数学分析之数列极限
数列极限知识点归纳总结
数列极限知识点归纳总结数列极限是高等数学中非常重要的一部分内容,它在微积分、数学分析和实数理论等领域有着广泛的应用。
数列极限可以用来描述数列中的数值趋于无穷大或趋于某个确定值的性质。
本文将对数列极限的概念、性质及相关定理进行归纳总结。
一、数列极限的概念数列极限是指当数列的项趋于无穷大或趋于某个确定值时,数列中的数值会有怎样的变化规律。
数列极限可以分为两种情况:当数列的项趋于无穷大时,称为正无穷大极限;当数列的项趋于某个确定值时,称为有限极限。
二、正无穷大极限正无穷大极限是指当数列的项趋于正无穷大时,数列中的数值也趋于正无穷大。
对于正无穷大极限的数列,常常使用符号∞表示。
正无穷大极限的数列具有以下特点:1. 当数列的项趋于正无穷大时,数列中的每一项都大于任意给定的正数。
2. 正无穷大极限的数列不存在有限极限,即数列中的数值不会趋于某个确定值。
三、有限极限有限极限是指当数列的项趋于某个确定值时,数列中的数值也趋于该确定值。
有限极限的数列具有以下特点:1. 当数列的项趋于某个确定值时,数列中的每一项都无限接近于该确定值。
2. 有限极限的数列不一定是递增或递减的,它可以在趋近确定值的过程中有往复波动的情况。
四、数列极限的性质数列极限具有一些重要的性质,这些性质对于研究数列的收敛性和发散性非常有帮助。
下面列举了一些常见的数列极限性质:1. 数列极限的唯一性:如果数列的极限存在,那么它是唯一的,也就是说数列的极限值不会有多个。
2. 数列极限的保序性:如果一个数列的所有项都大于(或小于)另一个数列的所有项,并且这两个数列都有极限,那么它们的极限值也满足同样的大小关系。
3. 数列极限的有界性:如果一个数列的极限存在,那么该数列是有界的,即存在一个正数M,使得数列的所有项的绝对值都不大于M。
4. 数列极限与四则运算的关系:如果两个数列都有极限,那么它们的和、差、积和商(除数不为零)也都有极限,并且极限值满足相应的运算规律。
数学分析讲义 - CH02(数列极限)
第二章 数列极限 §1 数列极限概念一、数列极限的定义()函数:,f N n f +→R n 称为数列。
()f n 通常记作12,,,,n a a a或简单地记作,其中称为该数列的通项。
}{n a n a 例如:11{}:1,,,,2n a n ,通项1n a n=。
如何描述一个数列“随着的无限增大,无限地接近某一常数”。
下面给出数列极限的精确定义。
n n a 定义1 设为数列,a 为定数.若对任给的正数}{n a ε,总存在正整数,使得当时,有N n N >n a a ε-<则称数列收敛于,定数称为数列的极限,并记作}{n a a a }{n a a a n n =∞→lim ,或)(∞→→n a a n读作“当n 趋于无穷大时,{}n a 的极限等于或趋于”. a n a a 若数列没有极限,则称不收敛,或称为发散数列. }{n a }{n a }{n a 【注】该定义通常称为数列极限的“N ε-定义”。
例1 设(常数),证明n a c =lim n n a c →∞=.证 对0ε∀>,因为0n a c c c ε-=-=<恒成立,因此,只要取,当n 时,便有1N =N >n a c ε-<这就证得li .m n c c →∞=例2 1lim0n n→∞=(0)α>. 证 对0ε∀>,要110n nε-=< 只要1n ε>只要取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >110n nε-=< 这就证得1lim0n n→∞=。
例3 lim 11n nn →∞=+.证 因为11111n n n n-=<++ 对0ε∀>,取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >11111n n n nε-=<<++ 这就证得lim 11n nn →∞=+。
关于数列极限的“N ε-定义”,作以下几点说明: 【1】定义中不一定取正整数,可换成某个正实数。
§2.1数列极限
华北科技学院理学院
2017年11月29日星期三
8
《数学分析》(1)
§2.1 数列极限概念
引例②截丈问题
战国时代哲学家庄周著的《庄子· 天下 篇》引用过一句话:
一尺之棰 日取其半 万世不竭. 1 第一天截下后的杖长为 X1 ; 2 1 第二天截下后的杖长为 X2 2 ; 2
1 第n天 截 下 后 的 杖 长 为 Xn n ; 2 1 0 Xn n
2
……
9
华北科技学院理学院
2017年11月29日星期三
《数学分析》(1)
§2.1 数列极限概念
两个引例共同点是出现了无限接近思想,这正是 极限概念的原始面貌. 极限概念是由于求某些问题的 精确答案而产生的, 割圆术和杖棰问题使用的都是极 限的方法. 第一个是把一个固定不变的量看作是一系 列变化着的多边形面积的趋向,从而确定出面积的 大小. 第二个是杖棰剩余问题,看作一系列变化着的 剩余趋向于一个确定量的问题. 无论是内接正多边形的面积 ,还是杖棰的剩余长 度,都可以看作是关于 n 的一个数列{ an },而这个数 列中的项随着 n 增加产生一个什么样的变化过程则是 人们最关心的,极限就是讨论这一类问题的数学模型.
