全国新课标近五年高考试题研究--三角函数描述

合集下载

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)【母题来源】2022年新高考I卷【母题题文】6.若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A. tan(α+β)=−1B. tan(α+β)=1C. tan(α−β)=−1D. tan(α−β)=1【答案】C【分析】本题考查三角恒等变换的应用法一:利用特殊值法,排除错误选项即可法二,利用三角恒等变换,求出正确选项【解答】解法一:设β=0则sinα+cosα=0,取α=34π,排除B,D再取α=0则sinβ+cosβ=2sinβ,取β=π4,排除A;选C.解法二:由sin(α+β)+cos(α+β)=√2sin(α+β+π4)=√2sin[(α+π4)+β]=√2sin(α+π4)cosβ+√2cos(α+π4)sinβ,故√2sin(α+π4)cosβ=√2cos(α+π4)sinβ故sin(α+π4)cosβ−cos(α+π4)sinβ=0,即sin(α+π4−β)=0,故sin(α−β+π4)=√22sin(α−β)+√22cos(α−β)=0,故sin(α−β)=−cos(α−β),故tan(α−β)=−1.【母题来源】2022年新高考II卷【母题题文】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图像关于点(3π2,2)中心对称,则f(π2)=()A. 1B. 32C. 52D. 3【答案】A【分析】本题主要考查三角函数的周期性和对称性,属于中档题.【解答】解:由题可知:T=2πω∈(2π3,π),所以ω∈(2,3).又因为y=f(x)的图像关于点(3π2,2)中心对称,所以b=2,且f(3π2)=sin(ω×3π2+π4)+b=2.所以ω=23(k−14),k∈Z,所以ω=52.所以f(x)=sin(52x+π4)+2.所以f(π2)=1.(多选)已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)对称,则()A. f(x)在(0,5π12)单调递减B. f(x)在(−π12,11π12)有两个极值点C. 直线x=7π6是曲线y=f(x)的一条对称轴D. 直线y=√32−x是曲线y=f(x)的一条切线【答案】AD【解析】【分析】解:由题意得:f(2π3)=sin(4π3+φ)=0,所以4π3+φ=kπ,即φ=−4π3+kπ,k∈Z,又0<φ<π,所以k=2时,φ=2π3,故f(x)=sin(2x+2π3).选项A:x∈(0,5π12)时,2x+2π3∈(2π3,3π2),由y=sinu图象知f(x)在(0,5π12)单调递减;选项B:x∈(−π12,11π12)时,2x+2π3∈(π2,5π2),由y=sin u图象知f(x)在(−π12,11π12)有1个极值点;选项C:由于f(7π6)=sin3π=0,故直线x=7π6不是f(x)的对称轴;选项D:令f′(x)=2cos(2x+2π3)=−1,得cos(2x+2π3)=−12,解得2x+2π3=2π3+2kπ或2x+2π3=4π3+2kπ,k∈Z,从而得x=kπ或x=π3+kπ,k∈Z,令 k =0 ,则 (0,√32) 是斜率为 −1 的直线与曲线的切点,从而切线方程为 y −√32=−(x −0) ,即 y =√32−x .【母题来源】2022年新高考II 卷.若实数x ,y 满足x 2+y 2−xy =1,则( ) A. x +y ≤1 B. x +y ≥−2C. x 2+y 2≥1D. x 2+y 2≤2【答案】BC 【解析】 【分析】本题考查三角恒等变换与正弦函数的值域利用正余弦函数表示 x , y ,代入到 x +y , x 2+y 2 ,再利用三角函数的性质判断选项即可 【解答】解: 由 x 2+y 2−xy =1 得 (x −y 2)2+(√32y)2=1令 {x −y2=cosθ√32y =sinθ⇒{x =√33sinθ+cosθy =2√33sinθ 故 x +y =√3sinθ+cosθ=2sin(θ+π6)∈[−2,2] ,故 A 错, B 对 ; x 2+y 2=(√33sinθ+cosθ)2+(2√33sinθ)2=√33sin2θ−13cos2θ+43=23sin(2θ−φ)+43∈[23,2]( 其中 tanφ=√33) ,故 C 对, D 错. 【命题意图】考察两角和与差的正弦、余弦公式,考察二倍角的正现有、余弦、正切应用。

2023老教材新高考数学专题第1讲 小题研透——三角函数与解三角形

2023老教材新高考数学专题第1讲 小题研透——三角函数与解三角形
专题一 三角函数与解三角形
从 2020、2021 年新高考全国卷对三角函数与解三角形的考查来看,考查的力 度在增强,三角函数与解三角形成为新高考全国卷六大解答题的必选内容.在命题 数量上“一大二小”的趋势比较明显,主要考查三角函数的图象和性质、三角恒等 变换、解三角形,另外三角函数与解三角形解答题一般设置在第 17 题或 18 题的位 置上,难度中等.在核心素养的考查上主要是考查学生的直观想象、逻辑推理、数 学运算等核心素养.
2.(2020·全国卷Ⅰ)[三角函数的图象]设函数 f(x)=cosωx+π6 在[-π,π]的图象大致
如图,则 f(x)的最小正周期为
()
A.109π C.4π 3
B.7π 6 D.3π 2
解析:法一:由题图知,f-4π9 =0,∴-4π 9 ω+π6 =π2 +kπ(k∈Z ),解得 ω= -3+49k(k∈Z ).设 f(x)的最小正周期为 T,易知 T<2π<2T,∴2|ωπ|<2π<4|ωπ| , ∴1<|ω|<2,当且仅当 k=-1 时,符合题意,此时 ω=32,∴T=2ωπ=4π 3 .故选 C. 法二:由题图知,f-4π 9 =0 且 f(-π)<0,f(0)>0,∴-4π 9 ω+π6 =-π2 (ω>0), 解得 ω=32,∴f(x)的最小正周期 T=2ωπ=4π3 .故选 C.
1 . (2021·新 高 考 全 国 卷 Ⅰ)[ 同 角 基 本 关 系 与 三 角 恒 等 变 换 ] 若 tan θ = - 2 , 则
sin
θ(1+sin sin θ+cos
2θθ)=
()
A.-65
B.-25
C.25
D.65
解析:法一(通解):因为 tan θ=-2,所以角 θ 的终边在第二、四象限,所以

