尺规作图PPT课件
合集下载
《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
新人教版数学八年级上册:尺规作图(共10张ppt)
'
' '
A’
A O B 就是所求作的角.
' ' '
基本作图3 平 分 已 知 角
已知:∠AOB 求作:射线OC, 使∠AOC=∠BOC 作法:1、在OA和OB上, B 分别截取OD、OE,使 OD=OE
2、分别以 D 、 E 为圆心, 1 以大于 2 DE 的长为半径 作弧,在∠AOB内,两 弧交于点C 3、作射线OC OC就是所求作的射线
E C
O
D
A
已知:线段a,b(a﹥b) 求作:一条线段,使它等于2a-b.
a
b
作法: 1.画射线AE. 2.在射线AE上顺次截取AB=BC=a. 3.在线段AC上截取CD=b. 线段AD就是所要画的线段.
A B D
C
E
基本作图2
作一个角等于已知角
作一个角等于已知角
已知:∠AOB. ' ' ' ' ' ' A O B ,使A O B AOB. 求作:
新人教版2019学年数学八年级
尺规作图(一)
教学目标:
1.了解什么是尺规作图. 2.能够用尺规完成下列基本作图: 作一条线段等于已知线段;作一 个角等于已知角;作角的平分线.
尺规作图:在几何里,把只用直
尺和圆规画图的方法称为尺规作图.
基本作图:最基本、最常用的尺规
作图,通常称为基本作图.
基本作图1 作一条线段等于已知线段.
B
O
A
作法: 1.作射线O A.DFra bibliotek'
'
2.以点O为圆心,以 任意长为 半径作弧,交OA于C ,交OB于D. ' 3.以点O 为圆心,以OC长为
最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)
1
2
1
2
课堂小结
工具→没有刻度的直尺、圆规
尺
规 作
图 作图
1.作一条线段等于已知线段→作线段的和与差 2.作一个角等于已知角→作角的和与差
3.作三角形
华东师大版·八年级数学上册
2.尺规作图(2)
新课导入
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
两千年来,这一直是个未解之谜.
练习
1.
如图,已知∠A,试作∠B=
1 2
∠A(不写作
法,保留作图痕迹)
A
B
2. 做出图中三角形的三个角的平分线。
内心
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种: 点C在直线 AB 上或点C在直线 AB 外.
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
华东师大版·八年级数学上册
1.尺规作图(1)
新课导入
三角尺 量角器
刻度尺
圆规
探究新知
没有刻度的直尺
只能使用圆规和 没有刻度的直尺这两 种工具作几何图形的 方法叫做尺规作图.
圆规
基本的尺规作图:
作一条线段等于已知线段
作一个角等于已知角 作已知角的平分线
尺规作图时通常 保留作图痕迹.
经过一已知点作已知直线的垂线
D
B
C
思考 如图,已知直线l是线段AB的垂 直平分线,则直线l是线段AB的对称轴, 对l上的任意两点C、D,总有:
A
CA=CB,DA=DB
由此,你能发现作垂直平分线的方法吗?
l C
B D
尺规作图 —初中数学课件PPT
数学
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
《尺规作图》PPT课件 (公开课获奖)2022年浙教版 (1)
〔1〕 t = -2 〔2〕 t=1 (3) t =2
3、小强、小杰、张明参加投篮比赛 ,每人投20次.小强投进10个
球 ,小杰比张明多投进2个 ,三人平均每人投进14个球.问小杰和小
明各投进多少个
设第|一次射击的成绩为x个
,
2x 12 可列方程为3
14
列__出__方_程__后__,_还_ 必须找出符合方程的未知数的值.
68
20
室温
32
0
水结冰的温度
xk1210是一元一次方程,则k=___2____
变式1: x|k| 210是一元一次方程,则k=_1_或____1
变式2: ( )x|k| 210是一元一次方程,则k=______
变式3:方程(k +6)x2 +3x -8 =7是关于x的一元
一次方程 ,那么- k = _____ . 6
能使方程左右两边的值相等 的未知数的值叫方程的解.
你们知道合作学习中方程 2x 12 14 的解
吗?
