力学动态平衡专题

合集下载

高中物理力学提升专题06三力动态平衡问题的处理技巧2

高中物理力学提升专题06三力动态平衡问题的处理技巧2

专题06 三力动态平衡问题的处理技巧【专题概述】在分析力的合成与分解问题的动态变化时,用公式法讨论有时很繁琐,而用作图法解决就比较直观、简单,但学生往往没有领会作图法的实质和技巧,或平时对作图法不够重视,导致解题时存在诸多问题.用图解法和相似三角形来探究力的合成与分解问题的动态变化有时可起到事半功倍的效果动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一时刻均可视为平衡状态,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:化“动”为“静”,“静”中求“动”,【典例精讲】1. 图解法解三力平衡图解法分析物体动态平衡问题时,一般物体只受三个力作用,且其中一个力大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化典例1如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大 B.逐渐减小C.先增大后减小 D.先减小后增大【答案】D典例2、如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是( )A.90° B.45° C.15° D.0°【答案】C2 . 相似三角形解动态一般物体只受三个力作用,且其中一个力大小、方向均不变,另外两个力的方向都在发生变化,此时就适合选择相似三角形来解题了,物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向典例3 半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力F N和绳对小球的拉力F T的大小变化的情况是( )A. F N不变,F T变小B. F N不变, F T先变大后变小C. F N变小,F T先变小后变大D. F N变大,F T变小【答案】A【解析】以小球为研究对象,分析小球受力情况:重力G,细线的拉力F T和半球面的支持力F N,作出F N、F T的合力F,典例4 如图所示,不计重力的轻杆OP能以O为轴在竖直平面内自由转动,P端挂一重物,另用一根轻绳通过滑轮系住P端,当OP和竖直方向的夹角α缓慢增大时(0<α<π),OP杆所受作用力的大小( )A.恒定不变B.逐渐增大C.逐渐减小D.先增大后减小【答案】A【解析】在OP杆和竖直方向夹角α缓慢增大时(0<α<π),结点P在一系列不同位置处于静态平衡,以结点P为研究对象,如图甲所示,3. 辅助圆图解法典例5 如图所示的装置,用两根细绳拉住一个小球,两细绳间的夹角为θ,细绳AC呈水平状态.现将整个装置在纸面内顺时针缓慢转动,共转过90°.在转动的过程中,CA绳中的拉力F1和CB绳中的拉力F2的大小发生变化,即 ( )A.F1先变小后变大 B.F1先变大后变小C.F2逐渐减小 D.F2最后减小到零【答案】BCD【解析】从上述图中可以正确【答案】是:BCD【提升总结】用力的矢量三角形分析力的最小值问题的规律(1)若已知F合的方向、大小及一个分力F1的方向,则另一分力F2的最小值的条件为F1⊥F2;(2)若已知F合的方向及一个分力F1的大小、方向,则另一分力F2的最小值的条件为F2⊥F合。

专题3 动态平衡讲义(解析版)

专题3 动态平衡讲义(解析版)

共点力的动态平衡一.动态平衡的概念“动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一个状态均可视为平衡状态,所以叫动态平衡二.平衡中的“四看”与“四想”(1)看到“缓慢”,想到“物体处于动态平衡状态”。

(2)看到“轻绳、轻环”,想到“绳、环的质量可忽略不计”。

(3)看到“光滑”,想到“摩擦力为零”。

(4)看到“恰好”想到“题述的过程存在临界点”。

三、解决动态平衡常用方法1.解析法如果物体受到多个力的作用,可进行正交分解,利用解析法,建立平衡方程,找函数关系,根据自变量的变化确定因变量的变化.还可由数学知识求极值或者根据物理临界条件求极值 2.图解法物体受三个力平衡:一个力恒定、另一个力的方向恒定时可用此法.由三角形中边长的变化知力的大小的变化,还可判断出极值.例:挡板P 由竖直位置绕O 点逆时针向水平位置缓慢旋转时小球受力的变化.(如图)2.相似三角形法物体受三个力平衡:一个力恒定、另外两个力的方向同时变化,当所作“力的矢量三角形”与空间的某个“几何三角形”总相似时用此法(如图)受力分析F N GFF NGFA OF NGF力的矢量三角形和边的三角形相似比例lFdFhGN==lFRFhGN==lFRFRGN==【例1】如图所示,A是一均匀小球,B是一14圆弧形滑块,最初A、B相切于圆弧形滑块的最低点,一切摩擦均不计,开始B与A均处于静止状态,用一水平推力F将滑块B向右缓慢推过一段较小的距离,在此过程中()A.墙壁对球的弹力不变B.滑块对球的弹力增大C.地面对滑块的弹力增大D.推力F减小【答案】B【例2】如图所示,物体甲放置在水平地面上,通过跨过定滑轮的轻绳与小球乙相连,整个系统处于静止状态.现对小球乙施加一个水平力F,使小球乙缓慢上升一小段距离,整个过程中物体甲保持静止,甲受到地面的摩擦力为F f,则该过程中()A.F f变小,F变大B.F f变小,F变小C.F f变大,F变小D.F f变大,F变大【答案】D【例3】如图所示,粗糙的水平面上放有一个截面为半圆的柱状物体A,A与竖直挡板间放有一光滑圆球,整个装置处于静止状态。

