高中数学 第三章 概率 3.2.1 古典概型的特征和概率计算公式 3.2.2 建立概率模型练习

合集下载

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式教案 北师大版必

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式教案 北师大版必

高中数学第三章概率3.2 古典概型3.2.1 古典概型的特征和概率计算公式教案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.2 古典概型3.2.1 古典概型的特征和概率计算公式教案北师大版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.2 古典概型3.2.1 古典概型的特征和概率计算公式教案北师大版必修3的全部内容。

3。

2。

1古典概型的特征和概率计算公式课 题: 古典概型的特征和概率计算公式教学目标:1。

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P (A )=总的基本事件个数包含的基本事件个数A 的使用条件-—古典概型,体现了化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣.教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。

高中数学3-2-1古典概型的特征和概率计算公式课件北师大版必修

高中数学3-2-1古典概型的特征和概率计算公式课件北师大版必修
是等可能的.可先列出摸出两球的所有基本事件,再数出 均为白球的基本事件数.

(1)法一
采用列举法
分别记白球为1,2,3号,黑球为4,5号,有以下基本事
件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4), (2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸 到1号,2号球). 法二 采用列表法
求P(A)、P(B)
[规范解答]设4个白球的编号为1,2,3,4,2个红球的编 号为5,6.从袋中的6个小球中任取2个球的取法有(1,2), (1,3),(1,4)(1,5),(1,6),(2,3),(2,4),(2,5),
(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,
区别?
m 提示 古典概型的概率公式 P(A)= , 与随机事件 A 发生 n m m 的频率 n 有本质的区别.其中 P(A)= n 是一个定值,且对 同一试验的同一事件,m、n 均为定值,而频率中的 m,n m 均随试验次数的变化而变化,但频率 n 总接近于 P(A).
名师点睛
1. 基本事件的特点: (1)任何两个基本事件是不能同时发生的,在一次试验
D
命中10环,9环,„,0环的概率不等 不是
答案 B 规律方法 (1)本题关键是通过分析得出公式中的m、n,即 某事件所含基本事件数和基本事件的总数,然后代入公式 求解; (2)含有“至多”、“至少”等类型的问题,从正面突破比较 困.
【训练2】(1)在数轴上0~3之间任取一点,求此点的坐标小于1
的概率,此试验是否为古典概型?为什么? (2)从1,2,3,4四个数中任意取出两个数,求所取两数之 一是2的概率,此试验是古典概型吗?试说明理由.

高中数学第3章概率321古典概型的特征和概率计算公式课件北师大版必修3

高中数学第3章概率321古典概型的特征和概率计算公式课件北师大版必修3
由上可知 A 至少获得一个合格对应的可能结果为 7 种, 所以 A 至少获得一个合格的概率为 P=78.
(2)所有受到表彰奖励可能的结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{B,C}, {B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D, E},{D,F},{E,F},共 15 种, A 与 B 只有一个受到表彰奖励的结果为 {A,C},{A,D},{A,E},{A,F},{B,C},{B,D}, {B,E},{B,F},共 8 种, 则 A 与 B 只有一个受到表彰奖励的概率为 P=185.
甲、乙两人做出拳游戏(锤子、剪子、布),求: (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率. 【思路启迪】 (1)求基本事件个数的方法有几种? (2)本题用哪种较为合适?
【解】 甲有 3 种不同的出拳方法,每一种出法是等可能 的,乙同样有等可能的 3 种不同出法.一次出拳游戏共有 3×3 =9 种不同的结果,可以认为这 9 种结果是等可能的,所以一 次游戏(试验)是古典概型,总的基本事件个数为 9.
连续掷三枚硬币,观察落地后这三枚硬币出现正面还是反 面.
(1)写出这个试验的基本事件. (2)求这个试验的基本事件总数. (3)“恰有两枚正面向上”这一事件包含了哪几个基本事 件?
解:(1)这个试验的基本事件为(正,正,正),(正,正, 反),(正,反,正),(正,反,反),(反,正,正),(反,正, 反),(反,反,正),(反,反,反).
解析:用古典概型的两个特征去判断即可.
选项 分析
结果
A 发芽与不发芽的概率不同
不是
B
摸到白球与黑球的概率都是12

