的螺帽为ASTM A563的B普通螺帽(hex);1-1/2至3英寸普通产品配合的螺帽为ASTM A563的A重型螺帽(heavy hex);1/4至3英寸镀锌产品配合的螺帽为ASTM A563的DH重型螺帽(heavy hex) 英制螺栓(ASTM A307)的化学成份和机械性质: 配合的螺帽为ASTM A563中的产品: 1/4至1-1/2英寸普通产品配合的螺帽为ASTM A563的A 普通螺帽(hex);1-1/2至4英寸普通产品配合的螺帽为ASTM A563的A重型螺帽(heavy hex);1/4至4英寸镀锌产品配合的螺帽为ASTM A563的A重型螺帽(heavy hex)

These values are the as the over-tapping required for zinc coated nuts in Specification ASTM A563 译文:这些值为镀锌产品的要求,在ASTM A563中对螺帽有具体要求。 英制螺栓(ASTM A193)的机械性质:

NOTES: 1.The minimum temperature for Grades B5, B6X,and B7 shall be 1100°F; for Grade B16, 1200°F; 译文:等级为B5,B6X和B7的最小回火温度为1100°F,而等级为B16的最小回火温度为1200°F 2.To meet the tensile strength requirements, the hardness shall be over Brinell 201(Rockwell B94)minimum. 译文:硬度一定要在201布氏(94HRB)硬度以上,抗拉强度一定能达到。 3.Class 1 is solution treated-Class 1A is solution treated in the finished condition for corrosion resistance; heat treatment is critical due to physical property requirements. Class 2 is solution treated and strain-hardened. Austenitic steels in the strain-hardened condition may not show uniform properties throughout the section particularly in sizes over 3/4 in .in diameter. 译文:Class 1将其视为1级对待,Class 1A的材料应进行表面处理,具有防腐蚀性能,Class 2类的各等级的材料应接受碳化物固溶处理后应变硬化奥氏体钢, 尤为3/4以上的螺栓,经硬化后可能出现整个面上各部分性能不均匀现象. 4. For diameters 3/4 in. and smaller, a maximum hardness of Brinell 241(Rockwell B 100) is permitted. 译文:直径为3/4或更小的产品,硬度要求为最大241布氏(100HRB)硬度。 5. For diameters 1-1/2 in. and larger, center(core) properties may be lower than

钢材的力学性能

B 钢材的力学性能 含碳2%以下的铁碳合金称为钢。炼钢的主要任务是按所炼钢种的质量要求,调整钢中碳和合金元素含量到规定范围之内,并使P 、S 、H 、O 、N 等杂质的含量降至允许限量之下。炼钢过程实质上是一个氧化过程,炉料中过剩的碳被氧化,燃烧生成CO 气体逸出,其它Si 、P 、Mn 等氧化后进入炉渣中。S 部分进入炼渣中,部分则生成SO 2排出。当钢水成份和温度达到工艺要求后,即可出钢。为了除去钢中过剩的氧及调整化学成份,可以添加脱氧剂和铁合金或合金元素。 1、拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 (1)强度 金属材料在外力作用下,抵抗变形和断 裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 (2)比例极限 对金属施加拉力,金属存在着力与 变形成直线比例的阶段,而这个阶段的最大极限负荷Pp 除以试样的原横截面积即为比例极限,用σP 表示。 (3)弹性极限 金属受外力作用发生了变形,外力 去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe 表示。 (4)抗拉强度 试样拉伸时,在拉断前所承受的最大 负荷除以原横截面积所得的应力,称作抗拉强度,用σb 表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb 越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb 的最小值为400MPa ,超高强度钢是指σb ≥1373MPa 的钢。 (5)屈强比 屈强比即屈服强度与抗拉强度之比值 (σS /σb )。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS /σb ≥0.90)。此外,疲劳寿命与抗拉强度及表面质 量往往有很大关联。 (6)塑性 金属材料在受力破坏前可以经受永久变 形的性能称为塑性。塑性指标通常用伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 2、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk 表示。 目前常用的10mm ×10mm ×55mm 、带2mm 深的V 形缺口夏氏冲击试样,标准上直接采用冲击功AK ,而不是采用αk 值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT (断口面积转化温度)要低于某一温度的技术条件。所谓FATT ,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm 的钢板,可取得3/4小尺寸冲击试样(7.5mm ×10mm ×55mm )或1/2小尺寸冲击试样(5mm ×10mm ×55mm )。但是一定要注意,同规格及同温度下的冲击功值才可相互比较。只有在标准规定的条件下,才可按标准的换算方法,折算成标准冲击试样的冲击功,再相互比较。 3、硬度试验 金属材料抵抗压头(淬硬的钢球或具有1200圆锥或角锥的金刚石压头)压陷表面的能力称为硬度。根据试验方法和适用范围的不同,硬度可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度以及显微硬度、高温硬度等。冶金产品常用的是布氏硬度和洛氏硬度。 4、宝钢企业标准(Q/BQB ) 宝钢企标中的钢号大致可分为3个来源:即从日本JIS 标准、德国DIN 标准移植及自行开发研制的钢号。从日本JIS 标准中移植来的钢号,一般首位常为S (Steel );从DIN 标准移植来的钢号,一般常以ST 开头(Stahl 德文中的“钢”);宝钢自行开发研制的钢号,一般首位常以宝钢的拼音首位B 开头。(作者单位:辽阳县产品质量监督检验所) □谷迎春王立伟 质量论谈 4

