硼氢化钠制备金
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Seeding Growth for Size Control of5-40nm Diameter
Gold Nanoparticles
Nikhil R.Jana,*Latha Gearheart,and Catherine J.Murphy* Department of Chemistry and Biochemistry,University of South Carolina,631Sumter Street,
Columbia,South Carolina29208
Received March22,2001.In Final Form:August7,2001
Following a seeding growth approach,gold nanoparticles of diameters5-40nm were prepared with 10-15%standard deviation in diameter from3.5(0.7nm gold particle seeds.Particle size can be controlled by varying the ratio of seed to metal salt,and thus any size in the range5-40nm can be prepared.The method can also be scaled up to produce10-100mg of gold nanoparticles.
Introduction
Metal particles in the nanometer size regime show characteristic size-dependent properties different from bulk metals with the most significant size effects occurring for1-10nm diameters.1-7Consequently,extensive in-vestigations involving metallic,especially gold,nanopar-ticles as building blocks for nanoscale materials and devices are currently underway.8-19To expedite such studies,bulk quantities of particles of uniform size are necessary.There are many synthetic methods to make gold nanoparticles;20-39however,only a few methods produce particles of uniform size.The most common approach involves citrate reduction of a gold salt to produce 12-20nm size gold particles with a relatively narrow size distribution(standard deviation,∼10-16%).20,21The most popular method for producing smaller gold particles was developed by Brust et al.This method utilizes borohydride reduction of gold salt in the presence of an alkanethiol capping agent to produce1-3nm particles.22 By varying the thiol concentration,sizes can be controlled between2and5nm.23Phosphine-stabilized gold clusters (1.4(0.4nm)have also been prepared and further converted to thiol-capped clusters by ligand exchange in order to improve their stability,24-30and recently phos-phine-stabilized monodispersed gold particles(1.5(0.4 nm)were prepared using a similar protocol to the Brust method.30
Most of the other methods to make small gold clusters (1-5nm)take advantage of the strong capping action of thiols.31,34,36Capping agents include disulfides,31polymers with mercapto and cyano functional groups,34and den-drimers.32,33Varying the capping agent concentration allows for size control between1and4nm with good monodispersity,but any attempts to make larger size particles(>5nm)with these procedures lead to a wider particle size distribution(standard deviation∼25-100%),23,39and further narrowing of size distribution is required.40-43Occasionally,aging,annealing,or ligand
*To whom correspondence should be addressed.E-mail murphy@ and jana@.
(1)Creighton,J.A.;Eadon,D.G.J.Chem.Soc.,Faraday Trans. 1991,87,3881.
(2)Henglein,A.J.Phys.Chem.1993,97,5457.
(3)Belloni,J.Curr.Opin.Colloid Interface.Sci.1996,1,184.
(4)Valden,M.;Lai,X.;Goodman,D.W.Science1998,281,1647.
(5)Link,S.;Burda,C.;Wang,Z.L.;El-Sayed,M.A.J.Chem.Phys. 1999,111,1255.
(6)Link,S.;El-Sayed,M.A.J.Phys.Chem.B1999,103,8410.
(7)Hodak,J.H.;Henglein,A.;Hartland,G.V.J.Phys.Chem.B 2000,104,9954.
(8)Schmid,G.;Hornyak,G.L.Curr.Opin.Solid State Mater.Sci. 1997,2,204.
(9)Whetten,R.L.;Shafigullin,M.N.;Khoury,J.T.;Schaaff,T.G.; Vezmar,I.;Alvarez,M.M.;Wilkinson,A.Acc.Chem.Res.1999,32,397.
(10)Dirix,Y.;Bastiaansen,C.;Caseri,W.;Smith,P.J.Mater.Sci. 1999,34,3859.
(11)Dirix,Y.;Bastiaansen,C.;Caseri,W.;Smith,P.Adv.Mater. 1999,11,223.