C 基本事件有无限个
不是

高中数学知识点精讲精析 古典概型的特征和概率计算公式

高中数学知识点精讲精析 古典概型的特征和概率计算公式

3.2.1 古典概型的特征和概率计算公式1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件.2.等可能性事件:若在一次试验中,每个基本事件发生的可能性相同,则称这些基本事件为等可能基本事件.3.古典概型的特点:⑴所有的基本事件只有有限个;⑵每个基本事件发生的概率相等,⑶不需要通过大量重复的试验,只要通过对一次试验可能出现的结果进行分析即可.4.古典概型的概率公::如果一次试验的等可能基本事件共有n 个,那么每个等可能基本事件发生的概率都是1n ,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= mn.5.从集合的角度来理解古典概型的概率:把一次试验中等可能出现的所有结果组成全集I ,把事件A 发生的结果组成集合A ,则A 是I 的一个子集,则有P(A) =card(A)card(t).6.古典概型的公式推导如:在20瓶饮料中,有1瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?在20瓶饮料中,有2瓶已经过了保质期了呢?(1/20,2/20=1/10)在n 瓶饮料中,有m 瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?(m/n)假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?分析:有n 个等可能基本事件,则每个基本事件发生的概率是多少?答:1/n 事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?答:nm 1⨯公式:假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率nm A P =)(1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?分析:理解并运用各定义.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).2.甲.乙两人做出拳游戏(锤子.剪刀.布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.分析:研究此试验是否为古典概型,如果是,基本事件总数n,事件A包含的基本事件数m各为多少.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A,甲赢为事件B,乙赢为事件C.由图3-2-1容易得到:图3-2-1(1)平局含3个基本事件(图中的△);(2)甲赢含3个基本事件(图中的⊙);(3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P (A )3193==; P (B )3193==; P (C )3193==. 3.甲.乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.分析:(1)准确求出基本事件总数n 和事件A 包含的基本事件个数m . (2)可采用列表的方法求m .n .解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366=. (2)两个玩具同时掷的结果可能出现的情况如下表.①每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为 Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )3264==. ②有放回地连续取出两件,其一切可能的结果组成的基本事件空间Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=94. 4.判断下列命题的真假.⑴掷两枚硬币,可能出现“两个正面”.“两个反面”.“一正一反”3种等可能的结果; ⑵某口袋中装有大小和形状完全一样的三个红球.两个黑球和一个白球,那么每一种颜色的球被模到的可能相同;⑶从-3,-2,-1,0,1,2,3中任取一个数,则此数小于0与不小于0的可能相同; ⑷分别从3名男生和4名女生中各选取一名代表,那么某个同学当选的可能性相同.解:以上命题均不正确.⑴如果仅考虑这三种结果,则它们不是等可能的,若要是等可能的,则有(正,正),(正,反),(反,正)和(反,反)4种结果,故本小题总是错的;⑵应是摸到每一个球的可能相同,而三种颜色的球的数量是不相同的; ⑶小于0的有3个,而不小于0的有4个;⑷分别从男生和女生中各选取一个人,对男生或女生内部来说是等可能的,而对所有的同学来说男生是3选1,而女生是4选1,显然每个被选取的可能性不同.说明:对硬币的问题,我们不管抛掷是否有先后顺序,还是一起抛掷的,都必须看成有 先后顺序,否则它们就不是等可能的.若先后抛掷n 次或一次抛掷n 枚,基本事件总数都应是2n个.5.将骰子先后抛掷两次,求:⑴向上的点数之和为几的概率最大?最大值是多少? ⑵向上的点数之和是5的倍数的概率是多少? ⑶个向上的点数中至少有一个是6点的概率? ⑷两个点数中有2或3的的概率;⑸第一次得到的点数比第二次的点数大的概率. 解:将骰子先后抛掷两次,得到的点数情况如下表:统计向上点数和的情况如下:⑴向上点数之和是7的概率最大,最大值是636 = 16;⑵向上的点数之和是5的倍数的有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)7个,⑶至少有一个是6点的共有11个,则其概率为1136;⑷两个点数之和是2的倍数或是3的倍数,按列计算,有2+6+6+2+2+2=20个,其概率为2036 = 59;⑹去掉相等的共有6个,剩下的一半是前面的数字大,一半是后面的数字大,有15个,其概率为1536 = 512.说明:⑴骰子问题与硬币问题一样,都要考虑先后顺序,且n 个骰子的基本事件总数是2n;⑵当基本事件总数不大时,用枚举法较方便;⑶若能用一个表格来表示这些问题,可使问题直观明了.6.从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数.试求: ⑴这个两位数是5的倍数的概率; ⑵这个两位数是偶数的概率; ⑶这个两位数大于40的概率.解:“从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数”,共有基本事件总数5×4=20个.⑴设事件A 为“这个两位数是5的倍数”,则事件A 包含的基本事件为:个位数字是5,共有4个, ∴P(A)= 420 =15;⑵设事件B 为“这个两位数是偶数” 则事件B 包含的基本事件为:个位数字是2或4,共有8个, ∴P(A)= 820 =25;⑶设事件C 为“这个两位数大于40” 则事件C 包含的基本事件为:个十位数字是4或5,也有8个, ∴P(A)= 820 =25.说明:⑴数字问题要考虑先后顺序;⑵常把问题转换成个位数或首位数的问题,学会用到分类讨论的思想;⑶若含有0,还要考虑0不能在首位的特殊要求,这是最容易出错的地方.7.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. ⑴摸出的两只球都是白球的概率是多少? ⑵摸出的两只球是一白一黑的概率是多少?解:从中摸出两球,可分有先后顺序(有序)和无先后顺序(无序)两种情况.设摸出的2只球都是白球的事件为A ,一白一黑的事件为B .有序:从5只球中摸出2只球,其基本事件总数为5×4=20. ⑴摸到2只白球的基本事件数是3×2=6,∴P(A)=620 =310;⑵摸到1只白球和一只黑球的基本事件数是(先白后黑)3×2 +(先黑后白)2×3 =12, ∴P(A)=1220 =35.无序:从5只球中摸出2只球,其基本事件总数为5×42=10.⑴摸到2只白球的基本事件数是3×2 2=3 ∴P(A)= 310;⑵摸到1只白球和一只黑球的基本事件数是3×2 =6, ∴P(A)=610 =35.说明:某些摸球问题是否考虑先后顺序,对问题的答案没有区别,但必须正确理解题意. 8.袋中有红.黄.白色球各一个,每次任取一个,有放回抽三次,计算下列事件的概率: (1)三次颜色各不同;(2)三种颜色不全相同;(3)三次取出的球无红色或无黄色; 解:基本事件有3327=个,是等可能的,(1)记“三次颜色各不相同”为A ,332()279A P A ==; (2)记“三种颜色不全相同”为B ,2738()279P B -==; (3)记“三次取出的球无红色或无黄色”为C ,332215()279P C +-==; 9.将一枚骰子先后掷两次,求所得的点数之和为6的概率。