16
《数学分析》(1)
§2.1 数列极限概念
(4) 对 0, 2 , , 2 , M ( M正常数 )等, 虽与 在 形式上有差异 , 但在本质上都与 起着同样的作用 .
lim a n a 0, N N , 当n N时, 有 a n a M .
2017年11月29日星期三
12
《数学分析》(1)
§2.1 数列极限概念
下面给出数列极限严格的数学定义. ( N定义)
第一讲-数列极限(数学分析)
第一讲 数列极限一、上、下确界 1、定义:1)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,则称M 是数集S 的一个上界,这时称S 上有界;若:,L R x S x L ∃∈∀∈≥,则称L 是数集S 的一个下界,这时称S 下有界;当S 既有上界又有下界时就称S为有界数集。
2)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,且0,:x S x M εε∀>∃∈>-,则称M 是数集S 的上确界,记sup M S =;若:,L R x S x L ∃∈∀∈≥,且0,:x S x L εε∀>∃∈<+,则称L 是数集S 的下确界,记inf L S =。
2、性质: 1)(确界原理)设S R ⊂,S ≠∅,若S 有上界,则S 有上确界;若S 有下界,则S 有下确界。
2)当S 无上界时,记sup S =+∞;当S 无下界时,记inf S =-∞。
3)sup()max{sup ,sup };inf()min{inf ,inf }AB A B A B A B ==。
4)sup inf();inf sup()S S S S =--=--。
5)sup()sup sup ;inf()inf inf A B A B A B A B +=++=+。
6)sup()sup inf A B A B -=-。
(武大93) 7)设(),()f x g x 是D 上的有界函数,则inf ()inf ()inf{()()}sup ()inf ()sup{()()}sup ()sup ()x Dx Df Dg D f x g x f D g D f x g x f D g D ∈∈+≤+≤+≤+≤+3、应用研究1)设{}n x 为一个正无穷大数列,E 为{}n x 的一切项组成的数集,试证必存在自然数p ,使得inf p x E =。
(武大94) 二、数列极限 1、定义:1)lim 0,():,||n n n a a N N n N a a εεε→∞=⇔∀>∃=>-<,称{}n a 为收敛数列;2)lim 0,:,n n n a M N n N a M →∞=+∞⇔∀>∃>>,称{}n a 为+∞数列;3)lim 0,:,n n n a M N n N a M →∞=-∞⇔∀>∃><-,称{}n a 为-∞数列;4)lim 0,:,||n n n a M N n N a M →∞=∞⇔∀>∃>>,称{}n a 为∞数列;5)lim 0n n a →∞=,称{}n a 为无穷小数列;2、性质1)唯一性:若lim ,lim n n n n a a a b a b →∞→∞==⇒=。
数列极限知识点归纳总结
数列极限知识点归纳总结数列是数学中的一个重要概念,由一系列有序的数字组成。
数列极限是数列在无穷项处的趋势或趋近的值。
在数学分析中,数列极限是一个基本的概念,具有广泛的应用。
本文将对数列极限的相关知识进行归纳总结,并以此为标题。
一、数列的定义和性质1. 数列的定义:数列是按照一定的规律排列的一系列数字。
