小学数学《格点与面积》练习题
小学数学《格点与面积》练习题(含答案)
小学数学《格点与面积》练习题(含答案)内容概述同学们,一看这个题目,你一定会有许多疑问:什么是格点?格点与面积之间又有什么关系等等.这一节我们就来探讨这些问题。
在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!正方形格点问题正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.【例1】判断下列图形哪些是格点多边形?【例2】如右图,计算各个格点多边形的面积.分析:本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.【例3】如右图(a),计算这个格点多边形的面积.【例4】(1998年新加坡小学数学奥林匹克竞赛)右图是一个方格网,计算阴影部分的面积.【例5】分别计算右图中两个格点多边形的面积。
【例6】用N表示多边形内部格点, L表示多边形周界上的格点,S表示多边形面积,填写下表:图形图形内的格点数(N)边界上的格点数(L)面积(S)例2图4例3例4例5(1)【例7】本讲开始提到的图“乡村小屋”的面积是多少?【例8】 (保良局亚洲区城市小学数学竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例9】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【例10】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.【例11】如右图(a),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC的面积.【例12】如右图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算△ABC的面积.【例13】把大正三角形每边八等份,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例14】(第五届“华杯赛”)正六边形ABCDEF的面积是6平方厘米.M是AB中点,N是CD中点,P是EF中点.问:三角形MNP的面积是多少平方厘米?练习一1.求下列各个格点多边形的面积.2. 右图是一个8 12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.3.求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).4.右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2平方厘米的三角形?5.将图中的图形分割成面积相等的三块.正方形格点问题正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.【例15】判断下列图形哪些是格点多边形?分析:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上!所以只有(1)是格点多边形。
小学奥数4-2-7 格点型面积.专项练习
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数. 我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴⑵⑶毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.例题精讲4-2-7.格点型面积【例 2】 如图,计算各个格点多边形的面积.【例 3】 如图(a ),计算这个格点多边形的面积.【例 4】 右图是一个方格网,计算阴影部分的面积.【例 5】 分别计算图中两个格点多边形的面积.【巩固】 求下列各个格点多边形的面积.(1)(2)(3)(4)【例6】“乡村小屋”的面积是多少?【例7】右图是一个812面积单位的图形.求矩形内的箭形ABCDEFGH的面积.HGFAEDC【例8】比较图中的两个阴影部分①和②的面积,它们的大小关系______【例9】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例10】第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例11】55的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【例12】两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm,右下角的阴影部分(线状)面积为27.4cm,求大正方形的面积.【例13】将边长为正整数n的正方形平均分成2n个小正方形,每个小正方形的顶点称为格点。
小学数学四年级 格点与面积 PPT+作业+答案
不规则图形0×2-2=8(平方厘米) 整体:36+8=44(平方厘米)
例7 如图:用9 个钉子钉成相互间隔为1 厘米的正方形方阵。如果用一
根皮筋将适当的三个钉子连结起来就得到一个三角形,那么在这样 得到的三角形中,面积是1 平方厘米的三角形有多少个?面积是2 平方厘米的三角形有多少个?
【分析】分别数出边界个点数和内部各点数,再利用格点面积公式求。
边界格点数:34个,内部各点数:20个
面积:34÷2+20-1=36(平方厘米)
例2 在下图中,每个小方格的面积都是2 平方厘米,那么格点多边
形的面积是多少平方厘米?
【分析】通过题意发现,单位小正方形的面积变为了2平方厘米,在运用格点公式时,也要 整体扩大2倍。
边界个点数:14个,内部格点数:14个
面积:14÷2+14-1=20(平方厘米)
例3 在下图中,每个小方格的边长都是1 厘米,那么阴影部分的面
积是多少平方厘米?