模具的力学性能要求

1.1模具的力学性能要求 1.1.1.1编辑: 上传时间:2006-6-29 10:45:13 模具的力学性能要求--常规力学性能 模具材料的性能是由模具材料的成分和热处理后的组织所决定的。模具钢的基本组织是由马氏体基体以及在基体上分布着的碳化物和金属间化合物等构成。 模具钢的性能应该满足某种模具完成额定工作量所具备的性能,但因各类模具使用条件及所完成的额定工作量指标均不相同,故对模具性能要求也不同。又因为不同钢的化学成分和组织对各种性能的影响不同,即使同一牌号的钢也不可能同时获得各种性能的最佳值,一般某些性能的改善会损失其他的性能。因而,模具工作者常根据模具工作条件及工作定额要求选用模具钢及最佳处理工艺,使之达到主要性能最优,而其他性能损失最小的目的。 对各类模具钢提出的性能要求主要包括:硬度、强度、塑性和韧性等。 模具的力学性能要求--硬度 硬度表征了钢对变形和接触应力的抗力。测硬度的试样易于制备,车间、试验室一般都配备有硬度计,因此,硬度是很容易测定的一种性能,而且硬度与强度也有一定关系,可通过硬度强度换算关系得到材料硬度值。按硬度范围划定的模具类别,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于热作模具。

钢的硬度与成分和组织均有密切关系,通过热处理,可以获得很宽的硬度变化范围。如新型模具钢012Al和CG-2可分别采用低温回火处理后硬度为60~62HRC,采用高温回火处理后硬度为50~52HRC,因此可用来制作硬度要求不同的冷、热作模具。因而这类模具钢可称为冷作、热作兼用型模具钢。 模具钢中除马氏体基体外,还存在更高硬度的其他相,如碳化物、金属间化合物等。表l为常见碳化物及合金相的硬度值。 表1 各种相的硬度值 相硬度HV 铁素体约100 马氏体:ωC0.2% 约530 马氏体:ωC0.4% 约560 马氏体:ωC0.6% 约920 马氏体:ωC0.8% 约980 渗碳体(Fe 3C) 850~1100 氮化物1000~3000 金属间化合物500 模具钢的硬度主要取决于马氏体中溶解的碳量(或含氮量),马氏体中的含碳量 I I

