最新01第一节微分方程的基本概念
微分方程的基本概念

3.具有初始条件的微分方程: 此类微分方程的特点是给定了某些函数值 ,如 都是给定的数(称为初值) 等,其中 y0 , y0 y x x y0 , y x x y0 。此时所求出
0 0
的微分方程的解称为微分方程的特解,不包含任意常数 C 。
注 1:微分方程的特解不包含任意常数 C ,因为此时可利用初始条件将常数 C 变 为确定的数。
例 1:解微分方程
现将初始条件 y x 0 1 代入通解 y x 2 C ,得: 1 02 C ,从而有 C 1 于是,该微分方程的特解为 y x 2 1
注:解具有初始条件的微分方程大致分为两步:求出微分方程的通解(此时无需
理会初始条件) ;代入初始条件求得特解。
第一节 微分方程的基本概念
1.微分方程:微分方程主要处理未知函数、未知函数的导数与自变量间的关系。
例 1:
dy 2 x 为一阶微分方程。 dx
例 2: x
d2y dy x2 4 x 3x 3 为二阶微分方程。 2 dx dx
注:微分方程的阶数等于方程中的导数的最高阶数。 2.微分方程的通解:微分方程中的通解包含任意常数,且任意常数的个数等于 微分方程的阶数。
再将初始条件 y x 1 2 代入 y
于是,该微分方程的特解为 y
先将初始条件 y x 1 3 代入 y x 2 C1 ,得: 3 12 C1 ,从而有 C1 2 于是有 y
x3 x3 C1 x C2 2 x C2 3 3
x3 13 1 2 x C2 , 得:2 2 1 C2 , 从而有 C2 3 3 3 x3 1 2x 3 3
d2y 例 2:解微分方程 2 2 x 。 dx
微分方程—微分方程的基本概念(高等数学课件)

2
把 2 、x的表达式代入方程后成为一个恒等式,
这说明: = 1 + 2 ,是微分方程的解,并且是通解.
课程小结
微分方程的定义
微分方程的阶
(常微分方程,偏
微分方程)
微分方程的解
(通解,特解,
定解条件)
= −0.2 2 + 20.
微分方程的阶,解
例1:验证函数 = 1 +
2
2 ,是微分方程 2
+ 2 = 0的解.
解:求出所给函数的导数
= −1 + 2 ,
2
2
2
=
−
−
2
1
其中 ,−1 ⋯ ,1 , (), 是关于的函数.
微分方程的阶,解
微分方程的阶:方程中所含有未知函数导数(或微分)的最高阶数.
一般的,n阶微分方程的形式:
, , ′ , ⋯ () = 0, 或 () = , , ′ , ⋯ (−1) .
等式,那么函数 = 是微分方程的解.
例:
通解:
2
= −0.4
2
= 3,
=
3 2
2
3
+ ,
3
2
特解: = 2 + 2 .
= −0.2 2 + 1 + 2 ,
= −0.2 2 + 20.
微分方程的阶,解
通解:微分方程的解中含有任意常数,且独立的任意的常数的个数
等于该方程的阶数.
特解:当通解中各任意常数都取定值时所得的解.
微分方程的基本概念

第十二章 微分方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5) 把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上,F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x .积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .。
高等数学第七章第一节微分方程的基本概念课件.ppt

令 Y = 0 , 得 Q 点的横坐标
即 yy 2x 0
y P
Qo xx
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
例1. 验证函数 是微分方程
(C1 , C2为常数 )
的解, 并求满足初始条件
x
t0
A, dx
dt
t00
的特解 .
解:
k 2 (C1 sin kt C2 cos kt ) 这说明 x C1 cos kt C2 sin kt 是方程的解 .
是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得:
故所求特解为
x Acos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
微分方程的基本概念
含未内容)
分类 偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
F (x, y, y,, y(n) ) 0
或 y(n) f (x, y, y,, y(n1) ) ( n 阶显式微分方程)
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.
第十章第一节微分方程的概念