【分析】 直接求阴影部分的面积较麻烦,可通过割补法分别求出整体和空白部分的面积后 再求阴影部分面积。其中,空白部分可通过多边形格点面积公式求。
【分析】求三角形格点多边形面积,分别数出边界个点数和内部各点数,再利用公式求。
边界格点数:10个,内部格点数:12个
面积:10+12×2-2=30(平方厘米)
【小结】三角形格点多边形面积可通过数出边界格点数、 内部格点数来求,注意与正方形格点多边形面积公式区分。
练习5
如图:任意相邻的三个点呈“∵”或“∴”所组成的三角形都 是面积为1 的等边三角形,计算△ ABC 的面积。
整体:6×6=36(平方厘米) 空白:边界个点数:12个,内部格点数:9个
小学数学四年级 格点与面积教案 例题+练习+作业+答案
格点与面积知识点总结1:正方形格点多边形面积公式2:三角形格点多边形面积公式3:割补法求不规则多边形面积【例题精讲】例1在下面的正方形网格中,每个小正方形的面积都是1平方厘米。
请据此计算下面两个图形的面积。
【答案】13平方厘米和15平方厘米。
正方形格点多边形的面积=边界格点数÷2+内部格点数-1(1)边界格点数:20个,内部格点数:4个,面积:20÷2+4-113(平方厘米)(2)边界格点数:14个,内部格点数:9个,面积:14÷2+9-1=15(平方厘米)【例题小结】对比已学割补法与格点面积的优势,引导学生掌握更高效的方法。
练1在下面的正方形网格中,每个小正方形的面积都是1平方厘米。
网格中多边形的面积是多少平方厘米?【答案】36平方厘米【解析】边界格点数是34个,内部格点数是20个,因此面积是34÷2+20-1=36平方厘米。
例2在下图中,每个小方格的面积都是2平方厘米,那么格点多边形的面积是多少平方厘米?【答案】13平方厘米正方形格点多边形的面积=边界格点数÷2+内部格点数-1边界格点数:7 个,内部格点数:4 个面积:(7÷2+4-1)×2=13(平方厘米)【例题小结】单位小正方形面积是几,利用格点公式求出的面积也要扩大几倍。
练2小新将某市的地图轮廓绘制到了网格上,且每相邻的四个点围成的正方形的面积都是1平方厘米。
请帮小新计算出该市在地图上的面积。
【答案】20平方厘米【解析】边界格点数是14个,内部格点数是14个,因此面积是14÷2+14−1=20(平方厘米)。
例3在下图中,每个小方格的边长都是1厘米,那么阴影部分的面积是多少平方厘米?【答案】22平方厘米。
割补方法:整体-空白整体:6×6=36(平方厘米)空白:正方形格点多边形的面积=边界格点数÷2+内部格点数-112÷2+9-1=14(平方厘米)阴影:36-14=22(平方厘米)【例题小结】阴影部分面积=整体-空白练3在下图中,每个小正方形的边长都是1厘米,那么阴影部分的面积是多少平方厘米?【答案】14平方厘米【解析】可以将阴影部分面积和十字形的空白部分看做一个整体,面积是:8÷2+21-1=24(平方厘米),十字形的空白部分的面积是12÷2+5-1=10(平方厘米),因此阴影部分面积是24-10=14(平方厘米)。
《三角形格点与面积》专题
1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是.(3)作直线MN,将△ABC分成两个面积相等的三角形.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为.(4)若连接AA′,CC′,则这两条线段之间的关系是.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'P A与∠P AB三个角之间的数量关系为A.∠A'B'P+∠B'P A+∠P AB=180°B.∠A'B'P+∠B'P A+∠P AB=360°C.∠A'B'P+∠B'P A﹣∠P AB=180°D.∠A'B'P+∠B'P A﹣∠P AB=360°6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有个.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个.(注:格点指网格线的交点)9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有个(点P异于A).10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:;(4)求四边形ACBB′的面积.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有个.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是;(3)△ABC在整个平移过程中线段AB扫过的面积为.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为.(4)在平移过程中线段BC所扫过的面积为.(5)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A).19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有个.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是(4)△ABC在整个平移过程中线段AB扫过的面积为(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个(注:格点指网格线的交点)23.如图所示,在8×8的网格中,△ABC是格点三角形(顶点是网格的交点),若点A坐标为(﹣1,3),按要求回答下列问题:(1)建立符合条件的平面直角坐标系,并写出点B和点C的坐标;(2)将△ABC先向下平移2个单位长度,再向右平移3个单位长度,得到△DEF,请在图中画出△DEF,并求出线段AC在平移过程中扫过的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是;(3)作直线l,将△ABC分成两个面积相等的三角形.参考答案与试题解析一.解答题(共25小题)1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.