2020版高中数学第三章概率3.2.1古典概型3.2.2概率的一般加法公式(选学)课件新人教B版必修3 (1)

2020版高中数学第三章概率3.2.1古典概型3.2.2概率的一般加法公式(选学)课件新人教B版必修3 (1)

解 (1)用树状图表示所有的结果为:
所以所有不同的结果是 ab,ac,ad,ae,bc,bd,be,cd,ce,de. (2)记“恰好摸出 1 个黑球和 1 个红球”为事件 A, 则事件 A 包含的基本事件为 ac,ad,ae,bc,bd,be,共 6 个基本事件, 所以 P(A)=160=0.6, 即恰好摸出 1 个黑球和 1 个红球的概率为 0.6.
(1)记事件 A 为“三次颜色恰有两次同色”. ∵A 中含有基本事件个数为 m=6, ∴P(A)=mn =68=0.75.
(2)记事件 B 为“三次颜色全相同”. ∵B 中含基本事件个数为 m=2, ∴P(B)=mn =28=0.25. (3)记事件 C 为“三次摸到的红球多于白球”. ∵C 中含有基本事件个数为 m=4, ∴P(C)=48=0.5.
教材整理 2 概率的一般加法公式(选学) 阅读教材,完成下列问题. 1.事件 A 与 B 的交(或积): 由事件 A 和 B 同时发生 所构成的事件 D,称为事件 A 与 B 的交(或积), 记作 D=A∩B(或D=AB) . 2.设 A,B 是 Ω 的两个事件,则有 P(A∪B)= P(A)+P(B)-P(A∩B) ,这就 是概率的一般加法公式.
率的古典定义.
随手练 1.判断(正确的打“√”,错误的打“×”) (1)若一次试验的结果所包含的基本事件的个数为有限个,则该试验符合古典 概型.( ) (2)“抛掷两枚硬币,至少一枚正面向上”是基本事件.( ) (3)从装有三个大球、一个小球的袋中,取出一球的试验是古典概型.( ) (4)一个古典概型的基本事件数为 n,则每一个基本事件出现的概率都是 1 n.( )
3.2.1 古典概型 3.2.2 概率的一般加法公式(选学)
1.理解古典概型及其概率计算公式,会判断古典概型.(难点) 2.会用列举法求古典概型的概率.(重点)

古典概型的特征和概率计算公式 教学

古典概型的特征和概率计算公式 教学

北师大版高中数学必修3§2.1古典概型的特征和概率计算公式教学设计陕西宝鸡石油中学2012年5月§2.1古典概型的特征和概率计算公式陕西宝鸡石油中学沈涛邮编 721002一、教材分析本节课是高中数学北师大版(必修3)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。

使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。

二、教学目标1.知识与技能(1) 通过实例,理解古典概型及其概率计算公式;(2)理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能性;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现偶数点”)=“出现偶数点”所包含的基本领件的个数÷基本领件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…

人教A版高中数学必修三课件高一:3.2.2古典概型的特征和概率计算公式

人教A版高中数学必修三课件高一:3.2.2古典概型的特征和概率计算公式

1 2 345 6
85 1946 7 2 3 10
建构数学
古典概型的概率:
P(
A)

随机事件 A 包含的可能结果数的个数 试验的所有可能结果(基本事件)总数
m n
实际应用
下列随机事件: (1)在平面直角坐标系内,从横坐标和纵坐标 都是整数的所有点中任取一点。 (2)向正方形内任意抛一点P,点P恰和点A重 合 (3)从1、2、3、4四个数中,任取两个数,求 所取两数之一是2的概率 (4)掷一枚不均匀的骰子,出现偶数的概率
2、从规格重量为100kg+2kg 的一批大米中任意抽取一袋, 测量重量。你认为这是古典 概型吗?为什么?
....... ......
....
........ ........
.....

3、如图,射击运动员向一靶和命中0环。你认为这是古典概型吗?为 什么?
试验二、掷一粒均匀的骰子,试验结果有_6__ 个,其中出现“点数5”的概率=1_/6__. 试验三、转8等份标记的转盘,试验结果有_8__ 个,出现“箭头指向4”的概率=_1_/8_.
列举上述试验的所有可能结果(基本事件)并填空。
议一议:上述几个试验有什么共同特点?
归纳上述试验的特点:
1、试验的所有可能结果(基本事件)只有有 限个,每次试验只出现其中的一个结果;
2、每一个试验结果出现的可能性相同.
我们把具有这样两个特征的随机试验的数学模
型称为古典概型(等可能事件).
注:试验的每一个可能结果称为基本事件,在一次试 验中只能出现一个基本事件(互斥),任何事件都可 以表示成基本事件之和。
1、向一个圆面内随机地投一个点,如果该点落 在每一个点都是等可能的,你认为这是古典 概型吗?为什么?