力学的动态平衡问题

力学的动态平衡问题

【解答】BD 由于物体a 、b 均保持静止,各绳间角度保持不变,对a 受力分析得,绳的拉力T=m a g ,所以物体a 受到绳的拉力保持不变.由滑轮性质,滑轮两侧绳的拉力相等,所以连接a 和b 绳的张力大小、方向均保持不变,C 选项错误;a 、b 受到绳的拉力大小、方向均不变,所以OO′的张力不变,A 选项错误;对b 进行受力分析,如图所示.由平衡条件得:Tcos β+f =Fcos α,Fsin α+F N +Tsin β=m b g.其中T 和m b g 始终不变,当F 大小在一定范围内变化时,支持力在一定范围内变化,B 选项正确;摩擦力也在一定范围内发生变化,D 选项正确.3.(2017·河北冀州2月模拟)如图所示,质量为m(可以看成质点)的小球P ,用两根轻绳OP 和O′P 在P 点拴结后再分别系于竖直墙上相距0.4 m 的O 、O′两点上,绳OP 长0.5 m ,绳O′P 长0.3 m ,今在小球上施加一方向与水平成θ=37°角的拉力F ,将小球缓慢拉起.绳O′P 刚拉直时,OP 绳拉力为T 1,绳OP 刚松弛时,O′P 绳拉力为T 2,则T 1∶T 2为(sin 37°=0.6;cos 37°=0.8)( )A .3∶4B .4∶3C .3∶5D .4∶5【解答】C 绳O′P 刚拉直时,由几何关系可知此时OP 绳与竖直方向夹角为37°,小球受力如图甲,则T 1=45mg.绳OP 刚松驰时,小球受力如图乙,则T 2=43mg.则T 1∶T 2=3∶5,C 项正确.1. (多选)(2017·全国卷Ⅰ)如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N.初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(α>π2).现将重物向右上方缓慢拉起,并保持夹角α不变.在OM 由竖直被拉到水平的过程中( )A .MN 上的张力逐渐增大B .MN 上的张力先增大后减小C .OM 上的张力逐渐增大D .OM 上的张力先增大后减小【解答】AD 设重物的质量为m ,绳OM 中的张力为T OM ,绳MN 中的张力为T MN .开始时,T O M =mg ,T MN =0.由于缓慢拉起,则重物一直处于平衡状态,两绳张力的合力与重物的重力mg 等大、反向.如图所示,已知角α不变,在绳MN 缓慢拉起的过程中,角β逐渐增大,则角(α-β)逐渐减小,但角θ不变,在三角形中,利用正弦定理得:T OMα-β=mg sin θ, (α-β)由钝角变为锐角,则TOM 先增大后减小,选项D 正确; 同理知T MN sin β=mg sin θ ,在β由0变为π2的过程中,T MN 一直增大,选项A 正确.2.(多选)(2016·全国卷Ⅰ)如图所示,一光滑的轻滑轮用细绳OO′悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a ,另一端系一位于水平粗糙桌面上的物块b.外力F 向右上方拉b ,整个系统处于静止状态.若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( )A .绳OO′的张力也在一定范围内变化B .物块b 所受到的支持力也在一定范围内变化C .连接a 和b 的绳的张力也在一定范围内变化D .物块b 与桌面间的摩擦力也在一定范围内变化4.质量为m 的物体用轻绳AB 悬挂于天花板上.用水平向左的力F 缓慢拉动绳的中点O ,如图所示.用T 表示绳OA 段拉力的大小,在O 点向左移动的过程中( )A .F 逐渐变大,T 逐渐变大B .F 逐渐变大,T 逐渐变小C .F 逐渐变小,T 逐渐变大D .F 逐渐变小,T 逐渐变小【解答】A 对O 点受力分析如图所示,F 与T 的变化情况如图,由图可知在O 点向左移动的过程中,F 逐渐变大,T 逐渐变大,故选项A 正确.6.质量为M 的木楔倾角为θ,在水平面上保持静止,质量为m 的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F 拉着木块匀速上滑,如图所示,求:(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力的大小.【解答】 (1)木块刚好可以沿木楔上表面匀速下滑,mgsin θ=μmgcos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,Fcos α=mgsin θ+F f ,F N +Fsin α=mgcos θ,F f =μF N .联立以上各式解得,F =mgsin 2θθ-α.当α=θ时,F 有最小值,F min =mgsin 2θ.(2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=Fcos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=12mgsin 4θ.5.(多选) (2017·山东临沂市三模)某老师用图示装置探究库仑力与电荷量的关系.A 、B 是可视为点电荷的两带电小球,用绝缘细线将A 悬挂,实验中在改变电荷量时,移动B 并保持A 、B 连线与细线垂直.用Q 和q 表示A 、B 的电荷量,d 表示A 、B 间的距离,θ(θ不是很小)表示细线与竖直方向的夹角,x 表示A 偏离O 点的水平距离,实验中( )A .d 应保持不变B .B 的位置在同一圆弧上C .x 与电荷量乘积Qq 成正比D .tan θ与A 、B 间库仑力成正比【解答】ABC 因实验要探究库仑力与电荷量的关系,故两电荷间距d 应保持不变,选项A 正确;因要保持A 、B 连线与细线垂直且AB 距离总保持d 不变,故B 的位置在同一圆弧上,选项B 正确;对A 球由平衡知识可知F 库=mgsin θ,即k qQ d 2=mg xL,可知x 与电荷量乘积Qq 成正比,选项C 正确,D 错误.答案 (1)mgsin 2θ (2)12mgsin 4θ7. 如图所示,一光滑小球静置在光滑半球面上,被竖直放置的光滑挡板挡住,现水平向右缓慢地移动挡板,则在小球运动的过程中(该过程小球未脱离球面且球面始终静止),挡板对小球的推力F 、半球面对小球的支持力F N 的变化情况是( )A .F 增大,F N 减小B .F 增大,F N 增大C .F 减小,F N 减小D .F 减小,F N 增大【解答】B 某时刻小球的受力如图所示,设小球与半球面的球心连线跟竖直方向的夹角为α,则F =mgtan α,F N =mg cos α,随着挡板向右移动,α越来越大,则F 和F N 都要增大.8.(多选)(2017·九江4月模拟)如图所示,一根通电的导体棒放在倾斜的粗糙斜面上,置于图示方向的匀强磁场中,处于静止状态.现增大电流,导体棒仍静止,则在增大电流过程中,导体棒受到的摩擦力的大小变化情况可能是( )A .一直增大B .先减小后增大C .先增大后减小D .始终为零【解答】AB 若F 安<mgsin α,因安培力方向向上,则摩擦力方向向上,当F 安增大时,F 摩减小到零,再向下增大,B 项对,C 、D 项错;若F 安>mgsin α,摩擦力方向向下,随F 安增大而一直增大,A 项对.9.如图所示,粗糙水平地面上的长方体物块将一重为G 的光滑圆球抵在光滑竖直的墙壁上,现用水平向右的拉力F 缓慢拉动长方体物块,在圆球与地面接触之前,下面的相关判断正确的是( )A .球对墙壁的压力逐渐减小B .水平拉力F 逐渐减小C .地面对长方体物块的摩擦力逐渐增大D .地面对长方体物块的支持力逐渐增大【解答】B 对球进行受力分析,如图甲所示.F N1=Gtan θ,F N2=G cos θ.当长方体物块向右运动中,θ增大,F N1、F N2均增大,由牛顿第三定律知,球对墙壁的压力逐渐增大,选项A 错误;圆球对物块的压力在竖直方向的分力F N2′cos θ=G 等于重力,在拉动长方体物块向右运动的过程中,对物块受力分析如图乙所示,物块与地面之间的压力F N =G 1+F N2′cos θ=G 1+G 不变,滑动摩擦力f =μF N 不变,选项C 错误;又由于圆球对物块的压力在水平方向的分力F N2′sin θ逐渐增大,所以水平拉力F =f -F N2′sin θ逐渐减小,选项B 正确;由于物块与地面之间的压力不变,由牛顿第三定律可知,地面对物块的支持力不变,选项D 错误.10. (多选)如图所示,带电物体P 、Q 可视为点电荷,电荷量相同.倾角为θ、质量为M 的斜面体放在粗糙水平面上,将质量为m 的物体P 放在粗糙的斜面体上.当物体Q 放在与P 等高(PQ 连线水平)且与物体P 相距为r 的右侧位置时,P 静止且受斜面体的摩擦力为0,斜面体保持静止,静电力常量为k ,则下列说法正确的是( )A .P 、Q 所带电荷量为 mgr 2tan θkB .P 对斜面的压力为0C .斜面体受到地面的摩擦力为0D .斜面体对地面的压力为(M +m)g【解答】AD 设P 、Q 所带电荷量为q ,对物体P 受力分析如图所示,受到水平向左的库仑力F =k q 2r 2、竖直向下的重力mg 、支持力F N ,由平衡条件可得tan θ=Fmg,解得q =mgr 2tan θk ,选项A 正确;斜面对P 的支持力F N =mgcos θ+Fsin θ,由牛顿第三定律可知,P 对斜面的压力为F N ′=mgcos θ+Fsin θ,选项B 错误;对P 和斜面体整体受力分析,可知水平方向受到Q 对P 向左的库仑力F =k q 2r 2和地面对斜面体水平向右的摩擦力,由平衡条件可知,斜面体受到水平向右的摩擦力大小为f =k q2r 2,选项C 错误;对P 和斜面体整体受力分析,竖直方向受到竖直向下的重力(M +m)g 和水平面的支持力,由平衡条件可得,水平面支持力等于(M +m)g ,根据牛顿第三定律,斜面体对地面的压力大小为(M +m)g ,选项D 正确.11. 如图所示,小球用细绳系住,细绳的另一端固定于O 点。