【分析】(1)根据平移的性质画出图形即可;(2)根据三角形中线的性质解答即可;(3)根据面积公式解答即可.【解答】解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:点P即为所求;(3)如图所示:点Q即为所求.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是相等且平行.(3)作直线MN,将△ABC分成两个面积相等的三角形.【分析】(1)作出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行;(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【解答】解:(1)平移后的△A′B′C′如图所示.(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行,故答案为相等且平行.(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【点评】本题考查平移变换、平移变换的性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为3.(4)若连接AA′,CC′,则这两条线段之间的关系是AA′=CC′且AA′∥CC′.【分析】(1)根据三角形的中线和高的定义作图即可得;(2)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(3)直接利用三角形的面积公式计算可得;(4)根据平移变换的性质可得答案.【解答】解:(1)如图所示,AH和AD即为所求;(2)如图所示,△A′B′C′即为所求;(3)△ABC的面积为×3×2=3,故答案为:3;(4)由平移的性质知AA′=CC′且AA′∥CC′,故答案为:AA′=CC′且AA′∥CC′.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是AD=CF,AD∥CF.【分析】(1)作出B,C的对应点E,F即可解决问题.(2)取AB中点P,连接CP即可.(3)取格点T作射线BT交AC于H,线段BH即为所求.(4)根据平移的性质即可解决问题.【解答】解:(1)△DEF如图所示.(2)线段CP即为所求.(3)取格点T作射线BT交AC于H,线段BH即为所求.(4)AD=CF,AD∥CF.故答案为:AD=CF,AD∥CF.【点评】本题考查平移变换,三角形的中线,高等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'P A与∠P AB三个角之间的数量关系为CA.∠A'B'P+∠B'P A+∠P AB=180°B.∠A'B'P+∠B'P A+∠P AB=360°C.∠A'B'P+∠B'P A﹣∠P AB=180°D.∠A'B'P+∠B'P A﹣∠P AB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.【解答】解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'P A﹣∠P AB=180°故答案为:C【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有4个.【分析】(1)作出A,B的对应点,E,F即可.(2)根据高的定义画出图形即可.(3)利用等高模型解决问题即可.【解答】解:(1)△DEF如图所示.(2)线段CH如图所示.(3)如图所示满足条件的点P有4个.故答案为4【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是8.【分析】(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7﹣×2×6﹣×(2+5)×1=8,故答案为:8.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有6个.(注:格点指网格线的交点)【分析】(1)由点B及其对应点B′的位置得出平移方向和距离,据此将点A、C按照相同方式平移得到对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)根据高线的概念求解可得;(4)根据共底等高及平行线间的距离处处相等作图可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD即为所求;(3)如图所示,AF即为所求;(4)如图所示,中满足条件且异于点C的格点E共有6个,故答案为:6.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及中线、高线的概念、平行线间的距离处处相等.9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为4;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有7个(点P异于A).【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)利用三角形的面积公式即可得出结论;(3)根据格点的特点△ABC的中线CD,高线AE即可;(4)过点A作直线BC的平行线,此直线与格点的交点即为P点.【解答】解:(1)如图所示:(2))△A′B′C′的面积=,故答案为:4;(3)如图所示:AD,AE即为所求;(4)能使S△PBC=S△ABC的格点p的个数有7个,故答案为:7【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:平行且相等;(4)求四边形ACBB′的面积.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据图形平移的性质可直接得出结论;(4)根据S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′即可得出结论.