3
3、小强、小杰、张明参加投篮比赛 ,每人投20次.小强投进10个
球 ,小杰比张明多投进2个 ,三人平均每人投进14个球.问小杰和小
明各投进多少个
设第|一次射击的成绩为x个
,
2x 12
可列方程3为
2x 12 14所以x=15就是一元一次方程 3
14
的解
小结
方程
概念
一元一次方程
①一元; ②一次; ③整式
一元一 次方程
如何列方程?
同一个量用两种不 同的代数式表示
尝试检验法 先估计范围, 再代入检验
1.以下方程是一元一次方程的是(_2_)_,_(_3_) _,(_5_)__
3、小强、小杰、张明参加投篮比赛 ,每人投20次.小强投进10个
球 ,小杰比张明多投进2个 ,三人平均每人投进14个球.问小杰和小
明各投进多少个
设第|一次射击的成绩为x个
,
2x 12 可列方程为3
14
列__出__方_程__后__,_还_ 必须找出符合方程的未知数的值.
68
20
室温
32
0
水结冰的温度
xk1210是一元一次方程,则k=___2____
变式1: x|k| 210是一元一次方程,则k=_1_或____1
变式2: ( )x|k| 210是一元一次方程,则k=______
变式3:方程(k +6)x2 +3x -8 =7是关于x的一元
一次方程 ,那么- k = _____ . 6
能使方程左右两边的值相等 的未知数的值叫方程的解.
你们知道合作学习中方程 2x 12 14 的解
吗?
3
3、小强、小杰、张明参加投篮比赛 ,每人投20次.小强投进10个
球 ,小杰比张明多投进2个 ,三人平均每人投进14个球.问小杰和小
明各投进多少个
设第|一次射击的成绩为x个
,
2x 12
可列方程3为
2x 12 14所以x=15就是一元一次方程 3
14
的解
小结
方程
概念
一元一次方程
①一元; ②一次; ③整式
一元一 次方程
如何列方程?
同一个量用两种不 同的代数式表示
尝试检验法 先估计范围, 再代入检验
1.以下方程是一元一次方程的是(_2_)_,_(_3_) _,(_5_)__
浙教版八年级数学上册课件:1.6 尺规作图 (共11张PPT)
初中数学
【解析】 ∵三角形的内角和是 180°,∴∠A +∠B+∠C=180°,∠C=180°-α-β.只 要作出∠C,就可把两角一对边的作法转化 为两角一夹边的作法了. 作法:如解图. ①画一条直线 EF,在 EF 上取一点 C. ②以 C 为顶点,CF 为边作∠FCM=β. ③以 C 为顶点,CM 为边在∠FCM 外侧作∠MCN=α. ④在射线 CE 上截取 CB=a. ⑤以 B 为顶点,BC 为边作∠ABC=β,BA 交 CN 于点 A. 则△ ABC 即为所求作的三角形.
初中数学
重要提示
1.在作图过程中,我们一般可先假设此图形已作出,画 个草图,然后再确定作图步骤,这样就不容易画错了.
2.尺规作图中,直尺不能用来度量,只能用来画线. 3.画三角形的依据是三角形全等的判定.
初中数学
解题指导
【例 1】 如图 1-6-1,已知直线 l 及 l 上一点 C. 求作直线 l 的垂线,垂足为 C. 图 1-6-1
1.6 尺规作图
初中数学
学习指要
知识要点
1.尺规作图: 在几何作图中,我们把用没有刻度的直尺和圆规作图, 简称尺规作图.
2.基本尺规作图包括:作一条线段等于已知线段;作一 个角等于已知角;作一个角的平分线;作一条线段的 垂直平分线;过一点作已知直线的垂线.
初中数学
3.三角形的三种基本作图: (1)已知两边及夹角,作一个三角形. (2)已知两角及夹边,作一个三角形. (3)已知三边,作一个三角形.
(例 3 解)
初中数学
反思
复杂作图是在五种基本作图的基础上进行作图,一般都是 结合几何图形的性质和基本作图方法.解决此类题目的关 键是熟悉几何图形的基本性质,结合基本性质把复杂作图 拆解成基本作图,逐步操作.