三角函数(教师版)--2020-2023高考真题数学专题分类汇编

三角函数(教师版)--2020-2023高考真题数学专题分类汇编

专题五三角函数--2020-2023高考真题数学专题分类汇编真题卷题号考点考向2023新课标1卷8三角恒等变换给值求值15三角函数的性质及应用余弦型函数的零点问题2023新课标2卷7三角恒等变换给值求值16三角函数的图象与性质由部分图象求解析式、求函数值2022新高考1卷6三角函数的性质及应用求三角函数的解析式、求函数值2022新高考2卷6三角恒等变换三角求值9三角函数的图象与性质求三角函数的单调区间、对称轴、极值点、求切线方程2021新高考1卷4三角函数的性质及应用求三角函数的单调区间2021新高考2卷6三角恒等变换给值求值2020新高考1卷10三角函数的图象与性质由图象求三角函数的解析式15三角函数的应用三角函数解决实际问题2020新高考2卷11三角函数的图象与性质由图象求三角函数的解析式16三角函数的应用三角函数解决实际问题【2023年真题】1.(2023·新课标I卷第8题)已知1sin()3αβ-=,1cos sin6αβ=,则cos(22)αβ+=()A.79 B.19 C.19- D.79-【解析】本题考查两角和与差的正弦公式以及二倍角公式,属于中档题.利用两角和与差的正弦公式先求出sin cos αβ的值,从而可以得到sin()αβ+的值,再结合二倍角的余弦公式即可得出结果.解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+=即2221cos(22)12sin ()12(.39αβαβ+=-+=-⨯=故选B.2.(2023·新课标II 卷第7题)已知α为锐角,15cos 4α+=,则sin 2α=()A.358- B.158-+ C.354- D.154-【答案】D 【解析】【分析】本题考查倍角公式,属于基础题.观察题干,发现未知角为已知角的一半,考虑倍角公式,即可得证.【解答】解:221511cos 36114sin ()sin 222816424ααα+----=====⇒=故选:.D 3.(2023·新课标I 卷第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.【答案】[2,3).【解析】【分析】本题考查了余弦型函数的零点问题,属中档题.解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<,得2 3.ω<故答案为:[2,3).4.(2023·新课标II 卷第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π=.【答案】32-【解析】【分析】主要考查了函数sin()y A x ωϕ=+的性质与图象,诱导公式等,属于一般题.根据AB 的长度求出.ω函数图象过点2(,0)3π,求.ϕ诱导公式得到答案.【解答】解:设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈2k =时满足图片条件,故2.3πϕ=-23()sin(4.32f πππ=-=-【2022年真题】5.(2022·新高考I 卷第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=()A.1 B.32C.52D.3【答案】A 【解析】【分析】本题主要考查三角函数的周期性和对称性,属于中档题.根据周期范围,确定ω范围,再根据对称中心确定21(34k ω=-,k Z ∈,二者结合可得结果.【解答】解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++=所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin( 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷第6题)若sin()cos())sin 4παβαβαβ+++=+,则()A.tan()1αβ+=-B.tan()1αβ+=C.tan()1αβ-=-D.tan()1αβ-=【答案】C 【解析】【分析】本题考查三角恒等变换的应用法一:利用特殊值法,排除错误选项即可法二,利用三角恒等变换,求出正确选项【解答】解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos44ππαβαβ=+++,cos )sin 44ππαβαβ+=+故sin()cos cos()sin 044ππαβαβ+-+=,即sin()04παβ+-=,故22sin(sin()cos()0422παβαβαβ-+=-+-=,故sin()cos()αβαβ-=--,故tan() 1.αβ-=-7.(2022·新高考II 卷第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则()A.()f x 在5(0,12π单调递减B.()f x 在11(,)1212ππ-有两个极值点C.直线76x π=是曲线()y f x =的一条对称轴D.直线2y x =-是曲线()y f x =的一条切线【答案】AD 【解析】【分析】本题考查三角函数的图象与性质,三角函数的单调性、三角函数的对称轴与对称中心,函数的极值,切线方程的求解,属于中档题.【解答】解:由题意得:24()sin()033f ππϕ=+=,所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈,又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减;选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点;选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(2)32x π+=-,解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为3(0)2y x -=--,即3.2y x =-【2021年真题】8.(2021·新高考I 卷第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是()A.0,2π⎛⎫ ⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭【答案】A 【解析】【分析】本题考查正弦型函数的单调递增区间,属于基础题.由正弦函数图象和性质可知,得()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,分析选项可得答案.【解答】解:由22262k x k πππππ-+-+,得222,33k xk k Z ππππ-++∈,所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦,故选:.A 9.(2021·新高考I 卷第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+()A.65-B.25-C.25 D.65【答案】C 【解析】【分析】本题考查三角函数的化简求值,涉及同角三角函数的关系、二倍角公式,属于中档题.利用同角三角函数关系、二倍角公式将其化简为2sin sin cos θθθ+后,添加分母1,转化为齐次式,再分子分母同除2cos θ即可.【解答】解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++,故选:.C 【2020年真题】10.(2020·新高考I 卷第10题、II 卷第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+()A.sin ()3x π+ B.sin (2)3x π- C.cos (2)6x π+D.5cos (2)6x π-【答案】BC 【解析】【分析】本题考查正弦型函数的图象,考查逻辑推理能力,属于中档题.借助图象分别求出,ωϕ,结合诱导公式即可判断.【解答】解:由图象可知222()||36T ππππω==-=,故A 错误;解得2ω=±,点5(,1)12π-在函数图象上,当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈,解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷第15题、II 卷第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm 【答案】542π+【解析】【分析】本题考查平面图形中的边角关系,扇形的面积公式,是困难题.设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,由题中长度关系易得45AGD ︒∠=,可得AOH 为等腰直角三角形,即可得到OL 和DL 的长度,根据3tan 5ODC ∠=可得到22x =12AOH O S S S S =+- 阴影圆扇形求解即可.【解答】解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=,又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得22OJ AJ x ==,252OL JK x ==-,72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==,2532522x -=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x >0时,x >sin x >x −12x 2.②余弦函数:cos x ≥1−12x 2.③正切函数:当x ∈0,π2时,sin x <x <tan x . ④数值域:sin x ∈-1,1,cos x ∈ -1,1 .3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x -ax ,a ∈R ,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x >2x ;(2)若函数g x =f x -x cos x 在区间0,+∞ 内有唯一的零点,求a 的取值范围.2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)2已知函数f x =sin x-x-ae x,其中a为实数,e是自然对数的底数.(1)若a=-1,证明:f x ≥0;(2)若f x 在0,π上有唯一的极值点,求实数a的取值范围.3已知函数f x =e x,g x =sin x+cos x.(1)求证:f x ≥x+1;(2)若x≥0,问f x +g x -2-ax≥0a∈R是否恒成立?若恒成立,求a的取值范围;若不恒成立,请说明理由4已知函数f(x)=e x+cos x-a(a∈R).(1)讨论f(x)在[-π,+∞)上的单调性;(2)当x∈[0,+∞)时,e x+sin x≥ax+1恒成立,求a的取值范围.5已知函数f x =a sin x,其中a>0.(1)若f x ≤x在0,+∞上恒成立,求a的取值范围;(2)证明:∀x∈0,+∞,有2e x>x+1 xln x+1+sin x.6已知函数f x =ae x+4sin x-5x.(1)若a=4,判断f x 在0,+∞上的单调性;(2)设函数p x =3sin x-2x+2,若关于x的方程f x =p x 有唯一的实根,求a的取值范围.7已知函数f x =e x,g x =2-sin x-cos x.(1)求证:当x∈0,+∞,x>sin x;(2)若x∈0,+∞,f x >g x +ax恒成立,求实数a的取值范围.8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2 ,都有f (x )≥0,求整数k 的最大值.9已知函数f (x )=(x -1)e x +ax +1.(1)若f (x )有两个极值点,求a 的取值范围;(2)若x ≥0,f (x )≥2sin x ,求a 的取值范围.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.11(2023全国新高考2卷)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f x =cos ax-ln1-x2,若x=0是f x 的极大值点,求a的取值范围.【跟踪训练】1已知函数f x =xe-x+a sin x,e是自然对数的底数,若x=0恰为f(x)的极值点.(1)求实数a的值;上零点的个数.(2)求f(x)在区间-∞,π42已知函数f x =2cos x+ln1+x-1.上零点和极值点的个数,并给出证明;(1)判断函数f x 在区间0,π2(2)若x≥0时,不等式f x <ax+1恒成立,求实数a的取值范围.3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立.(1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2 ,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.5已知函数f(x)=ax2-a(x sin x+cos x)+cos x+a(x>0).(1)当a=1时,(I)求(π,f(π))处的切线方程;(II)判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a的取值范围.6已知f(x)=ax2-cos x-x sin x+a(a∈R).(1)当a=14时,求y=f(x)在[-π,π]内的单调区间;(2)若对任意的x∈R时,f(x)≥2恒成立,求实数a的取值范围.7已知函数f(x)=e x-a-x-cos x,x∈(-π,π)其中e=2.71828⋯为自然对数的底数.(1)当a=0时,证明:f x ≥0;(2)当a=1时,求函数y=f x 零点个数.8已知函数f x =x-1e x+ax+1.(1)若a=-e,求f x 的极值;(2)若x≥0,f x ≥2sin x,求a的取值范围.9已知函数f x =2sin x-ln1+x0<x<π.(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.11已知函数f x =ln x+sin x. (1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.12已知函数f(x)=12ax2-(a-2)x-2ln x.(1)当a=2时,证明:f x >sin x.(2)讨论f x 的单调性.13(1)证明:当x<1时,x+1≤e x≤11-x;(2)是否存在正数a,使得f x =2e x+a sin x-ax2-a+2x在R上单调递增,若存在,求出a的取值范围;若不存在,请说明理由.导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x>0时,x>sin x>x−12x2. ②余弦函数:cos x≥1−12x2.③正切函数:当x∈0,π2时,sin x<x<tan x. ④数值域:sin x∈-1,1,cos x∈-1,1.3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x-ax,a∈R,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x>2x;(2)若函数g x =f x -x cos x在区间0,+∞内有唯一的零点,求a的取值范围.【答案】(1)答案见解析;(2)a≥1【详解】(1)因为f x =e x-ax,所以f x =e x-a,当a≤0时,f x =e x-a>0,则f x =e x-ax在R上单调递增,当a>0时,令f x =e x-a>0得x>ln a,令f x =e x-a<0得x<ln a,所以函数f x 的增区间为(ln a,+∞),减区间为(-∞,ln a),令F x =e x-2x,则F x =e x-2,令F x =e x-2>0得x>ln2,令F x =e x-2<0得x<ln2,所以函数F x 的增区间为(ln2,+∞),减区间为(-∞,ln2),所以当x=ln2时,F x 取得最小值为F ln2=e ln2-2ln2=2-2ln2>0,所以e x>2x,得证;(2)由(1)知,g x =e x-a-x cos x,因为函数g x 在区间0,+∞内有唯一的零点,所以方程a=e x-x cos x在区间0,+∞内有唯一解,令h(x)=e x-x cos x,x≥0,则函数h(x)=e x -x cos x与y=a在0,+∞上只有一个交点,记m x =e x-x-1,(x≥0),则m x =e x-1≥0,所以m x 在0,+∞上单调递增,所以m x =e x-x-1≥e0-1=0,即e x≥x+1,故h (x)=e x-cos x+x sin x≥1-cos x+x(1+sin x)≥0,所以h(x)=e x-x cos x在0,+∞上单调递增,又h(0)=1,如图:要使方程a=e x-x cos x在区间0,+∞内有唯一解,则a≥1.所以a的取值范围是a≥1.2已知函数f x =sin x -x -ae x ,其中a 为实数,e 是自然对数的底数.(1)若a =-1,证明:f x ≥0;(2)若f x 在0,π 上有唯一的极值点,求实数a 的取值范围.【解析】(1)证明:a =-1时,f x =sin x -x +e x ,令g x =e x -x ,则g x =e x -1,当x <0时,g x <0,g x 在-∞,0 上为减函数,当x >0时,g x >0,g x 在0,+∞ 上为增函数,函数g x 的极小值也是最小值为g 0 =1,所以g x ≥g 0 =1,而-sin x ≤1,所以e x -x ≥-sin x ,即f x ≥0.(2)f x 在0,π 上有唯一的极值点等价于f x =cos x -1-ae x =0在0,π 上有唯一的变号零点,f x =0等价于a =cos x -1e x ,设h x =cos x -1e x,x ∈0,π ,h x =-sin x -cos x +1e x =1-2sin x +π4 e x,因为x ∈0,π ,所以x +π4∈π4,5π4 ,当0<x <π2时,x +π4∈π4,3π4 ,sin x +π4 >22,h x <0,h x 在0,π2 上为减函数,当π2<x <π时,x +π4∈3π4,5π4 ,sin x +π4 22,h x 0,h x 在π2,π 上为增函数,所以函数h x 的极小值也是最小值为h π2 =-1e π2,又h 0 =0,h π =-2e π,所以当-2e π≤a <0时,方程a =cos x -1e x 在0,π 上有唯一的变号零点,所以a 的取值范围是-2e π,0.3已知函数f x =e x ,g x =sin x +cos x .(1)求证:f x ≥x +1;(2)若x ≥0,问f x +g x -2-ax ≥0a ∈R 是否恒成立?若恒成立,求a 的取值范围;若不恒成立,请说明理由【答案】(1)证明见解析;(2)a ≤2【详解】(1)令F x =e x -x -1,F x =e x -1,当x ∈-∞,0 ,F x <0,所以此时F x 单调递减;当x ∈0,+∞ ,F x >0,所以此时F x 单调递增;即当x =0时,F x 取得极小值也是最小值F 0 =0,所以F x ≥0,得证;(2)设h x =f x +g x -2-ax ,即证h x =e x +sin x +cos x -2-ax ≥0在0,+∞ 上恒成立,易得h x =e x +cos x -sin x -a ,当x =0时,若h 0 =2-a ≥0⇒a ≤2,下面证明:当a ≤2时,h x =e x +sin x +cos x -2-ax ≥0,在0,+∞ 上恒成立,因为h x =e x +cos x -sin x -a ,设u x =h x ,令v x =x -sin x ,v x =1-cos x ≥0,所以v x 在0,+∞ 上是单调递增函,所以v x ≥v 0 =0,又因为1-cos x ≥0,则u x =e x -sin x -cos x ≥x +1-sin x -cos x =x -sin x +1-cos x ≥0所以h x 在0,+∞ 上是单调递增函数,所以h x ≥h 0 =2-a ≥0,所以h x 在0,+∞ 上是严格增函数,若a >2时,h 0 <0,即h x 在x =0右侧附近单调递减,此时必存在h x 0 <h 0 =0,不满足f x +g x -2-ax ≥0a ∈R 恒成立,故当a ≤2时,不等式恒成立.4已知函数f (x )=e x +cos x -a (a ∈R ).(1)讨论f (x )在[-π,+∞)上的单调性;(2)当x ∈[0,+∞)时,e x +sin x ≥ax +1恒成立,求a 的取值范围.【答案】(1)f (x )在[-π,+∞)上的单调递增;(2)(-∞,2]【详解】(1)f (x )=e x -sin x ,当-π≤x ≤0时,e x >0,sin x <0,∴f (x )=e x -sin x >0,当x >0时,e x >1,sin x ≤1,∴f (x )=e x -sin x >0,即:f (x )>0在[-π,+∞)上恒成立,所以f (x )在[-π,+∞)上的单调递增.(2)方法一:由e x +sin x ≥ax +1得:e x +sin x -ax -1≥0当x =0时,e x +sin x -ax -1≥0恒成立,符合题意令g (x )=e x +sin x -ax -1,x >0g (x )=e x +cos x -a =f (x ),由(1)得:g (x )在(0,+∞)上的单调递增,∴g (x )>2-a ,①当a ≤2时,g (x )>2-a ≥0,所以g (x )在(0,+∞)上的单调递增,所以g (x )>g (0)=0,符合题意②当a >2时,g (0)=2-a <0,g (ln (2+a ))=2+cos (ln (2+a ))>0,∴存在x 0∈(0,ln (2+a )),使得g (x 0)=0,当0<x <x 0时,g (x )<g (x 0)=0;所以g (x )在(0,x 0)上的单调递减,当0<x <x 0时,g (x )<g (0)=0,这不符合题意综上,a 的取值范围是(-∞,2].方法二:令h (x )=e x +sin x ,s (x )=ax +1,x ≥0则h (0)=s (0)=1,符合题意h(x )=e x +cos x =f (x )+a ,f (x )=e x -sin x 由(1)得:f (x )>0在(0,+∞)上恒成立,h (x )在(0,+∞)上单调递增所以,h (x )>h (0)>0,所以h (x )在(0,+∞)上单调递增,其图象是下凸的,如图: ∵h (0)=2,所以,曲线h (x )在点(0,1)处的切线方程为:y =2x +1,要使得h (x )≥s (x )在[0,+∞)上恒成立,只需a ≤2所以,a 的取值范围是(-∞,2].5已知函数f x =a sin x ,其中a >0.(1)若f x ≤x 在0,+∞ 上恒成立,求a 的取值范围;(2)证明:∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x .【答案】(1)0,1 ;(2)证明见解析【详解】(1)令h x =x -a sin x ,x ∈0,+∞ ,则h x =1-a cos x ,当a ∈0,1 时,h x >0,h x 单调递增,所以h x ≥h 0 =0,当a ∈1,+∞ 时,令m x =h x =1-a cos x ,则m x =a sin x ,所以对∀x ∈0,π2 ,m x >0,则h x 在0,π2 上单调递增,又因为h 0 =1-a <0,h π2 =1>0,所以由零点存在定理可知,∃x 0∈0,π2使得h x 0 =0,所以当x ∈0,x 0 时,h x <0,h x 单调递减,h x <h 0 =0,与题意矛盾,综上所述,a ∈0,1 .(2)由(1)知,当a =1时,sin x ≤x ,∀x ∈0,+∞ . 先证ln x +1 ≤x ,x ∈0,+∞ ,令φx =x -ln x +1 ,则φ x =1-1x +1≥0,所以φx 单调递增,φx >φ0 =0,即ln x +1 ≤x . 所以当x ∈0,+∞ 时,ln x +1 +sin x ≤2x ,x +1x ln x +1 +sin x ≤2x 2+1 .要证∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x ,只需证e x >x 2+1. 令g x =x 2+1 e -x -1,x ∈0,+∞ ,则g x =2x -x 2-1 e -x =-x -1 2e -x ≤0.所以g x 在0,+∞ 上单调递减,所以g x <g 0 =0,即e x >x 2+1.综上可得∀x ∈0,+∞ ,有2e x >x +1xln x +1 +sin x .6已知函数f x =ae x +4sin x -5x .(1)若a =4,判断f x 在0,+∞ 上的单调性;(2)设函数p x =3sin x -2x +2,若关于x 的方程f x =p x 有唯一的实根,求a 的取值范围.【答案】(1)函数f x 在0,+∞ 上单调递增.(2)a ≤0或a =2【详解】(1)当a =4时,f x =4e x +4sin x -5x ,f x =4e x +4cos x -5,令g x =f x =4e x +4cos x -5,则g x =4e x -4sin x .当x ∈0,+∞ 时,4e x ≥4(x =0时等号成立);-4sin x ≥-4(x =π2+2k π,k ∈Z 时等号成立),所以g x =4e x -4sin x >0,即函数f x =4e x +4cos x -5在0,+∞ 上递增,所以f x ≥f 0 =3>0,即函数f x 在0,+∞ 上单调递增.(2)方程f x =p x 即ae x +4sin x -5x =3sin x -2x +2有唯一的实根,则a =3x +2-sin x e x只有一个解,等价于直线y =a 与函数y =3x +2-sin x e x 的图象只有一个交点.令h x =3x +2-sin x ex ,则h x =sin x -cos x +1-3x e x ,因为e x >0,所以h x =sin x -cos x +1-3x e x 的符号由分子决定,令m x =sin x -cos x +1-3x ,则m x =cos x +sin x -3=22sin x +π4-3<0.所以m x =sin x -cos x +1-3x 在R 上递减,因为m 0 =0,所以当x ∈-∞,0 时,m x >m 0 =0;当x ∈0,+∞ 时,m x <m 0 =0.即当x ∈-∞,0 时,h x >0;当x ∈0,+∞ 时,h x <0.所以函数h x =3x +2-sin x e x 在-∞,0 上递增,在0,+∞ 上递减,当x 趋于-∞时,e x 趋于0且大于0,分子3x +2-sin x 趋于-∞,则3x +2-sin x e x趋于-∞;当x =0时,h max x =h 0 =2;当x 趋于+∞时,e x 趋于+∞,分子3x +2-sin x 也趋于+∞,令φx =e x-3x +2-sin x ,则φ x =e x -3+cos x ,当x >2时,φ x =e x -3+cos x >0,则x 趋于+∞时,e x 增长速率大于3x+2-sin x 的增长速率,故x 趋于+∞时,3x +2-sin x e x趋于0.画出函数h x =3x +2-sin x e x 的草图,并画出直线y =a ,要使直线y =a 与函数y =3x +2-sin x e x的图象只有一个交点.则a ≤0或a =2.所以当a ≤0或a =2时,方程f x =p x 有唯一的实根.7已知函数f x =e x ,g x =2-sin x -cos x .(1)求证:当x ∈0,+∞ ,x >sin x ;(2)若x ∈0,+∞ ,f x >g x +ax 恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)-∞,2 【详解】(1)证明:设F x =x -sin x ,x >0,则F x =1-cos x >0,所以F x 在区间0,+∞ 上单调递增,所以F x >F 0 =0,即x >sin x .(2)由f x >g x +ax 在区间0,+∞ 上恒成立,即e x +sin x +cos x -ax -2>0在区间0,+∞ 上恒成立,设φx =e x +sin x +cos x -ax -2,则φx >0在区间0,+∞ 上恒成立,而φ x =e x +cos x -sin x -a ,令m x =φ x ,则m x =e x -sin x -cos x ,设h x =e x -x -1,则h x =e x -1,当x >0时,h x >0,所以函数h x 在区间0,+∞ 上单调递增,故在区间0,+∞ 上,h x >h 0 =0,即在区间0,+∞ 上,e x >x +1,由(1)知:在区间0,+∞ 上,e x >x +1>sin x +cos x ,即m x =e x -sin x -cos x >0,所以在区间0,+∞ 上函数φ x 单调递增,当a ≤2时,φ 0 =2-a ≥0,故在区间0,+∞ 上函数φ x >0,所以函数φx 在区间0,+∞ 上单调递增,又φ0 =0,故φx >0,即函数f x >g x +ax 在区间0,+∞ 上恒成立.当a >2时,φ 0 =2-a ,φ ln a +2 =a +2+cos ln a +2 -sin ln a +2 -a =2-2sin ln a +2 -π4 >0,故在区间0,ln a +2 上函数φ x 存在零点x 0,即φ x 0 =0,又在区间0,+∞ 上函数φ x 单调递增,故在区间0,x 0 上函数φ x <φ x 0 =0,所以在区间0,x 0 上函数φx 单调递减,由φ0 =0,所以在区间0,x 0 上φx <φ0 =0,与题设矛盾.综上,a 的取值范围为-∞,2 .8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2,都有f (x )≥0,求整数k 的最大值.【答案】(1)证明见解析;(2)3【详解】(1)a =-1时,设g (x )=f (x )+2x =-sin x -ln (1+x )+2x ,则g (x )=-cos x -11+x +2,∵x >0∴x +1>1∴-1x +1∈(-1,0)∵cos x ∈[-1,1]∴-cos x -1x +1+2>0,即g (x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调增, 又g (0)=0∴g (x )>g (0)=0,即∀x >0,f (x )+2x >0;(2)a =1时,当k =4时,f (2)=sin2-ln3<0,所以k <4.下证k =3符合.k =3时,当x ∈0,32时,sin x >0,所以当a ≥1时,f (x )=a sin x -ln (1+x )≥sin x -ln (1+x ).记h (x )=sin x -ln (1+x ),则只需证h (x )=sin x -ln (1+x )≥0对x ∈0,32恒成立.h (x )=cos x -1x +1,令ϕ(x )=cos x -1x +1,则ϕ (x )=-sin x +1(x +1)2在0,π2 递减,又ϕ (0)=1>0,ϕ π2 =-1+1π2+1 2<0,所以存在x 1∈0,π2,使得ϕ x 1 =0,则x ∈0,x 1 ,ϕ x 1 >0,ϕ(x )在0,x 1 递增,x ∈x 1,π2 ,ϕ x 1 <0,ϕ(x )在x 1,π2 递减;又ϕ(0)=0,ϕπ2 =-1π2+1<0,所以存在x 2∈x 1,π2 使得ϕx 2 =0,且x ∈0,x 2 ,ϕ(x )>0,x ∈x 2,π2,ϕ(x )<0,所以h (x )在0,x 2 递增,在x 2,π2递减,又h (0)=0,h π2 =1-ln 1+π2 >0,所以h (x )≥0对x ∈0,π2 恒成立,因为0,32 ⊆0,π2,所以k =3符合.综上,整数k 的最大值为3.9已知函数f (x )=(x -1)e x +ax +1.(1)若f(x)有两个极值点,求a的取值范围;(2)若x≥0,f(x)≥2sin x,求a的取值范围.【答案】(1)0,1 e;(2)2,+∞.