2. 数列的通项公式:数列中的每一项可以用一个公式来表示,这个公式称为数列的通项公式。
3. 数列的性质:数列可以是有界的或无界的,可以是递增的或递减的,还可以是周期性的或非周期性的。
二、数列的极限1. 数列的极限定义:对于一个数列,如果随着项数的增加,数列中的元素逐渐接近一个确定的值,那么这个确定的值就是数列的极限。
2. 数列极限的表示:数列极限常用符号lim表示,写作lim(an)=a,其中an为数列的第n项,a为数列的极限。
3. 数列极限的存在性:数列的极限可能存在,也可能不存在。
如果数列极限存在,则称数列收敛;如果数列极限不存在,则称数列发散。
三、数列极限的计算方法1. 直接计算法:对于一些简单的数列,可以通过对数列的通项公式进行计算,得到数列的极限。
2. 套路法:对于一些特殊的数列,可以利用一些已知的极限结果和数列运算的性质,通过一些套路求得数列的极限。
3. 夹逼准则:对于一些复杂的数列,可以通过夹逼准则来求得数列的极限。
夹逼准则指的是如果数列a(n)≤b(n)≤c(n),且lim(a(n))=lim(c(n))=a,那么lim(b(n))=a。
四、数列极限的性质1. 唯一性:如果数列极限存在,则极限值唯一。
2. 保号性:如果数列的极限为正数(负数),那么数列的项数足够大时,数列的元素大于(小于)零。
3. 有界性:如果数列的极限存在,则数列有界。
五、数列极限的应用1. 函数极限:函数极限是数列极限的推广,通过将自变量取为数列,将函数值作为数列的项,就可以研究函数的极限。
2. 数列极限在微积分中的应用:数列极限在微积分中有广泛的应用,如计算导数、积分等。
《数学分析》第二章 数列极限
xn的 限 或 称数 xn 收 于 ,记 极 , 者 列 敛 a 为
lim xn = a, 或xn → a (n → ∞).
n→∞
如果数列没有极限,就说数列是发散的 如果数列没有极限 就说数列是发散的. 就说数列是发散的 注意: 注意:.不等式 x n a < ε刻划了 x n与a的无限接近 ; 1
则当n > N时有 a b = ( x n b ) ( x n a )
ε ≤ x n b + x n a < ε + ε = 2ε.
故收敛数列极限唯一. 上式仅当a = b时才能成立 . 故收敛数列极限唯一
例5 证明数列 x n = ( 1) n + 1 是发散的. 1 由定义, 证 设 lim x n = a , 由定义 对于ε = , n→ ∞ 2 1 则N , 使得当 n > N时, 有 x n a < 成立, 2 1 1 即当n > N时, x n ∈ (a , a + ), 区间长度为1. 2 2 而x n 无休止地反复取1, 1两个数 , 不可能同时位于长度为 的 不可能同时位于长度为1的区间内. 长度为
注意: 数列对应着数轴上一个点列.可看作一 注意: 数列对应着数轴上一个点列 可看作一 1.数列对应着数轴上一个点列 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n = f (n). 数列是整标函数
三,数列的极限
( 1)n1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n
2,唯一性 ,
定理2 定理2 每个收敛的数列只有一个极限. 每个收敛的数列只有一个极限.
数学分析之数列极限
§1 数列极ቤተ መጻሕፍቲ ባይዱ的概念
数列极限是整个数学分析最重要的基 础之一,它不仅与函数极限密切相关,而且 为今后学习级数理论提供了极为丰富的准 备知识.