【解析】 ∵三角形的内角和是 180°,∴∠A +∠B+∠C=180°,∠C=180°-α-β.只 要作出∠C,就可把两角一对边的作法转化 为两角一夹边的作法了. 作法:如解图. ①画一条直线 EF,在 EF 上取一点 C. ②以 C 为顶点,CF 为边作∠FCM=β. ③以 C 为顶点,CM 为边在∠FCM 外侧作∠MCN=α. ④在射线 CE 上截取 CB=a. ⑤以 B 为顶点,BC 为边作∠ABC=β,BA 交 CN 于点 A. 则△ ABC 即为所求作的三角形.
初中数学
重要提示
1.在作图过程中,我们一般可先假设此图形已作出,画 个草图,然后再确定作图步骤,这样就不容易画错了.
2.尺规作图中,直尺不能用来度量,只能用来画线. 3.画三角形的依据是三角形全等的判定.
初中数学
解题指导
【例 1】 如图 1-6-1,已知直线 l 及 l 上一点 C. 求作直线 l 的垂线,垂足为 C. 图 1-6-1
1.6 尺规作图
初中数学
学习指要
知识要点
1.尺规作图: 在几何作图中,我们把用没有刻度的直尺和圆规作图, 简称尺规作图.
2.基本尺规作图包括:作一条线段等于已知线段;作一 个角等于已知角;作一个角的平分线;作一条线段的 垂直平分线;过一点作已知直线的垂线.
初中数学
3.三角形的三种基本作图: (1)已知两边及夹角,作一个三角形. (2)已知两角及夹边,作一个三角形. (3)已知三边,作一个三角形.
(例 3 解)
初中数学
反思
复杂作图是在五种基本作图的基础上进行作图,一般都是 结合几何图形的性质和基本作图方法.解决此类题目的关 键是熟悉几何图形的基本性质,结合基本性质把复杂作图 拆解成基本作图,逐步操作.
尺规作图 精品课件
尺规作图
1.3 尺规基本几何作图
正六边形的作图 (1)
已知对角线长度 D
作法一
作法二
正六边形的作图 (2)
已知对边距离 S
作法一
作法二
正五边形的作图
已知外接圆直径 D
A
A
B KO
K OC
(a)
(b)
(c )
1. பைடு நூலகம்度
斜度和锥度
定义:斜度是指直线或平 面对另一直线或平面倾斜 的程度,一般以直角三角 形的两直角边的比值来表 示.
a)
3等分
25
25
b)
c)
圆弧连接
1. 圆弧连接的基本关系
R2=R1-R
作半径为R的圆弧 与已知直线相切
R2=R1+R
画半径为R的圆 弧与 已知圆弧 R1外切
画半径为R的圆弧 与已知圆弧R1内切
2. 圆弧连接作图举例
圆弧连接作图举例
圆弧连接作图举例
椭圆
椭圆的作图:已知长、短轴半径—四心法
E
上一页
加深的具体步骤如下:
(1) 加深图中的全部细线,一次性绘出标题栏、剖面线、尺 寸界线、尺寸线及箭头等.
(2) 加粗圆弧。圆弧与圆弧相接时应顺次进行. (3) 用丁字尺从上至下加粗水平直线,到图纸最下方后应刷
去图中的碳粉,并擦净丁字尺. (4) 用三角板与丁字尺配合,从左至右加粗垂直方向的直线,
(1) 绘图纸边界线, 图框线和标题栏 框线.
(23456) 布画图已中连检绘知间接查重线. 要 段的基准线、轴线、中心线等
以钓钩为例
15
20
40
6
R=15+32
第三阶段:加深、完成全图
1.3 尺规基本几何作图
正六边形的作图 (1)
已知对角线长度 D
作法一
作法二
正六边形的作图 (2)
已知对边距离 S
作法一
作法二
正五边形的作图
已知外接圆直径 D
A
A
B KO
K OC
(a)
(b)
(c )
1. பைடு நூலகம்度
斜度和锥度
定义:斜度是指直线或平 面对另一直线或平面倾斜 的程度,一般以直角三角 形的两直角边的比值来表 示.
a)
3等分
25
25
b)
c)
圆弧连接
1. 圆弧连接的基本关系
R2=R1-R
作半径为R的圆弧 与已知直线相切
R2=R1+R
画半径为R的圆 弧与 已知圆弧 R1外切
画半径为R的圆弧 与已知圆弧R1内切
2. 圆弧连接作图举例
圆弧连接作图举例
圆弧连接作图举例
椭圆
椭圆的作图:已知长、短轴半径—四心法
E
上一页
加深的具体步骤如下:
(1) 加深图中的全部细线,一次性绘出标题栏、剖面线、尺 寸界线、尺寸线及箭头等.