(12)Caseri,W.Macromol.Rapid Commun.2000,21,705.
(13)Kell,A.J.;Stringle,D.L.B.;Workentin,.Lett.2000, 2,3381.
(14)Labande,A.;Astruc,mun.2000,1007.
(15)Wu,M.L.;O’Neill,S.A.;Brousseau,L.C.;McConnell,W.P.; Shultz,D.A.;Linderman,R.J.;Feldheim,mun.2000, 775.
(16)Hainfeld,J.F.;Powell,R.D.J.Histochem.Cytochem.2000,48, 471.
(17)Templeton,A.C.;Wuelfing,M.P.;Murray,R.W.Acc.Chem. Res.2000,33,27.
(18)Martin,J.E.;Wilcoxon,J.P.;Odinek,J.;Provencio,P.J.Phys. Chem.B2000,104,9475.
(19)Pileni,M.P.;Tanori,J.;Filankembo,A.Colloid Surf.A1997, 123,561.
(20)Turkevich,J.;Garton,G.;Stevenson,P.C.J.Colloid Sci.1954, 9,26.
(21)Frens,G.Nature1973,241,20.
(22)Brust,M.;Walker,M.;Bethell,D.;Schiffrin,D.J.;Whyman,R. mun.1994,801.
(23)Hostetler,M.J.;Wingate,J.E.;Zhong,C.J.;Harris,J.E.;Vachet, R.W.;Clark,M.R.;Londono,J.D.;Green,S.J.;Stokes,J.J.;Wignall, G.D.;Glish,G.L.;Porter,M.D.;Evans,N.D.;Murray,ngmuir 1998,14,17.
(24)Schmid,G.;Pfeil,R.;Boese,R.;Bandrmann,F.;Meyer,S.;Calis,
G.H.M.;van der Velden,J.W.A.Chem.Ber.1981,114,3634.
(25)Rapoport,D.H.;Vogel,W.;Colfen,H.;Schlogl,R.J.Phys.Chem. B1997,101,4175.
(26)Schmid,G.;Meyer-Zaika,W.;Pugin,R.;Sawitowski,T.;Majoral, J.P.;Caminade,A.M.;Turrin,C.O.Chem.Eur.J.A2000,6,1693.
(27)Brown,L.O.;Hutchison,J.E.J.Am.Chem.Soc.1997,119, 12384.
(28)Brown,L.O.;Hutchison,J.E.J.Am.Chem.Soc.1999,121,882.
(29)Warner,M.G.;Reed,S.M.;Hutchison,J.E.Chem.Mater.2000, 12,3316.
(30)Weare,W.W.;Reed,S.M.;Warner,M.G.;Hutchison,J.E.J. Am.Chem.Soc.2000,122,12890.
(31)Yonezawa,T.;Yasui,K.;Kimizuka,ngmuir2001,17,271.
(32)Zhao,M.Q.;Sun,L.;Crooks,R.M.J.Am.Chem.Soc.1998,120, 4877.
(33)Esumi,K.;Hosoya,T.;Suzuki,A.;Torigoe,K.J.Colloid Interface Sci.2000,229,303.
(34)Teranishi,T.;Kiyokawa,I.;Miyake,M.Adv.Mater.1998,10, 596.
(35)Yonezawa,T.;Sutoh,M.;Kunitake,T.Chem.Lett.1997,619.
(36)Chen,S.H.;Kimura,ngmuir1999,15,1075.
(37)Green,M.;O’Brien,mun.2000,183.
(38)Brust,M.;Bethell,D.;Kiely,C.J.;Schiffrin,ngmuir 1998,14,5425.
(39)Leff,D.V.;Ohara,P.C.;Heath,J.R.;Gelbart,W.M.J.Phys. Chem.1995,99,7036.
6782Langmuir2001,17,6782-6786
10.1021/la0104323CCC:$20.00©2001American Chemical Society
Published on Web10/02/2001