【详解】(1)由f(x)=(x-1)e x+ax+1,得f (x)=xe x+a,因为f(x)有两个极值点,则f (x)=0,即方程-a= xe x有两个不等实数根,令g(x)=xe x,则g (x)=(x+1)e x,知x<-1时,g (x)<0,g(x)单调递减,x>-1时,g (x)>0,g(x)单调递增,则x=-1时,g(x)取得极小值g(-1)=-1e,也即为最小值,且x<0时,g(x)<0,x→-∞时,g(x)→0,x>0时,g(x)>0,x→∞时,g(x)→+∞,故-1e<-a<0,即0<a<1e时,方程-a=xe x有两个实数根,不妨设为x1,x2x1<x2.可知x<x1时,f (x)>0,x1<x<x2时,f (x)< 0,x>x2时,f (x)>0,即x1,x2分别为f(x)的极大值和极小值点.所以f(x)有两个极值点时,a的取值范围是0,1 e.(2)令h(x)=(x-1)e x+ax-2sin x+1,原不等式即为h(x)≥0,可得h(0)=0,h (x)=xe x+a-2cos x,h (0)=a-2,令u(x)=h (x)=xe x+a-2cos x,则u (x)=(x+1)e x+2sin x,又设t(x)=(x+1)e x,则t (x)= (x+2)e x,x≥0时,t (x)>0,可知t(x)在0,+∞单调递增,若x∈0,π,有(x+1)e x>0,sin x>0,则u (x)>0;若x∈π,+∞,有(x+1)e x>(π+1)eπ>2,则u (x)>0,所以,x≥0,u (x)>0,则u(x)即h (x)单调递增,①当a-2≥0即a≥2时,h (x)≥h (0)≥0,则h(x)单调递增,所以,h(x)≥h(0)=0恒成立,则a≥2符合题意.②当a-2<0即a<2时,h (0)<0,h (3-a)=(3-a)e(3-a)+a-2cos(3-a)≥3-a+a-2cos(2-a)> 0,存在x0∈(0,3-a),使得h (x0)=0,当0<x<x0时,h (x)<0,则h(x)单调递减,所以h(x)<h(0)=0,与题意不符,综上所述,a的取值范围是2,+∞.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.【答案】(1)a=1;(2)证明见解析【详解】(1)f(x)的定义域为(0,+∞),f (x)=1-π2cosπ2x-a x,依题意得f (1)=1-a=0,得a=1,此时f (x)=1-π2cosπ2x-1x,当0<x<1时,0<π2x<π2,0<π2cosπ2x<π2,1x>1,故f (x)<0,f(x)在(0,1)内单调递减,当1<x<2时,π2<π2x<π,π2cosπ2x<0,1x<1,故f (x)>0,f(x)在(1,2)内单调递增,故f(x)在x=1处取得极小值,符合题意.综上所述:a=1.(2)由(1)知,f(x)=x-sinπ2x-ln x,不妨设0<x1<x2,当1≤x1<x2时,不等式x1+x2>2显然成立;当0<x1<1,x2≥2时,不等式x1+x2>2显然成立;当0<x1<1,0<x2<2时,由(1)知f(x)在(0,1)内单调递减,因为存在x 1≠x 2,使得f x 1 =f x 2 ,所以1<x 2<2,要证x 1+x 2>2,只要证x 1>2-x 2,因为1<x 2<2,所以0<2-x 2<1,又f (x )在(0,1)内单调递减,所以只要证f (x 1)<f (2-x 2),又f x 1 =f x 2 ,所以只要证f (x 2)<f (2-x 2),设F (x )=f (x )-f (2-x )(1<x <2),则F (x )=f (x )+f (2-x )=1-π2cos π2x -1x +1-π2cos π2(2-x ) -12-x =2-1x +12-x -π2cos π2x +cos π-π2x =2-1x +12-x -π2cos π2x -cos π2x =2-1x +12-x,令g (x )=2-1x +12-x(1<x <2),则g (x )=1x 2-1(2-x )2=4-4x x 2(2-x )2,因为1<x <2,所以g (x )<0,g (x )在(1,2)上为减函数,所以g (x )<g (1)=0,即F (x )<0,所以F (x )在(1,2)上为减函数,所以F (x )<F (1)=0,即f (x 2)<f (2-x 2).综上所述:x 1+x 2>2.11(2023全国新高考2卷)(1)证明:当0<x <1时,x -x 2<sin x <x ;(2)已知函数f x =cos ax -ln 1-x 2 ,若x =0是f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)-∞,-2 ∪2,+∞【详解】(1)构建F x =x -sin x ,x ∈0,1 ,则F x =1-cos x >0对∀x ∈0,1 恒成立,则F x 在0,1 上单调递增,可得F x >F 0 =0,所以x >sin x ,x ∈0,1 ;构建G x =sin x -x -x 2 =x 2-x +sin x ,x ∈0,1 ,则G x =2x -1+cos x ,x ∈0,1 ,构建g x =G x ,x ∈0,1 ,则g x =2-sin x >0对∀x ∈0,1 恒成立,则g x 在0,1 上单调递增,可得g x >g 0 =0,即G x >0对∀x ∈0,1 恒成立,则G x 在0,1 上单调递增,可得G x >G 0 =0,所以sin x >x -x 2,x ∈0,1 ;综上所述:x -x 2<sin x <x .(2)令1-x 2>0,解得-1<x <1,即函数f x 的定义域为-1,1 ,若a =0,则f x =1-ln 1-x 2 ,x ∈-1,1 ,因为y =-ln u 在定义域内单调递减,y =1-x 2在-1,0 上单调递增,在0,1 上单调递减,则f x =1-ln 1-x 2 在-1,0 上单调递减,在0,1 上单调递增,故x =0是f x 的极小值点,不合题意,所以a ≠0.当a ≠0时,令b =a >0因为f x =cos ax -ln 1-x 2 =cos a x -ln 1-x 2 =cos bx -ln 1-x 2 ,且f -x =cos -bx -ln 1--x 2 =cos bx -ln 1-x 2 =f x ,所以函数f x 在定义域内为偶函数,由题意可得:f x =-b sin bx -2x x 2-1,x ∈-1,1 ,(i )当0<b 2≤2时,取m =min 1b ,1 ,x ∈0,m ,则bx ∈0,1 ,由(1)可得fx =-b sin bx -2x x 2-1>-b 2x -2x x 2-1=x b 2x 2+2-b 2 1-x 2,且b 2x 2>0,2-b 2≥0,1-x 2>0,所以f x >x b 2x 2+2-b 21-x 2>0,即当x ∈0,m ⊆0,1 时,f x >0,则f x 在0,m 上单调递增,结合偶函数的对称性可知:f x 在-m ,0 上单调递减,所以x =0是f x 的极小值点,不合题意;(ⅱ)当b 2>2时,取x ∈0,1b ⊆0,1 ,则bx ∈0,1 ,由(1)可得f x =-b sin bx -2x x 2-1<-b bx -b 2x 2 -2x x 2-1=x 1-x2-b 3x 3+b 2x 2+b 3x +2-b 2 ,构建h x =-b 3x 3+b 2x 2+b 3x +2-b 2,x ∈0,1b ,则h x =-3b 3x 2+2b 2x +b 3,x ∈0,1b,且h 0 =b 3>0,h 1b=b 3-b >0,则hx >0对∀x ∈0,1b 恒成立,可知h x 在0,1b 上单调递增,且h 0 =2-b 2<0,h 1b=2>0,所以h x 在0,1b 内存在唯一的零点n ∈0,1b ,当x ∈0,n 时,则h x <0,且x >0,1-x 2>0,则f x <x1-x 2-b 3x 3+b 2x 2+b 3x +2-b 2 <0,即当x ∈0,n ⊆0,1 时,fx <0,则f x 在0,n 上单调递减,结合偶函数的对称性可知:f x 在-n ,0 上单调递增,所以x =0是f x 的极大值点,符合题意;综上所述:b 2>2,即a 2>2,解得a >2或a <-2,故a 的取值范围为-∞,-2 ∪2,+∞ .【跟踪训练】1已知函数f x =xe -x +a sin x ,e 是自然对数的底数,若x =0恰为f (x )的极值点.(1)求实数a 的值;(2)求f (x )在区间-∞,π4上零点的个数.【答案】(1)-1;(2)1【详解】(1)由题意得f x =1-xex+a cos x ,因为x =0为f (x )的极值点,故f (0)=1+a =0,∴a =-1,此时f x =1-x e x-cos x ,则x <0时,1-xe x >1,故f (x )>0,则f (x )在(-∞,0)上单调递增;由f x =1-x e x -cos x =1-x -e x cos x e x,令g x =1-x -e x cos x ,∴g x =-1-e x cos x -sin x ,当0<x <π4时,cos x -sin x >0,则g (x )<0,则g (x )在0,π4上单调递减,故g (x )<g (0)=0,即f(x )<0,故f (x )在0,π4 上单调递减,则x =0为f (x )的极大值点,符合题意,故a =-1.(2)由(1)知f x =xe -x -sin x ,f x =1-xex-cos x ,x <0时,f (x )>0,f (x )在(-∞,0)上单调递增,则f (x )<f (0)=0,故f x 在(-∞,0)上不存在零点;当0<x <π4时,f (x )<0,故f (x )在0,π4上单调递减,则f (x )<f (0)=0,故f x 在0,π4上不存在零点;当x =0时,f (0)=0,即x =0为f x 的零点,综合上述,f (x )在区间-∞,π4上零点的个数为1.2已知函数f x =2cos x +ln 1+x -1.(1)判断函数f x 在区间0,π2上零点和极值点的个数,并给出证明;(2)若x ≥0时,不等式f x <ax +1恒成立,求实数a 的取值范围.【答案】(1)函数f x 在区间0,π2上只有一个极值点和一个零点,证明见解析;(2)实数a 的取值范围是1,+∞【详解】(1)函数f x 在区间0,π2 上只有一个极值点和一个零点,证明如下,f x =-2sin x +1x +1,设t x =f x =-2sin x +1x +1,t x =-2cos x -1x +12,当x ∈0,π2 时,t x <0,所以f x 单调递减,又f 0 =1>0,f π2=-2+1π2+1=-2+2π+2<0,所以存在唯一的α∈0,π2 ,使得f α =0,所以当x ∈0,α 时,f x >0,当x ∈α,π2 时,f x <0,所以f x 在0,α 单调递增,在α,π2单调递减,所以α是f x 的一个极大值点,因为f 0 =2-1=1>0,f α >f 0 >0,f π2=ln 1+π2 -1<0,所以f x 在0,α 无零点,在α,π2上有唯一零点,所以函数f x 在区间0,π2 上只有一个极值点和一个零点;(2)由f x ≤ax +1,得2cos x +ln 1+x -ax -2≤0,令g x =2cos x +ln 1+x -ax -2,x >0 ,则g 0 =0,g x =-2sin x +11+x-a ,g 0 =1-a ,①若a ≥1,则-a ≤-1,当x ≥0时,-ax ≤-x ,令h x =ln x +1 -x ,则h x =1x +1-1=-xx +1,当x ≥0时,h x ≤0,所以h x 在0,+∞ 上单调递减,又h 0 =0,所以h x ≤h 0 ,所以ln x +1 -x ≤0,即ln x +1 ≤x ,又cos x ≤1,所以g x ≤2+x -x -2=0,即当x ≥0时,f x ≤ax +1恒成立,②若0≤a <1,因为当x ∈0,π2 时,g x 单调递减,且g 0 =1-a >0,g π2 =-2+11+π2-a <0,所以存在唯一的β∈0,π2,使得g β =0,当x ∈0,β 时,g x >0,g x 在0,β 上单调递增,不满足g x ≤0恒成立,③若a <0,因为g e 4-1 =2cos e 4-1 +ln e 4 -a e 4-1 -2=2-2cos e 4-1 -a e 4-1 >0不满足g x ≤0恒成立,综上所述,实数a 的取值范围是1,+∞ .3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立. (1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)【答案】(1)a =1;(2)证明见解析【详解】(1)因为f x -g x ≥0恒成立,所以xe x -a (ln x +x )≥1恒成立,令h (x )=xe x -a (ln x +x ),则h (x )=e x+xe x-a 1x +1 =(x +1)⋅xe x -ax(x >0),当a <0时,h (x )>0,所以h (x )在(0,+∞)上递增,当x→0时,xe x →0,ln x →-∞,所以h (x )→-∞,不合题意,当a =0时,h 12=e2<1,不合题意,当a >0时,令xe x -a =0,得a =xe x ,令p (x )=xe x ,则p (x )=(x +1)e x >0,所以p (x )=xe x 在(0,+∞)上递增,且p (0)=0,所以a =xe x 有唯一实根,即h (x )=0有唯一实根,设为x 0,即a =x 0e x 0,且x ∈(0,x 0)时,h (x )<0,x ∈x 0,+∞ 时,h(x )>0,所以h (x )在0,x 0 上为减函数,在x 0,+∞ 上为增函数,所以h (x )min =f x 0 =x 0e x 0-a ln x0+x 0 =a -a ln a ,所以只需a -a ln a ≥1,令t =1a ,则上式转化为ln t ≥t -1,设φ(t )=ln t -t +1,则φ (t )=1t -1=1-tt,当0<t <1时,φ (t )>0,当t >1时,φ (t )<0,所以φ(t )在(0,1)上递增,在(1,+∞)上递减,所以φ(t )≤φ(1)=0,所以ln t ≤t -1,所以ln t =t -1,得t =1,所以t =1a=1,得a =1,(2)证明:由(1)知,当a =1时,f x ≥g x 对任意x >0恒成立,所以∀x ∈0,+∞ ,xe x ≥x +ln x +1(当且仅当x =1时取等号),则x 3e x ≥x 3+x 2ln x +x 2(x >0),所以要证明x 3e x >x 2+3 ln x +2sin x ,只需证明x 3+x 2ln x +x 2>(x 2+3)ln x +2sin x (x >0),即证x 3+x 2>3ln x +2sin x (x >0),设t (x )=ln x -x +1,m (x )=sin x -x ,则由(1)可知ln x ≤x -1(x >0),m (x )=cos x -1≤0在(0,+∞)上恒成立,所以m (x )在(0,+∞)上递减,所以∀x ∈0,+∞ ,m (x )<m (0)=0,所以sin x <x (x >0),所以要证x 3+x 2>3ln x +2sin x (x >0),只要证x 3+x 2≥3(x -1)+2x (x >0),即x 3+x 2-5x +3≥0(x >0),令H (x )=x 3+x 2-5x +3,则H (x )=3x 2+2x -5=(3x +5)(x -1),当0<x <1时,H (x )<0,当x >1时,H (x )>0,所以H (x )在(0,1)上递减,在(1,+∞)上递增,所以当x ∈0,+∞ 时,H (x )≥H (1)=0,即x 3+x 2-5x +3≥0(x >0)恒成立,所以原命题成立.4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.【答案】(1)x =2π3+2k π(k ∈Z );(2)(0,2].【详解】(1)函数g (x )=12x +sin x ,求导得g (x )=12+cos x ,由g (x )=0,得cos x =-12,当-2π3+2k π<x<2π3+2k π(k ∈Z )时,cos x >-12,即g (x )>0,函数g (x )单调递增;当2π3+2k π<x <4π3+2k π(k ∈Z )时,cos x <-12,即g (x )<0,函数g (x )单调递减,因此函数g (x )在x =2π3+2k π(k ∈Z )处有极大值,所以函数g (x )的极大值点为x =2π3+2k π(k ∈Z ).(2)依题意,m >0,∀x ∈0,π2 ,不等式f (x )≥mx cos x ⇔x +sin x -mx cos x ≥0,当x =π2时,π2+1≥0成立,则m >0,当x ∈0,π2时,cos x >0,x +sin x -mx cos x ≥0⇔x +sin x cos x-mx ≥0,令h (x )=x +sin x cos x -mx ,x ∈0,π2 ,求导得h(x )=(1+cos x )cos x +(x +sin x )sin x cos 2x -m =cos x +x sin x +1cos 2x -m ,令φx =cos x +x sin x +1cos 2x -m ,x ∈0,π2 ,求导得φ (x )=x cos 2x +2x sin 2x +sin2x +2sin x cos 3x >0,因此φ(x )在0,π2 上单调递增,即有φx ≥φ0 =2-m ,而cos x +x sin x +1cos 2x ≥cos x +1cos 2x >1cos 2x,又函数y =1cos 2x在x ∈0,π2 上的值域是[1,+∞),则函数φ(x ),即h x 在0,π2 上的值域是2-m ,+∞ ,当0<m ≤2时,h (x )≥0,当且仅当m =0,x =0时取等号,于是函数h (x )在0,π2上单调递增,对x ∈0,π2 ,h (x )≥h (0)=0,因此0<m ≤2,当m >2时,存在x 0∈0,π2,使得h (x 0)=0,当x ∈(0,x 0)时,h (x )<0,函数h (x )在(0,x 0)上单调递减,当x ∈(0,x 0)时,h (x )<h (0)=0,不符合题意,所以m 的取值范围为(0,2].5已知函数f (x )=ax 2-a (x sin x +cos x )+cos x +a (x >0).(1)当a =1时,(I )求(π,f (π))处的切线方程;(II )判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a 的取值范围.【答案】(1)(I )y =3πx -2π2+1;(II )f x 单调递增,证明见解析;(2)a ≥1【详解】(1)当a =1时,f (x )=x 2-x sin x +1,可得f (x )=2x -sin x -x cos x .(I )f (π)=π2+1,f (π)=3π,所以在(π,f (π))处的切线方程为y -π2+1 =3πx -π ,即y =3πx -2π2+1.(II )f (x )=2x -sin x -x cos x =x -sin x +x (1-cos x ),设m (x )=x -sin x (x >0),则m (x )=1-cos x ≥0,m (x )单调递增,所以m (x )>m (0)=0,即x >sin x ,所以当x >0时,f (x )>0,f (x )单调递增.(2)设g (x )=f (x )-1=ax 2-a (x sin x +cos x )+cos x +a -1,由题意g (x )>0恒成立.①当a ≤0时,g π2=a π2π2-1 +a -1<0,g (x )>0不恒成立,不合题意;②当0<a <1时,设h (x )=g(x )=2ax -ax cos x -sin x ,h (0)=0,h (x )=2a -a cos x +ax sin x -cos x ,h (0)=a -1<0,h π2=2a +π2a >0,设r (x )=h (x ),x ∈0,π2,r (x )=2a sin x +ax cos x +sin x >0,h (x )单调递增,由零点存在定理得∃t ∈0,π2,使得h (t )=0.h (x )在(0,t )上h (x )<0,h (x )<h (0)=0,即g (x )<0,所以g (x )在(0,t )上单调递减,g (x )<g (0)=0,g (x )>0不恒成立,不合题意;③当a ≥1时,g(x )=2ax -ax cos x -sin x ,则g (x )x =2a -a cos x -sin x x =a (1-cos x )+a -sin x x,当x>0时,1-cos x ≥0,x >sin x ,即sin xx <1,则g (x )x >0,所以当x >0时,g (x )>0,g (x )单调递增.可得:g (x )>g (0)=0,即f (x )>1,所以a ≥1.综上,a 的取值范围为1,+∞ .6已知f (x )=ax 2-cos x -x sin x +a (a ∈R ).(1)当a =14时,求y =f (x )在[-π,π]内的单调区间;(2)若对任意的x ∈R 时,f (x )≥2恒成立,求实数a 的取值范围.【答案】(1)单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3 ;(2)[3,+∞).【详解】(1)当a =14时,f (x )=14x 2-cos x -x sin x +14,求导得f (x )=12x -x cos x =x 12-cos x ,而x ∈[-π,π],由cos x =12,得x =±π3,当x ∈-π3,π3 时,12-cos x <0,当x ∈π3,π ∪-π,-π3时,12-cos x >0,则当x >0时,若f (x )>0,则x ∈π3,π ;若f (x )<0,则x ∈0,π3,当x <0时,若f (x )>0,则x ∈-π3,0 ;若f (x )<0,则x ∈-π,-π3 ,所以函数y =f (x )在[-π,π]内的单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3.(2)因为f (-x )=a (-x )2-cos (-x )-(-x )sin (-x )+a =f (x ),于是函数f (x )=ax 2-cos x -x sin x +a (a ∈R )为偶函数,则f (x )≥2对任意x ∈R 恒成立,等价于对任意的x ∈[0,+∞),恒有f (x )≥2成立,求导得f (x )=2ax -x cos x =x (2a -cos x ),当x ∈[0,+∞)时,当2a ≥1,a ≥12成立时,2a -cos x ≥0恒成立,即f (x )≥0恒成立,函数f (x )在[0,+∞)内单调递增,则有f x min =f 0 =a -1,因此a -1≥2,解得a ≥3,则a ≥3;当2a <1,a <12时,函数y =cos x 在[0,π]上单调递减,且-1≤cos x ≤1,因此存在x 0>0,使得当x ∈(0,x 0)时,2a -cos x <0,f (x )<0,函数f (x )在(0,x 0)上递减,此时x ∈0,x 0 ,f x <f 0 =a -1<2,不符合题意,所以实数a 的取值范围为[3,+∞).7已知函数f (x )=e x -a -x -cos x ,x ∈(-π,π)其中e =2.71828⋯为自然对数的底数.(1)当a =0时,证明:f x ≥0;(2)当a =1时,求函数y =f x 零点个数.【答案】(1)证明见解析;(2)2.【详解】(1)当a =0时,f (x )=e x -x -cos x ,x ∈(-π,π),求导得f (x )=e x -1+sin x ,显然f (0)=0,当-π<x <0时,e x -1<0,sin x <0,则f (x )<0,当0<x <π时,e x -1>0,sin x >0,则f (x )>0,因此函数f (x )在(-π,0)上单调递减,在(0,π)上单调递增,则当x ∈(-π,π)时,f (x )≥f (0)=0,所以f x ≥0.(2)当a =1时,f (x )=e x -1-x -cos x ,x ∈(-π,π),求导得f (x )=e x -1-1+sin x ,当-π<x <0时,e x -1-1<0,sin x <0,则f (x )<0,当1<x <π时,e x -1-1>0,sin x >0,则f (x )>0,当0≤x ≤1时,函数y =e x -1-1,y =sin x 都递增,即函数f (x )在(0,1)上单调递增,而f (0)=e -1-1<0,f (1)=sin1>0,因此存在x 0∈(0,1),使得f (x 0)=0,当0≤x <x 0时,f (x )<0,当x 0<x ≤1时,f (x )>0,从而当-π<x <x 0时,f (x )<0,当x 0<x <π时,f (x )>0,即有函数f (x )在(-π,x 0)上单调递减,在(x 0,π)上单调递增,f (x 0)<f (0)=e -1-1<0,而f -π2 =e -π2-1+π2>0,f π2 =e π2-1-π2>e -π2>0,于是函数f (x )在(-π,x 0),(x 0,π)各存在一个零点,所以函数y =f x 零点个数是2.8已知函数f x =x -1 e x +ax +1.(1)若a =-e ,求f x 的极值;(2)若x ≥0,f x ≥2sin x ,求a 的取值范围.【答案】(1)f x 极小值=1-e ,无极大值.(2)2,+∞【详解】(1)当a =-e 时f x =x -1 e x -ex +1,则f x =xe x -e ,令g x =f x =xe x -e ,则g 1 =0,gx =x +1 ex,所以当x <-1时g x <0,g x 单调递减且g x <0,当x >-1时g x >0,g x 单调递增,所以当x <1时g x <0,即f x <0,当x >1时g x >0,即f x >0,所以f x 在-∞,1 上单调递减,在1,+∞ 上单调递增,所以f x 在x =1处取得极小值,即f x 极小值=f 1 =1-e ,无极大值.(2)令h x =f x -2sin x =x -1 e x +ax -2sin x +1,x ∈0,+∞ ,则原不等式即为h x ≥0,可得h 0 =0,h x =xe x +a -2cos x ,h 0 =a -2,令u x =h x =xe x +a -2cos x ,则u x =x +1 e x +2sin x ,令t x =x +1 e x ,x ∈0,+∞ ,则t x =x +2 e x >0,所以t x 在0,+∞ 上单调递增,则t x ≥t 0 =1,则x ∈0,π 时x +1 e x >0,sin x ≥0,所以u x >0,当x ∈π,+∞ 时x +1 e x ≥π+1 e π>2,所以u x >0,所以u x >0在0,+∞ 上恒成立,所以u x 即h x 在0,+∞ 上单调递增,当a -2≥0,即a ≥2时h x ≥h 0 ≥0,所以h x 单调递增,所以h x ≥h 0 =0恒成立,所以a ≥2符合题意,当a -2<0,即a <2时h 0 <0,h 3-a =3-a e 3-a+a -2cos 3-a ≥3-a +a -2cos 3-a >0,所以存在x 0∈0,3-a 使得h x 0 =0,当0<x <x 0时h x <0,则h x 单调递减,所以h x <h 0 =0,与题意不符,综上所述,a 的取值范围是2,+∞ .9已知函数f x =2sin x -ln 1+x 0<x <π .(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.【答案】(1)证明见解析;(2)2α>β,证明见解析【详解】(1)当π2<x <π时,由于y =2sin x 单调递减,y =ln 1+x 单调递增,所以f x 单调递减,又f π2=2-ln 1+π2 >0,f π =-ln 1+π <0,所以f x 只有一个零点(设为x 0),无极值点;当0<x <π2时,由f x =2sin x -ln 1+x 得f x =2cos x -1x +1,设g x =2cos x -1x +1,则g x =-2sin x +1x +1 2,由于y =-2sin x 和y =1x +12在0,π2 上均单调递减,所以g x 单调递减,又g 0 =1>0,g π2=-2+1π2+12<0,所以存在x 1∈0,π2,使得g x 1 =0,当0<x <x 1时,g x >0,g x 单调递增,即f x 单调递增,当x 1<x <π2时,g x <0,g x 单调递减,即f x 单调递减,又f π3=1-11+π3>0,f π2 =-1π2+1<0,所以当0<x <x 1时,f x >0恒成立,且存在x 2∈π3,π2 ,使得fx 2 =0,当0<x <x 2时,fx >0,f x 单调递增,当x 2<x <π2时,fx <0,f x 单调递减,所以x 2是f x 的极值点,又f 0 =0,f π2=2-ln 1+π2 >0,所以当0<x <π2时,f x >0恒成立,即函数f x 无零点;综上,函数f x 有唯一的极值点α(α=x 2),及唯一的零点β(β=x 0).(2)2α>β,证明如下:由(1)知α∈π3,π2,2α,β∈π2,π ,由于α为f x 的极值点,所以f α =2cos α-1α+1=0,即2cos α=11+α,所以f 2α =2sin2α-ln 1+2α =4sin αcos α-ln 1+2α =2sin α1+α-ln 1+2α ,设y =x -sin x 0<x <π2,则y =1-cos x >0,所以y =x -sin x 单调递增,所以x -sin x >0,即x >sin x ,所以f2α=2sinα1+α-ln1+2α<2α1+α-ln1+2α,令φ(x)=2x1+x-ln(1+2x)0<x<π2,则φ (x)=-2x21+x21+2x<0,所以φ(x)在0,π2上单调递减,所以φ(x)<φ(0)=0,所以f2α <0=fβ ,又f x在π2,π递减,所以2α>β.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.【答案】(1)a≥0;(2)0<a<1【详解】(1)由题得f x =2ax+1-1x,因为f x 在1,+∞上单调递增,所以f x =2ax+1-1x≥0在1,+∞上恒成立,即2a≥1x2-1x在1,+∞上恒成立,因为1x2-1x=1x-122-14≤0,所以a≥0.(2)因为g x =ax-sin x,则g x =a-cos x,注意到:g0 =0,g 0 =a-1,若a≥1,则g x =a-cos x≥0,所以g x 在0,π上单调递增,所以g x >g0 =0,g x 在0,π上不存在零点,若a≤-1,则g x =a-cos x≤0,所以g x 在0,π上单调递减,所以g x <g0 =0,g x 在0,π上不存在零点,若-1≤a≤0,显然g x =ax-sin x<0,在0,π上不存在零点,若0<a<1,显然存在t∈0,π,使得g t =0,且g x 在0,π上单调递增,注意到:g 0 =a-1<0,g π =a+1>0,所以g x 在0,t上小于零,在t,π上大于零,所以g x 在0,t上单调递减,在t,π上单调递增,注意到:g0 =0,g t <0,且gπ >0,所以存在唯一β∈t,π使得gβ =0,综上,所以0<a<1.11已知函数f x =ln x+sin x.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.【答案】(1)sin1;(2)f x 有1个零点,证明见解析【详解】(1)f(x)=ln x+sin x的定义域为0,+∞,故f (x)=1x+cos x,令g x =f (x)=1x+cos x,g x =-1 x2-sin x,当x∈1,e时,g x =-1x2-sin x<0,所以g x 在1,e上单调递减,且g1 =1+cos1>0,g e =1e +cos e<1e+cos2π3=1e-12<0,所以由零点存在定理可知,在区间[1,e]存在唯一的a,使g a =f a =0,又当x∈1,a时,g x =f x >0;当x∈a,e时,g x =f x <0;所以f x 在x∈1,a上单调递增,在x∈a,e上单调递减,又因为f1 =ln1+sin1=sin1,f e =ln e+sin e=1+sin e >f1 ,所以函数f(x)在区间[1,e]上的最小值为f1 =sin1.(2)f x 有1个零点,证明如下:因为f(x)=ln x+sin x,x∈0,+∞,若0<x≤1,f (x)=1x+cos x>0,所以f(x)在区间0,1上单调递增,又f1 =sin1>0,f1e=-1+sin1e<0,结合零点存在定理可知,。