一、数列的定义
二、一个经典的例子 三、收敛数列的定义
四、按定义验证极限
五、再论 “ - N ”说法
六、一些例子
极限思想:
1、割圆求周长
三国时期,数学
家刘徽应用极限
1
n
的“极限”。
定性分析:当n无限增大时,1
(1)n1 n
无限趋近于1,数1即所谓
(1)n1
1
n
的“极限”。
定性分析:当n无限增大时,1
(1)n1 n
无限趋近于1,数1即所谓
与一切科学的思想方法一样,极限思想也 是社会实践的产物。极限的思想可以追溯到 古代,刘徽的割圆术就是建立在直观基础上 的一种原始的极限思想的应用;古希腊人的 穷竭法也蕴含了极限思想,但由于希腊人 “对无限的恐惧”,他们避免明显地“取极 限”,而是借助于间接证法——归谬法来完 成了有关的证明。
无限与有限有本质的不同,但二者又有联 系,无限是有限的发展。无限个数的和不 是一般的代数和,把它定义为“部分和” 的极限,就是借助于极限的思想方法,从 有限来认识无限的。
极限思想方法是数学分析必不可少的一 种重要方法,也是数学分析与初等数学的本 质区别之处。数学分析之所以能解决许多初 等数学无法解决的问题(例如求瞬时速度、 曲线弧长、曲边形面积、曲面体体积等问 题),正是由于它采用了极限的思想方法。
二、一个经典的例子
古代哲学家庄周所著的《庄子 ·天下篇》引用了
一句话: “一尺之棰, 日取其半, 万世不竭”. 它的 意思是: 一根长为一尺的木棒, 每天截下一半, 这
数学分析ch2-2数列极限
0 ,不妨考虑任意给定的
0
q
,则
N
可取为
lg
lg|q|
,当
n N 时,成立| qn 0 | 。
(2)根据数列极限的定义来证明某一数列收敛,其关键是对 任意给定的 0寻找正整数 N 。在上面的两例题中, N 都是通过 解不等式 xn a 而得出的。但在大多数情况下,这个不等式并 不容易解。实际上,数列极限的定义并不要求取到最小的或最佳 的正整数N,所以在证明中常常对 x n a 适度地做一些放大处理, 这是一种常用的技巧。
注
(2)在上述的定义中, 既是任意的,又是给定的。因为只 有当 确定时,才能找到相应的正整数 N 。
注
(2)在上述的定义中, 既是任意的,又是给定的。因为只 有当 确定时,才能找到相应的正整数 N 。
(3)从极限的定义可知,一个数列{xn} 收敛与否,收敛于哪 个数,与这一数列的前面有限项无关。也就是说,改变数列前面 的有限项,不影响数列的收敛性。
显然,下面两数列 {n2 }: 1,4,9,…, n2 ,… {(1)n }: -1,1,-1,1,… 是发散数列。
无穷小量
极限为
0
的数列称为无穷小量,例如数列
1 n
,
(1)n n2 1
都是
无穷小量。
lim
n
xn
a
{xn
a
} 是无穷小量。
例2.2.2 证明{ q n }( 0 | q | 1 ) 是无穷小量。
n2 2n2
1 7n
1 2
。
证 首先有
n2 1 1 = 7n 2 。
2n2 7n 2 2n(2n 7)
显然当 n 6时,
7n 2 2n(2n 7)
数学分析 2-1数列极限的概念
0
前页 后页 返回
三、数列极限的定义
先观察几个数列:
xn
1
1
an
1 n
O
102 103 104
105 106 107
108
109 1010 1011
n
前页 后页 返回
xn
1
2
an
1
1 n
O
102 103 104
105 106 107
n 108 109 1010 1011
前页 后页 返回
xn
3 an n
前页 后页 返回
(一)极限的直观定义 结论: 当 n “无限增大”时 ,数列的变化趋势有三种情形:
1、an“无限增大”;
2、an“变化Байду номын сангаас势不定”;
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
A1 , A2 , A3 ,, An ,
S
他计算到正3072 6 29边形,得:
3927 3.1416
1250
前页 后页 返回
Archimedes' calculation of
In the third century B.C., Archimedes calculated the value of pi to an accuracy of one accuracy of one part in a thousand. His technique was based on inscribing and circumscribing polygons in a circle, and is very much akin to the method of lower and upper sums used to define the Riemann integral. His approach is presented in the following sequence of slides.
数学分析讲解数列极限
例7 设数列{xn}对常数A和0 < q <1满足条件
| xn1 A | q | xn A | (n N)
证明
lim
n
xn
A.
