2018年江西南昌中考数学真题及答案
2018年江西省南昌市中考数学试卷(含答案)
点:
分 本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解
析: 题.
解 解: ∵AB∥DE,AC∥DF,∴∠A=∠D,
答:
<1)AB=DE,则 △ABC和 △DEF中,, ∴△ABC≌△DEF,故
A选项错误;
<2) ∠B=∠E,则 △ABC和 △DEF中,, ∴△ABC≌△DEF,
2a﹣3b
B4a﹣8b.
C2a﹣.
D4a﹣10b.
整式的加减;列代数式.
点:
专几何图形问题.
题:
分根据题意列出关系式,去括号合并即可得到结果.
析:
解解:根据题意得:2<a﹣b+a﹣3b)=2<2a﹣4b)=4a﹣8b,
答:故选B
点此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关
评:键.
12.<3分)<2018?南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大
致为<
A
考二次函数的图象;反比例函数的图象.
点:
分本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图
析:象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.
解 解: ∵ 函数y=的图象经过二、四象限,∴k<0,
270° 后形成的图形,∠BAD=60° ,AB=2,
∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,
AE=EC=,
∴∠AOE=45°,ED=1,
∴AE=EO=,DO=﹣1,
∴S正方形DNMF=2<﹣1) ×2<﹣1) ×=8﹣4,
2018年江西省中考数学试题含答案解析
. 【解析】 本题考察分式有意义的条件,当分母不为 0 时,分式有意义,所以������ ‒ 1 ≠ 0. 【答案】 ������ ≠ 1 ★ 8.2018 年 5 月 13 日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过 6 万吨,将数 60000 用科学记数法表示应 为 . ������ 【解析】 本题考察科学记数法,把 60000 写成������ × 10 的形式,注意1 ≤ ������<10 4 【答案】 6 × 10 ★ 9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金 十 两。牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛 5 头,羊 2 头,共值金 10 两,
江西省 2018 中考数学试题卷解析
乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 (乒 4乒 )
5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形ABCD从当前位置开始进行一次平移操作, 平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3 个 B. 4 个 C. 5 个 D. 无数个 【解析】
G D F
10.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转 得到矩形AEFG,点B的对应点E落在CD上,且DE = EF,则 AB 的长为 . 【解析】 【答案】 本题考察矩形的性质和旋转的对应线段,利用勾股定理 计算AB的长.DE = EF = BC = AD=3, ∠D=90°,所以 AB = 3 2 ★★
AB = AE = 3 2
A
E B C 乒 乒 10乒 乒
2 2 11.一元二次方程������ ‒ 4������ + 2 = 0的两根为������1,������2 ,则������1 ‒ 4������1 + 2������1������2的值为
最新-2018年江西省中招考试数学试题卷及答案【word版】 精品
江西省2018年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ . 三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A 'x处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F . (1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后ABCDFA 'B 'EB A告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.1228 ⎪⎝⎭,于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.030.29 (4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.96644-+==,≈,≈.)江西省南昌市2018年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C图1图2B (E A (F D图3H DACB图4二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +-11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+ ··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得直线2BD 的解析式为1y x =--. ······································································ 6分 ③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分.19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:ABabBAaba ABbb ABa所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.AE a =,AB b =,222a b c ∴+=. ······························································ 6分(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;A B CD F A 'B ' E ABCDFA 'B 'E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分 AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC = ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.1112224AOC S AC OF ∴==⨯=△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分34AOC AOC S S S π∴=-=-△阴影扇形. ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分BA23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.····································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.···························································· 8分 (3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分 A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上.····························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,14GQ IQ GI ∴=-=-. ····································································· 7分 B (EA (FD14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12= ···················································································· 7分解得1x =14x y ∴==-. ················································································· 8分 (3)α0 153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DB。
2018年江西省中考数学试卷(含解析版)
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣12D.122.(3.00分)(2018•江西)计算(﹣a)2•ba2的结果为()A.b B.﹣b C.ab D.b a3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=3x的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式1x−1有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=FF ,则AB 的长为 .11.(3.00分)(2018•江西)一元二次方程x 2﹣4x+2=0的两根为x 1,x 2.则x 12﹣4x 1+2x 1x 2的值为 .12.(3.00分)(2018•江西)在正方形ABCD 中,AB=6,连接AC ,BD ,P 是正方形边上或对角线上一点,若PD=2AP ,则AP 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a ﹣1)﹣(a ﹣2)2;(2)解不等式:x ﹣1≥x−22+3.14.(6.00分)(2018•江西)如图,在△ABC 中,AB=8,BC=4,CA=6,CD ∥AB ,BD 是∠ABC 的平分线,BD 交AC 于点E ,求AE 的长.为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=43,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2√3,BE=2√19,求四边形ADPE的面积.六、(本大题共12分)23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2018江西中考数学卷-含答案
江西省2018年中等学校招生考试数 学 试 题(满分120, 考试时间120分钟)一.选择题(每小题3分, 共18分, 在每小题只有一个正确选项) 1. -2的约对值是( )A. -2B. 2C. -21D. 21 2. 计算22)(a ba ⋅-的结果为( ) A. b B. -b C. ab D. ab3. 如图所示的几何体的左视图为( )4. 某班组织了针对 全班同学关于 “你最喜欢的一项体育活动”的问卷调查后, 绘制出频数分布走方图, 由图可知, 下列结论正确的是( )A. 最喜欢篮球的数最多B. 最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C. 全班共有50名学生D. 最喜欢田径的人数点总人数的10%.5. 小军同学在网格纸上将某些地图进行平移操作, 他发现平移前后的两个图形所组成所图形可以是轴对称图形. 如图所示, 现在他将正方形ABCD 从当前位置形开始进行一次平移操作, 平移后的正方形的顶点也在格点上, 则使平移前后的两个正方形组成轴对称图形的平移方向有( ) A. 3 B. 4 C. 5 D.无数个6. 在平面直角坐标系中, 分别过点A(m , 0), B(m +2, 0)作x 轴的垂线l 1和l 2, 探究直线l 1, 直线l 2与双曲线y =x3的关系, 下列结论中错误的是( ) A. 两直线中总有一条与双曲线相交B. 当m =1时, 两直线与双曲线的交点到原点的距离相等C. 当-2 < m < 0时, 两直线与双曲线的交点在y 轴两侧D. 当两直线与双曲线都有交点时, 这两交点的最距离是2..二. 填空题(每小题3分, 共18分) 7. 若分式11-x 有意义, 则x 的取值范围为________ . 8. 2018年5月13日, 中国首艘航空母舰首次执行海上试航任务, 其排水量10篮球 项目频数(人数) 20 25 155 12208 64足球 羽毛球田径 乒乓球超过6万吨, 将数60 000用科学记数法表示应为___________ . 9. 中国的《九章算术》是世界现代数学的两大源泉之一, 其中有一个问题: “今有牛五, 羊二, 直金十两.牛二, 羊五, 直金八两. 问牛羊各直金几何?”译文: 今有牛5头, 羊2头, 共值金10两; 牛2头, 羊5头, 共值金8两. 问牛, 羊每头各值金多少? 设牛, 羊每头各值金x 两, y 两. 依题意, 可列出方程组为_______________ .10. 