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)之马矢奏春创作1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx+φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎪⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎪⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎪⎫|φ|<π2的一条对称轴为x =π12,则φ=________. 答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x≤π3,得0≤ωx≤ωπ3<π3,则f(x)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎪⎪⎫12,32,求f(θ)的值; (2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y≥1,x≤1,y≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎪⎫θ+π6,∴当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义,一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx+φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝ ⎛⎭⎪⎫0,π2,所以sin α=1-cos2α=7210,sin β=1-cos2β=55,因此tan α=7,tan β=12.(1) tan (α+β)=tanα+tanβ1-tanαtanβ=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎪⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2函数f(x)=Asin (ωx+φ)(A、ω、φ是常数,A>0,ω>0)的部分图象如图所示.(1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎢⎡⎦⎥⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵T 4=7π12-π3=π4,∴ω=2.又2×7π12+φ=2k π+3π2, ∴φ=2k π+π3(k∈Z ),∴ f(0)=2sin ⎝⎛⎭⎪⎫2kπ+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎪⎫2x +π3.因为0≤x≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx+φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx+Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,而且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A2+B2sin (ωx+φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k∈Z ),即φ=2k π+π6(k∈Z ),所以f(x)=2sin ⎝ ⎛⎭⎪⎫πx+2kπ+π6=2sin ⎝⎛⎭⎪⎫πx+π6(k∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎪⎫πx+π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k∈Z ),解得x =k +13(k∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k∈Z ,知k =5,由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f(x)的对称轴,其方程为x =163.题型三 三角函数的性质与图象的移动问题例3把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x∈⎝⎛⎭⎪⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x +2=2cos ⎝⎛⎭⎪⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎢⎡⎦⎥⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称, 所以2⎝ ⎛⎭⎪⎫17π8+m +π4=k π,即m =(2k -9)4π(k∈Z ).因为m>0,所以m 的最小值为π4.(2) 证明:因为x∈⎝⎛⎭⎪⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝ ⎛⎭⎪⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝ ⎛⎭⎪⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x1)-f (x2)x1-x2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎪⎫2x +π4=-22.因为x∈(0,π),所以2x +π4∈⎝ ⎛⎭⎪⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎪⎨⎪⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝⎛⎭⎪⎫2x +π3+1,g(x)=0sin ⎝ ⎛⎭⎪⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝ ⎛⎭⎪⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎢⎢⎡⎦⎥⎥⎤32sin (ωx+φ)-12cos (ωx+φ)=2sin ⎝ ⎛⎭⎪⎫ωx+φ-π6.因为f(x)为偶函数,所以对x∈R ,f(-x)=f(x)恒成立,因此sin ⎝ ⎛⎭⎪⎫-ωx+φ-π6=sin ⎝⎛⎭⎪⎫ωx+φ-π6,即-sin ωxcos ⎝ ⎛⎭⎪⎫φ-π6+cos ωxsin ⎝⎛⎭⎪⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎪⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎪⎫φ-π6=0.因为ω>0,且x∈R ,所以cos ⎝⎛⎭⎪⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎪⎫ωx+π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图象,所以g(x)=f ⎝ ⎛⎭⎪⎫x -π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=2cos ⎝⎛⎭⎪⎫2x -π3.当2k π≤2x -π3≤2k π+π(k∈Z ),即k π+π6≤x ≤k π+2π3(k∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3(k∈Z ).题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称,且t∈(0,π),求t 的值;(3) 当x∈⎣⎢⎡⎦⎥⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝ ⎛⎭⎪⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎪⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝ ⎛⎭⎪⎫2x +2t -π3.令2×⎝ ⎛⎭⎪⎫-π6+2t -π3=k π(k∈Z ),又t∈(0,π),故t =π3或5π6.(3) 当x∈⎣⎢⎡⎦⎥⎤π4,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,∴ f (x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3,∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝ ⎛⎭⎪⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴φ=π3,∴ f(x)=3sin ⎝⎛⎭⎪⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴函数f(x)的单调递减区间为⎣⎢⎡⎦⎥⎤π12+kπ,7π12+kπ,k ∈Z.(3) 由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.∵ x ∈⎣⎢⎡⎦⎥⎤-π3,π6,∴ 2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.∴m -16∈⎣⎢⎢⎡⎦⎥⎥⎤-32,1,∴ m ∈[1-33,7). 1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a,则实数a 的取值范围是________.答案:a≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎪⎫3x +π6,|f(x)|≤2,所以a≥2.2. (2013·天津卷)函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx+φ)(A、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,函数f(x)的对称中心为⎝ ⎛⎭⎪⎫π3,0,函数f(x)的对称轴为直线x=12⎝ ⎛⎭⎪⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T≥2π3,所以7π12-π3=T4,解得T =π.5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22. 所以f(α)=22⎝ ⎛⎭⎪⎪⎫22+22-12=12. (2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-3π8,kπ+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎪⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎪⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤kπ+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-3π8,kπ+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝ ⎛⎭⎪⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝ ⎛⎭⎪⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22.(2) 因为f(α)=22,所以sin ⎝⎛⎭⎪⎫4α+π4=1.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以4α+π4∈⎝⎛⎭⎪⎫9π4,17π4, 所以4α+π4=5π2,故α=9π16.(本题模拟高考评分尺度,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎢⎡⎦⎥⎤0,π2,求t 的取值范围,并把f(x)暗示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎪⎫x +π4.∵ x ∈⎣⎢⎡⎦⎥⎤0,π2,∴ x +π4∈⎣⎢⎡⎦⎥⎤π4,3π4,∴22≤sin ⎝⎛⎭⎪⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分) (另解:∵ x∈⎣⎢⎡⎦⎥⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t2-12,(5分)∴ m(t)=a·t2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:①当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2;(10分)②当1a ≥1+22,即0<a≤2(2-1)时,G(A)=m(1)=-2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t∈(1,+∞),y =2t41-t2,y ′(t)=-4t3(t +2)(t -2)(1-t2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝ ⎛⎭⎪⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝ ⎛⎭⎪⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝ ⎛⎭⎪⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝ ⎛⎭⎪⎫2π3+A =1+cos2A 2+1+cos2⎝ ⎛⎭⎪⎫2π3+A 2=1+cos2A 2+12⎝ ⎛⎭⎪⎫cos 4π3cos2A -sin4π3sin2A =1+12⎝ ⎛⎭⎪⎪⎫12cos2A +32sin2A =1+12cos ⎝ ⎛⎭⎪⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴-1≤cos ⎝⎛⎭⎪⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝ ⎛⎭⎪⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x 2+4t 3+t 2-3t +4,x∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x 2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3=(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3.(2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1. 列表如下:由此可见,g(t)在区间⎝⎭⎪-1,-2和⎝ ⎭⎪2,1上单调增,在区间⎝ ⎛⎭⎪⎫-12,12上单调减,极小值为g ⎝ ⎛⎭⎪⎫12=2,极大值为g ⎝ ⎛⎭⎪⎫-12=4.。