例8
设
x1
1,
xn1
1 1 xn
,
(n
N).求
lim
n
xn
三、收敛数列的性质
定理1 (唯一性)若数列{xn}存在极限,则其极限值必唯一. 即
若lim n
xn
A, 又 lim n
推论1 若
lim
n
an
a , 则有
lim a1 a2 L
n
n
an a
推论2
若an
>
0,
且
lim
n
an
a
,
则有
lim n
n
a1 a2 L
an
a
推论3
若an
>
0,
且lim n
an an1
a , 则有
lim n
n
an
a
例14
求极限
12 lim
22
n
2 32 3 3L n2 n n n3
lim (
n
xn
yn )
A
B
lim
n
xn
lim
n
yn ;
lim (
n
xn
yn )
A
B
lim
n
xn
lim n
yn ;
(lim n
xnm
Am ,
m N)
(lnim(cxn
)
cA
c
lim
数学分析数列极限分析解析
第二章 数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。
教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。
教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。
2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。
”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。
例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n )1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011n只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。
记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。
数学分析课件2.1数列的极限和无穷大量2.51MB
已知n b 1,由( )得证。 x 1 lim
n
c.
lim (3)当a 1时, 对n, n a 1, 故 n n a 1(a 1 . )
一般地,xn c有
【数学分析课件】 15
例 4.
lim
n
n
n 1.
证明: 令n n 1 hn , 则n n 1 hn , 即
1 1 由不等式有 ,故只须 n 即可。 n
即对 0, 自然数 [ ] ,当 n [ ]时,便有
( 1) n 1 1 1 . n
1
1
定义:
若对 0, 总N [ ], 当n N时, 有
1
( 1) n 1 1 1 . n
1 ( 1) n 1 1 . 1 , 只须 n 1000000 对 , 要 使1 n 1000000 1000000
……
【数学分析课件】 5
以上还不能说明 竟它们都还是确定的数。
对
( 1) n 1 1 1 n
任意小,并保持任意小,毕
( 1) n 1 1 才 行. 0, 要 使 1 n
2
一、数列极限的定义
1.数列: 是按次序排列的一列无穷多个数
x 1 , x 2 ,L , x n ,L
数列是定义在自然数集N上的函数。即以N为定义域由小 到大取值所对应的一列函数值。 对
n N
,设
f (n) xn
,则
自变量: 1,2, L,2006 L, n, L ,
x 函数值: 1 ,
x2 , L, x2006 , L, xn , L
1 n
or
a 1 ,
1 n
第二章数列极限2-3 数列极限存在的条件
任何有界数列必有收敛子列.
证 设数列an 有界, 由例5可得有一个单调子列 ank .
显然 ank 是有界的, 再由单调有界定理推得 ank 收敛.
数学分析 第二章 数列极限
高等教育出版社
柯西收敛准则
定理2.11
§3 数列极限存在的条件
单调有界定理
柯西收敛准则
数列 {an } 收敛的充要条件是: 对于任意正数 ,存在 N 0 ,当 n , m N 时, 有 an am .
数学分析 第二章 数列极限
高等教育出版社
(
a n0
Hale Waihona Puke an ( n n0 )
)
x
后退 前进 目录 退出
§3 数列极限存在的条件
单调有界定理
柯西收敛准则
an 0 an ,
这就证明了 lim an .
n
例1 设 a1 2, , an 2 2 2 , , n 求 lim an .
柯西准则的充要条件可用另一 种形式表达为: 0, N 0, 当 n N 时, 对任意 p N+ , 都有
| a n an p | .
满足上述条件的数列称为柯西列.
数学分析 第二章 数列极限
高等教育出版社
柯西( Cauchy,A.L. 1789-1857 ,法国 )
m
数学分析 第二章 数列极限
高等教育出版社
§3 数列极限存在的条件
单调有界定理
柯西收敛准则
从而 1 1 1 1 e lim sn lim(1 ). n n 1! 2! 3! n! 1 1 1 1 由公式 e lim(1 ), 可以较快地 n 1! 2! 3! n! 算出 e 的近似值. 1 1 1 由于 0 snm sn , ( n 1)! ( n 2)! ( n m )! 1 令 m , 得到 0 e sn , n 1,2, . n!n 取 n 10, e s10 2.7182818, 其误差 1 7 0 e s10 10 . 10 10!