北师大版高中数学必修三3.2.1古典概型的特征和概率计算公式(24ppt)

北师大版高中数学必修三3.2.1古典概型的特征和概率计算公式(24ppt)

1、向一个圆面内随机地投一个点,如果该点落在圆内任 意一点都是等可能的,你认为这是古典概型吗?为什么?
〖解〗因为实验的所有可能结果是 圆面内所有的点,实验的所有可能 结果数是无限的,虽然每一个实验 结果出现的“可能性相同”,但这 个实验不满足古典概型的第一个条 件.
....
........ ........ .....
解:(1)第一个箱子的质量盘和第二个箱子的质量盘都可以 从4种不同的质量盘中任意选取.我们可以用一个“有序实数 对”来表示随机选取的结果.例如,我们用(10,20)来表 示:在一次随机的选取中,从第一个箱子取的质量盘是10 kg, 从第二个箱子取的质量盘是20 kg,表1列出了所有可 能的结果. 表1

....... ......
2、如图,射击运动员向一靶心进行射击,这一实验的结 果只有有限个:命中10环、命中9环……命中1环和命中0 环.你认为这是古典概型吗?为什么?
〖解〗不是古典概型,因为实验的所 有可能结果只有11个,而命中10环、 命中9环……命中1环和不中环的出现 不是等可能的,即不满足古典概型的 第二个条件.
16 4 (ⅳ)用D表示事件“选取的两个质量盘的总质量超过 10 kg”,总质量超过10 kg,即总质量为12.5 kg,20 kg, 15 kg,22.5 kg,25 kg,30 kg,40 kg,从表2中可以看出, 所有可能结果共有12种,因此,事件D的概率 P(D)= 12 = 3 =0.75.
果.在计算古典概率时,只要所有可能结果的数量不是 很多,列举法是我们常用的一种方法.
单选题是标准化考试中常用的题型,一般是从A,B,C, D四个选项中选择一个正确答案.如果考生掌握了考察的内 容,他可以选择唯一正确的答案.假设考生不会做,他随机 的选择一个答案,问他答对的概率是多少?