(2) 加粗圆弧。圆弧与圆弧相接时应顺次进行. (3) 用丁字尺从上至下加粗水平直线,到图纸最下方后应刷
去图中的碳粉,并擦净丁字尺. (4) 用三角板与丁字尺配合,从左至右加粗垂直方向的直线,
(1) 绘图纸边界线, 图框线和标题栏 框线.
(23456) 布画图已中连检绘知间接查重线. 要 段的基准线、轴线、中心线等
以钓钩为例
15
20
40
6
R=15+32
第三阶段:加深、完成全图
尺规作图(画线段的垂直平分线) ppt课件
ppt课件
12
作法:
(1)任取一点M,使点M和点C在的两侧; (2)以C点为圆心,以CM长为半径画弧,
交于A、B两点; (3)分别以A、B两点为圆心,以大于1 AB
长为半径画弧,两弧相交于D点; 2
(4)过C、D两点作直线CD。 所以,直线CD就是所求作的。
ppt课件
13
练习
1、如图,过点P画∠O两边的 垂线.
ppt课件
6
2、如图,在△ABC中,∠C=90º,AD平分 ∠BAC,DE⊥AB,若∠BAD=30º,则 ∠B=___,DE=___
ppt课件
7
思考:
你能在ABC内找到一点P,使P到AB,AC, BC的距离相等吗?
ppt课件
8
用尺规作线段的垂直平分线
ppt课件
9
什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
线段垂直平分线有哪些特征?
线段的垂直平分线上的点到线段 两端点的距离相等。
ppt课件
10
已知线段AB,画出它的垂直平分线.
说出你的 作图思路
ppt课件
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
11
试一试你的能力
1、如图,点C在直线上,试过 点C画出直线的垂线。
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
轴对称图形的性质
线段是轴对称图形,它的一条对称轴垂直于这条 线段并且平分它,这样的直线叫做这条线段的垂直 平分线(简称中垂线)。
线段的垂直平分线上的点到这条线段 两个端点的距离相等。
ppt课件
1
实验一:想一想:(1)点A与点B关于直线m有什 么样的位置关系?
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
中考复习专题:尺规作图课件(共38张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.
尺规作图(一)PPT课件
❖ ∴∠C`O`D`=∠COD(全等三角形的对应角相 等),
❖ 即∠A`O`B`=∠AOB。
2020年10月2日
6
B
E
C
O
D
A
❖ 1、在OA和OB上,分别截取OD、OE,使 OD=OE。
❖ 2、分别以D、E为圆心,大于DE的长为半径 作弧,在∠AOB内,两弧交于点C。
❖ 3、作射线OC。
2❖0204年1、0月2O日 C就是所求的射线。
∠CEB)
l
C
2020年10月2日
A
E
B
9
通过本节学习,应理解一些作图语句。
1. 过点x、点x作直线;或作直线xx,射线xx. 2. 连结两点x、x;或连结xx; 3. 在xx上截取xx=xx; 4. 以点x为圆心,xx为半径作圆(弧);(交xx
于x点;) 5. 分别以点x,点x为圆心,以xx为半径作
汇报人:XXX 汇报日期:20XX年10月10日
11
2020年10月2日
1
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:
2020年10月2日
弧,两弧相交于x点。
2020年10月2日
10
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
尺规作图-(经过一已知点作已知直线的垂线-)ppt课件
且BC=a,高为h
h
a
.
生活离不开数学
• A、B是两个村庄,要从灌 溉总渠引两条水渠便于灌溉, 请你选择最佳方案.
B A
灌溉总渠
.
• 教学反思 • 本节课你掌握了哪些知识? • 还有哪些疑惑?