数列极限知识点
数列极限知识点数列极限是高等数学中的重要概念。
在微积分、数学分析等各个领域都有着广泛的应用。
本文将对数列极限的相关概念、性质及其在实际问题中的应用进行详细阐述。
一、数列极限的定义首先,了解数列极限的定义是非常关键的。
一个数列的极限是指当数列中的项数趋于无穷大时,数列中每一项都趋于某个常数L,这个常数L就是这个数列的极限。
具体的数学表达式如下:lim an = L (n → ∞)其中,an为数列中的第n项,L为这个数列的极限。
二、数列极限的性质了解数列极限的性质,可以更好地理解它在实际问题中的应用。
下面,介绍数列极限的一些性质:1.极限的唯一性当数列极限存在时,它在数轴上的值是唯一的。
也就是说,在数列的所有子数列中,都只存在一个极限值。
2.局部有界性如果一个数列有有限的极限,那么它在数轴上一定是有界的,也就是说,存在一个范围,可以将这个范围内的所有数列项都包含在内。
3.保号性如果一个数列的极限是正数,那么数列中所有的项都是正数。
如果极限是负数,那么数列中所有的项都是负数。
4.夹逼定理对于任意一个数列,如果它的所有项都被夹在两个趋向于同一个极限值的数列之间,那么这个数列的极限也趋向于这个极限值。
5.单调有界定理如果一个数列是单调递增(或递减)且有界的,那么它的极限就存在。
三、数列极限的应用数列极限在实际问题中有着广泛的应用。
其中一些典型应用包括:1.距离、速度、加速度等模型在物理学、工程学等领域,常常需要通过数学模型来描述距离、速度、加速度等概念。
这些数学模型往往可以表示为数列的形式,以此来描述运动、变化等现象。
2.统计学中的统计量在统计学中,常常需要对一组数据进行分析,计算各种统计量(如平均数、标准差等)。
这些统计量也往往可以表示为数列的形式,以此来描述数据的分布情况。
3.经验分布函数经验分布函数是一种描述随机变量分布的函数形式,它的计算也经常涉及到数列极限的概念。
四、结语数列极限是高等数学中的重要概念,掌握了数列极限的相关概念和性质,以及应用范围,可以更好地理解和应用它。
数列极限的定义与性质
数列极限的定义与性质数列是数学中一个非常重要的概念,而数列的极限更是数学分析中的基础知识之一。
数列极限的定义与性质对于理解数学分析、微积分等学科具有重要意义。
本文将从数列极限的定义入手,逐步介绍数列极限的性质,帮助读者更好地理解这一概念。
1. 数列极限的定义数列极限的定义是数学分析中的基础概念之一。
对于数列${a_n}$,当$n$趋于无穷大时,如果数列的项$a_n$可以无限接近某个常数$A$,那么称常数$A$为数列${a_n}$的极限,记作$\lim\limits_{n \to\infty} a_n = A$。
换句话说,对于任意给定的正实数$\varepsilon$,总存在正整数$N$,使得当$n>N$时,数列的项$a_n$与极限$A$之间的差的绝对值$|a_n - A|$小于$\varepsilon$。
数学上也可以用$\lim\limits_{n \to \infty} a_n = A$来表示数列${a_n}$的极限。
这个定义是数列极限的基础,也是理解数列极限性质的前提。
2. 数列极限的性质数列极限具有一些重要的性质,下面将逐一介绍这些性质:(1)数列极限的唯一性:如果数列${a_n}$的极限存在,那么这个极限是唯一的。
也就是说,如果$\lim\limits_{n \to \infty} a_n = A$且$\lim\limits_{n \to \infty} a_n = B$,那么$A=B$。
(2)数列极限的有界性:如果数列${a_n}$的极限存在,那么这个数列是有界的。
即存在一个实数$M$,使得对于数列的每一项$a_n$,都有$|a_n| \leq M$。
(3)数列极限的保号性:如果数列${a_n}$的极限存在且大于(小于)零,那么从某项开始,数列的每一项都大于(小于)零。
(4)数列极限的四则运算性质:设$\lim\limits_{n \to \infty} a_n = A$,$\lim\limits_{n \to \infty} b_n = B$,则有:- $\lim\limits_{n \to \infty} (a_n \pm b_n) = A \pm B$- $\lim\limits_{n \to \infty} (a_n \cdot b_n) = A \cdot B$- 若$B \neq 0$,$\lim\limits_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$(5)夹逼准则:如果数列${a_n}$、${b_n}$、${c_n}$满足$a_n\leq b_n \leq c_n$,且$\lim\limits_{n \to \infty} a_n =\lim\limits_{n \to \infty} c_n = A$,那么$\lim\limits_{n \to\infty} b_n = A$。