【解答】解:(1)如图所示;(2)如图所示;(3)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:平行且相等;(4)S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′=(7+3)×6+×4×4﹣×1×7﹣×3×5=30+8﹣﹣=27.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.【点评】此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握平移的性质是解题关键.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有7个.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)画出AB边上的中线CD即可;(3)过点A向BC的延长线作垂线,垂足为点E即可;(4)利用三角形的面积公式求解即可;(5)过点B作BF∥AC,直线BF与格点的交点即为所求,还有AC下方的一个点.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,线段CD即为所求;(3)如图,线段AE即为所求;(4)S△A′B′C′=×4×4=8.故答案为:8;(5)如图,共有7个格点.故答案为:7.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是平行且相等;(3)△ABC在整个平移过程中线段AB扫过的面积为12.【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)根据平移的性质求解;(3)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.【解答】解:(1)如图,△A′B′C′为所作;(2)BB′∥CC′,BB′=CC′;(3)线段AB扫过的面积=4×3=12.故答案为平行且相等;12.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.【分析】(1)根据三角形的高和中线的定义结合网格作图可得;(2)根据平移变换的定义和性质作图可得;(3)由△ABC的面积为3知所作三角形的面积为6,据此结合网格作图可得.【解答】解:(1)如图所示,AH、AG即为所求;(2)如图所示,△DEF即为所求;(3)如图所示,△MNP即为所求.【点评】本题主要考查作图﹣基本作图及平移变换,解题的关键是掌握三角形的高、中线的定义和平移变换的定义与性质.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=7;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.【分析】(1)根据点A到A'的平移规律:向右移6个单位,再向下平移2个单位,直接平移并利用面积差计算面积;(2)作中线AP,可平分△ABC的面积;(3)作平行线CM.【解答】解:(1)画△A'B'C',S△A'B'C'=4×4﹣×2×4﹣×2×3﹣×1×4=7;(4分)故答案为:7;(2)取AB的中点P,作线段CP;(6分)(3)画AB的平行线CM.(8分)【点评】本题考查了平移变换的作图、三角形的面积、平分三角形的面积、平行线,知道三角形的中线平分三角形的面积,并会根据一个对应点的平移规律进行作图.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是AD=CF,AD∥CF;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.【分析】(1)将三角形的三顶点分别向右平移6格、向下平移1格得到三顶点,再顺次连接可得;(2)根据平移变换的性质可得答案;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【解答】解:(1)如图所示,△DEF即为所求.(2)根据平移变换的性质知,AD=CF,AD∥CF,故答案为:AD=CF,AD∥CF;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为8.(4)在平移过程中线段BC所扫过的面积为32.(5)在右图中能使S△PBC=S△ABC的格点P的个数有9个(点P异于A).【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据格点的特点△ABC的中线CD,高线AE即可;(3)利用三角形的面积公式即可得出结论;(4)利用平行四边形的面积公式即可得出结论;(5)过点A作直线BC的平行线,此直线与格点的交点即为P点.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,中线CD,高线AE即为所求;(3)S△A′B′C′=×4×4=8.故答案为:8;(4)线段BC所扫过的面积=8×4=32.故答案为:32;(5)如图,共有9个点.故答案为:9.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=7;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有4个.【分析】(1)根据平移的性质画出图象,再利用三角形的面积公式计算即可;(2)根据中线的定义画出中线即可平分三角形面积;(3)在过点A平行BC的直线上有4个格点,所以满足条件的△PCB有4个.【解答】解:(1)如图所示:△DEF即为所求,△DEF的面积为:4×4﹣×2×4﹣×2×3﹣×1×4=7;故答案为:7;(2)如图所示:点M即为所求;(3)使S△ABC=S△BCP,这样的格点P有4个.故答案为:4.【点评】本题考查平移变换、三角形的面积、三角形的中线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,。
奥数——格点与面积
格点与面积
例1 下图是一个格点图。
图中有长方形、三角形、平行四边形和梯形各一个。
请你利用方格网计算出它们的面积各是多少?(每个小正方形的面积是1平方厘米)
例2 在图中正方形格点中,这个宝塔图形的面积是多少?