高中物理力的动态平衡专题

高中物理力的动态平衡专题

高中物理力的动态平衡专题摘要:一、动态平衡的概念与特点二、动态平衡问题的分析方法1.解析法2.图解法三、高中物理动态平衡问题的应用实例四、如何提高动态平衡问题的解题能力正文:一、动态平衡的概念与特点动态平衡是指在物体受到多个力作用时,物体在运动过程中保持匀速运动或静止状态。

它有以下特点:1.受力分析:物体在动态平衡状态下,受到的力之间存在一定的关系,需要进行受力分析。

2.变化过程:物体的状态会随着时间的推移而发生缓慢变化,如力的变化、运动方向的变化等。

3.平衡条件:物体在动态平衡状态下,满足力的平衡条件,即合力为零。

二、动态平衡问题的分析方法1.解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变参量与自变参量的一般函数式,然后根据自变参量的变化确定应变参量的变化。

2.图解法:对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度,变化判断各个力的大小和变化关系。

三、高中物理动态平衡问题的应用实例例如,一个物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。

用这个三角形来分析力的变化和大小关系的方法叫矢量三角形法。

在处理变动中的三力问题时,矢量三角形法能直观地反映出力的变化过程。

四、如何提高动态平衡问题的解题能力1.加强对物理基本概念的理解:理解动态平衡的概念,掌握平衡条件的应用。

2.熟练掌握分析方法:解析法和图解法,灵活运用这两种方法解决实际问题。

3.注重受力分析:对物体进行详细的受力分析,找出各个力之间的关系。

4.加强练习:通过大量的练习,提高自己对动态平衡问题的解题能力和应变能力。

(完整版)力学动态平衡专题

(完整版)力学动态平衡专题

力学动态平衡专题一、矢量三角形法特点:物体受三个力作用,一为恒力,大小、方向均不变(通常为重力,也可能是其它力);一为定力,方向不变,大小变化;一为变力,大小、方向均发生变化。

分析技巧:正确画出物体所受的三个力,先作出恒力F3,通过受力分析确定定力F1的方向,并通过F3作一条直线,与另一变力F2构成一个闭合三角形。

看这个变力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形长短的变化对应力的变化。

1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中()A.N1始终增大,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大3. 质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图1所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B. F逐渐变大,T逐渐变小B.F逐渐变小,T逐渐变大 D. F逐渐变小,T逐渐变小4.如图所示,小球用细绳系住,绳的另一端固定于O点。