高中数学必修三讲义:古典概型 概率的一般加法公式Word版含答案

高中数学必修三讲义:古典概型 概率的一般加法公式Word版含答案

3.2.1 & 3.2.2 古典概型 概率的一般加法公式(选学)预习课本P102~107,思考并完成以下问题 (1)古典概型的特征是什么?(2)古典概型的概率计算公式是什么?[新知初探]1.古典概型的概念(1)定义:如果一个概率模型满足:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的可能性是均等的.那么这样的概率模型称为古典概率模型,简称古典概型. (2)计算公式:对于古典概型,任何事件A 的概率 P (A )=事件A 包含的基本事件数试验的基本事件总数.2.概率的一般加法公式(选学) (1)事件A 与B 的交(或积):由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(2)概率的一般加法公式:设A ,B 是Ω的两个事件,则有P (A ∪B )=P (A )+P (B )-P (A ∩B ).[小试身手]1.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k n .A .②④B .①③④C .①④D .③④解析:选B 根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B. 2.下列试验是古典概型的是( )A .口袋中有2个白球和3个黑球,从中任取一球,基本事件为{}取中白球和{}取中黑球B .在区间[-1,5]上任取一个实数x ,使x 2-3x +2>0C .抛一枚质地均匀的硬币,观察其出现正面或反面D .某人射击中靶或不中靶解析:选C A 中两个基本事件不是等可能的;B 中基本事件的个数是无限的;D 中“中靶”与“不中靶”不是等可能的;C 符合古典概型的两个特征,故选C.3.从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为( ) A.12B.13 C.23D .1解析:选C 从甲、乙、丙三人中任选两人有:(甲、乙)、(甲、丙)、(乙、丙)共3种情况,其中,甲被选中的情况有2种,故甲被选中的概率为P =23.4.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.[典例] (1)42张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( )A .2B .3C .4D .6(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.①写出这个试验的所有基本事件;②求这个试验的基本事件的总数;③“恰有两枚硬币正面朝上”这一事件包含哪些基本事件?[解析](1)用列举法列举出“数字之和为奇数”的可能结果为:(1,2),(1,4),(2,3),(3,4),共4种可能.[答案] C(2)解:①这个试验包含的基本事件有:(正,正,正),(正,正,反),(正,反,正)(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).②这个试验包含的基本事件的总数是8;③“恰有两枚硬币正面朝上”这一事件包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).基本事件的三个探求方法(1)列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.[活学活用]将一枚骰子先后抛掷两次,则:(1)一共有几个基本事件?(2)“出现的点数之和大于8”包含几个基本事件?解:(树状图法):一枚骰子先后抛掷两次的所有可能结果用树状图表示.如图所示:(1)由图知,共36个基本事件.(2)“点数之和大于8”包含10个基本事件(已用“√”标出).[典例]事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.[解]设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法总数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.∴取出的两个球全是白球的概率为P(A)=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球1个是白球,1个是红球的概率为P(B)=8 15.求解古典概型的概率“四步”法[活学活用]某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从这6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种,所以P(B)=315=15.[典例]有A均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率;(2)求这四人恰好都没坐在自己的席位上的概率;(3)求这四人恰有一位坐在自己的席位上的概率.[解]将A,B,C,D四位贵宾就座情况用如图所示的图形表示出来.a席位b席位c席位d席位a席位b席位c席位d席位a 席位b 席位c 席位d 席位 a 席位b 席位c 席位d 席位 由图可知,所有的等可能基本事件共有24个.(1)设事件A 为“这四人恰好都坐在自己的席位上”,则事件A 只包含1个基本事件,所以P (A )=124. (2)设事件B 为“这四人恰好都没坐自己的席位上”,则事件B 包含9个基本事件,所以P (B )=924=38. (3)设事件C 为“这四人恰有一位坐在自己的席位上”,则事件C 包含8个基本事件,所以P (C )=824=13.对于一些比较复杂的古典概型问题,一般可以通过分类,有序地把事件包含的情况分别罗列出来,从而清晰地找出满足条件的情况.在列举时一定要注意合理分类,才能做到不重不漏,结果明了,而树状图则是解决此类问题的较好方法.[活学活用]把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36种.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个.其概率为:P 1=3336=1112. (2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b 2a -b>0,y =2a -32a -b>0.分两种情况:当2a >b 时,得⎩⎪⎨⎪⎧a >32,b <3,当2a <b 时,得⎩⎪⎨⎪⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率P 2=1336.[层级一 学业水平达标]1.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13 B.14 C.16D.112解析:选D 由题意(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种,而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种.故所求概率为336=112,故选D.2.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 3.设a 是从集合{}1,2,3,4中随机取出的一个数,b 是从集合{}1,2,3中随机取出的一个数,构成一个基本事件(a ,b ).记“这些基本事件中,满足log b a ≥1”为事件E ,则E 发生的概率是( )A.12B.512C.13D.14解析:选B 试验发生包含的事件是分别从两个集合中取1个数字,共有4×3=12种结果,满足条件的事件是满足log b a ≥1,可以列举出所有的事件,当b =2时,a =2,3,4,当b =3时,a =3,4,共有3+2=5个,∴根据古典概型的概率公式得到概率是512.4.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x ,第二次摸到的球的编号为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.316B.18C.118D.16解析:选A 由题意可知两次摸球得到的所有数对(x ,y )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,其中满足xy =4的数对有(1,4),(2,2),(4,1),共3个.故所求事件的概率为316.5.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.[层级二 应试能力达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则89是下列哪个事件的概率( )A .颜色全同B .颜色不全同C .颜色全不同D .无红球解析:选B 有放回地取球3次,共27种可能结果,其中颜色全相同的结果有3种,其概率为327=19;颜色不全相同的结果有24种,其概率为2427=89;颜色全不同的结果有3种,其概率为327=19;无红球的情况有8种,其概率为827,故选B.3.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( )A.1180B.1288C.1360D.1480解析:选C 当“时”的两位数字的和小于9时,则“分”的那两位数字和要求超过14,这是不可能的.所以只有“时”的和为9(即“09”或“18”),“分”的和为14(“59”);或者“时”的和为10(即“19”),“分”的和为13(“49”或“58”).共计有4种情况.因一天24小时共有24×60分钟,所以概率P =424×60=1360.故选C.4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.5.有四个大小、形状完全相同的小球,分别编号为1,2,3,4,现从中任取两个,则取出的小球中至少有一个号码为奇数的概率为________.解析:从四个小球中任取两个,有6种取法,其中两个号码都为偶数只有(2,4)这一种取法,故其对立事件,即至少有一个号码为奇数的概率为1-16=56.答案:566.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110. 答案:1107.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59. 答案:598.小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.解:将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.(1)从5道题中任选2道题解答,每一次选1题(不放回),则所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种,而且这些基本事件发生的可能性是相等的.设事件A 为“所选的题不是同一种题型”,则事件A 包含的基本事件有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12种,所以P (A )=1220=0.6.(2)从5道题中任选2道题解答,每一次选1题(有放回),则所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种,而且这些基本事件发生的可能性是相等的.设事件B为“所选的题不是同一种题型”,由(1)知所选题不是同一种题型的基本事件共12种,所以P(B)=1225=0.48.9.(山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.。

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式3.2.2建立概率模型

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式3.2.2建立概率模型

答案
(2)从袋中的 6 个球中任取两个,其中一个是红球,而另一个是白球,其 取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共 8 种.
∴取出的两个球一个是白球,另一个是红球的概率为185.
12/11/2021
第二十三页,共四十七页。
答案
[变式训练3] 先后抛掷两颗骰子,求: (1)点数之和是 4 的倍数的概率; (2)点数之和大于 5 小于 10 的概率. 解 从图中容易看出基本事件与所描点一一对应共 36 种.
12/11/2021
第十一页,共四十七页。
答案
解法二:采用列表法 设 5 只球的编号为:a、b、c、d、e,其中 a,b,c 为白球,d,e 为黑球.列 表如下:
12/11/2021
第十二页,共四十七页。
答案
由于每次取两个球,每次所取两个球不相同,而摸(b,a)与(a,b)是相同 的事件,故共有 10 个基本事件.
12/11/2021
第十页,共四十七页。
[解] (1)解法一:采用列举法分别记白球为 1、2、3 号,黑球为 4、5 号, 有以下基本事件:(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、 (4,5)共 10 个(其中(1,2)表示摸到 1 号,2 号时).
(1)从袋中的 6 个球中任取两个,所取的两球全是白球的方法总数,即是 从 4 个白球中任取两个的方法总数,共有 6 个.即为(1,2),(1,3),(1,4),(2,3), (2,4),(3,4).
∴取出的两个小球全是白球的概率为 P(A)=165=25.
12/11/2021
第二十二页,共四十七页。