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
.
经过一已知点作已知直线的垂线
•两种情况: •1、点在线上 •2、点在线外
.
试一试你的能力
1、如图,点C在直线上,试过 点C画出直线的垂线.
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
.
作法:
• (1)任取一点M,使点M和点C在的两侧; • (2)以C点为圆心,以CM长为半径画弧,
交于A、B两点; • (3)分别以A、B两点为圆心,以大于1 A B
长为半径画弧,两弧相交于D点; 2 • (4)过C、D两点作直线CD. • 所以,直线CD就是所求作的.
.
练习
• 1、如图,过点P画∠O两边的
垂线.
(第 1 题 )
.
• 2、如图,画△ABC边 BC上的高.
(第 2题)
.Leabharlann 挑战自我 • 如图,已知线段a,h, • 求作:△ABC,使AB=AC,
精品课件挑战自我挑战自我生活离不开数学生活离不开数学精品课件1011感谢亲观看此幻灯片此课件部分内容来源于网络如有侵权请及时联系我们删除谢谢配合
尺规作图(3)
(经过一已知点作已知直线的垂线 )
.
复习 1、什么叫做尺规作图? (限定用直尺和圆规来画图,称为尺 规作图) 2、用尺规作图 (1)作线段,使它等于已知线段的 长; (2)作角,使它等于已知角; (3)作角平分线
h
a
.
生活离不开数学
• A、B是两个村庄,要从灌 溉总渠引两条水渠便于灌溉, 请你选择最佳方案.
B A
灌溉总渠
.
• 教学反思 • 本节课你掌握了哪些知识? • 还有哪些疑惑?
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
.
经过一已知点作已知直线的垂线
•两种情况: •1、点在线上 •2、点在线外
.
试一试你的能力
1、如图,点C在直线上,试过 点C画出直线的垂线.
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
.
作法:
• (1)任取一点M,使点M和点C在的两侧; • (2)以C点为圆心,以CM长为半径画弧,
交于A、B两点; • (3)分别以A、B两点为圆心,以大于1 A B
长为半径画弧,两弧相交于D点; 2 • (4)过C、D两点作直线CD. • 所以,直线CD就是所求作的.
.
练习
• 1、如图,过点P画∠O两边的
垂线.
(第 1 题 )
.
• 2、如图,画△ABC边 BC上的高.
(第 2题)
.Leabharlann 挑战自我 • 如图,已知线段a,h, • 求作:△ABC,使AB=AC,
精品课件挑战自我挑战自我生活离不开数学生活离不开数学精品课件1011感谢亲观看此幻灯片此课件部分内容来源于网络如有侵权请及时联系我们删除谢谢配合
尺规作图(3)
(经过一已知点作已知直线的垂线 )
.
复习 1、什么叫做尺规作图? (限定用直尺和圆规来画图,称为尺 规作图) 2、用尺规作图 (1)作线段,使它等于已知线段的 长; (2)作角,使它等于已知角; (3)作角平分线
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当堂检测
第25课时┃ 尺规作图
【归纳总结】
基本尺 规作图
作一条线段等于已知线段 作一个角等于已知角 作已知角的平分线
作已知线段的垂直平分线 过一点作已知直线的垂线
.
4
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
考点2 利用尺规作图作三角形
[2014·青岛] 已知线段 a,∠α.求作:△ABC,使 AB=AC =a,∠B=∠α.
为圆心,过 A,D 两点作⊙O(不写作法,保留作图痕迹); (2)设(1)中⊙O 的半径为 r,若 AB=4,∠B=30°,求 r 的
值.
图 25-7
.
24
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:(1)如图所示:
(2)过点 O 作 OE⊥AD 于点 E,易知∠DAB=∠DAC=30°,由
图 25-5
.
18
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
探究二 基本作图的应用
例 2 [2012·杭州] 如图 25-6 是数轴的一部分,其单位长 度为 a,已知△ABC 中,AB=3a,BC=4a,AC=5a.
(1)用直尺和圆规作出△ABC(要求:使点 A,C 在数轴上,保 留作图痕迹,不必写出作法);
(2)记△ABC 的外接圆的面积为 S 圆,△ABC 的面积为 S△,试
说明SS圆 △>π.