现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是()A、FN保持不变,FT不断增大B、FN不断增大,FT不断减小C、FN保持不变,FT先增大后减小D、FN不断增大,FT先减小后增大二、相似三角形法特点:物体所受的三个力中,一为恒力,大小、方向不变(一般是重力),其它两个力的方向均发生变化。

动态平衡小专题

动态平衡小专题

力学动态平衡小专题1.2012年全国高考新课标卷16.如图,一小球放置在木板与竖直墙面之间。

设墙面对球的压力大小为N 1,球对木板的压力大小为N 2。

以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中(B )A.N 1始终减小,N 2始终增大B.N 1始终减小,N 2始终减小C.N 1先增大后减小,N 2始终减小D.N 1先增大后减小,N 2先减小后增大2.如图所示,质量为m 的小球被轻绳系着,光滑斜面倾角为θ,向左缓慢推动劈,在这个过程中( CD )A .绳上张力先增大后减小B .斜劈对小球支持力减小C .绳上张力先减小后增大D .斜劈对小球支持力增大3.用等长的细绳0A 和0B 悬挂一个重为G 的物体,如图3所示,在保持O 点位置不变的前提下,使绳的B 端沿半径等于绳长的圆弧轨道向C 点移动,在移动的过程中绳OB 上张力大小的变化情况是( A )A .先减小后增大B .逐渐减小C .逐渐增大D .OB 与OA 夹角等于90o 时,OB 绳上张力最大4.如图,电灯悬挂于两墙之间,更换水平绳OA 使连结点A 向上移动而保持O点的位置不变,则A 点向上移动时( D )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大 5.如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时( B )A .绳的拉力变小,墙对球的弹力变大B .绳的拉力变小,墙对球的弹力变小C .绳的拉力变大,墙对球的弹力变小D .绳的拉力变大,墙对球的弹力变大6.如图所示,轻绳的一端系着质量为m 的物体,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN 上,现用水平力F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F 、环与杆的摩擦力F 摩和环对杆的压力F N 的变化情况是( D )A .F 逐渐增大,F 摩保持不变,F N 逐渐增大B .F 逐渐增大,F 摩逐渐增大,F N 保持不变C .F 逐渐减小,F 摩逐渐增大,F N 逐渐减小D .F 逐渐减小,F 摩逐渐减小,F N 保持不变7. 如图6,绳子a 一端固定在杆上C 点,另一端通过定滑轮用力拉住,一重物用绳b 挂在杆BC 上,杆可饶B 点转动,杆、绳质量及摩擦不计,重物处于静止。

高中物理力的动态平衡专题

高中物理力的动态平衡专题

高中物理力的动态平衡专题高中物理力的动态平衡专题动态平衡是高中物理力学中的一个重要概念,它描述了物体在受到多个力的作用下保持平衡的状态。

在这个专题中,我们将探讨动态平衡的原理、应用和实验方法。

首先,我们来了解一下什么是动态平衡。

在物理学中,力是指物体受到的作用,它可以改变物体的状态或形状。

当一个物体受到多个力的作用时,如果这些力之间相互抵消,且合力为零,则称该物体处于静态平衡状态。

而当一个物体在运动过程中受到多个力的作用时,如果这些力之间相互抵消,且合力为零,则称该物体处于动态平衡状态。

那么,在实际生活中有哪些例子可以说明动态平衡呢?我们可以想象一个人骑自行车的情景。

当人骑自行车时,他需要施加向前的推力来克服摩擦和空气阻力,并保持匀速运动。

这时候,人和自行车之间存在着多个相互作用的力:重力、摩擦、空气阻力等。

只有当这些作用力之间相互抵消,且合力为零时,人和自行车才能保持平衡状态,实现动态平衡。

在物理学中,我们可以通过实验来验证动态平衡的原理。

一种常见的实验方法是使用力传感器和数据采集器来测量物体受到的力。

我们可以在一个水平桌面上放置一个小球,并用力传感器测量小球受到的重力和支持力。

如果这两个力之间相互抵消,且合力为零,则说明小球处于动态平衡状态。

除了实验方法外,我们还可以通过数学模型来描述动态平衡。

在物理学中,我们可以使用牛顿第二定律来计算物体所受的合力。

根据牛顿第二定律的公式F=ma,其中F表示合力,m表示物体的质量,a表示物体的加速度。

如果一个物体处于动态平衡状态,则它的加速度为零,即a=0。

因此,根据牛顿第二定律可以得出,在动态平衡状态下合力为零。

动态平衡在现实生活中有着广泛的应用。

例如,在建筑工程中,设计师需要考虑建筑物所受到的各种外部作用力,并确保建筑物能够在这些力的作用下保持动态平衡,以确保建筑物的结构稳定和安全。

此外,在机械工程中,工程师需要设计各种机械装置,以确保它们在运动过程中能够保持动态平衡,以提高效率和减少能量损失。

动态力学中动态平衡问题(含答案)

动态力学中动态平衡问题(含答案)