高中数学必修3课件:3.2.1 古典概型

高中数学必修3课件:3.2.1 古典概型
栏目 导引
第三章 概率
想一想 “在区间[0,10]上任取一个数,这个数恰为2的概率是多少”?这 个概率模型属于古典概型吗? 提示:不是.因为在区间[0,10]上任取一个数,其试验结果有 无限个,故其基本事件有无限个,所以不是古典概型.
栏目 导引
第三章 概率
做一做 2.投掷一枚骰子,恰好数字6正面向上的概率是________. 解析:由于骰子每一个面向上的可能性相等,故数字 6 正面向 上的概率是16. 答案:16
栏目 导引
第三章 概率
【解】 从 7 人中选出数学、物理、化学成绩优秀者各 1 名, 其一切可能的结果组成的 12 个基本事件为: (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2), (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2), (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2). C1 恰被选中有 6 个基本事件: (A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1), (A3,B1,C1),(A3,B2,C1), 因而 P(M)=162=12.
第三章 概率
1.基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能 再分的最简单的___随__机____事件称为该次试验的基本事件. (2)特点:一是任何两个基本事件是_互__斥___的;二是任何事 件(除不可能事件)都可以表示成基本事件的__和___.
栏目 导引
第三章 概率
做一做 1.袋中有红、白色球各一个,每次任取一个,有放回地抽三 次,所有的基本事件数是________. 解析:所有的基本事件有(红红红)(红红白)(红白红)(白红红)( 红白白)(白红白)(白白红)(白白白),共8个. 答案:8

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3

高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3

对于选项A,因为发芽与不发芽的概率不同,所以不是古典概型;
对于选项
B,因为摸到白球与黑球的概率都是
1 2
,
所以是古典概
型;
对于选项C,因为基本事件有无限个,所以不是古典概型;
对于选项D,因为命中10环,命中9环,……,命中0环的概率不相同,
所以不是古典概型.
答案:B
题型一
题型二
题型三
题型四
古典概型的概率计算 【例3】 某商场举行购物抽奖促销活动,规定每位顾客从装有编 号为0,1,2,3四个相同小球的抽奖箱中,每次取出一个球记下编号后 放回,连续取两次.若取出的两个小球号码相加之和等于6,则中一等 奖;若等于5,则中二等奖;若等于4或3,则中三等奖. (1)求中三等奖的概率; (2)求中奖的概率. 分析:分别写出所有基本事件,利用古典概型的概率计算公式求 出概率.
【做一做2-1】 袋中有2个红球,2个白球,2个黑球,从里面任意摸 出2个小球,下列事件不是基本事件的是( )
A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球} 解析:至少1个红球包含:一红一白或一红一黑或2个红球,所以{至 少1个红球}不是基本事件,其他事件都是基本事件. 答案:D
【做一做2-2】 已知一个家庭有两个小孩,则所有的基本事件是
() A.(男,女),(男,男),(女,女) B.(男,女),(女,男) C.(男,男),(男,女),(女,男),(女,女) D.(男,男),(女,女) 解析:用坐标法表示:将第一个小孩的性别放在横坐标位置,第二
个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女, 男),(女,女).
【做一做1】 下列试验中,是古典概型的有( ) A.抛掷一枚图钉,发现钉尖朝上 B.某人到达路口看到绿灯 C.抛掷一粒均匀的正方体骰子,观察向上的点数 D.从10 cm3水中任取1滴,检查有无细菌 答案:C