例3 下图是一个四角形,每个小正方形的面积均为1平方厘米。
求图中阴影部分的面积。
例4、求下列图形的面积。
例5、如图,每个小正方形的面积都是1平方厘米。
则在此图中最多可以画出多少个面积是2平方厘米的格点正方形?
课堂练习
1、求下面各图形的面积。
2、求下图中各图形的面积。
3、求下图中各图形的面积。
4、下面是一个5*5的方格图,求出图中阴影部分面积的和(每小格的面积是1平方厘米)。
5、图中每个小正方形的边长都是1厘米,则在图中最多可以画出面积是3平方厘米的格点三角形多少个?
课后作业
1、计算所给图形的面积。
2、求出下面格点图形的面积。
3、在下面5*10的方格图中,连接格点,画出4个面积为7的图形,要求每个图形形状都不相同(每个小方格的面积是1)。
4、下图是由8个边长为1厘米的正方形所组成的一个图形,共有15个格点。
请以15个格点中的3个为顶点作一个面积为3.5平方厘米的三角形。
小学奥数4-2-7 格点型面积.专项练习及答案解析
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数. 我们能发现如下规律:12L S N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴ ⑵ ⑶毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12L S N =+-. 例题精讲4-2-7.格点型面积【考点】格点型面积【难度】2星【题型】判断【解析】根据格点多边形的定义可知,图形的边必须是直线段,顶点要在格点上!所以只有⑴是格点多边形.【答案】⑴是格点多边形【例2】如图,计算各个格点多边形的面积.【考点】格点型面积【难度】2星【题型】解答【解析】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.方法一:图⑴是正方形,边长是4,所以面积是4416⨯=(面积单位);图⑵是矩形,长是5,宽是3,所以面积是5315⨯=(面积单位);图⑶是三角形,底是5,高是4,所以面积是54210⨯÷=(面积单位);图⑷是平行四边形,底是5,高是3,所以面积是5315⨯=(面积单位);图⑸是直角梯形,上底是3,下底是5,高是3,所以面积是353212()(面积单位);+⨯÷=图⑹是梯形,上底是3,下底是6,高是4,所以面积是364218()(面积单位).+⨯÷=如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.)方法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成长方形来求.这一种方法很重要,在下面的题目中我们还将使用这种方法!如图⑶,我们利用“扩展法”将其转化,如图所示,从图中易知三角形面积是长方形面积的一半.如图⑷,我们利用“割补法”将其阴影部分面积平移到右边,转化成一个长方形,从中易得平行四边形面积.同理,图⑸、⑹也可利用同样的思想.【答案】图⑴16;图⑵15;图⑶10;图⑷15;图⑸12;图⑹18.【例 3】 如图(a ),计算这个格点多边形的面积.【考点】格点型面积 【难度】2星 【题型】解答【解析】 方法一(扩展法).这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b ),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是6424⨯=;直角三角形Ⅰ的面积是:6226⨯÷=;直角三角形Ⅱ的面积是:4224⨯÷=;直角三角形Ⅲ面积是4224⨯÷=;所求三角形的面积是2464410-++=()(面积单位).方法二(割补法).将原三角形分割成两个我们方便计算面积的三角形,如(c )图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位).【答案】10【例 4】 右图是一个方格网,计算阴影部分的面积.【考点】格点型面积 【难度】2星 【题型】解答【关键词】新加坡小学数学奥林匹克竞赛【解析】 扩展法.把所求三角形扩展成正方形ABCD 中.这个正方形中有四个三角形:一个是要求的AEF V ;另外三个分别是:△ABE 、△FEC 、△DAF ,它们都有一条边是水平放置的,易求它们的面积分别为21.5cm ,22cm ,21.5cm .所以,图中阴影部分的面积为:33 1.5224⨯-⨯+=()(2cm ). 【答案】4【例 5】 分别计算图中两个格点多边形的面积.【考点】格点型面积 【难度】3星 【题型】解答 【解析】 利用“扩展法”和“割补法”我们都可以简单的得到第一幅图的面积均为9面积单位.第二幅图的面积均为10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?”“格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下!