如图, 在矩形 ABCD 中, AD=3, 将矩形ABCD 绕点A 逆时针旋转, 得到矩形AEFG, 点B 的对应点E 落在CD 上, 且DE=EF, 则AB 的长为________ . 11. 一元二次方程x 2-4x +2=0的两根为x 1, x 2, 则x 12-4 x 1+2 x 1x 2的值为_____. 12. 在正方形ABCD 中, AB=6, 连接AC, BD, P 是正方形边上或以角线上一点,若PD=2AP, 则AP 的长为________ .三. (本大题共5小题, 每小题6分, 共30分) 13. (1) 计算: (a +1)(a -1)-(a -2)2;(2) 解不等式: x -1≥22x +314. 如图, 在△ABC 中, AB=8, BC=4, CA=6, CD//AB, BD 是∠ABC 的平分线, BD 交AC 于点E, 求AE 的长.15. 如图, 在四边形ABCD 中, AB//CD, AB=2CD, E 为AB 的中点. 请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1) 在图1中, 画出△ABD 的BD 边上的中线;(2) 在图2中, 若BA=BD, 画出△ABD 的AD 边上的高.B ADCE16. 今年某市为创评 “全国文明城市”称号, 周末团市委组织志愿者进行宣传活动. 班主任梁老师决定从4名女班干部(小悦, 小惠, 小艳和小倩)中通过抽签的方式确定2名女生参加, 抽签规则: 将4名女班干部姓名分别写在4张完全相同的卡片正面, 把四张卡片背面朝上, 洗匀后放在桌面上, 梁老师先从中随机抽取一张卡片, 记下姓名, 再从剩余的3张卡片中随机抽取第二张, 记下姓名.(1) 该班男生 “小刚被抽中” 是________事件, “小悦被抽中”是_______事件(填 “不可能”或 “必然”或 “随机”); 第一次抽取卡片 “小悦被抽中”的概率为_______;(2) 试用画树状图或列表的方法表示这次抽签所有可能的结果, 并求出“小惠被抽中”的概率.17. 如图, 反比例函数y =xk(k ≠0)的图像与正比例函数y =2x 的图像相交于A(1, a ), B 两点, 点C 在第四象限, CA//y 轴, ∠ABC=90°. (1) 求k 的值及点B 的坐标; (2) 求tanC 的值.四. (本大题共3小题, 每小题8分, 共24分)18. 4月23日是世界读书日, 习近平总书记说: “读书可以让人保持思想活力, 让人得到智慧启发, 让人滋养浩然之气.” 某校响应号召, 鼓励师生利用课余时间广泛阅读. 该校文学社为了解学生课外阅读的情况, 抽样调查了部分学生每周用于课外阅读的时间, 过程如下: 收集数据 从全校随机抽取20名学生, 进行了每周用于课外阅读时间的调查, 数据如下(单位: min):30 60 81 50 40 110 130 146 90 100 60811201407081102010081整理数据 按如下分段整理样本数据并补全表格:分析数据 补全下列表格中的统计量:平均数 中位数 众数 80课外阅读时间x(min)0≤ x <40 40≤ x <8080≤ x <120120≤ x <160等级 D C B A 人数38得出结论(1) 用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_______; (2) 如果该校现有学生400人, 估计等级为 “B”的学生有多少名?(3) 假设平均阅读一本课外书的时间为160分钟, 请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19. 图1是一种折叠门, 由上下轨道和两扇长宽相等的活页门组成, 整个活页门的右轴固定在门框上, 通过推动左侧活页门开关. 图2是其俯视简化的示意图, 已知轨道AB=120cm, 两扇活页门的宽OC=OB=60cm, 点B 固定, 当点C 在AB 上左右运动时, OC 与OB 的长度不变(所有结果保留小数点后一位). (1) 若∠OBC=50°,求AC 的长;(2) 当点C 从点A 向右运动60cm 时, 求点O 在此过程中运动的路径长. 参考数据: sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.1420. 如图, 在△ABC 中, O 为AC 上一点, 以点O 为圆心, OC 为半径作圆, 与BC 相切于点C, 过点A 作AD ⊥BO 交BO 的延长线于点D, 且∠AOD=∠BAD. (1) 求证: AB 为⊙O 的切线;(2) 若BC=6, tan ∠ABC=34, 求AD 的长.五. (本大题共2小题, 每小题9分, 共18分)21. 某乡镇实施产业扶贫, 帮助贫困户承包了荒山种植某品种蜜柚, 到了收获季节, 已知该蜜柚的成本价为8元/千克, 投入市场销售时, 调查市场行情, 发现该蜜柚销售不会亏本, 且每天销售量y(千克)与销售单位x(元/千克)之间的函数关系如图所示. (1) 求y 与x 的函数关系式, 并写出x 的取值范围;(2) 当该品种蜜柚定价为多少时, 每天销售获得的利润最大? 最大利润是多少?(3) 某农户今年共采摘蜜柚4800千克, 该品种蜜柚的保质期为40天, 根据(2)中获得最大利润的方式销售, 能否销售完这批蜜柚?请说明理由.22. 在菱形ABCD 中, ∠ABC=60°, 点P 是射线BD 上一动点, 以AP 为边向右侧作等边△APE. 点E 的位置随着点P 的位置变化而变化.(1) 如图1, 当点E 在菱形ABCD 内部或边上时, 连接CE, BP 与CE 的数量关系是_________. CE 与AD 的位置关系是________;(2) 当点E 在菱形ABCD 外部时, (1)中的结论是否成立? 若成立, 请予以证明; 若不成立, 请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4, 当点P 在线段BD 的延长线上时, 连接BE, 若AB=32, BE=192, 求四边形ADPE 的面积.图1 图2 图3 图4六. (本大题共12分)23. 小贤与小杰在探究某类二次函数问题时, 经历了如下过程: 求解体验(1) 已知抛物线y =-x 2+bx -3经过点(-1, 0), 则b =______, 顶点坐标为__________, 该抛物线关于点(0, 1)成中心对称的抛物线表达式是__________________ . 抽象感悟我们定义:对于抛物线y =ax 2+bx +c (a ≠0), 以y 轴上的点M(0, m )为中心, 作该抛物线关于点M 的对称抛物线y ’, 则我们又称抛物线y ’为抛物线线y 的 “衍生抛物线”, 点M 为 “衍生中心” .(2) 已知抛物线y =-x 2-2x +5关于点(0, m )的衍生抛物线y ’. 若这两抛物线有交点, 求m 的取值范围.(3) 已知抛物线y=ax2+2ax-b(a≠0),①若抛物线y的衍生抛物线y’=bx2-2bx+a2(b≠0). 两抛物线有两个交点, 且恰好是它们的顶点, 求a,b的值及衍生中心的坐标;②若抛物线y关于点(0, k+12)的衍生抛物线为y1, 其顶点为A1; 关于点(0, k+22) )的衍生抛物线为y2, 其顶点为A2; …; 关于点(0, k+n2) )的衍生抛物线为y n, 其顶点为A n; … ; (n为正整数) 求A n A n+1的长(用含n的式子表示).一二. 填空题备用图片:。