2023年新高考数学临考题号押题第7题 三角函数(新高考)(解析版)

2023年新高考数学临考题号押题第7题 三角函数(新高考)(解析版)

押新高考卷7题三角函数考点3年考题考情分析三角函数2022年新高考Ⅰ卷第6题2022年新高考Ⅱ卷第6题2021年新高考Ⅰ卷第4、6题三角函数会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度较易或一般,纵观近几年的新高考试题,分别考查三角函数的图象与性质,三角恒等变换,也是高考冲刺的重点复习内容。

可以预测2023年新高考命题方向将继续以三角函数的图象与性质,三角恒等变换等问题展开命题.1.特殊角的三角函数值2.同角三角函数的基本关系平方关系:1cos sin 22=+αα商数关系:αααcos sin tan =3.正弦的和差公式()βαβαβαsin cos cos sin sin +=+,()βαβαβαsin cos cos sin sin -=-4.余弦的和差公式()βαβαβαsin sin cos cos cos -=+,()βαβαβαsin sin cos cos cos +=-5.正切的和差公式()βαβαβαtan tan 1tan tan tan -+=+,()βαβαβαtan tan 1tan tan tan +-=-6.正弦的倍角公式⇒=αααcos sin 22sin ααα2sin 21cos sin =7.余弦的倍角公式()()αααααααsin cos sin cos sin cos 2cos 22-+=-=升幂公式:αα2sin 212cos -=,1cos 22cos 2-=αα降幂公式:22cos 1sin 2αα-=,22cos 1cos 2αα+=8.正切的倍角公式ααα2tan 1tan 22tan -=9.推导公式2)cos (sin )cos (sin 22=-++αααα10.辅助角公式x b x a y cos sin +=,)0(>a )sin(22ϕ++=⇒x b a y ,其中a b =ϕtan ,)2,2(ππϕ-∈1.(2022·新高考Ⅰ卷高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .3【答案】A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.解:令2t x ϕ=+,因为1x ,2x ,33π0,2x ⎛⎫∈ ⎪⎝⎭,所以1t ,2t ,()3,3πt ϕϕ∈+,π2ϕ<,因为()()()1230f x f x f x ==>,结合sin y t =的图象(如图所示),得到12πt t +=,233πt t +=或123πt t +=,23t t +=因为()3221124x x x x x -=-=,所以213x x =,317x x =,则1182π2023πx x ϕϕ+=⎧⎨+=⎩解得π6ϕ=-,此时1π6x =,2x 或11823π2025πx x ϕϕ+=⎧⎨+=⎩解得5π6ϕ=,不符合题意舍去.A .49.25m C .56.74m 【答案】B【分析】根据三角函数可得3AB R =【详解】如图,。

人教版高中数学高考三角函数重点题型解析及常见试题、答案及参考答案

人教版高中数学高考三角函数重点题型解析及常见试题、答案及参考答案

高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令s i n c s2s i n (4t x x π=++而74412x πππ<+≤,得1t <≤ 又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D .点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =+,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .例 4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是 分析:分段去绝对值后,结合选择支分析判断. 解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支和一些特殊点,选择答案D .点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.例 5 (2008高考山东卷理5)已知πc o s s i n 36αα⎛⎫-+= ⎪⎝⎭,则7πs i n 6α⎛⎫+ ⎪⎝⎭的值是A. BC .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.ABCD34cos sin sin cos sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+=⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数 学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=其中sin ϕϕ==即1t a n 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以s c 2t a 2c 2k πϕπαππϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩是一致的.方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin 55αα=-=-B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距置B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin 26θ=,090θ<<)且与点A相距C . (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,AB =AC =,,sin BAC θθ∠== 由于090θ<<,所以cos θ==由余弦定理得BC ==所以船的行驶速度为23=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有,11402x y AB ===,2cos )30x AC CAD θ=∠=-=,2sin )20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l的距离7d ==<,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅222=10.从而sin 10ABC ∠=== 在ABQ ∆中,由正弦定理得,sin 40sin(45)AB ABC AQ ABC ∠===-∠. 由于5540A E A Q =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=.过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,sin sin sin(45)157.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=<所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错.题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x x x ωωω==,(0>ω),令x f ⋅=)(,且)(x f 的周期为π. (1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可.解析:(1)xx x b a x f ωωω2cos sin cos 2)(+=⋅=xx ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥. (1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3s i n,c os a αα=,()2sin ,5sin 4cos b ααα=-,故226sin5sin cos 4cos 0a b αααα⋅=+-=,由于c o s α≠,∴26tan 5tan 40αα+-=,解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<,故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα==,cos 23απ⎛⎫+= ⎪⎝⎭ππcoscos sin sin 2323αα-=12=点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型. 例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围.分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )226A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 262A A C π∴<+≤∴<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程.解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2O M a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333P G O GO P a b m a m ab=-=+-=-+,111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值.例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立. 解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为m a x tan(2)6y π=⨯t ≥为所求. 点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()s i n 2s 21s i n (2)fxt xt x ϕ=+++的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤. (1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求. 解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为 12c o s 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12c o s 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥.(3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩, 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩ 利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用.【专题训练与高考预测】 一、选择题1.若[0,2)απ∈sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππC .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