(新)耐热钢及高温合金_

耐热钢及高温合金 耐热钢及高温合金 各种动力机械,加热电站中的锅炉和蒸汽轮机、航空和舰艇用的燃汽轮机以及原子反应堆工程等结构中的许多结构件是在高温状态下工作的。工作温度的升高,一方面影响钢的化学稳定性;另一方面降低钢的强度。为此,要求钢在高温下应具有 (1)抗蠕变、抗热松弛和热疲劳性能及抗氧化能力 (2)在一定介质中耐腐蚀的能力以及足够的韧性 (3)具有良好的加工性能及焊接检 (4)按照不同用途有合理的组织稳定性。 耐热钢是指在高温下工作并具有一定强度和抗氧化耐腐蚀能力的钢种,耐热钢包括热稳定钢和热强钢。热稳定钢是指在高温下抗氧化或执高温介质腐蚀而不破坏的钢种,如炉底板、炉栅等。它们工作时的主要失效形式是高温氧化。而单位面积上承受的载荷并不大。热强钢是指在高温下有一定抗氧化能力并具有足够强度而不产生大量变

形或 断裂的钢种,如高温螺栓、涡轮叶片等。它们工作时要求承受较大的载荷,失效的主要原因是高温下强度不够。 1 钢的热稳定性和热稳定钢 一、钢的抗氧化性能及其提高途径 工件与高温空气、蒸汽或燃气相接肽表面要发生高温氧化或腐蚀破坏。因此,要求工件必须具备较好的热稳定性。 除了加入合金元素方法外,目前还采用渗金属的方法,如渗Cr、渗Al或渗Si,以提高钢的抗氧化性能。 二、热稳定钢 热稳定钢(又称抗氧化钢广泛用于工业锅炉中的构件,如炉底板、马弗罐、辐射管等这种用途的热稳定钢有铁素体F型热稳定钢和奥氏体A型热稳定钢两类。 F型热稳定钢是在F不锈钢的基础上进行抗氧化合金化而形成的钢种、具有单相F基体,表面容易获得连续的保护性氧化膜。根据使用

温度,可分为Cr13型钢、Cr18型钢和Cr25型钢等。F型热稳定钢和F不锈钢一样,因为没有相变,所以晶粒较粗大,韧性较低,但抗氧化性很强。 A型热稳定钢是在A型不锈钢的基础上进一步经Si、Al抗氧化合金化而形成的钢种。A型热稳定钢比F型热稳定钢具有更好的工艺性能和热强性。但这类钢因消耗大量的Cr、Ni资源,故从50年代起研究了Fe-Al-Mn系和Cr-Mn-N系热稳定钢,并已取得了一定进展。 2 金属的热强性 一、高温下金属材料力学性能特点 在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。热强性系指耐热钢在高温和载荷共同作用下抵抗塑性变形和破坏的能力。由此可见在评定高温条件下材料的力学性能时,必须用热强性来评定。热强性包括材料高温条件下的瞬时性能和长时性能。 瞬时性能是指在高温条件下进行常现力学性能试验所测得的性能指标。如高温拉伸、高温冲击和高温硬度等。其特点是高温、短时加载,一般说来瞬时性能P是钢热强性的一个侧面,所测得的性能指标一般