图 25-6
.
19
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 思路点津 (1)已知三边作三角形;(2)作三角形的外接圆.
.
20
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:(1)如图所示:
.
21
第25课时 尺规作图
.
1
第25课时┃ 尺规作图
考点聚焦
考点1 基本尺规作图 [浙教版教材八上 P37 例 1] 已知∠AOB,求作∠A′O′B′,
使∠A′O′B′=∠AOB.
图 25-1
.
2
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图,∠A′O′B′就是所求的角.
.
3
考点聚焦
杭考探究
方法点析 利用尺规作三角形的基本条件是判定三角形全等的条件,即 已知 SSS,SAS,ASA 或 AAS 均可作出三角形.利用基本尺规作图 还可解决实际问题.
.
23
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
变式题 [2014·上城一模] 如图 25-7,已知 Rt△ABC 中,
∠C=90°. (1)作∠BAC 的平分线 AD 交 BC 边于点 D,以 AB 边上一点 O
杭考探 基本作图 例 1 [2013·杭州] 如图 25-4,已知四边形 ABCD 是矩形, 用直尺和圆规作出∠A 的平分线与 BC 边的垂直平分线的交点 Q(不写作法,保留作图痕迹),连结 QD.在新图形中,你发现了 什么?请写出一条.
图 25-4
.
【归纳总结】
与圆有 关的尺 规作图
过不在同一直线上的三点作圆 作三角形的外接圆、内切圆
作圆的内接正方形和正六边形
.
10
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 【知识树】
.
11
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
.
12
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
.
13
考点聚焦
当堂检测
第25课时┃ 尺规作图
考点3 与圆有关的尺规作图
[浙教版教材九上 P69 例 2] 已知△ABC,用直尺和圆规作出过 点 A,B,C 的圆.
图 25-3
.
8
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图,⊙O 就是所求作的圆.
.
9
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
23
43
23
2
AB=4,知 AC=2,CD= 3 ,AD= 3 ,∴AE= 3 ,EO=3,AO
=43,即 r=43.
.
25
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
当堂检测
1.尺规作图是指
(C )
A.用直尺规范作图
B.用刻度尺和尺规作图
C.用没有刻度的直尺和圆规作图
D.直尺和圆规是作图工具
.
.
17
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
变式题 [2014·梅州] 如图 25-5,在 Rt△ABC 中,∠B=
90°,分别以 A,C 为圆心,大于12AC 长为半径画弧,两弧相交于 点 M,N,连结 MN,与 AC,BC 分别交于点 D,E,连结 AE.则:
(1)∠ADE=___9_0____°; (2)AE___=_____EC;(填“>”“=”或“<”) (3)当 AB=3,AC=5 时,△ABE 的周长为___7_____.
图 25-2
.
5
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图,△ABC 就是所求的三角形.
.
6
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
【归纳总结】 已知三边作三角形
已知两边及其夹角作三角形
利用尺规 作三角形
已知两角及其夹边作三角形
已知两角及其中一角对边作三角 形
.
7
考点聚焦
杭考探究
14
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 思路点津 根据要求作出相应的基本图形.
.
15
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图所示:发现:DQ=AQ 或者∠QAD=∠QDA 等.
.
16
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
方法点析 作图题的一般步骤:读题(阅读题中的已知与求作); 分析(分析如何根据要求作图);作法(将待作图形按基本作 图的步骤一一完成,一般不要求写作法,但要保留作图痕 迹);证明(验证作图的正确性,一般口头完成,不要求写 出来).
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 (2)作出△ABC 的外接圆,如图所示:
∵△ABC 的外接圆的面积为 S 圆,
∴S 圆=π×(A2C)2=254a2π,S△ABC=12×3a×4a=6a2,
∴SS圆 △=2546aa22π=2245π>π.
.
22
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
26
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
2.[2014·滨江] 用直尺和圆规作一个以线段 AB 为边的菱
形,作图痕迹如图 25-8 所示,能得到四边形 ABCD 是菱形的依
据是
(B )
图 25-8
A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形 D.每条对角线平分一组对角的平行四边形是菱形