动态力学中动态平衡问题(含答案)在动态力学中,动态平衡问题是一种常见的研究领域。

动态平衡是指当物体处于运动状态时,其各个部分之间的力和力矩之和为零的状态。

本文将介绍动态平衡问题的一些基本概念和解决方法。

动态平衡的基本概念动态平衡问题涉及到物体的运动和受力情况。

当一个物体在运动时,它的各个部分之间存在力和力矩的平衡关系,才能保持动态平衡状态。

以下是动态平衡问题中的一些重要概念:1. 力:作用在物体上的力是物体保持动态平衡的基本要素。

力的大小、方向和作用点可以影响物体的运动和动态平衡状态。

2. 力矩:力矩是力对物体产生的旋转效果。

力矩与物体的力、力的作用点和距离相关。

在动态平衡问题中,力矩的平衡关系对于保持物体的平衡状态至关重要。

3. 动力学方程:动力学方程描述了物体运动的规律。

在动态平衡问题中,通过分析物体受力和力矩的平衡关系,可以建立动力学方程来求解平衡状态。

动态平衡问题的解决方法解决动态平衡问题的方法有多种,根据具体情况选择适合的方法可以更好地解决问题。

以下是一些常用的解决方法:1. 力和力矩分析法:通过分析物体受到的力和力矩,建立动力学方程,解得平衡状态的条件和解。

2. 动态平衡条件:根据动态平衡问题的特点,可以得出一些常用的动态平衡条件,如施加在物体上的力的合力为零、力矩的和为零等。

通过运用这些条件,可以求解物体的平衡状态。

3. 拉格朗日方程法:拉格朗日方程是研究物体运动的重要工具,可以应用于动态平衡问题的求解。

通过建立拉格朗日方程,可以得到物体运动的规律和平衡状态。

这些解决方法在动态平衡问题的研究中起到了重要的作用,可以帮助我们解析和理解物体的平衡状态和运动规律。

动态平衡问题的答案根据具体的动态平衡问题,可以使用上述的解决方法来求解平衡状态和答案。

然而,由于没有具体的问题描述,无法给出具体的答案。

综上所述,动态平衡问题是一种研究物体在运动状态下保持平衡的问题。

通过力和力矩分析、动态平衡条件和拉格朗日方程等方法,可以解决动态平衡问题并求得平衡状态。

浅析力学中的动态平衡问题

浅析力学中的动态平衡问题

浅析力学中的动态平衡问题物体受到几个共点力的作用,其中某部分力是变力,即为动态力,在所有力共同作用下物体的状态发生缓慢变化,变化过程中的每一个状态均可视为平衡状态,这就是所谓的动态平衡问题。

该类问题是高考中的高频考点,也是教与学中的重点、难点,本人结合教学实际,对动态平衡问题进行归类剖析,希望对该部分的教与学有所帮助。

一、图解法(一)平行四边形雏形法或三角形雏形法该种方法分析物体动态平衡问题时,一般物体只受三个力作用,且其中一个力大小、方向均不变为恒力,另一个力的方向不变,第三个力大小、方向均变化。

由三力平衡的规律可知,两变力的合力与恒力等大方向,这就说明在两变力合成合力的矢量图中,对角线的大小方向是确定的,其中一个分力的方向不变,则表示该分力方向所在的直线与大小方向确定的对角线可组一个成平行四边形雏形或三角形雏形,当第三个力的方向确定一次,就组成一个点完整的平行四边形或三角形,依据第三个力的方向变化范围,就可对应做出平行四边形或三角形动态变化过程,从而可以确定各力的变化情景。

【例1】如图所示,小球用细绳系住,绳的另一端固定于O点,现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是怎样的?[解析] 小球受的重力不变,支持力的方向不变,绳的拉力的大小、方向都改变。

以小球为研究对象,受力分析如图所示。

在小球上升到接近斜面顶端的过程中,mg的大小和方向都不变,即F N与F T的合力F=mg不变。

F N的方向不变,用表示F N方向所在的直线与表示F的有向线段组成一个平行四边形雏形或三角形雏形,F T与水平方向的夹角由大于斜面倾角α的某一值逐渐减小至趋于零,由此做出平行四边形或三角形的动态变化过程图,由图可知,F T先减小,当F T与F N 垂直(即绳与斜面平行)时达到最小,然后开始增大,F T先减小后增大;由图还可判定F N不断增大。

物体的受力(动态平衡)分析及典型例题

物体的受力(动态平衡)分析及典型例题

物体的受力(动态平衡)分析及典型例题受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。

受力分析的依据是各种力的产生条件及方向特点。

一.几种常见力的产生条件及方向特点。

1.重力。

重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。

重力不是地球对物体的引力。

重力与万有引力的关系是高中物理的一个小难点。

重力的方向:竖直向下。

2.弹力。

弹力的产生条件是接触且发生弹性形变。

判断弹力有无的方法:假设法和运动状态分析法。

弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。

弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。

【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。

图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。

【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。

水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。

【例3】如图1—4所示,画出物体A 所受的弹力。

a 图中物体A 静止在斜面上。

b 图中杆A 静止在光滑的半圆形的碗中。

c 图中A 球光滑,O 为圆心,O '为重心。

图1—1a b图1—2 图1—4a b c【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质量为m的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a水平向右加速运动;(3)小车以加速度a水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。

3.摩擦力。

摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。

摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。

判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。

力学动态平衡问题常见练习题

力学动态平衡问题常见练习题

力学动态平衡问题常见练习题1、如下图(a)所示,m在三根细绳悬吊下处于平衡状态,现用手持绳OB的B 端,使OB缓慢向上转动,且始终保持结点O的位置不动,分析AO、BO两绳中的拉力如何变化.2、如图所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°。

现保持绳子AB与水平方向的夹角不变,而将绳子BC逐渐变到沿水平方向,在这过程中,绳子BC的拉力变化情况是:()A.逐渐增大B.先逐渐减小,后逐渐增大C.逐渐减小D.先逐渐增大,后逐渐减小3、如图所示,重物G用OA和OB两段等长的绳子悬挂在半圆弧的架子上,B 点固定不动,A端由顶点C沿圆弧向D移动,在此过程中,绳子OA上的张力将:()A.由大变小B.由小变大C.先减小后增大D.先增大后减小4、如图所示,在竖直平面的固定光滑圆轨道的最高点有一个光滑的小孔,质量为m的小环套在圆轨道上,用细线通过小孔系在环上,缓慢拉动细线,使环沿轨道上移,在移动过程中拉力F和轨道对小环的作用F N的大小变化情况是:() A.F不变,F N增大B.F不变,F N不变C.F减小,F N不变D.F增大,F N减小5、光滑半球面上的小球(可视为质点)被一通过定滑轮的力F由底端缓慢拉到顶端的过程中(如图所示),试分析绳的拉力F及半球面对小球的支持力F N的变化情况。