全国高考数学“三角函数”试题分析报告小结

全国高考数学“三角函数”试题分析报告小结

全国高考数学“三角函数”试题分析小结一、客观题重基础,有关三角函数的小题其考查重点是三角函数的概念、图象与图象变换、定义域与值域、三角函数的性质和三角函数的化简与求值.【例1】 (2007年四川)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 ① ④ ((写出所有真命题的编号))解答:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.【点评】 本题通过五个小题全面考查三角函数的有关概念、图象、性质的基础知识. 三角函数的概念,在今年的高考中,主要是以选择、填空的形式出现,每套试卷都有不同程度的考查.预计在2008年高考中,三角函数的定义与三角变换仍将是高考命题的热点之一.【例2】(2007年安徽)函数π()3sin(2)3f x x =-的图象为C :① 图象C 关于直线π1211=x 对称; ② ②函数)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中正确论断的个数为 (A )0 (B )1(C )2(D )3解答 C ①图象C 关于直线232x k πππ-=+对称,当k =1时,图象C 关于π1211=x 对称;①正确;②x ∈)12π5,12π(-时,23x π-∈(-2π,2π),∴ 函数)(x f 在区间)12π5,12π(-内是增函数;②正确;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到23sin(2)3y x π=-,得不到图象,③错误;∴ 正确的结论有2个,选C. 【点评】 本题主要考查了三角函数的图象和性质及三角函数图象的平移变换.二、解答题重技能.三角函数解答题是高考命题的常考常新的基础性题型,其命题热点是章节内部的三角函数求值问题;命题的亮点是跨章节的学科综合命题. 【例3】 (2007年安徽)已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且a ·b m =.求22cos sin 2()cos sin ααβαα++-的值.解答:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭ab ··.故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.【点评】 本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.属于三角函数求值问题.本类问题一般有三种形式:①给式求值,②给值求值,③给值求角.其一般解法是:将角化为特殊角或将三角函数化为同角、同名函数进行合并与化简,最后求出三角函数的值来.【例4】 (2007年天津)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.解答:(Ⅰ)解:π()2cos (sin cos )1sin 2cos 22sin 24f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()2sin 24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π28f ⎛⎫= ⎪⎝⎭,3π3πππ2sin 2cos 14244f ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为1-. 解法二:作函数π()2sin 24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为3π14f ⎛⎫=- ⎪⎝⎭.【点评】 本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.三、考应用融入三角形之中.解三角形题目既考查三角形的知识与方法,又考查运用三角公式进行恒等变换的技能. 【例5】 (2007年四川)如图,l 1、l 2、l 3是同一平面内的 三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长 是 ( )(A )32 (B )364(C )4173 (D )3212解答:D 因为l 1、l 2、l 3是同一平面内的三条平行直线, l 1与l 2间的距离是1,l 2与l 3间的距离是2,所以过A 作 l 2的垂线,交l 2、l 3分别于点D 、E ,如图,则∠BAD = ∠BAC +∠CAE ,即∠BAD =60°+∠CAE ,记正三角形ABC 的边长为a ,两边取余弦得:CAE CAE asin 60sin cos 60cos 1︒-︒=, 即aa a a 223233211-⨯-⨯= 整理得3212,,1)9(32==-a a 解之得,故选D. 【点评】 本题以平面几何为平台,主要考查运用三角函数的相关知识解决实际问题的能力.本题意图与新课标接轨,需引起高三备考学生的密切关注.【例6】 (2007年全国Ⅰ)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;yxO22-π83π8 5π8 3π47π89π8(Ⅱ)求cos sin A C +的取值范围.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭13cos cos sin 22A A A =++3sin 3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<, 所以13sin 232A π⎛⎫+< ⎪⎝⎭.由此有333sin 3232A π⎛⎫<+<⨯ ⎪⎝⎭,所以,cos sin A C +的取值范围为3322⎛⎫ ⎪ ⎪⎝⎭,. 【点评】 (1)问考查正弦定理的简单应用,当属容易题,(2)问主要考查了三角函数两角和与差的正余弦公式应用,但题干中△ABC 为锐角三角形是不可忽略的条件,必须在分析题目时引起足够的重视.四、综合体现三角函数的工具性作用.虽然工具性作用有所减弱,但是对它的考查还会存在.这是由于近年高考出题突出以能力立意,加强了对知识的应用性地考查经常在知识的交汇点处出题. 【例7】 如图,甲船以每小时302海里的速度向正北方航行, 乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于 甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船 航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向 的2B 处,此时两船相距102海里,问乙船每小时航行多少海里? 解法一:如图,连结11A B ,由已知22102A B =,122030210260A A =⨯=,北B 2A1201221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1212102A B A A ∴==,由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22220(102)2201022=+-⨯⨯⨯200=.12102B B ∴=.因此,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里.解法二:如图,连结21A B ,由已知1220A B =,122030210260A A =⨯=,112105B A A =∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=- 2(13)4-=, sin105sin(4560)=+sin 45cos60cos 45sin 60=+ 2(13)4+=. 在211A A B △中,由余弦定理,北1B2B 1A2A120 105 乙甲22221221211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯100(423)=+.1110(13)A B ∴=+.由正弦定理1112111222202(13)2sin sin 4210(13)A B A A B B A A A B +===+∠∠, 12145A A B ∴=∠,即121604515B A B =-=∠,2(13)cos15sin1054+==.在112B A B △中,由已知12102A B =,由余弦定理,22212112221222cos15B B A B A B A B A B =++2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=.12102B B ∴=,乙船的速度的大小为1026030220⨯=海里/小时. 答:乙船每小时航行302海里.【点评】 本题是解斜三角形的应用题,考查了正、余弦定理的应用,等边三角形的判定.求解本类问题时应按照由易到难的顺序来求解,最重要的是首先要对图形进行有效分割,便于运用正、余弦定理.由于近年高考题突出以能力立意,加强对知识和应用性的考查,故常常在知识的交汇点处出题.用三角函数作工具解答应用性问题虽然是高考命题的一个冷点,但在备考时也需要我们去关注.【例8】 已知函数2222()2()21tf x x t x x x t =-++++,1()()2g x f x = (I )证明:当22t <时,()g x 在R 上是增函数; (II )对于给定的闭区间[]a b ,,试说明存在实数k ,当t k >时,()g x 在闭区间[]a b ,上是减函数;(III )证明:3()2f x ≥解答:(Ⅰ)证明:由题设得.12)(,)1()(22+-='++-=x x x xte e x g x e t ex g又由x x e e -+2≥22,且t <22得t <x x e e -+2,即12)(2+-='x x te e x g >0由此可知,)(x g 为R 上的增函数(Ⅱ)证法一:因为)(x g '<0是)(x g 为减函数的充分条件,所以只要找到实数k ,使得12)(2+-='x x te e x g <0,即t >x x e e -+2在闭区间[a ,b ]上成立即可因此y =x x e e -+2在闭区间[a ,b ]上连续,故在闭区[a ,b ]上有最大值,设其为k ,t >k 时, )(x g '<0在闭区间[a ,b ]上恒成立,即)(x g 在闭区间[a ,b ]上为减函数证法二:因为)(x g '<0是)(x g 为减函数的充分条件,所以只要找到实数k ,使得t >k 时12)(2+-='x x te e x g <0,在闭区间[a ,b ]上成立即可令,xe m =则)(x g '<0(],[b a x ∈)当且仅当122+-tm m <0(],[b a e e m ∈)而上式成立只需⎩⎨⎧+-+-,012,01222 b b a a te e te e 即⎩⎨⎧++--bb aa ee t e e t 22 成立 取a a e e -+2与b b e e -+2中较大者记为k ,易知当t >k 时,)(x g '<0在闭区[a ,b ]成立,即)(x g 在闭区间[a ,b ]上为减函数(Ⅲ)证法一:设即,1)(22)(222++++-=x et x e t t F xx,1)(21)2(2)(22+-++-=x e x e t t F xx 易得)(t F ≥1)(212+-x e x令,)(x e x H x -=则,)(x e x H x-='易知0)0(='H 当x >0时, )(x H '>0;当x <0,)(x H ' <0故当x =0时,)(x H 取最小值,1)0(=H 所以1)(212+-x e x ≥23, 于是对任意x 、t ,有)(t F ≥23,即)(x f ≥23证法二:设)(t F =,1)(22222++++-x et x e t xx)(t F ≥23,当且仅当 21)(22222-+++-x e t x e t x x ≥0 只需证明)21(42)(4222--⨯-+x e x e x x ≤0,即2)(x e x -≥1以下同证法一证法三:设)(t F =1)(22222++++-x et x e t xx ,则).(24)(x e t t F x +-='易得.0)2(=+'x e F x 当t >2x e x +时, )(t F '>0; t <2x e x +时, )(t F '<0,故当t =2xe )(t F 取最小值.1)(212+-x e x即 )(t F ≥.1)(212+-x e x以下同证法一证法四: )(x f 1)()(22+-+-=t x t e x设点A 、B 的坐标分别为),(),(t t 、e x x,易知点B 在直线y =x 上,令点A 到直线y =离为d ,则 )(x f 1||2+=AB ≥.1)(21122+-=+x e d x以下同证法一【点评】 本题是辽宁卷的压轴题,在三角函数,导数,最值,不等式恒成立的有关问题的交汇处命题,真正体现了从整体的高度和思维价值的高度上设计试题的宗旨,注重了学科的内在联系和知识的综合性.。

6-三角函数-五年(2018-2022)高考数学真题按知识点分类汇编

6-三角函数-五年(2018-2022)高考数学真题按知识点分类汇编

五年2018-2022高考数学真题按知识点分类汇编6-三角函数(含解析)一、单选题1.(2022·天津·统考高考真题)已知1()sin 22f x x =,关于该函数有下列四个说法:①()f x 的最小正周期为2π;②()f x 在ππ[,]44-上单调递增;③当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,()f x 的取值范围为33,44⎡⎤-⎢⎥⎣⎦; ④()f x 的图象可由1πg()sin(2)24x x =+的图象向左平移π8个单位长度得到.以上四个说法中,正确的个数为( ) A .1B .2C .3D .42.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .3.(2022·浙江·统考高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.(2022·北京·统考高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增5.(2022·北京·统考高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( ) A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.(2022·全国·统考高考真题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦7.(2022·浙江·统考高考真题)为了得到函数2sin3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度 D .向右平移π15个单位长度 8.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x x y x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 9.(2022·全国·统考高考真题)将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .1210.(2022·全国·统考高考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:22CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A 1133-B 1143-C 933-D 943-11.(2022·全国·统考高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1 B .32C .52 D .312.(2021·北京·统考高考真题)函数()cos cos2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为9813.(2021·全国·统考高考真题)22π5πcoscos 1212-=( ) A .12B 3C 22D 314.(2021·全国·统考高考真题)把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( ) A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭15.(2021·全国·高考真题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A 15B 5C 5D 1516.(2021·全国·统考高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+17.(2021·全国·统考高考真题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A .3π和2B .3π和2C .6π和2D .6π和218.(2021·全国·统考高考真题)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨19.(2020·山东·统考高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角20.(2020·山东·统考高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥21.(2020·天津·统考高考真题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③22.(2020·北京·统考高考真题)2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭23.(2020·全国·统考高考真题)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( ) A .53B .23C .13D .5924.(2020·全国·统考高考真题)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π225.(2020·全国·统考高考真题)若α为第四象限角,则( ) A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<026.(2019·全国·高考真题)若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .1227.(2019·全国·高考真题)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A .f (x )=│cos 2x │ B .f (x )=│sin 2x │ C .f (x )=cos│x │D .f (x )= sin│x │28.(2019·北京·高考真题)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β29.(2019·天津·高考真题)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭A .2-B .2-C .2D .230.(2019·全国·高考真题)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .31.(2019·全国·高考真题)关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③32.(2019·全国·统考高考真题)设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是 A .①④B .②③C .①②③D .①③④33.(2018·全国·高考真题)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π34.(2018·天津·高考真题)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 35.(2018·北京·高考真题)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH36.(2018·全国·高考真题)函数()2tan 1tan xf x x=+的最小正周期为A .4π B .2π C .πD .2π37.(2018·全国·高考真题)已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为438.(2018·全国·高考真题)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -= A .15B 5C 25D .139.(2018·天津·高考真题)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减二、多选题40.(2022·全国·统考高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线32y x =-是曲线()y f x =的切线 41.(2020·海南·高考真题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -三、填空题42.(2022·全国·统考高考真题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()f T =9x π=为()f x 的零点,则ω的最小值为____________.43.(2022·浙江·统考高考真题)若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos 2β=_________.44.(2021·北京·统考高考真题)若点(cos ,sin )A θθ关于y 轴对称点为(cos(),sin())66B ππθθ++,写出θ的一个取值为___.45.(2021·全国·高考真题)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.46.(2021·全国·统考高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.47.(2020·山东·统考高考真题)已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .48.(2020·浙江·统考高考真题)已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.49.(2020·海南·高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.50.(2020·江苏·统考高考真题)将函数y =π3sin 24x ⎛⎫+ ⎪⎝⎭的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 51.(2020·全国·统考高考真题)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 52.(2019·全国·高考真题)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 53.(2019·江苏·高考真题)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____. 54.(2019·北京·高考真题)函数f (x )=sin 22x 的最小正周期是__________. 55.(2018·江苏·高考真题)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.56.(2018·北京·高考真题)设函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则ω的最小值为__________.57.(2018·全国·高考真题)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.58.(2018·全国·高考真题)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.四、解答题59.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+60.(2021·浙江·统考高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.61.(2020·山东·统考高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪在一个周期内的图象时,列表如下:x6π-12π3π 712π56πx ωϕ+0 2ππ32π2πsin()A x ωϕ+3-3根据表中数据,求: (1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.62.(2020·浙江·统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.63.(2020·全国·统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若3b c -=,证明:△ABC 是直角三角形. 64.(2019·天津·高考真题) 在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.65.(2019·浙江·高考真题)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++ 的值域. 66.(2018·浙江·高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值.67.(2018·北京·高考真题)已知函数()2sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.参考答案:1.A【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假. 【详解】因为1()sin 22f x x =,所以()f x 的最小正周期为2ππ2T ==,①不正确;令ππ2,22t x ⎡⎤=∈-⎢⎥⎣⎦,而1sin 2y t =在ππ,22⎡⎤-⎢⎥⎣⎦上递增,所以()f x 在ππ[,]44-上单调递增,②正确;因为π2π2,33t x ⎡⎤=∈-⎢⎥⎣⎦,3sin t ⎡⎤∈⎢⎥⎣⎦,所以()312f x ⎡⎤∈⎢⎥⎣⎦,③不正确; 由于1π1πg()sin(2)sin 22428x x x ⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的图象可由1πg()sin(2)24x x =+的图象向右平移π8个单位长度得到,④不正确. 故选:A . 2.A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 3.A【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.4.C【分析】化简得出()cos2f x x =,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为()22cos sin cos2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错; 对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错; 对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对; 对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错. 故选:C. 5.D【分析】依题意建立平面直角坐标系,设()cos ,sin P θθ,表示出PA ,PB ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动, 设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=--,()cos ,4sin PB θθ=--, 所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯-22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈-; 故选:D6.C【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭, 要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦. 故选:C . 7.D【分析】根据三角函数图象的变换法则即可求出.【详解】因为ππ2sin32sin 3155y x x ⎡⎤⎛⎫==-+ ⎪⎢⎥⎝⎭⎣⎦,所以把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上的所有点向右平移π15个单位长度即可得到函数2sin3y x =的图象. 故选:D.8.A【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A. 9.C【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0ω>,故当0k =时,ω的最小值为13.故选:C. 10.B【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案. 【详解】解:如图,连接OC , 因为C 是AB 的中点, 所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线, 即2OD OA OB ===, 又60AOB ∠=︒, 所以2AB OA OB ===,则OC =2CD =所以(22222CD s AB OA=+=+=故选:B .11.A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A 12.D【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,()()()()cos cos 2cos cos2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98. 故选:D. 13.D【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解.【详解】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D. 14.B【分析】解法一:从函数()y f x =的图象出发,按照已知的变换顺序,逐次变换,得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,即得2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x =的解析表达式;解法二:从函数sin 4y x π⎛⎫=- ⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x =的解析表达式.【详解】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=- ⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=- ⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+ ⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=- ⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+ ⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B. 15.A【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,215cos 1sin αα∴=-=sin 15tan cos ααα∴==. 故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.16.C【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 244sin y x x=+≥,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,242222442x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出. 17.C【分析】利用辅助角公式化简()f x ,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,22()sin cos 223s 33334x x x x f x x π=+=⎛+⎫⎪⎝⎭,所以()f x 的最小正周期为2613T故选:C . 18.A【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题; 所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题. 故选:A . 19.D【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D. 20.D【分析】本题可通过43>、12<、45、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确, 故选:D. 21.B【分析】对所给选项结合正弦型函数的性质逐一判断即可.【详解】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确; 51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象,故③正确. 故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.22.A【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似值可得出结果.【详解】单位圆内接正6n 边形的每条边所对应的圆心角为360606n n ︒︒=⨯,每条边长为 302sin n︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题. 23.A【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又25(0,),sin 1cos απαα∈∴=-=故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题. 24.C【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 25.D【分析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力. 26.A【分析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题. 27.A【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos 2y x =图象,由图象知,其周期为2π,在区间(,)42ππ单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间(,)42ππ单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数; 28.B【分析】由题意首先确定面积最大时点P 的位置,然后结合扇形面积公式和三角形面积公式可得最大的面积值.【详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选B .【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示. 29.C【解析】只需根据函数性质逐步得出,,A ωϕ值即可.【详解】因为()f x 为奇函数,∴(0)sin 0=,0,f A k k ϕϕπ==∴=,0ϕ=; 又12()sin ,2,122g x A x T πωπω=∴== 2ω=,2A =,又()24g π=∴()2sin 2f x x =,3() 2.8f π= 故选C .【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数()g x . 30.D【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题. 31.C【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,f x 的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .32.D【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案. 【详解】当[0,2]xπ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案,当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦,若f (x )在0,10π⎛⎫⎪⎝⎭单调递增,则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D .【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题. 33.A【详解】因为π()cos sin )4=-=+f x x x x ,所以由π02ππ2π,(k Z)4+≤+≤+∈k x k 得π3π2π2π,(k Z)44-+≤≤+∈k x k 因此π3ππ3ππ[,][,],,044444a a a a a a a -⊆-∴-<-≥-≤∴<≤,从而a 的最大值为π4,故选:A. 34.A【分析】由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 【详解】由函数图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令1k =可得一个单调递增区间为:35,44ππ⎡⎤⎢⎥⎣⎦.函数的单调递减区间满足:()322222k x k k Z ππππ+≤≤+∈, 即()344k x k k Z ππππ+≤≤+∈, 令1k =可得一个单调递减区间为:57,44ππ⎡⎤⎢⎥⎣⎦,本题选择A 选项. 【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力. 35.C【详解】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时,cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时,cos ,sin x y αα==,tan y xα=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时,cos ,sin x y αα==,tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限,tan 0,sin 0,cos 0ααα><<,故D 选项错误. 综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较.36.C【详解】分析:将函数()2f 1tanxtan xx =+进行化简即可详解:由已知得()221f sin2,1221()sinxtanx cosx sinxcosx x x k k Z sinx tan x c x osxππ⎛⎫====≠+∈ ⎪+⎝⎭+ ()f x 的最小正周期2T π2π== 故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题 37.B【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为()35cos222f x x =+,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 【详解】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B. 【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 38.B【分析】首先根据两点都在角的终边上,得到2b a =,利用2cos23α=,利用倍角公式以及余弦函数的定义式,求得215a =,从而得到a =,再结合2b a =,从而得到2a b a a -=-=,从而确定选项. 【详解】由,,O A B 三点共线,从而得到2b a =, 因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即a =,所以2a b a a -=-=B. 【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 39.A【详解】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数25y sin x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k Z ππππ+≤≤+∈, 即()344k x k k Z ππππ+≤≤+∈, 令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;本题选择A 选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力. 40.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z , 又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭, 解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z , 从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x =--即y x =-. 故选:AD . 41.BC【分析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果. 【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 不妨令2ω=,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 42.3【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<)。