y dx 2 xdx 得
y x 2 C1
2 y dx ( x C1 )dx
ห้องสมุดไป่ตู้
第一节 微分方程的基本概念
2、通解 若微分方程的解中含有独立的任意常数,且 任意常数的个数与微分方程的阶数相同, 则称这样的解 为微分方程的通解 (一般解)。
2 前例中, y 3 x ,
其中x0 , y0为已知常数. 二阶微分方程y f ( x, y, y)的初始条件为 , 其中x0 , y0 , y0 为已知常数. y x x y0 , y x x y0
0 0 0
y x x y0 ,
第一节 微分方程的基本概念
称为 4、初始条件 确定通解中的任意常数的条件, 初始条件, 也称为定值条件。
线斜率等于该点的横坐标平方的3倍,求此曲线的方程. 解: 设所求曲线方程为 y y( x ), dy 2 ① 微分方程 3 x 由导数的几何意义得
因曲线通过点 (1,2), 故 y | x 1 2
dx
② 初始条件 对(1)式求积分, 得 y 3 x 2dx x 3 C ③ 方程通解
n阶线性微分方程的一般形式为 ( n) ( n1) y a1 ( x) y ... an1 ( x) y an ( x) y g( x) (3) 其中a1 ( x),.a2 ( x)...,an ( x)和g( x)均为自变量x的
已知函数。 例: y P ( x ) y Q( x ), y 2 yy 3 y x 2 一阶线性常微分方程 二阶线性常微分方程
微分方程是一门独立的数学学科,有完整的理论体系。 是现代数学的一个重要分支。 本章我们主要介绍微分方程的一些基本概念,几种 常用的微分方程的求解方法,微分方程在经济中的应用。
第一节微分方程的基本概念

第十二章 微分方程一、 学时分配:讲课学时:14 习题学时:2 共 16 学时二、 基本内容:1.微分方程的基本概念 2.可分离变量的微分方程 3.齐次方程 4.一阶线性微分方程 5.全微分方程 6.可降阶的高阶微分方程 7.高阶线性微分方程 8.一阶常系数齐次线性微分方程 9. 一阶常系数非齐次线性微分方程三、 教学要求:1.理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等.2.熟练掌握可分离变量的微分方程的解法.3.熟练掌握齐次微分方程的解法4.掌握一阶线性微分方程的形式,熟练掌握其解法;掌握利用变量代换解微分方程的方法;了解贝努利方程的形式及解法5.掌握全微分方程成立的充要条件,掌握全微分方程的解法,会用观察法找积分因子6.掌握)()(x f y n =、),(///y x f y =、),(///y y f y =三种高阶微分方程的解法,即降阶法,理解降阶法的思想7.掌握二阶线性方程解的结构,齐次线性方程的通解,非齐线性方程的特解及通解的形式8.掌握二阶常系数齐次线性微分方程的特征方程,特征根,及对应于特征根的三种情况,通解的三种不同形式9.掌握自由项为x m e x P x f λ)()(=和x m m e x x Q x x P x f λωω]sin )(cos )([)(+=的二阶常系数非齐次线性微分方程特解的方法四、重点难点:1.重点:2.难点:第一节 微分方程的基本概念教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等.教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件教学难点:微分方程的通解概念的理解教学内容:一、 两个实例1.一条曲线通过点(1,2),且在该曲线上任一点),(y x M 处的切线的斜率为2x ,求这条曲线的方程。
解:设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy 2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。
第一节 微分方程的基本概念

过定点且在定点的切线的斜率为定值的积分曲线.
2020/1/29
5
例 一 曲 线 通 过 点 (1,2),且 在 该 曲 线 上 任 一 点 M (x,y) 处 的 切 线 的 斜 率 为 2x,求 这 曲 线 的 方 程 .
解 设所求曲y线 y为 (x)
d y 2 x , y(1)2, dx
yxy, 一阶
y2y3yex, 二阶
(t2x)dtxdx0, 一阶
2020/1/29
3
定义 使方程成为恒等式的函数称微分方程的解. 微分方程的解的分类: (1)通解: 微分方程的解中含有任意常数,且独立 任意常数的个数与微分方程的阶数相同.
例yy, 通解 yCex; yy0, 通 y 解 C 1six n C 2co xs
本章还要学习一阶常系数线性差分方程的解法.
2020/1/29
2
定义 含有自变量,自变量的未知函数以及未知函数 的若干阶导数或微分的函数方程称为微分方程. 定义 出现在微分方程中的未知函数的最高阶导数或 微分的阶数,称为微分方程的阶.
未知函数是一元函数的微分方程称为常微分方程, 未知函数是多元函数的微分方程称为偏微分方程.在本 书中只讨论常微分方程,如下例:
(2)特解: 不含任意常数的解.
定解条件: 用来确定任意常数的条件.
2020/1/29
4
初始条件: 规定微分方程中的未知函数及其若干阶 导数在某一点处的取值 。
初值问题: 求微分方程满足初始条件的解的问题.
一阶:
y f (x, y)
y
x
x0
y0
过定点的积分曲线;
二阶:
yf(x,y,y) yxx0 y0,yxx0 y0
微分方程