在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是8个;第二个图形边界上的格点数是10个,包含在图形内的格点数也相等,都是6个.【答案】第一幅图的面积均为9;第二幅图的面积均为10.【巩固】 求下列各个格点多边形的面积.(1) (2) (3)(4)【考点】格点型面积 【难度】3星 【题型】解答【解析】 ⑴ ∵12L =;10N =,∴1211011522L S N =+-=+-=(面积单位); ⑵ ∵10L =;16N =,∴1011612022L S N =+-=+-=(面积单位); ⑶ ∵6L =;12N =,∴611211422L S N =+-=+-=(面积单位); ⑷ ∵10L =;13N =,∴1011311722L S N =+-=+-=(面积单位).用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数. 我们能发现如下规律:12L S N =+-.这个规律就是毕克定理. 【答案】⑴15;⑵ 20;⑶14;⑷17【例 6】 “乡村小屋”的面积是多少?【考点】格点型面积 【难度】3星 【题型】解答【解析】 图形内部格点数9N =;图形边界上的格点数20L = ;根据毕克定理, 则1182L S N =+-=(单位面积). 【答案】18【例 7】 右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.HGF E D CA【考点】格点型面积 【难度】3星 【题型】解答【解析】 箭形A B 的面积810214842121232246=+÷-+⨯+÷-⨯=++=()()(面积单位).【答案】46【例 8】 比较图中的两个阴影部分①和②的面积,它们的大小关系______【考点】格点型面积 【难度】3星 【题型】填空【关键词】希望杯,五年级,二试,第9题,6分【解析】 ①的面积为:1112111313222⨯⨯+⨯⨯+⨯⨯=,②的面积也为3223⨯÷=。
小学奥数4-2-7 格点型面积.专项练习
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴⑵⑶毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 则它的面积为12LS N =+-. 例题精讲4-2-7.格点型面积【例 2】 如图,计算各个格点多边形的面积.【例 3】 如图(a ),计算这个格点多边形的面积.【例 4】 右图是一个方格网,计算阴影部分的面积.【例 5】 分别计算图中两个格点多边形的面积.【巩固】 求下列各个格点多边形的面积.(1)(2)(3)(4)【例 6】 “乡村小屋”的面积是多少?【例 7】 右图是一个812 面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.H GFED C A【例8】比较图中的两个阴影部分①和②的面积,它们的大小关系______【例9】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例10】第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例11】55的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【例12】两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm,右下角的阴影部分(线状)面积为27.4cm,求大正方形的面积.【例13】将边长为正整数n的正方形平均分成2n个小正方形,每个小正方形的顶点称为格点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《格点与面积》练习题
基础班
1.求下列各个格点多边形的面积.
分析:①∵L=12;N=10,∴S=N+L/2-1=10+6-1=15(面积单位).
②∵L=10;N=16,∴S=N+L/2-1=16+5-1=20(面积单位).
③∵L=6,N=12,∴S=N+L/2-l=12+3-1=14(面积单位).
④∵L=10;N=13,∴S=N+L/2-1=13+5-1=17(面积单位).
2. 右图是一个8⨯12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.
分析:箭形ABCDEFGH的面积
=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2=12+32+2=46(面积单位).
3.求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).
分析:①∵L=7;N=7,∴S=2×N+L-2=2×7+7-2=19(面积单位).
②∵L=5;N=8,∴S=2×N+L-2=2×8+5-2=19(面积单位).