数列极限及其应用
数列极限及其应用数列是数学中重要的概念之一,数列极限是数学分析中的重要内容。
在本文中,我们将探讨数列极限的定义、性质以及其在数学和现实生活中的应用。
一、数列极限的定义和性质数列是由一系列按照一定规律排列的数字组成的序列。
数列通常表示为{a₁,a₂, a₃, ......, aₙ},其中a₁、a₂、a₃等是数列中的项。
数列的极限是指当n趋向于无穷大时,数列中的项趋近于确定的常数L。
这一定义可以表示为:lim{n→∞} aₙ = L数列极限的性质包括:1. 唯一性:数列的极限只有唯一的值。
2. 有界性:若数列存在极限,则数列必定有界,即存在上界和下界。
3. 保号性:若数列存在极限且其极限为正(或负)数,则数列从某项起,总是正(或负)号。
4. 夹挤性:若数列的每项均位于两个收敛数列的中间,则该数列也是收敛的,并有相同的极限。
二、数列极限的应用1. 数学分析中的应用:数列极限在微积分中有着重要的应用。
利用数列极限的概念,我们可以定义导数和积分,并研究函数的连续性和各种变化规律。
数列极限的概念是微积分的基础之一,它为我们理解和深入研究函数的性质提供了便利。
2. 数列极限在无穷级数求和中的应用:无穷级数是由无穷个项按照一定规律排列而成的数列。
利用数列极限的概念,我们可以判断无穷级数是否收敛,以及求出其和。
例如,经典的几何级数可以通过数列极限的方法求和,从而得到其和为有理数的结论。
3. 数列极限在金融投资中的应用:在金融投资中,数列极限可以用于计算投资回报率。
通过考察投资金额随时间增长的趋势,我们可以得到不同投资方案的回报率,并作出合理的投资决策。
4. 数列极限在物理学中的应用:在物理学中,数列极限可以用于描述物体运动的速度和加速度。
例如,通过分析质点在无穷小时间间隔内的位移变化,我们可以定义速度和加速度,并利用数列极限的概念来研究物体的运动轨迹和变化规律。
5. 数列极限在市场预测中的应用:数列极限可以用于分析市场行情和预测未来的趋势。
数学分析课件之第二章数列极限
02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 数列极限的概念 §2.2 收敛数列的性质 §2.3 数列极限存在的条件
§2.1 数列极限的概念
一、概念的引入 二、数列的定义 三、数列的极限 四 、应用数列极限的定义证明数列极 限的方法
一、概念的引入
引 1 如何用渐近的方法求圆的面积S? 例 用圆内接正多边形的面积近似圆的面积S.
动点在数轴上依次取 x1 , x2 , , xn , .
x3 x1 x2 x4 xn 2.数列是整标函数 xn f (n).
三、数列的极限
数列极限来自实践,它有丰富的实
际背景.我们的祖 先很早就对数列
进行了研究,早在战国时期就有了
极限的概念
例1 战国时代哲学家庄周所著的《庄子.天下篇》引用 过一句话:“一尺之棰,日取其半,万世不竭。”也 就是说一根一尺 长的木棒,每天截去一半,这样的过 程可以一直无限制的进行下去。将每天截后的木棒排 成一列, 如图所示,
注
①定义1习惯上称为极限的ε—N定义,它用两个 动态指标ε和N刻画了极限的实质,用|xn-a|<ε
定量地刻画了xn 与a 之间的距离任意小,即任给
ε>0标志着“要多小”的要求,用n >N表示n充分 大。这个定义有三个要素:10,正数ε,20,正数 N,30,不等式|xn-a|<ε(n >N)
②定义中的ε具有二重性:一是ε的任意性,二是 ε的相对固定性。ε的二重性体现了xn 逼近a 时要 经历一个无限的过程(这个无限过程通过ε的任意
小),总存在正数 N ,使得对于n N 时的一切 xn, 不等式 xn a 都成立,那末就称常数a 是数列 xn的极限,或者称数列 xn收敛于a ,记为
lim
n
xn
a,
或 xn a (n ).
如果数列没有极限,就说数列是发散的.
注意:1.不等式 xn a 刻划了xn与a的无限接近; 2.N与任意给定的正数有关.
A1表示圆内接正6边形面积, A2表示圆内接正12边形面积,
A3表示圆内接正24边形面积,
,
An表示圆内接正62n-1边形面积,
A123
.
显然n越大, An越接近于S.