6、如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上.现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动.则在这一过程中,环对杆的摩擦力f和环对杆的压力N的变化情况是()A.f不变,N不变B.f增大,N不变C.f增大,N减小D.f不变,N减小。

平衡问题(动态平衡问题)

平衡问题(动态平衡问题)

优质讲义例3用等长的细绳0A 和0B 悬挂一个重为G 的物体,如图3所示,在保持O 点位置不变的前提下,使绳的B 端沿半径等于绳长的圆弧轨道向C 点移动,在移动的过程中绳OB 上张力大小的变化情况是( )A .先减小后增大B .逐渐减小C .逐渐增大D .OB 与OA 夹角等于90o时,OB 绳上张力最大 方法二:相似三角形法。

特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

例4一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。

现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )A .F N 先减小,后增大 始终不变C .F 先减小,后增大 始终不变例5如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( )(A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小 方法三:作辅助圆法特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且AF BOθACB O图2-3(2)当A点位置固定,B端缓慢下移时,绳中张力又如何变化例9如图所示,长度为5cm的细绳的两端分别系于竖立地面上相距为4m的两杆的顶端A、B,绳子上挂有一个光滑的轻质钩,其下端连着一个重12N的物体,平衡时绳中的张力多大例10如图所示,保持θ不变,将B点向上移,则BO绳的拉力将()A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小课堂总结课堂练习1.如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将:A .逐渐变大B .逐渐变小C .先增大后减小D .先减小后增大2、如图所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体,平衡时,问:①绳中的张力T 为多少②A 点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化3、 如图38所示,水平横梁一端A 插在墙壁内,另一端装有小滑轮B ,一轻绳一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10kg 的重物,∠=︒C B A 30,则滑轮受到绳子作用力为: A. 50N B. 503N C. 100N D. 1003N4. 如图所示,电灯悬挂于两墙之间,更换绳OA ,使连接点A 向上移,但保持O 点位置不变,则A 点向上移时,绳OA 的拉力(答案:D )A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大5.轻绳一端系在质量为m 的物体A 上,另一端系在一个套在粗糙竖直杆MN 的圆环上。

力专题图解法分析动态平衡

力专题图解法分析动态平衡

动态平衡问题1.动态平衡问题:通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,从宏观上看,物体是运动变化的,但从微观上理解是平衡的,即任一时刻物体均处于平衡状态。

2.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。

3.图解法分析动态平衡问题,往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。

解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这是解答动态问题的关键4.典型例题:例1:半圆形支架BCD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,分析OA绳和OB绳所受力的大小如何变化?例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的压力为F N1,球对板的压力为F N2.在将板BC逐渐放至水平的过程中,下列说法中,正确的是()A.F N1和F N2都增大B.F N1和F N2都减小C.F N1增大,F N2减小D.F N1减小,F N2增大思考:1如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时()A.绳OA的拉力逐渐增大;B.绳OA的拉力逐渐减小;C.绳OA的拉力先增大后减小;D.绳OA的拉力先减小后增大。

例3:如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化?思考:2.如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化?思考:3重G 的光滑小球静止在固定斜面和竖直挡板之间。