③∵L=5;N=8,∴S=2×N+L-2=2×8+5-2=20(面积单位).
④∵L=7;N=8;∴S=2×N+L-2=2×8+7-2=21(面积单位).
4.将图中的图形分割成面积相等的三块.
分析:
提高班
1.求下列各个格点多边形的面积.
分析:①∵L=12;N=10,∴S=N+L/2-1=10+6-1=15(面积单位).
②∵L=10;N=16,∴S=N+L/2-1=16+5-1=20(面积单位).
③∵L=6,N=12,∴S=N+L/2-l=12+3-1=14(面积单位).
④∵L=10;N=13,∴S=N+L/2-1=13+5-1=17(面积单位).
2. 右图是一个8⨯12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.
分析:箭形ABCDEFGH的面积
=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2=12+32+2=46(面积单位).
3.求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).
分析:①∵L=7;N=7,∴S=2×N+L-2=2×7+7-2=19(面积单位).
②∵L=5;N=8,∴S=2×N+L-2=2×8+5-2=19(面积单位).
③∵L=5;N=8,∴S=2×N+L-2=2×8+5-2=20(面积单位).
④∵L=7;N=8;∴S=2×N+L-2=2×8+7-2=21(面积单位).
4.右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2
平方厘米的三角形?
分析:面积为2平方厘米的三角形有54个.
面积为2平方厘米分类如下:
①②③
底为2,高为2 底为2,高为2 底为2,高为2
5⨯3=15(个) 5⨯3=15(个) 2(个)
④⑤⑥⑦
底为4,高为1 底为4,高为1 底为1,高为4 它的面积为 5⨯2=10(个) 2⨯2=4(个) 4(个) 4(个)所以,面积为2平方厘米的三角形有:15+15+2+10+4+4+4=54(个).
5.将图中的图形分割成面积相等的三块.
分析:
精英班
1.求下列各个格点多边形的面积.
分析:①∵L=12;N=10,∴S=N+L/2-1=10+6-1=15(面积单位).
②∵L=10;N=16,∴S=N+L/2-1=16+5-1=20(面积单位).
③∵L=6,N=12,∴S=N+L/2-l=12+3-1=14(面积单位).
④∵L=10;N=13,∴S=N+L/2-1=13+5-1=17(面积单位).
2. 右图是一个8⨯12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.
分析:箭形ABCDEFGH的面积
=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2=12+32+2=46(面积单位).
3.求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边
三角形).
分析:①∵L=7;N=7,∴S=2×N+L-2=2×7+7-2=19(面积单位).
②∵L=5;N=8,∴S=2×N+L-2=2×8+5-2=19(面积单位).
③∵L=5;N=8,∴S=2×N+L-2=2×8+5-2=20(面积单位).
④∵L=7;N=8;∴S=2×N+L-2=2×8+7-2=21(面积单位).
4.右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2
平方厘米的三角形?
分析:面积为2平方厘米的三角形有54个.
面积为2平方厘米分类如下:
①②③
底为2,高为2 底为2,高为2 底为2,高为2
5⨯3=15(个) 5⨯3=15(个) 2(个)
④⑤⑥⑦
底为4,高为1 底为4,高为1 底为1,高为4 它的面积为 5⨯2=10(个) 2⨯2=4(个) 4(个) 4(个)所以,面积为2平方厘米的三角形有:15+15+2+10+4+4+4=54(个).
5.将图中的图形分割成面积相等的三块.
分析:
6.(第五届“华杯赛”)正六边形ABCDEF的面积是6平方厘米.M是AB中点,N是
CD中点,P是EF中点.问:三角形MNP的面积是多少平方厘米?
分析:将正六边形分成六个面积为1平方厘米的正三角形,再取它们各边的中点将每个正三角形分为4个小正三角形.于是正六边形ABCDEF被分成了24个小正三角形,三角形MNP由9个小正三角形所组成,所
以三角形MNP的面积=9
24
×6=2。
25(平方厘米).。