全国高考数学“三角函数”试题分析小结

全国高考数学“三角函数”试题分析小结

全国高考数学“三角函数”试题分析小结一、客观题重基础,有关三角函数的小题其考查重点是三角函数的概念、图象与图象变换、定义域与值域、三角函数的性质和三角函数的化简与求值.【例1】 (2007年四川)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是①④((写出所有真命题的编号))解答:①4422sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④.【点评】 本题通过五个小题全面考查三角函数的有关概念、图象、性质的基础知识. 三角函数的概念,在今年的高考中,主要是以选择、填空的形式出现,每套试卷都有不同程度的考查.预计在2008年高考中,三角函数的定义与三角变换仍将是高考命题的热点之一.【例2】(2007年安徽)函数π()3sin(2)3f x x =-的图象为C :① 图象C 关于直线π1211=x 对称; ② ②函数)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中正确论断的个数为 (A )0 (B )1(C )2(D )3解答 C ①图象C 关于直线232x k πππ-=+对称,当k =1时,图象C 关于π1211=x 对称;①正确;②x ∈)12π5,12π(-时,23x π-∈(-2π,2π),∴函数)(x f 在区间)12π5,12π(-内是增函数;②正确;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到23sin(2)3y x π=-,得不到图象,③错误;∴正确的结论有2个,选C.【点评】 本题主要考查了三角函数的图象和性质及三角函数图象的平移变换.二、解答题重技能.三角函数解答题是高考命题的常考常新的基础性题型,其命题热点是章节内部的三角函数求值问题;命题的亮点是跨章节的学科综合命题. 【例3】 (2007年安徽)已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且a ·b m =.求22cos sin 2()cos sin ααβαα++-的值.解答:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭ab ··.故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.【点评】 本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.属于三角函数求值问题.本类问题一般有三种形式:①给式求值,②给值求值,③给值求角.其一般解法是:将角化为特殊角或将三角函数化为同角、同名函数进行合并与化简,最后求出三角函数的值来.【例4】 (2007年天津)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.解答:(Ⅰ)解:π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,2,最小值为3π14f ⎛⎫=- ⎪⎝⎭.【点评】 本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.三、考应用融入三角形之中.解三角形题目既考查三角形的知识与方法,又考查运用三角公式进行恒等变换的技能. 【例5】 (2007年四川)如图,l 1、l 2、l 3是同一平面内的 三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长 是 ( )(A )32(B )364 (C )4173 (D )3212 解答:D 因为l 1、l 2、l 3是同一平面内的三条平行直线, l 1与l 2间的距离是1,l 2与l 3间的距离是2,所以过A 作 l 2的垂线,交l 2、l 3分别于点D 、E ,如图,则∠BAD = ∠BAC +∠CAE ,即∠BAD =60°+∠CAE ,记正三角形ABC 的边长为a ,两边取余弦得:CAE CAE asin 60sin cos 60cos 1︒-︒=, 即aa a a 223233211-⨯-⨯= 整理得3212,,1)9(32==-a a 解之得,故选D. 【点评】 本题以平面几何为平台,主要考查运用三角函数的相关知识解决实际问题的能力.本题意图与新课标接轨,需引起高三备考学生的密切关注.【例6】 (2007年全国Ⅰ)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.y xO(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭13cos cos 2A A A =++33A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=.2336A πππ<+<, 所以13sin 232A π⎛⎫+< ⎪⎝⎭.由此有3333232A π⎛⎫<+< ⎪⎝⎭,所以,cos sin A C +的取值范围为332⎫⎪⎪⎝⎭,. 【点评】 (1)问考查正弦定理的简单应用,当属容易题,(2)问主要考查了三角函数两角和与差的正余弦公式应用,但题干中△ABC 为锐角三角形是不可忽略的条件,必须在分析题目时引起足够的重视.四、综合体现三角函数的工具性作用.虽然工具性作用有所减弱,但是对它的考查还会存在.这是由于近年高考出题突出以能力立意,加强了对知识的应用性地考查经常在知识的交汇点处出题. 【例7】 如图,甲船以每小时302 乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于 甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船 航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向 的2B 处,此时两船相距2 解法一:如图,连结11A B ,由已知22102A B =,122060A A == 1221A A AB ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1212A B A A ∴==由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22202202=+-⨯⨯ 200=.12B B ∴=因此,乙船的速度的大小为6020=/小时).答:乙船每小时航行解法二:如图,连结21A B ,由已知1220A B =,122060A A ==112105B A A =∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=-=sin105sin(4560)=+sin 45cos60cos 45sin 60=+=乙在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-2220220=+-⨯100(4=+.1110(1A B ∴=.由正弦定理11121112222(13)2sin sin 210(13)A B A A B B A A A B +===+∠∠, 12145A A B ∴=∠,即121604515B A B =-=∠,2(1cos15sin105+==.在112B A B △中,由已知12A B =22212112221222cos15B B A BA B A B AB =++22210(1210(1=+-⨯+⨯200=.12B B ∴=60=/小时. 答:乙船每小时航行【点评】 本题是解斜三角形的应用题,考查了正、余弦定理的应用,等边三角形的判定.求解本类问题时应按照由易到难的顺序来求解,最重要的是首先要对图形进行有效分割,便于运用正、余弦定理.由于近年高考题突出以能力立意,加强对知识和应用性的考查,故常常在知识的交汇点处出题.用三角函数作工具解答应用性问题虽然是高考命题的一个冷点,但在备考时也需要我们去关注.【例8】 已知函数2222()2()21tf x x t x x x t =-++++,1()()2g x f x =(I )证明:当时,在上是增函数;(II )对于给定的闭区间,试说明存在实数,当时,在闭区间上是减函数; (III )证明:解答:(Ⅰ)证明:由题设得又由≥,且t<得t<,即>0由此可知,为R上的增函数(Ⅱ)证法一:因为<0是为减函数的充分条件,所以只要找到实数k,使得<0,即t>在闭区间[a,b]上成立即可因此y=在闭区间[a,b]上连续,故在闭区[a,b]上有最大值,设其为k,t>k时,<0在闭区间[a,b]上恒成立,即在闭区间[a,b]上为减函数证法二:因为<0是为减函数的充分条件,所以只要找到实数k,使得t>k时<0,在闭区间[a,b]上成立即可令则<0()当且仅当<0()而上式成立只需即成立取与中较大者记为k,易知当t>k时,<0在闭区[a,b]成立,即在闭区间[a,b]上为减函数(Ⅲ)证法一:设易得≥令则易知当x>0时, >0;当x<0, <0故当x=0时,取最小值,所以≥,于是对任意x、t,有≥,即≥证法二:设=≥,当且仅当≥0只需证明≤0,即≥1以下同证法一证法三:设=,则易得当t>时, >0; t<时, <0,故当t=取最小值即≥以下同证法一证法四:设点A、B的坐标分别为,易知点B在直线y=x上,令点A到直线y=离为d,则≥以下同证法一【点评】本题是辽宁卷的压轴题,在三角函数,导数,最值,不等式恒成立的有关问题的交汇处命题,真正体现了从整体的高度和思维价值的高度上设计试题的宗旨,注重了学科的内在联系和知识的综合性.。

新高考数学(理)之三角函数与解三角形 专题05 三角函数的图象和性质(解析版)

新高考数学(理)之三角函数与解三角形 专题05 三角函数的图象和性质(解析版)

新高考数学(理)三角函数与平面向量05 三角函数的图象和性质一、具本目标: 1.会用“五点法”作图;2.备考重点:(1) 掌握正弦函数及正弦型函数的图象;(2) 掌握正弦函数及正弦型函数的周期性、单调性、对称性以及最值.(3) 掌握余弦函数及余弦型函数的图象;(4) 掌握余弦函数及余弦型函数的周期性、单调性、对称性以及最值.(5) 掌握正切函数的图象;(6) 掌握正切函数的周期性、单调性、对称性以及最值. 二、知识概述:1.正弦函数的图象与性质: 性质sin y x =图象定义域 R值域 []1,1-最值 当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.周期性 2π奇偶性()sin sin x x -=-,奇函数单调性在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是【考点讲解】减函数.对称性对称中心()(),0k k Z π∈对称轴()2x k k Z ππ=+∈,既是中心对称又是轴对称图形。

2.用五点法画出正弦型函数()sin y A x h ωϕ=++的图象,先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图像,最后把这个周期的图像以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.3.对于来说,对称中心与零点相联系,对称轴与最值点联系. sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈⎪⎝⎭.相邻两对称轴间的距离为T 2,相邻两对称中心间的距离也为T 2,函数的对称轴一定经过图象的最高点或最低点.4.近几年高考在考查三角恒等变换的同时,对三角函数图象与性质的考查力度有所加强,常常把恒等变换与图象和性质相结合来考查.三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度为中低档,对基础知识与基本技能加强了考查的力度,分值分配合理,更重视细节给分,其中对函数 的图象要求会用五点作图法作出,并理解它的性质:函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;函数图象与x 轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期;函数取最值的点与相邻的与x 轴的交点间的距离为其函数的个周期,注意函数图象平移的规律,是先平移再伸缩,还是先伸缩再平移. 5.确定函数sin()(0)y A x A ωϕ=+>当0ω<时函数的单调性:对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.求函数sin()y A x ωϕ=+ 的单调区间的步骤:(1)将ω化为正.(2)将x ωϕ+看成一个整体,由三角函数sin()y A x ωφ=+()ϕω+=x A y sin R x ∈41的单调性求解.【特别提醒】解答三角函数的问题时,不要漏了“k Z ∈”. 三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若x 的系数为负应先化为正,同时切记不要漏掉考虑函数自身的定义域. 6.确定函数的对称性时,先将函数化成sin )y A x B ωϕ=++(的形式再求解.其图象的对称轴是直线,图象与直线的交点是图象的对称中心, 所以要记住三角函数的图象,根据图象并结合整体代入的基本思想,就可经求出三角函数的对称轴与对称中心. 7.对于函数的奇偶性判断:如果sin()y A x ωϕ=+为偶函数,就有()2k k Z πϕπ=+∈;如果sin()y A x ωϕ=+为奇函数,就有()k k Z ϕπ=∈. 8.函数的周期性:求()sin()f x A x ωϕ=+的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:使用此法时先将函数转化为()sin()f x A x ωϕ=+的形式,最小正周期是2||T πω=. (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.(5)使用周期公式,必须先将解析式化为或的形式;正弦余弦函数的最小正周期是,正切函数的最小正周期公式是;注意一定要注意加绝对值。