高中物理力的动态平衡专题

高中物理力的动态平衡专题

高中物理力的动态平衡专题高中物理力的动态平衡专题动态平衡是高中物理力学中的一个重要专题,它研究的是物体在受到多个力作用下保持平衡的情况。

在我们日常生活中,动态平衡无处不在,比如我们行走、跑步、骑自行车等等,都需要保持身体的平衡。

而在物理学中,动态平衡更是涉及到了更加复杂的力学问题。

首先,我们来了解一下什么是动态平衡。

动态平衡指的是物体在受到多个力作用下,其合力为零,并且合力矩也为零。

合力为零意味着物体不会发生加速度,保持匀速直线运动或静止;而合力矩为零则意味着物体不会发生转动。

那么,在什么情况下会出现动态平衡呢?首先,当一个物体受到两个相等大小、方向相反的力作用时,这两个力会互相抵消,使得物体保持静止或匀速直线运动。

这就是所谓的静止或匀速直线运动的动态平衡。

其次,在转动方面也存在着动态平衡。

当一个物体受到多个力矩作用时,如果这些力矩的合力矩为零,那么物体就会保持平衡。

这种情况下,物体可以绕着一个固定点旋转,但是不会发生转动。

动态平衡的研究对于我们理解物体的运动和力学规律有着重要的意义。

通过分析物体受到的各个力和力矩,我们可以预测物体的运动状态,并且可以设计出一些能够保持平衡的结构。

在日常生活中,我们经常会遇到一些与动态平衡相关的问题。

比如,在骑自行车时,我们需要保持身体和车辆的平衡,这就需要我们调整身体的重心和施加在脚踏板上的力来保持平衡。

又比如,在行走时,我们也需要不断调整身体姿势和步伐来保持平衡。

总之,高中物理中的动态平衡专题是一个非常重要且有趣的内容。

通过学习动态平衡,我们可以更好地理解物体运动和力学规律,并且能够应用于日常生活中。

同时,对于那些希望从事工程设计或者其他与力学相关领域工作的人来说,掌握动态平衡的知识也是非常重要的。

高一物理力学受力分析之动态平衡问题

高一物理力学受力分析之动态平衡问题

动态平衡一、三角形图示法(图解法)方法规律总结:常用于解三力平衡且有一个力是恒力,另一个力方向不变的问题。

例1、如图1-17所示,重G的光滑小球静止在固定斜面和竖直挡板之间。

若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1 、F2各如何变化?答案: F1逐渐变小,F2先变小后变大变式:1、质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示,用T表示OA段拉力的大小,在O点向左移动的过程中( A)A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小2、如图所示,一个球在两块光滑斜面板AB、AC之间,两板与水平面间的夹角均为60°,现使AB板固定,使AC板与水平面间的夹角逐渐减小,则下列说法中正确的是(A)A.球对AC板的压力先减小再增大B.球对AC板的压力逐渐减小C.球对AB板的压力逐渐增大D.球对AB板的压力先增大再减小二、三角形相似法方法规律总结:在三力平衡问题中,如果有一个力是恒力,另外两个力方向都发生变化,且力的矢量三角形与题所给空间几何三角形相似,可以利用相似三角形对应边的比例关系求解.例2、如图所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆AB一端通过铰链固定在A点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BAC>90°,现使∠BAC缓慢变小,直到杆AB接近竖直杆AC.此过程中,杆AB所受的力( A )A.大小不变B.逐渐增大C.先减小后增大D.先增大后减小变式:1、如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是(C)A.F不变,N增大B.F不变,N减小C.F减小,N不变D.F增大,N减小2、半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化的情况是(A)A.N不变,T变小B.N不变,T先变大后变小C.N 变小,T先变小后变大D.N变大,T变小三、整体隔离法方法规律总结:当研究对象由多个物体组成时,可以将多个物体看成一个整体,分析整体受力,叫做整体法;也可以将某个物体隔离开,单独分析,叫做隔离法.整体法、隔离法也可以组合使用.例3、一个截面是直角三角形的木块放在水平地面上,在斜面上放一个光滑球,球的一侧靠在竖直墙上,木块处于静止,如图所示.若在光滑球的最高点再施加一个竖直向下的力F,木块仍处于静止,则木块对地面的压力N和摩擦力f的变化情况是(A)A.N增大,f增大B.N增大,f不变C.N不变,f增大D.N不变,f不变变式:1、在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的作用力为F3.若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中(A)A. F2缓慢增大,F3缓慢增大B. F1缓慢增大,F3保持不变C. F1保持不变,F3缓慢增大D. F2缓慢增大,F3保持不变2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN。

高考物理一轮复习:动态平衡的三种解法

高考物理一轮复习:动态平衡的三种解法

动态平衡的三种解法什么是动态平衡?通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”。

方法一解析法基本思路例 1:质量为 M 的半圆柱体 P 放在粗糙的水平地面上,其右端固定一个竖直挡板 AB,在 P 上放两个大小相同的光滑小球 C 和 D,质量均为 m,整个装置的纵截面如图所示。

开始时P、C 球心连线与水平面的夹角为θ,点 P、D 球心连线处于竖直方向,已知重力加速度为g。

则下列说法正确的是()mg mgA.P 和挡板对 C 的弹力分别为tanθ和sinθB.地面对 P 的摩擦力大小为零C.使挡板缓慢地向右平行移动,但 C 仍在 P 和挡板 AB 作用下悬于半空中,则地面对 P 的摩擦力将不断增大D.使挡板绕 B 点顺时针缓慢转动,P 始终保持静止,则 D 一定缓慢下滑方法二图解法什么是图解法?对研究对象在动态变化过程中的若干状态进行受力分析,在同一图中作出物体在若干状态下所受的力的平行四边形,由各边的长度变化及角度变化来确定力的大小及方向的变化,此即为图解法。

应用图解法的优点是什么?图解法的优点是能将各力的大小、方向等变化趋势形象、直观地反映出来,大大降低了解题三力平衡难度和计算强度。

思考:图解法可适用于物体受怎样的力时的动态分析?一个力是恒力、另有一个力是方向不变、第三个力大小和方向都发生变化。

例2:光滑斜面上固定着一根刚性圆弧形细杆,小球通过轻绳与细杆相连,此时轻绳处于水平方向,球心恰位于圆弧形细杆的圆心处,如图所示。

将悬点 A 缓慢沿杆向上移动,直到轻绳处于竖直方向,在这个过程中,轻绳的拉力()A.逐渐增大B.大小不变C.先减小后增大D.先增大后减小方法三相似三角形法在哪些情况下可应用相似三角形法判断力的变化?在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学动态平衡专题
一、矢量三角形法
特点:物体受三个力作用,
一为恒力,大小、方向均不变(通常为重力,也可能是其它力);
一为定力,方向不变,大小变化;
一为变力,大小、方向均发生变化。

分析技巧:正确画出物体所受的三个力,先作出恒力F3,通过受力分析确定定力F1的方向,并通过F3作一条直线,与另一变力F2构成一个闭合三角形。

看这个变力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形长短的变化对应力的变化。

1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不
计摩擦,在此过程中()
A.N1始终增大,N2始终增大
B.N1始终减小,N2始终减小
C.N1先增大后减小,N2始终减小
D.N1先增大后减小,N2先减小后增大
2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若
固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大
C.OB绳上的拉力减小 D.OB绳上的拉力先减小后增大
3.质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图1所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中(?)
A.F逐渐变大,T逐渐变大
B.F逐渐变大,T逐渐变小
B.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小
4.如图所示,小球用细绳系住,绳的另一端固定于O点。

现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是
()
5.
A、FN保持不变,FT不断增大
B、FN不断增大,FT不断减小
C、FN保持不变,FT先增大后减小
D、FN不断增大,FT先减小后增大
二、相似三角形法
特点:物体所受的三个力中,一为恒力,大小、方向不变(一般是重力),其它两个力的方向均发生变化。

分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,
再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大
小变化问题转化为几何三角形边长的大小变化问题进行讨论。

1.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图所示,现将细绳缓慢往右放,使杆BO 与杆AO 间的夹角θ
逐渐增大,则在此过程中,拉力F 及杆BO 所受压力
F N 的大小变化
情况是( )
A .F N 减小,F 增大 B.F N 、F 都不变
B .F 增大,F N 不变 D.F 、F N 都减小
2.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情
况是()。