∫ g( y)dy = ∫ f ( x)dx
分离变量法
设函数G ( y ) 和 F ( x ) 是依次为 g ( y ) 和 f ( x ) 的原函
为微分方程的解. 数, G( y) = F( x) + C 为微分方程的解
二、典型例题
dy . = 2xy 的通解 例1 求解微分方程 dx dy 解 分离变量 = 2xdx , y dy = ∫ 2 xdx , 两端积分 ∫ y
例 3 衰 问 :衰 速 与 衰 原 含 M 成 变 题衰 变 度 未 变 子 量
M 比,已 正 已 M t =0 = M0,求 变 程 铀 比 知 求 衰 过 中 含量 (t )
时 t 化 规 . 随 间变 的 律
解 dM = − λM dt
dM , 衰变速度 dt
由题设条件
(λ > 0衰变系数 )
解
设制动后 t 秒钟行驶 s 米, s = s( t )
ds d 2s = −0.4 t = 0时, s = 0, v = = 20, 2 dt dt ds s = − 0. 2 t 2 + C 1 t + C 2 v = = −0.4t + C1 dt
代入条件后知
C 1 = 20 , C 2 = 0
练 习 题
一、填空题: 填空题: 1、 ______阶微分方程 阶微分方程; 1、 xy ′′′ + 2 y ′′ + x 2 y = 0 是______阶微分方程; d 2Q dQ Q ______阶微分方程 阶微分方程; 2、 L 2 + R + = 0 是______阶微分方程; dt c dt dρ ______阶微分方程 阶微分方程; 3、 + ρ = sin 2 θ 是______阶微分方程; dθ 一个二阶微分方程的通解应含有____ ____个任意常数 4、一个二阶微分方程的通解应含有____个任意常数 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01第一节微分方程的基本概念第八章常微分方程与差分方程对自然界的深刻研究是数学最富饶的源泉.-------傅里叶微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程. 通过求解这种方程,同样可以找到指定未知量之间的函数关系. 因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具.如果说“数学是一门理性思维的科学,是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现.现实世界中的许多实际问题都可以抽象为微分方程问题. 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题. 这时微分方程也称为所研究问题的数学模型.微分方程是一门独立的数学学科,有完整的理论体系. 本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论.第一节微分方程的基本概念分布图示★引言★微分方程的概念★例1★例2★例3★例4★微分方程解的概念★例5★例6★内容小结★课堂练习★习题8-1内容要点:一、微分方程的概念我们把未知函数为一元函数的微分方程称为常微分方程. 类似地,未知函数为多元函数的微分方程称为偏微分方程,本章我们只讨论常微分方程. 常微分方程的一般形式是:«Skip Record If...» (1.5)其中«Skip Record If...»为自变量,«Skip Record If...»是未知函数.如果能从方程(1.5)中解出最高阶导数,就得到微分方程«Skip Record If...» (1.6)以后我们讨论的微分方程组主要是形如(1.6)的微分方程,并且假设(1.6)式右端的函数«Skip Record If...»在所讨论的范围内连续.如果方程(1.6)可表为如下形式:«Skip Record If...» (1.7)则称方程(1.7)为«Skip Record If...»阶线性微分方程. 其中«Skip Record If...»«Skip Record If...»«Skip Record If...» «Skip Record If...»和«Skip Record If...»均为自变量«Skip Record If...»的已知函数.不能表示成形如(1.7)式的微分方程,统称为非线性方程.在研究实际问题时,首先要建立属于该问题的微分方程,然后找出满足该微分方程的函数(即解微分方程),就是说,把这个函数代入微分方程能使方程称为恒等式,我们称这个函数为该微分方程的解. 更确切地说,设函数«Skip Record If...»在区间«Skip Record If...»上有«Skip Record If...»阶连续导数,如果在区间«Skip Record If...»上,有«Skip Record If...»则称函数«Skip Record If...»为微分方程(1.5)在区间«Skip Record If...»上的解.二、微分方程的解微分方程的解可能含有也可能不含有任意常数. 一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解). 所谓通解的意思是指,当其中的任意常数取遍所有实数时,就可以得到微分方程的所有解(至多有个别例外).注:这里所说的相互独立的任意常数,是指它们不能通过合并而使得通解中的任意常数的个数减少.许多实际问题都要求寻找满足某些附加条件的解,此时,这类附加条件就可以用来确定通解中的任意常数,这类附加条件称为初始条件,也称为定解条件. 