GCr15模具钢材料的力学性能及工艺性能

GCr15模具钢材料的力学性能及工艺性能: (1)力学性能 ○1淬火温度的影响。GCr15钢的正常淬火加热温度为830-860℃,多用油冷,最佳淬火加热温度为840℃,淬火后的硬度达到63-65HRC。在实际生产条件下,根据模具有效截面尺寸和淬火介质的不同,所用的淬火温度可稍有差别。如尺寸较大或用硝盐分级淬火的模具,宜选用较高淬火温度(840-860℃),以便提高淬透性,获得足够的淬硬层深度和较高的硬度;尺寸较小或用油冷的模具一般选用较低的淬火温度(830-850℃)。相同规格的模具,在箱式炉中加热应比盐浴炉加热温度稍高。 ○2回火温度的影响。随着回火温度升高,回火后的硬度下降。回火温度超过200℃后,将进入第一类回火脆性区。所以,GCr15钢的回火温度一般为160-180℃。 (2)工艺性能 ○1锻造。GCr15钢的锻造性能较好,锻造温度范围宽。锻造工艺规程一般为:1050-1100℃,始锻温度1020-1080℃,终锻温度850℃,锻后空冷。锻后的组织应为细片状球光体,这样的组织可以不经正火就可以进行球化退火。 ○2正火。GCr15钢正火加热温度一般为900-920℃,冷却速度不能小于40-50℃/min.小型模胚可以在静止空气中冷却;较大模胚可采用鼓风或喷无冷却;直径在200mm以上的大型模胚可在热油中冷却,至表面温度约为200℃时取出空冷。后一种冷却方式形成的内应力较大,容易开裂,应立即进行球化退火或补加一道去应力退火工序。 ○3球化退火。GCr15钢的球化退火工艺规范一般为:加热温度7700-790℃,保温2-4h,等温温度690-720℃,等温时间4-6h。退火后组织为细小均匀的球状珠光体,硬度为217-255HBS,具有良好的切削加工性能。 GCr15模具钢淬透性较好(油淬临界淬透直径为25mm),油淬情况下获得的淬硬层深度与碳素工具钢水淬的相近。

模具技术要求

外发模具技术要求 为更好地满足模具使用厂家对模具制作技术方面的要求,进一步提高模具质量,规范生产节约质量成本,特制定本技术要求。质量部负责外发模具的质量检验,制造部协助质量部做好外发模具的质量控制。 一、模具外观要求 模具表面无油污、灰尘、无裂纹,无夹砂,模具外部标识牌齐全,并装在明显处。模具的固、移模气室壁应有加力筋。模具压边尺寸(宽不低于20mm,厚不低于22mm) 二、模具尺寸要求 整体模具外形尺寸:K1214尺寸1490*1300mm,后窗尺寸1400*1200mm; K1418尺寸1890*1500mm,后窗尺寸1780*1380mm。 后封板使用材质:铝合金型材(国标6061)。凸模厚度不低于12mm,凹模厚度不低于16mm。紧固后封板的螺丝,螺丝位置最大中心距为120-130mm。 三、模具吊环、外接口要求 模具使用吊环规格为M20,K1214整体模具要求4个,K1418整体模具要求4个。每个吊环必须用M20螺母锁紧,然后将吊环和螺母用焊机焊死。 蒸汽、水冷、排水口的数量及规格(固、移模分半)。1寸和1.5寸管古要求全丝或者两头带丝。 水冷管数量固模和移模为各2个,尺寸为1寸; 蒸汽管数量为:K1214固模和移模1.5寸各4个;K1418固模和移模1.5寸各6个。进气口必须装制不锈钢防护网进行防护。 排水口数量为:K1214固模和移模1.5寸各4个;K1418固模和移模1.5寸各6个。四、模具顶针筒、料枪口要求 K1214/K1418料枪为50*30“德式”料枪,料枪限位厚度20mm。法兰螺栓M8X60,布置为三角型,配备螺母(国标M8)。标准顶针盘为ф40X5或ф30X5,顶针杆径为ф12。黄铜棒采用ф22*ф12规格,预留可调长度合理(不低于15mm),筒套完好无缺。 顶杆和料枪之间无干涉,螺栓孔与料枪法兰孔完全吻合,安装畅顺。螺栓从背板内部往外安装,模具压板与模具接管无干涉。 五、模具密封要求 固移模合模处采用Φ8圆形空芯硅胶条,斜面对接,高出平板1-1.5mm(安装时硅胶条自然伸展,不能有拉伸安装),模具四边各处转角为圆角过渡,整条密封槽的起点与结束点不允许定在模具外部,密封槽深6.5mm,槽口部宽7.5mm,槽底宽8mm;