A.N 变大,T 变小
B.N 变小,T 变大
C.N 变小,T 先变小后变大
D.N 不变,T 变小 3.如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m 的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F 和轨道对小球的弹力N 的大小变化情况是( )
A
C
B O
A.F不变,N增大
B.F不变,N?减小
C.F减小,N不变
D.F增大,N减小
三、圆周角模型法
特点:三个力中一为恒力,其它两个力方向和大小均发生变化,但其夹角不变,通常情况下可以采用圆周角模型法。

分析技巧:先对物体进行受力分析,将三个力的矢量首尾相连构成闭合三角形,然后作闭合三角形的外接圆,以恒力所在边为定弦,按题目要求移动定弦所对圆周角,观察其它两个力的变化情况。

1.如图所示,直角尺POQ竖直放置,其中OP部分竖直,OQ部分水平,一小球C被两根细线系于直角尺上AB两点,AC水平.现让直角尺绕O点的水平轴在竖直平面内顺时针缓慢转过90°,则()?
A.AC线上拉力一直增大?
B.BC线上拉力一直减小?
C.AC线上拉力先增大后减小?
D.BC线上拉力先减小后增大?
2.如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N.初始时,OM竖直且MN被拉直,OM与MN之间的夹角α(α>)。

现将重物向右上方缓慢拉起,并保持夹角α不变,在OM由竖直被拉到水平的过程中()
A.MN上的张力逐渐增大B.MN上的张力先增大后减小
C.OM上的张力逐渐增大D.OM上的张力先增大后减小
3.如图所示,置于地面的矩形框架中用两细绳拴住质量为m的小球,绳B水平.设绳A、B对球的拉力大小分别为F1、F2,它们的合力大小为F.现将框架在竖直平面内绕左下端缓慢旋转90°,
在此过程中()
A、F1先增大后减小
B、F2先增大后减小
C、F先增大后减小
D、F先减小后增大
4.如图,运动员的双手握紧竖直放置的圆形器械,在手臂OA沿由水平方向缓慢移到A'位置过程中,
若手臂OA,OB的拉力分别为FA和FB,下列表述正确的是()
A、FA一定小于运动员的重力G
B、FA与FB的合力始终大小不变
C、FA的大小保持不变
D、FB的大小一直增大
四、晾衣架问题
特点:轻绳两端拉力大小相等,当其中一端沿圆弧或横梁向两端移动时,轻绳与水平方向夹角变小,当其中一端在竖直方向移动时,轻绳与水平方向夹角不变。

分析技巧:当其中一端沿圆弧或横梁向两端移动时,由于轻绳与水平方向夹角变小,依据竖直方向上的平衡关系拉力变大,当在竖直方向移动时,由于轻绳与水平方向夹角不变,依据平衡关
系拉力大小不变。

1.如图所示,将一根不能伸长、柔软的轻绳两端分别系于A、B两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F2;将绳子B端移至D
点,待整个系统达到平衡时,两段绳子间的夹角为θ3,不计摩擦,则( C )
A. 321θθθ==B 、F1<F2<F3
C.321θθθ<=D 、F1=F2>F3
2.如图所示为一竖直放置的穹形光滑支架,其中AC 以上为半圆.一根不可伸长的轻绳,通过光滑、轻质滑轮悬挂一重物.现将轻绳的一端固定于支架上的A 点,另一端从最高点B 开始,沿着支架缓慢地顺时针移动,直到D 点(C 点与A 点等高,D 点稍
低于C
点).则绳中拉力的变化情况( )
A .先变大后不变
B .先变小后不变
C .先变小后变大再变小
D .先变大后变小再变大 3.如图所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G=40N ,绳长L=2.5m ,OA=1.5m ,关于绳中张力的大小,下列
说法正确的
是( )
A .当
B 点位置固定,A 端缓慢左移时,绳中张力增大
B .当B 点位置固定,A 端缓慢左移时,绳中张力不变
C .当A 点位置固定,B 端缓慢向下移时,绳中张力变大
D .当A 点位置固定,B 端缓慢向下移时,绳中张力不变
五、多个物体的动态平衡
分析:对于多物体的平衡问题,一般采用整体法+隔离法,结合正交分解进行解题。

当研究地面或
墙壁对物体的弹力或摩擦力时一般采用整体法,当研究物体间作用力时一般采用隔离法。

1.如图所示,光滑水平地面上放有截面为1/4圆周的柱状物体A,A与墙面之间放一光滑的圆柱形物体B,对A施加一水平向左的力F,整个装置保持静止。

若将A的位置向左移动稍许,整个
装置仍保持平衡,则()
A.水平外力F增大B.墙对B的作用力增大
C.地面对A的支持力减小D.B对A的作用力减小
2.质量为m的物体,放在质量为M的斜面体上,斜面体放在粗糙的水平地面上,m和M均处于静止状态,如图所示.当物体m上施加一个水平力F,且F由零逐渐加大到Fm的过程中,m和M 仍保持相对静止,在此过程中,下列判断哪些是正确的()
A.斜面体对m的支持力逐渐增大
B.物体m受到的摩擦力逐渐增大
C.地面受到的压力逐渐增大
D.地面对斜面体的静摩擦力由零逐渐增大到Fm
3.有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑。

AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。

现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化
情况是()
A、N不变,T变大
B、N不变,T变小
C、N变大,T变大
D、N变大,T变小
4.如图所示,OA为一遵守胡克定律的弹性轻绳,其一端固定在天花板上的O点,另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连.当绳处于竖直位置时,滑块A与地面有压力作用.B 为一紧挨绳的光滑水平小钉,它到天花板的距离BO等于弹性绳的自然长度.现用水平力F作用于A,使之向右作直线运动,在运动过程中,作用于A的摩擦力()
A、逐渐增大
B、逐渐减小
C、保持不变
D、条件不足,无法判断
未完待续……。

相关文档
最新文档