因此, 需要考虑当n时, An的变化趋势.
2、截丈问题:
“一尺之棰,日截其半,万世不竭”
第一天截下的杖长为 X1
1; 2
当n增大到一定程度以后, |xna|能小于事先给定的任意
小的正数.
因此,如果 n 增大到一定程度以后, |xna|能小于事先
给定的任意小的正数,则当n无限增大时, xn无限接近于常
数a.
下页
❖数列极限的精确定义
设{xn}为一数列, 如果存在常数a, 对于任意给定的正
数 , 总存在正整数N, 使得当n>N 时, 不等式
|xna |<
总成立, 则称常数a是数列{xn}的极限, 或者称数列{xn}收
敛于a, 记为
lim
n
xn
a
或
xna
(n).
如果不存在这样的常数a, 就说数列{xn}没有极限,
或说数列{xn}是发散的,
习惯上也说
lim
n
xn
不存在.
•极限定义的简记形式
lim
n
xn
a
0,
NN,
当nN时,
有|xna|
.
定义 如果对于任意给定的正数(不论它多么
例如 2,4,8, ,2n , ; {2n }
1 , 1 , 1 , 248
1 , 2n
,
;
{
1 2n
}
1,1,1, ,(1)n1 , ;
2, 1 , 4 , , n (1)n1 , ;
23
n
{(1)n1}
{n (1)n1 } n
3, 3 3, , 3 3 3 ,
注意:1.数列对应着数轴上一个点列.可看作一
第二天截下的杖长总和为 X 2
1 2
1 22
;
第n天截下的杖长总和为 X n
1 2
1 22
1 2n ;
Xn
1
1 2n
1
二、数列的定义
定义:按自然数1,2,3, 编号依次排列的一列数
x1 , x2 , , xn ,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项, xn称为通项(一般项).数列(1)记为{ xn }.
性来实现),但这个无限过程又要一步步地实现, 而且每一步的变化都是有限的(这个有限的变化通
过ε的相对固定性来实现)。
③定义中的N是一个特定的项数,与给定的ε有关。 重要的是它的存在性,它是在ε相对固定后才能确定的, 且由|xn-a|<ε来选定,一般说来,ε越小,N越大,但须 注意,对于一个固定的ε,合乎定义要求的N不是唯一的。 用定义验证xn 以a 为极限时,关键在于设法由给定的ε,
(c11(k)) 其长度组成的数列为
1
2
n
1
0.8
0.6
,
0.4
0.2
0
0
2
4
6
8
10
随着n 无限的增加, 木棒的长度无限的趋近于零。
❖数列极限的通俗定义
当n无限增大时, 如果数列{xn}的一般项xn无限接近
于常数a, 则常数a称为数列{xn}的极限, 或称数列{xn}收
敛a,
记为
lim
n
xn
问题: “无限接近”意味着什么?如何用数学语言 刻划它.
xn
1
(1)n1
1 n
1 n
给定 1 , 100
由 1 1 , 只要 n 100时, n 100
有
xn
1
1 100
,
给定 1 , 1000
只要 n 1000时,
有
xn
1
1, 1000
给定 1 , 10000
只要 n 10000时,
有
xn
1
1, 10000
给定 0,
只要 n N ( [1])时,
有 xn 1 成立.
当n无限增大时, 如果数列{xn}的一般项xn无限接近 于常数a, 则数列{xn}收敛a.
•分析
当n无限增大时, xn无限接近于a .
当n无限增大时, |xna|无限接近于0 .
当n无限增大时, |xna|可以任意小,要多小就能有多小.
a
.
例如 llimim nn 11,, nnnn11
nnlliimm2211nn 00, , nlimnlimnn(n(1n)1n)n11 1.1.
问题: 当 n无限增大时, xn是否无限接近于某一
确定的数值?如果是,如何确定?
通过上面演示实验的观察:
当
n
无限增大时,
xn
1
(1)n1 n
无限接近于1.
N定义 :
lim
n
xn
a
0, N 0,使n N时, 恒有 xn a .
其中 : 每一个或任给的; : 至少有一个或存在.
几何解释:
a
2 a
x2 x1 xN 1 a xN 2 x3 x
当n N时, 所有的点 xn都落在(a , a )内,
只有有限个(至多只有N个) 落在其外.