耐热钢性能与材质

材料名称:耐热钢铸件 牌号:ZG35Cr26Ni12 标准:GB 8492-87 ●特性及适用范围: 最高使用温度为1100℃,高温强度高,抗氧化性能好,在规格范围内调整其成分,可使组织内含有一些铁素体,也可为单相奥氏体。能广泛地用于许多类型的炉子构件,但不宜用于温度急剧变化的地方 ●化学成份: 碳C :0.20~0.50 硅Si:≤2.00 锰Mn:≤2.00 硫S :≤0.04 磷P :≤0.04 铬Cr:24.0~28.0 镍Ni:11.00~14.00 ●力学性能: 抗拉强度σb (MPa):≥490 条件屈服强度σ0.2 (MPa):≥235 伸长率δ(%):≥8 ●热处理规范及金相组织: 热处理规范:铸件不经热处理,若有需要,由供需双方协定。 ●交货状态: 铸态 材料名称:耐热钢铸件 牌号:ZG40Cr25Ni20 标准:GB 8492-87 ●特性及适用范围: 最高使用温度为1150℃,具有较高的蠕变和持久强度,抗高温气体腐蚀能力强,常用于作炉辊、辐射管、钢坯滑板、热处理炉炉辊、管支架、制轻转化管、乙烯裂介管以及需要较高蠕变强度的零件。 ●化学成份: 碳C :0.35~0.45 硅Si:≤1.50 锰Mn:≤1.75 硫S :≤0.04 磷P :≤0.04 铬Cr:23.0~27.0 镍Ni:19.00~22.00 钼Mo:≤0.50 ●力学性能: 抗拉强度σb (MPa):≥440

条件屈服强度σ0.2 (MPa):≥235 伸长率δ(%):≥8 ●热处理规范及金相组织: 热处理规范:铸件不经热处理,若有需要,由供需双方协定。 ●交货状态: 铸态 SUS314对应国标0Cr25Ni20Si2 特性: SUS314属于奥氏体型耐热耐腐蚀性不锈钢材料,具有所有奥氏体不锈钢的性能,另外还具有耐高温抗氧化性强,所以又称为耐热钢的代表,因为含有2%的硅元素,所以为高级工程(化工设备、酸高温环境下使用)的首选不锈钢材料。应用:热处理工业、水泥制造等行业不可或缺的金属材料。 SUS314不锈钢 SUS314属于奥氏体不锈钢,化学成分是: C Max:0.25%; Mn Max:2.00%; P Max:0.045%; S Max:0.030%; Si:Max:1.50-3.00%; Cr:23.00-26.00%; Ni:19.00-22.00%。

模具技术的详细要求

模具技术的具体要求 一.模具材料及热处理要求 1.拉延、成形类模具 ●外板件拉延序凸模、凹模及压边圈使用GGG70L铸铁,淬火硬度HRC50-55;内板件凸模、 凹摸及压边圈使用MoCr铸铁,淬火硬度HRC50-55。特殊情况下须渗氮或TD处理(模具图纸会签时确认)。 ●变形剧烈及高强度钢板(抗拉强度≥350MPa)的制件应采用整体镶Cr12MoV;淬火硬度要 达到HRC58—62。 ●基体采用HT300。采用键槽与螺栓链接。 ●GGG70L铸件厂:天津虹岗或长城精工或经甲方认可的同等铸造品质铸造厂。 2.冲裁类模具 ●普通板料零件料厚小于或等于1.2mm的刃口镶块可采用空冷钢(7CrSiMnMoV 或ICD-5), 淬火硬度HRC55-60;料厚大于1.2mm的采用Cr12MoV材料,淬火硬度为HRC58~62。料厚大于等于1.4mm的镶块采用波浪刃口。 ●高强度板的制件采用Cr12MoV材料,淬火硬度为HRC58~62。 ●所有凹模镶块、废料刀均采用背托,凹模采用镶块结构,凸模可采用整体结构。 ●模具基体采用HT300。 3.翻边、整形类模具 ●中大型模具凹模镶块原则上应采用侧面固定式以便于调整;小型模具可采用整体式结构, 料厚大于1.4mm的凹模采用镶块式。 ●零件料厚小于或等于1.2mm,材料可选用MoCr/7CrSiMnMoV;零件料厚大于1.2mm 的采用 Cr12MoV或与之相当的材料(应取得甲方工艺认可,具体以会签为准)。 ●普通板料的制件凸模可采用合金铸铁,表面淬火硬度不低于HRC50;高强度板的制件采用 Cr12MoV材料,淬火硬度为HRC58-62;如采用分体或镶块式基座(底板)可采用HT300的材料。 ●对于部分易拉毛部位,必要时需进行TD处理。 4.压料(退料)顶出器可采用铸造结构,但应根据其强度要求,决定用铸铁或球铁或铸钢材料(工艺会签时,甲方根据具体结构决定)。 5.其它部件材质及热处理按国家标准执行。