例如,条件(1.2)和(1.4)分别是微分方程(1.1)和(1.3)的初始条件.带有初始条件的微分方程称为微分方程的初值问题.微分方程的解的图形是一条曲线,称为微分方程的积分曲线.例题选讲:微分方程的概念例1 (E01) 设一物体的温度为100℃, 将其放置在空气温度为20℃的环境中冷却. 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比, 设物体的温度«Skip Record If...»与时间«Skip Record If...»的函数关系为«Skip Record If...»则可建立起函数«Skip Record If...»满足的微分方程«Skip Record If...»其中«Skip Record If...»为比例常数. 这就是物体冷却的数学模型.根据题意, «Skip Record If...»还需满足条件 «Skip Record If...»例2(E02)设一质量为«Skip Record If...»的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力«Skip Record If...»等于物体的质量«Skip Record If...»与物体运动的加速度«Skip Record If...»成正比,即«Skip Record If...»,若取物体降落的铅垂线为«Skip Record If...»轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是«Skip Record If...»,物体下落的距离«Skip Record If...»与时间«Skip Record If...»的函数关系为«Skip Record If...»,则可建立起函数«Skip Record If...»满足的微分方程«Skip Record If...» (1.1)其中«Skip Record If...»为重力加速度常数. 这就是自由落体运动的数学模型.根据题意,«Skip Record If...»还需满足条件«Skip Record If...» (1.2)例3(E03)如果设某商品在时刻t的售价为P, 社会对该商品的需求量和供给量分别是P的函数«Skip Record If...»则在时刻t的价格«Skip Record If...»对于时间t的变化率可认为与该商品在同时刻的超额需求量«Skip Record If...»成正比, 即有微分方程«Skip Record If...» (1.3)在«Skip Record If...»和«Skip Record If...»确定情况下, 可解出价格与t的函数关系.例4(E04)试指出下列方程是什么方程,并指出微分方程的阶数.«Skip Record If...»解(1)是一阶线性微分方程,因方程中含有的«Skip Record If...»和«Skip Record If...»都是一次.(2)是一阶非线性微分方程,因方程中含有的«Skip Record If...»的平方项.(3)是二阶非线性微分方程,因方程中含有的«Skip Record If...»的三次方.(4)是二阶非线性微分方程,因方程中含有非线性函数«Skip Record If...»和«Skip Record If...»微分方程的解例5求曲线族«Skip Record If...»满足的微分方程,其中«Skip Record If...»为任意常数.解求曲线族所满足的方程,就是求一微分方程,使所给的曲线族正好是该微分方程的积分曲线族.因此所求的微分方程的阶数应与已知曲线族中的任意常数的个数相等.这里,我们通过消去任意常数的方法来得到所求的微分方程.在等式«Skip Record If...»两端对«Skip Record If...»求导,得«Skip Record If...»再从«Skip Record If...»解出«Skip Record If...»代入上式得«Skip Record If...»化简即得到所求的微分方程 «Skip Record If...»例6(E05)验证函数«Skip Record If...»(C为任意常数)是方程«Skip Record If...»的通解, 并求满足初始条件«Skip Record If...»的特解.解要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将«Skip Record If...»求一阶导数,得«Skip Record If...»«Skip Record If...»把«Skip Record If...»和«Skip Record If...»代入方程左边得«Skip Record If...»«Skip Record If...»«Skip Record If...»因方程两边恒等,且«Skip Record If...»中含有一个任意常数,故«Skip Record If...»是题设方程的通解.将初始条件«Skip Record If...»代入通解«Skip Record If...»中,得«Skip Record If...»从而所求特解为 «Skip Record If...»课堂练习1.验证函数«Skip Record If...»是微分方程«Skip Record If...»的解. 并求满足初始条件«Skip Record If...»的特解.。