北师大版高中数学必修三3.2.1的特征和概率计算公式.docx

北师大版高中数学必修三3.2.1的特征和概率计算公式.docx

高中数学学习材料唐玲出品§2 古 典 概 型2.1 古典概型的特征和概率计算公式[读教材·填要点]1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型). (1)有限性:即试验的所有可能结果只有有限个,每次试验只出现其中的一个结果; (2)等可能性:即每一个试验结果出现的可能性相同. 2.古典概型概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成的,如果试验的所有可能结果(基本事件数)为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=mn.[小问题·大思维]1.掷一枚骰子共有多少种不同的结果? 提示:6种.2.下列试验中,是古典概型的有( ) A .种下一粒种子观察它是否发芽B .从规格直径为(250±0.6)mm 的一批合格产品中任意取一件,测量其直径C .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶提示:只有选项C具有:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.[研一题][例1]下列试验中是古典概型的是()A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向正方形ABCD内随机抛掷一点,该点落在正方形内任意一点都是等可能的D.在区间[0,6]上任取一点,求此点小于2的概率[自主解答]选项分析结果A发芽与不发芽的概率不同不是B摸到白球与黑球的概率都是12是C基本事件有无限个不是D区间上有无穷多个点,不满足有限性不是[答案] B[悟一法]判断一个试验是否为古典概型,关键是看该试验是否具有有限性和等可能性两个特征.[通一类]1.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人作演讲;④一只使用中的灯泡寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的有________.解析:①不属于,原因:所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因:命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因:显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因:灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因:该品牌月饼评为“优”与评为“差”的概率不一定相同,不满足等可能性.答案:③[研一题][例2] 先后抛掷两枚大小相同的骰子.求点数之和能被3整除的概率. [自主解答] 先后抛掷两枚大小相同的骰子,结果如下: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6) (2,1)(2,2)(2,3)(2,4)(2,5)(2,6) (3,1)(3,2)(3,3)(3,4)(3,5)(3,6) (4,1)(4,2)(4,3)(4,4)(4,5)(4,6) (5,1)(5,2)(5,3)(5,4)(5,5)(5,6) (6,1)(6,2)(6,3)(6,4)(6,5)(6,6) 共有36种不同的结果.记“点数之和能被3整除”为事件A ,则事件A 包含的基本事件共12个:(1,2),(2,1),(1,5)(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (A )=1236=13.[悟一法]求解古典概型问题的一般步骤:(1)计算所有可能的基本事件数n ;(2)计算事件A 包含的基本事件数m ;(3)计算事件A 的概率P (A )=事件A 包含的基本事件数试验的所有可能的基本事件数=mn .运用公式的关键在于求出m 、n .在求n 时,必须确定所有可能的基本事件是等可能发生的.[通一类]2.袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求下列事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球一个是白球,另一个是红球.解:设4个白球的编号为1,2,3,4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种取法,且每种取法都是等可能发生的.(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P (A )=615=25;(2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以P (B )=815.有1号、2号、3号3个信箱和A 、B 、C 、D 4封信,若4封信可以任意投入信箱,投完为止,其中A 恰好投入1号或2号信箱的概率是多少?[错解] 每封信投入1号信箱的机会均等,而且所有结果数为4,故A 投入1号或2号信箱的概率为24=12.[错因] 应该考虑A 投入各个信箱的概率,而不能考虑成四封信投入某一信箱的概率. [正解] 由于每封信可以任意投入信箱,对于A 投入各个信箱的可能性是相等的,一共有3种不同的结果,投入1号信箱或2号信箱有2种结果,所以所求概率为23.1.抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( ) A.16 B.13 C.12D .1解析:掷一枚骰子出现向上的点数为1,2,3,4,5,6,共6种情况.P =m n =26=13.答案:B2.有100张卡片(从1号到100号),从中任取一张卡片,则取得的卡片是7的倍数的概率是( )A.320 B.750 C.13100D.325解析:∵n =100,m =14, ∴P =m n =14100=750.答案:B3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0解析:列举出所有基本事件,找出“只有一次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.答案:A4.下列试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小 ②同时掷两颗骰子,点数和为7的概率 ③近三天中有一天降雨的概率④10人站成一排,其中甲、乙相邻的概率解析:①②④是古典概型,因为符合古典概型的定义和特点. ③不是古典概型,因为不符合等可能性,受多方面因素影响. 答案:①②④5.若以连续掷两次骰子分别得到的点数m 、n 作为P 点的坐标,则点P 落在圆x 2+y 2=16内的概率是________.解析:基本事件的总数为6×6=36个,记事件A ={(m ,n )落在圆x 2+y 2=16内},则A 所包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个.∴P (A )=836=29.答案:296.设有关于x 的一元二次方程x 2+2ax +b 2=0,若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根意味着Δ=(2a )2-4b 2≥0,即a ≥b . 基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个,其中第1个数表示a 的取值,第2个数表示b 的取值.而事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止解析:对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.答案:C2.下列对古典概型的说法中正确的是( ) ①试验中所有可能出现的基本事件只有有限个; ②每个事件出现的可能性相等; ③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 若包含k 个基本事件,则P (A )=kn .A .②④B .①③④C .①④D .③④解析:②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.答案:B3.在5张卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,则得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除”这一事件中含有基本事件2,4,5,概率为35=0.6.答案:C4.(2013·抚顺高一检测)从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12 B.13 C.14D.15解析:从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 答案:A5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:从4张卡片中随机抽取2张,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2张卡片上的数字之和为奇数”,则A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m =4,综上可知所求事件的概率P (A )=m n =23.答案:C 二、填空题6.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:三张卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,则恰好排成英文单词BEE 的概率为13.答案:137.(2011·江苏高考)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为13.答案:138.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________. 解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上”为事件A ,则A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38.答案:38三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率. 解:设事件A 为“方程x 2+bx +c =0有实根”,则 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}. 而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6), 共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936.10.(2012·山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为: (A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.。

高中数学必修3第三章:概率3.2古典概型

高中数学必修3第三章:概率3.2古典概型

验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2

基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;