普通混凝土力学性能试验方法标准

普通混凝土力学性能试验方法 2004-5-23 15:57:28 admin 普通混凝土力学性能试验方法GBJ81―85 主编部门:城乡建设环境保护部批准部门:中华人民国计划委员会施行日期:1986 年7 月1 日关于发布《普通混凝土拌合物性能试验方法》等三本标准的通知计标〔1985〕1889 号根据原建委(78)建发设字第562 号通知的要求,由城乡建设部中国建筑科学研究院会同有关单位共同编制的《普通混凝土拌合物性能试验方法》等三本标准,已经有关部门会审。现批准《普通混凝土拌合物性能试验方法》GBJ80 -85、《普通混凝土力学性能试验方法》GBJ81-85 和《普通混凝土长期性能和耐久性能试验方法》GBJ82―85 等三本标准为标准,自一九八六年七月一日起施行。该三本标准由城乡建设部管理,其具体解释等工作由中国建筑科学研究院负责。出版发行由我委基本建设标准定额研究所负责组织。

计划委员会一九八五年十一月二十五日编制说明本标准是根据原建委(78)建发设字第562 号通知的要求,由中国建筑科学研究院会同各有关单位共同编制而成的。在编制过程中,作了大量的调查研究和试验论证工作,收集并参考了国际标准和其它国外有关的规标准,经过反复讨论修改而成的。在编制过程中曾多次征求全国各有关单位的意见,最后才会同有关部门审查定稿。本标准为普通混凝土基本性能中有关力学性能的试验方法。容包括立方体抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度以及抗折强度等五个方法。由于普通混凝土力学性能试验涉及围较广,本身又将随着仪器设备的改进和测试技术的提高而不断发展,故希望各单位在执行本标准过程中,注意积累资料、总结经验。如发现有需要修改补充之处,请将意见和有关资料寄中国建筑科学研究院混凝土研究所,以便今后修改时参考。城乡建设环境保护部一九八五年七月第一章总则第1.0.1 条为了在确定混凝土设计特征值、检验或控制现浇混凝土工程或预制构件的质量时,有一个统一的混凝土力学性能试验方法,特制订本标准。第1.0.2 条本标准适用于工业与民用建筑和一般构筑物中所用普通混凝土的基本性能试验。