三角函数(解析版)-2023年新高考数学真题题源解密

三角函数(解析版)-2023年新高考数学真题题源解密

专题三角函数目录2023真题展现考向一 三角函数的图象与性质考向二 三角恒等变换真题考查解读近年真题对比考向一 三角函数的图象与性质考向二 三角恒等变换考向三 同角三角函数间的基本关系命题规律解密名校模拟探源易错易混速记/二级结论速记2023年真题展现考向一三角函数的图象与性质1(2023•新高考Ⅱ•第15题)已知函数f (x )=sin (ωx +φ),如图,A ,B 是直线y =12与曲线y =f (x )的两个交点,若|AB |=π6,则f (π)= .【答案】-32解:由题意:设A x 1,12 ,B x 2,12 ,则x 2-x 1=π6,由y =A sin (ωx +φ)的图象可知:ωx 2+φ-(ωx 1+φ)=5π6-π6=2π3,即ω(x 2-x 1)=2π3,∴ω=4,又f 2π3 =sin 8π3+φ =0,∴8π3+φ=k π,k ∈Z ,即φ=-8π3+k π,k ∈Z ,观察图象,可知当k =2时,φ=-2π3满足条件,∴f (π)=sin 4π-2π3 =-32.故答案为:-32.2(2023•新高考Ⅰ•第15题)已知函数f(x)=cosωx-1(ω>0)在区间[0,2π]有且仅有3个零点,则ω的取值范围是.【答案】[2,3)【解答】解:x∈[0,2π],函数的周期为2πω(ω>0),cosωx-1=0,可得cosωx=1,函数f(x)=cosωx-1(ω>0)在区间[0,2π]有且仅有3个零点,可得2⋅2πω≤2π<3⋅2πω,所以2≤ω<3.考向二三角恒等变换3(2023•新高考Ⅱ•第7题)已知α为锐角,cosα=1+54,则sinα2=()A.3-58B.-1+58C.3-54D.-1+54【答案】D解:cosα=1+5 4,则cosα=1-2sin2α2,故2sin2α2=1-cosα=3-54,即sin2α2=3-58=(5)2+12-2516=(5-1)216,∵α为锐角,∴sinα2>0,∴sinα2=-1+54.4(2023•新高考Ⅰ•第8题)已知sin(α-β)=13,cosαsinβ=16,则cos(2α+2β)=()A.79B.19C.-19D.-79【答案】B解:因为sin(α-β)=sinαcosβ-sinβcosα=13,cosαsinβ=16,所以sinαcosβ=1 2,所以sin(α+β)=sinαcosβ+sinβcosα=12+16=23,则cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.真题考查解读【命题意图】考查同角三角函数的基本关系式、诱导公式、和角差角公式、三角函数的图象与性质、y=A sin(wx+φ)的图象与性质.应用三角公式进行化简、求值和恒等变形及恒等证明.【考查要点】三角函数高考必考.常考查和角差角公式、恒等变形化简求值、诱导公式、同角三角函数公式,辅助角公式等.常考查y=A sin(wx+φ)的图象与性质,涉及到增减性、周期性、对称性、图象平移、零点等.【得分要点】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin (α+2k π)=sin α,cos (α+2k π)=cos _α,其中k ∈Z .公式二:sin (π+α)=-sin _α,cos (π+α)=-cos _α,tan (π+α)=tan α.公式三:sin (-α)=-sin _α,cos (-α)=cos _α.公式四:sin (π-α)=sin α,cos (π-α)=-cos _α.公式五:sin π2-α =cos α,cos π2-α =sin α.公式六:sin π2+α =cos α,cos π2+α =-sin α.3.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos (α-β)=cos αcos β+sin αsin β.(2)C (α+β):cos (α+β)=cos αcos β-sin αsin β.(3)S (α+β):sin (α+β)=sin αcos β+cos αsin β.(4)S (α-β):sin (α-β)=sin αcos β-cos αsin β.(5)T (α+β):tan (α+β)=tan α+tan β1-tan αtan β.(6)T (α-β):tan (α-β)=tan α-tan β1+tan αtan β.4.二倍角的正弦、余弦、正切公式(1)S 2α:sin 2α=2sin αcos α.(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)T 2α:tan 2α=2tan α1-tan 2α.5.正弦函数、余弦函数、正切函数的图象和性质函数y =sin xy =cos xy =tan x图象定义域R R k ∈Z 值域[-1,1][-1,1]R单调性递增区间:2k π-π2,2k π+π2递增区间:(2k π-π,2k π)(k ∈Z );递增区间:k π-π2,k π+π2(k∈Z);递减区间:2kπ+π2,2kπ+3π2(k∈Z)递减区间:(2kπ,2kπ+π)(k∈Z)(k∈Z)最 值x=2kπ+π2(k∈Z)时,y max=1;x=2kπ-π2(k∈Z)时,y min=-1x=2kπ(k∈Z)时,y max=1;x=2kπ+π(k∈Z)时,y min=-1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+π2,k∈Z对称中心:kπ+π2,0(k∈Z)对称轴:x=kπ,k∈Z对称中心:kπ2,0(k∈Z )无对称轴周期2π2ππ6.函数y=A sin(ωx+φ)的图象变换y=sin x的图象变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤7.由y=A sin(ωx+φ)的部分图象确定其解析式在由图象求三角函数解析式时,若最大值为M,最小值为m,则A=M-m2,k=M+m2,ω由周期T确定,即由2πω=T求出,φ由特殊点确定.近年真题对比考向一三角函数的图象与性质8(2022•新高考Ⅰ)记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图像关于点(3π2,2)中心对称,则f(π2)=()A.1B.32C.52D.3【解答】解:函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T,则T =2πω,由2π3<T <π,得2π3<2πω<π,∴2<ω<3,∵y =f (x )的图像关于点(3π2,2)中心对称,∴b =2,且sin (3π2ω+π4)=0,则3π2ω+π4=k π,k ∈Z .∴ω=23k -14 ,k ∈Z ,取k =4,可得ω=52.∴f (x )=sin (52x +π4)+2,则f (π2)=sin (52×π2+π4)+2=-1+2=1.故选:A .9(多选)(2022•新高考Ⅱ)已知函数f (x )=sin (2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则()A.f (x )在区间(0,5π12)单调递减B.f (x )在区间(-π12,11π12)有两个极值点C.直线x =7π6是曲线y =f (x )的对称轴D.直线y =32-x 是曲线y =f (x )的切线【解答】解:因为f (x )=sin (2x +φ)(0<φ<π)的图象关于点(2π3,0)对称,所以2×2π3+φ=k π,k ∈Z ,所以φ=k π-4π3,因为0<φ<π,所以φ=2π3,故f (x )=sin (2x +2π3),令π2<2x +2π3<3π2,解得-π12<x <5π12,故f (x )在(0,5π12)单调递减,A 正确;x ∈(-π12,11π12),2x +2π3∈(π2,5π2),根据函数的单调性,故函数f (x )在区间(-π12,11π12)只有一个极值点,故B 错误;令2x +2π3=k π+π2,k ∈Z ,得x =k π2-π12,k ∈Z ,C 显然错误;f (x )=sin (2x +2π3),求导可得,f '(x )=22x +2π3 cos ,令f '(x )=-1,即2x +2π3 cos =-12,解得x =k π或x =π3+kπ(k ∈Z ),故函数y =f (x )在点(0,32)处的切线斜率为k =y x =0=22π3cos =-1,故切线方程为y -32=-x -0 ,即y =-x +32,故D 正确.故选:AD .10(2021•新高考Ⅰ)下列区间中,函数f (x )=7sin (x -π6)单调递增的区间是()A.(0,π2) B.(π2,π) C.(π,3π2) D.(3π2,2π)【解答】解:令-π2+2kπ≤x-π6≤π2+2kπ,k∈Z.则-π3+2kπ≤x≤2π3+2kπ,k∈Z.当k=0时,x∈[-π3,2π3],(0,π2)⊆[-π3,2π3],故选:A.考向二三角恒等变换11(2022•新高考Ⅱ)若sin(α+β)+cos(α+β)=22cos(α+π4)sinβ,则()A.tan(α-β)=1B.tan(α+β)=1C.tan(α-β)=-1D.tan(α+β)=-1【解答】解:解法一:因为sin(α+β)+cos(α+β)=22cos(α+π4)sinβ,所以2sin(α+β+π4)=22cos(α+π4)sinβ,即sin(α+β+π4)=2cos(α+π4)sinβ,所以sin(α+π4)cosβ+sinβcos(α+π4)=2cos(α+π4)sinβ,所以sin(α+π4)cosβ-sinβcos(α+π4)=0,所以sin(α+π4-β)=0,所以α+π4-β=kπ,k∈Z,所以α-β=kπ-π4,所以tan(α-β)=-1.解法二:由题意可得,sinαcosβ+cosαsinβ+cosαcosβ-sinαsinβ=2(cosα-sinα)sinβ,即sinαcosβ-cosαsinβ+cosαcosβ+sinαsinβ=0,所以sin(α-β)+cos(α-β)=0,故tan(α-β)=-1.故选:C.考向三同角三角函数间的基本关系1(2021•新高考Ⅰ)若tanθ=-2,则=()A.-B.-C.D.【解答】解:由题意可得:===.故选:C.命题规律解密结合近三年命题规律,命制三角函数恒等变换题目,诸如“给值求角”“给值求值”“给角求值”,给定函数部分图象,求解函数解析式。

三角函数历年高考分析报告

三角函数历年高考分析报告

三角部分历年高考题汇总一、三角恒等变换和解三角形(08年5题)已知cos()sin 6παα-+=7sin()6πα+的值是(A )-532 (B )532 (C)-54(D) 54总结:考查 C α-β+()诱导公式;化简(“能化简就化简”)已知条件,分析所求式,“前看看后瞅瞅”,找到两者关系即打开思路。

3cos()sin sin 622παααα-+=+=14cos 225αα+=,714sin()sin()cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭(08年15题)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =总结:考查向量垂直+正弦定理应用(边角互化),两角化一角sin sin()cos cos C A B b A a B=+=+的几何意义就是c ,可由此思路直接得到2c c=条件1(特殊角能求出来就求出来);条件2为解题关键点,应首先从这里突破,边化角,角化边都可。

sin 0A A -=,,3A π=sin cos sin cos sin sin A B B A C C+=,2sin cos sin cos sin()sin sin A B B A A B C C+=+==,.2C π=(09年17题)设函数f(x)=cos(2x+3π)+sin 2x.(1) 求函数f(x)的最大值和最小正周期.(2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,1()24c f =-,且C 为锐角,求sinA.总结::考查-+C αβ()降幂公式(小心靠惯性解题,错误使用辅助角公式);三角函数周期公式;三角函数最值(注意完善步骤,强调何时取最值并加周期); 特殊角能求出来就求出来,也要注意步骤,加周期后再定角; 两角化一角;计算+αβS ()时要有代数过程。

新课标高考试题分析三角函数文

新课标高考试题分析三角函数文

省市年度命题立意及考察的知识点简要过程及评析原题安徽202115.此题考察辅助角公式的应用、考察根本不等式、考察三角函数求值、考察三角函数的单调性以及三角函数的图像.难度:较大16.此题考察了三角形中三角函数式的化简、正余弦定理、三角形的面积公式等,难度适中.15.解析:〔1〕辅助角公式;〔2〕含有绝对值的不等式的转化,即需考虑22ba+和|)6(|πf的关系,abba32322≤+;〔3〕利用重要不等式,确定ba,的关系即可。

【30a b=>,()3sin2cos22sin26f x b x b x b xπ⎛⎫=+=+⎪⎝⎭.】16解:∵A+B+C=180°,12cos()0B C++=,∴12cos(180)0A+-=,即12cos0A-=,1cos2A=,又0°<A<180°,所以A=60°.在△ABC中,由正弦定理sin sina bA B=得sin2sin602sin23b ABa===,又∵b a<,所以B<A,B=45°,C=75°,∴BC边上的高AD=AC·sinC=2sin752sin(4530)=+2(sin45cos30cos45sin30)=+2321312()22222+=⨯+⨯=15.设()f x=sin2cos2a xb x+,其中a,b∈R,ab≠0,假设()()6f x fπ≤对一切那么x∈R恒成立,那么①11()012fπ=;[②7()10fπ<()5fπ③()f x既不是奇函数也不是偶函数;④()f x的单调递增区间是2,()63k k k Zππππ⎡⎤++∈⎢⎥⎣⎦;⑤存在经过点〔a,b〕的直线与函数()f x的图像不相交以上结论正确的选项是〔写出所有正确结论的编号〕.16.在∆ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,12cos()0B C++=,求边BC上的高.第 1 页AB AC.由余弦定1,及156bc=13.cosAB AC bc⋅=222a b c=+-2)2(1cosb bc+-5.13AB AC;假设1c b-=,求第 2 页第 3 页第 4 页且与该港口相距小时的航行速度沿正东方向匀速行驶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09年
• 3.将函数y=sin2x的图象向左平移 个单位, 再向上平移1个单位,所得 4 • 图象的函数解析式是( ). 2 y 1 sin( 2 x ) D.y=2sin2x • A. y=cos2x B. y=2cos x C.

y sin 2( x ) • 【解析】:将函数y=sin2x的图象向左平移 4 个单位,得到函数 4
• (Ⅰ)求 的值
6 2
;
• ( Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的 ,纵坐标 2 [ 0 , ] • 不变,得到函数y=g(x)的图象,求函数g(x) 在上的最大值和最小 4 值。 1 1 2 • 解:(Ⅰ)因为 f ( x) sin 2 x sin cos x cos sin( )(0 ) , 2 2 2 1 1 cos 2 x 1 f ( x ) sin 2 x sin 2 cos cos • 所以 2 2 2
• 【说明】:本题考查了两角和与差的三角函数及利用正弦定理解三角 • 形等基础知识以及运算能力.
• (17)(本小题满分12分) 1 1 2 • 已知函数 f ( x) sin 2 x sin cos x cos sin( )( 0 ) ,其图象过 2 2 2 1 • 点 ( , ).
sin B cos B 2 sin B 2 ∵ 4

4
sin B 1 即 4
• 在 △ABC 中, B 5 ,∴ B
4 4 4


2
,又∵a<b,所以A锐 。

a b 1 A 角.由正弦定理 得: sin A ,得 sin A sin B 6 2
1
1 1 sin 2 x sin cos 2 x cos 2 2

1 1 (sin 2 x sin cos 2 x cos ) cos(2 x ).2 ) cos( 又函数图象过点 ( , ) ,所以 ,即 2 2 6 3 6 2
• 3、选择题考查的是三角图像变换,而解答题2个小题,第一问考察三 角恒等变换以及三角函数有关性质;第二问考查的是解三角形,是对 正余弦定理的运用。
10年
• (15)在△ABC中,角A,B,C所对的边分别为a、b、c,若 • a 2, b 2, sin B cos B 2 ,则角A的大小为_________. • 解析:
• 即 y sin(2 x 2 ) cos 2 x 的图象,再向上平移1个单位,所得图象的函


4
2 y 1 cos 2 x 2sin x,故选D. • 数解析式为
• 【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二 • 倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.
• 倍角公式、三角函数的性质以及三角形中的三角关系.
• 09年分析:
• 1、09年,三角函数部分在高考中仅考了2道试题,一道选择,一道 解 • 答;题号分别为3、17;都处于同类别题型的前列,属于容易题; • • • • 2、考查的主要内容是:三角函数图像变换、诱导公式、两角和与差 公式以及二倍角公式等,主要体现在解答题中的三角恒等变换上,而 后,进一步考察三角函数的有关性质,比如:单调性、奇偶性、周期 性、最值等;
三 角 函

• ——2009-2013年山东省高考数学试题分析


• 三角函数是高中数学一个重要的模块;是高中数学代数部 分中一大主要的支撑点; • 三角函数部分在历年高考中都占有不少的比重,一般在选 择题、填空题和解答题中都有考题;选择填空题一般考查 三角函数的基本运算,考查三角函数的图像和性质或者是 解斜三角形;解答题一般是第17题,是解答题第一道题目, 属于容易题,一般考查三角函数的图形和性质以及斜三角 形的问题,经常与向量结合。 • 三角函数部分以三角定义为主体,繁衍出一系列知识:诱 导公式、同角三角函数间的基本关系式、然后三角函数的 图形和性质,两角和与差的三角函数、二倍角公式等;形 成了三角函数定义式为根本,以三角函数图形和性质为主 干,以三角恒等变换为考查重点的系统体系。
1
) 1,
. ; • 又 0 ,所以 3
• (Ⅱ)由(Ⅰ)知 f ( x) 1 cos(2 x ) ,将函数y=f(x)的图象上各点的
2 2

1 横坐标缩短到原来的 ,纵坐标不变,得到函数y=g(x)的图象,可知 2
1 x [0, ] ,所以4x∈[0,π], • g ( x) f (2 x) cos(4 x ), , 因为 4 2 3 2 1 4 x [ , ] cos(4 x ) 1 , • 因此 ,故 3 3 3 2 3 1 1 y g ( x ) 在 [0, ] . • 所以 4 上的最大值和最小值分别为 2 和 4 • 【分析】:本小题主要考查综合运用三角函数公式、三角函数的性质, 进行运算、变形、转换和求解的能力,满分12分。
1 3 ,最小正周期π. 2 1 2C 3 C 1 3 2C sin sin • (2)f( 3 )= =- 4 ,所以 ,因为C为锐角,所 3 2 2 2 3
• 所以函数f(x)的最大值为 •
2C 1 C 以 3 ,所以 ,所以sinA =cosB= . 2 3 3
• 【命题立意】:本题主要考查三角函数中两角和差的弦函数公式、二
17.(本小题满分12分)设函数f(x)=cos(2x+

3
)+sinx.
(1)求函数f(x)的最大值和最小正周期.
1 (2)设A,B,C为ABC的三个内角,若cosB= , 3 1 C f( 3 )=- 4 ,且C为锐角,求sinA.
• 解: 1 cos2 x 1 3 sin 2 x • (1)f(x)=cos(2x+ )+sinx= cos2 x cos sin 2 x sin 3 3 3 2 2 2
相关文档
最新文档