古典概率-陈

古典概率-陈

1点,2点,3点,4点,5点,6点 4点 6点
3
1 6 1 2
个基本事件: 2 点 (“4点”) P
ห้องสมุดไป่ตู้
( A) P
(“2点”) P 1 6 3 6
(“6点”) P
1
6
3 6
( A)
古典概型的概率计算公式:
A包含的基本事件的个数
P (A)
基本事件的总数
n
m
在使用古典概型的概率公式时,应该注意: 要判断所用概率模型是不是古典概型(前提)
等可能性
有限性
(1) 试验中所有可能出现的基本事件的个数 只有有限个
(2) 每个基本事件出现的可能性 相等
等可能性
我们将具有这两个特点的概率模型称为 古典概率模型
简称:
古典概型
问题4:向一个圆面内随机地投射一个点,如 果该点落在圆内任意一点都是等可能的,你认 为这是古典概型吗?为什么?
有限性
等可能性
问题5:某同学随机地向一靶心进行射击,这一试验 的结果有:“命中10环”、“命中9环”、“命中8 环”、“命中7环”、“命中6环”、“命中5环”和 “不中环”。 5 你认为这是古典概型吗? 6 为什么? 7 8 9 有限性 5 6 7 8 9 10 9 8 7 6 5 9 8 等可能性 7 6 5
(a , b) , (a , c) , (b , A) , (b , B) , (b , a) ,
(b,c),(c,A),(c,B),(c,a),(c,b), 共20个.
•基本事件的计数问题
一个口袋内装有大小相同的5个球,其中2个白球,3个黑球,
写出按下列要求的基本事件. (3)先摸一个放回后,再摸一个.
问题2: 以下每个基本事件出现的概率是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1古典概型的特征和概率计算公式2.2建立概率模型课后篇巩固提升A组1.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.解析随机选取的a,b组成实数对(a,b),有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种,其中b>a的有(1,2),(1,3),(2,3),共3种,所以b>a的概率为.答案D2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.解析从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为.答案B3.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为()A.B.C.D.解析基本事件总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为.答案D4.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是,抽到高二学生的概率是,抽到高三学生的概率是.解析任意抽取一名学生是等可能事件,基本事件总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的基本事件的个数分别为20,25和30.故P(A)=,P(B)=,P(C)=.答案5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为.解析“从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7, 2.9),(2.8,2.9),共10种等可能出现的结果,又“它们的长度恰好相差0.3 m”包括.8),(2.6,2.9),共2种结果,由古典概型的概率计算公式可得所求事件的概率为.答案,则甲、乙两人相邻而站的概率为.解析甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,丙,乙,甲),共6种排法,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种排法..答案7.(2018陕西榆林高一测验)某汽车站每天均有3辆开往省城的分上、中、下等级的客车.某天王先生准备在该汽车站乘车去省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先不上第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为.解析共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画线的表示王先生所乘的车),所以他乘上上等车的概率为.答案8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2),(B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为,不中奖的概率为1-.故这种说法不正确.9.导学号36424065为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.解三支队伍所有可能的出场顺序的基本事件为:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的基本事件有:(甲,乙,丙),(乙,甲,丙),共2种,所以P(A)=.所以甲、乙两支队伍恰好排在前两位的概率为.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的基本事件有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种,所以P(B)=.所以甲、乙两支队伍出场顺序相邻的概率为.B组1.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为()A.B.D.解析甲、乙所猜数字的情况有4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为.答案A{1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是()A .B .C .D .1解析随着a , b 的取值变化,集合B 有32=9种可能,如表,经过验证很容易知道其中有8种满足A ∩B=B ,所以概率是.故选C .Ba b1 2 31⌀ {1}2⌀ ⌀ {1,2} 3 ⌀ ⌀ ⌀ 答案C3.连续抛掷质地均匀的骰子两次,得到的点数分别记为a 和b ,则使直线3x-4y=0与圆(x-a )2+(y-b )2=4相切的概率为( )A .B .C .D .解析连续抛掷质地均匀的骰子两次的所有试验结果有36种,要使直线3x-4y=0与圆(x-a )2+(y-b )2=4相切,则应满足=2,即满足|3a-4b|=10,符合题意的(a ,b )有(6,2),(2,4),一共2个.所以由古典概型得所求概率为,故选D.答案D4.第1,2,5,7路公共汽车都在一个车站停靠,有一位乘客等候着1路或5路公共汽车,假定各路公共汽车首先到站的可能性相等,那么首先到站的正好为这位乘客所要乘的车的概率是 .解析因为4种公共汽车先到站共有4种结果,且每种结果出现的可能性相等,所以“首先到站的车正好是所乘车”的结果有2种,故所求概率为.答案5.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .解析从这6根细木棒中任取3根首尾相接,共有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),( 1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6)20种,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共有7种情况,P=.答案,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上,洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)则小敏获胜,否则小慧获胜.你认为这个游戏?请用列表的方法进行分析,并对构成的汉字进行说明.解这个游戏对小慧有利.每次游戏时, 第二张卡片 第一张卡片土 口 木土 (土,土) (土,口) (土,木)口 (口,土) (口,口) (口,木)木(木,土)(木,口)(木,木)总共有9种结果,且每种结果出现的可能性相同,其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.所以小敏获胜的概率为,小慧获胜的概率为.所以这个游戏对小慧有利.7.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16.(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=,即小亮获得玩具的概率为.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=.事件C包含的基本事件数共5个,即(1,4),(2,2),(2, 3),(3,2),(4,1).所以P(C)=.因为,所以小亮获得水杯的概率大于获得饮料的概率.。

相关文档
最新文档