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

耐热钢铸件 耐热钢

耐热钢铸件耐热钢 耐热钢铸件工业使用耐热钢总论 耐热钢是指在高温下工作的钢材。耐热钢铸件的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。这里所谈的温度是个相对的概念。最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。直到现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。现在,耐热钢铸件的使用温度范围为200~1300℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。 为了适应各种工作条件不断发展的要求,耐热钢铸件也在不断地发展。从最早期的低碳钢、低合金钢,到成分复杂的、多元合金化的高合金耐热钢。 现按珠光体型低合金热强钢、马氏体型热强钢、阀门钢、铁素体型耐热钢、奥氏体型耐热钢、等分别介绍如下。 1)珠光体型低合金热强钢 该种钢的代表:12Cr1MoV此种钢组织稳定性较好,当温度高达580℃时仍具有良好的热强性。 2)马氏体型热强钢 该种钢的代表:Cr12型马氏体热强钢,有优良的综合力学性能、较好的热强性、耐蚀性及振动衰减性,广泛用于制造汽轮机叶片而形成独特的叶片钢系列,并广泛用作气缸密封环、高温螺栓、转子和锅炉过热器、在热器管、燃气轮机涡轮盘、叶片、压缩机及航空发动机压气机叶片、轮盘、水轮机叶片及宇航导弹部件等。Cr12型耐热钢的开发与应用已有60多年历史,至少已有300余种牌号。但其成分的差别不大,都是以Cr12钢为基础在添加钨、钼、钒、镍、铌、硼、氮、钛、钴等元素含量上做些变化。 3)阀门钢 阀门钢是耐热钢的一个重要分支,该种钢的代表:21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、 14Cr-14Ni2W-Mox相比,性能优越较经济,在汽油机排气阀门上迅速得到广泛应用。在21-4N钢基础上添加硫改善切削性能形成了21-4NS。添加铌、钼、钨和钒,提高了高温强度、疲劳强度和耐磨性,开发了 21-4WNbN,X60CrMnMoVNbN2110钢。 4)铁素体型耐热钢 在室温和使用温度条件下这类钢的组织为铁素体。这类钢铬含量高于12%,不含镍,只含有少量的硅、钛、钼、铍等元素。 5)奥氏体型耐热钢 该种钢的代表:18Cr-8Ni、25Cr-20Ni及Cr-Mn-N、Fe-Mn-Al等钢。这类钢在高温下具有较高的热强性,及优异的抗氧化性。一般制作用于600℃以上承受较高应力的部件,其抗氧化性温度可达850~1250℃。这类钢基本上是和不锈钢同时发展起来的,有些钢同时就是优异的奥氏体型不锈钢。 我国在奥氏体型钢方面,除仿制和生产了大量国外耐热钢牌号外,多年来还开发了Cr-Mn-N、Cr-Mn-Ni-N、Cr-Ni-N及Fe-Al-Mn和Cr-Mn-Al-Si系耐热钢。Cr18Mn12Si2N、Cr20Mn9Ni2Si2N及 3Cr24Ni7SiNRe列入国家标准推广应用。 铸造耐热钢在耐热钢领域中占有相当大的比重。20世纪70~80年代以来,由于石油化学工业的飞速发展,在大型合成氨及乙烯装置中采用了大量的高合金耐热铸钢,其使用温度可达1150℃,开发了一系列 Fe-Cr-Ni基耐热钢及耐热合金。如4Cr25Ni35Co15W、4Cr25Ni35WNb、5Cr28Ni48W5等。一些发达国家早在20世纪30年代就制定了耐热铸钢标准。1987年,我国建立了第一个耐热铸钢国家标准。 6)沉淀硬化型耐热钢

(整理)模具的力学性能要求

1.1 1.2 1.3模具的力学性能要求 1.3.1.2编辑: 上传时间:2006-6-29 10:45:13 模具的力学性能要求--常规力学性能 模具材料的性能是由模具材料的成分和热处理后的组织所决定的。模具钢的基本组织是由马氏体基体以及在基体上分布着的碳化物和金属间化合物等构成。 模具钢的性能应该满足某种模具完成额定工作量所具备的性能,但因各类模具使用条件及所完成的额定工作量指标均不相同,故对模具性能要求也不同。又因为不同钢的化学成分和组织对各种性能的影响不同,即使同一牌号的钢也不可能同时获得各种性能的最佳值,一般某些性能的改善会损失其他的性能。因而,模具工作者常根据模具工作条件及工作定额要求选用模具钢及最佳处理工艺,使之达到主要性能最优,而其他性能损失最小的目的。 对各类模具钢提出的性能要求主要包括:硬度、强度、塑性和韧性等。 模具的力学性能要求--硬度

硬度表征了钢对变形和接触应力的抗力。测硬度的试样易于制备,车间、试验室一般都配备有硬度计,因此,硬度是很容易测定的一种性能,而且硬度与强度也有一定关系,可通过硬度强度换算关系得到材料硬度值。按硬度范围划定的模具类别,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于热作模具。 钢的硬度与成分和组织均有密切关系,通过热处理,可以获得很宽的硬度变化范围。如新型模具钢012Al和CG-2可分别采用低温回火处理后硬度为60~62HRC,采用高温回火处理后硬度为50~52HRC,因此可用来制作硬度要求不同的冷、热作模具。因而这类模具钢可称为冷作、热作兼用型模具钢。 模具钢中除马氏体基体外,还存在更高硬度的其他相,如碳化物、金属间化合物等。表l为常见碳化物及合金相的硬度值。 表1 各种相的硬度值 相硬度HV 铁素体约100 马氏体:ωC0.2% 约530 马氏体:ωC0.4% 约560 马氏体:ωC0.6% 约920 马氏体:ωC0.8% 约980

耐热钢

5.1.4.2 耐热钢 耐热钢是指在高温下有良好的化学稳定性和较高强度,能较好适应高温条件的特殊合金钢。主要用于制造工业加热炉、内燃机、石油及化工机械与设备等高温条件工作的零件。 (1)耐热性的概念 钢的耐热性包括热化学稳定性和高温强度两方面的涵义。 热化学稳定性是指钢在高温下抵抗各类介质的化学腐蚀的能力,其中最基本且最重要的是抗氧化性。热化学稳定性主要由钢的化学成分决定。在钢中加人Cr、Al和Si对提高抗氧化能力有显著的效果,因为Cr、Al和Si在高温氧化时能与氧形成一层完整致密具有保护性的Cr2O3,A12O3或SiO2氧化膜。其中Cr 是首选的合金元素,当钢中WCr≈15%时,钢的抗氧化温度可达900℃;WCr ≈20%~25%时,钢的抗氧化温度可达1100℃。稀土(少量的钇、铈等)元素也能提高耐热钢的抗高温氧化的能力。这主要是由于稀土氧化物除了能改善氧化膜的抗氧化性能外,还能改善氧化膜与金属表面的结合力。在钢的表面渗铝、渗硅或铬铝、铬硅共渗都有显著的抗氧化能力。 高温强度是指钢在高温下抵抗塑性变形和断裂的能力。常用蠕变极限和持久强度这两个力学性能指标来考核。通过在钢中加入Cr、Ni、W、Mo等元素形成固溶体,强化基体,提高再结晶温度,增加基体组织稳定性;加入V、Ti、Nb、Al等元素,形成硬度高、热稳定性好的碳化物,阻止蠕变的发展,起弥散强化的作用;微量B与稀土(RE)元素,强化晶界等措施可提高钢的高温强度。 (2)常用耐热钢 按使用特性不同,耐热钢分为以抗氧化性为主要使用特性的抗氧化钢和以高温强度为主要使用特性的热强钢。 ①抗氧化钢抗氧化钢大多数是在碳质量分数较低的高Cr钢、高CrNi钢或高Cr—Mn 钢基础上添加适量Si或Al配制而成的,主要有铁素体型和奥氏体型两类。铁素体型抗氧化钢,如1Crl3SiAl,其最高使用温度900℃,常用作喷嘴、退火炉罩等。奥氏体型抗氧化钢,如2Cr20Mn9Ni2Si2N和3Crl8Mnl2Si2N 钢具有良好的抗氧化性能(最高使用温度可达1000℃、抗硫腐蚀和抗渗碳能力,还具有良好的铸造性能,所以常用于制造铸件,还可进行剪切、冷热冲压和焊接。

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

影响钢材力学性能的因素2

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

相关文档
最新文档