江西省2018年中考数学试题(含解析)
江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a)2▪ba 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a)2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为ABCD【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★第3题(第4题)乒乓球径毛球足球篮球5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A.3个B. 4个 C. 5个 D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A(m,0),B(m ﹢2,0)作轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲 线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是√10,所以B 正确;当−2﹤m ﹤0时,l 1在y 轴的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是(m,3m )和(m +2,3m+2),两交点的距离是√4+36[m (m+2)]2 ,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项.【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分) 7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤a <10 【答案】6×104★9.中国的《九章算术》是世界现代数学的两大泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
江西省中考数学试卷(含答案解析版)
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项) 1.(3.00分)(2018•江西)﹣2的绝对值是( )A .﹣2B .2C .﹣12D .122.(3.00分)(2018•江西)计算(﹣a )2•ba的结果为( )A .bB .﹣bC .abD .ba3.(3.00分)(2018•江西)如图所示的几何体的左视图为( )A .B .C .D .4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=3x的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式1x−1有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A 逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥x−22+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B 固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=43,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2√3,BE=2√19,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2018年江西省中考数学试卷(含答案解析版)
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
江西省2018年中考数学试题(含解析)
江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a)2▪ba 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a)2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为ABCD【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★第3题(第4题)乒乓球径毛球足球篮球5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A.3个B. 4个 C. 5个 D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A(m,0),B(m ﹢2,0)作轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲 线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是√10,所以B 正确;当−2﹤m ﹤0时,l 1在y 轴的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是(m,3m )和(m +2,3m+2),两交点的距离是√4+36[m (m+2)]2 ,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项.【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分) 7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤a <10 【答案】6×104★9.中国的《九章算术》是世界现代数学的两大泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
2018年江西省中考数学试题含答案解析
乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 乒 (乒 4乒 )
5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形ABCD从当前位置开始进行一次平移操作, 平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3 个 B. 4 个 C. 5 个 D. 无数个 【解析】
机密★2018 年 6 月 19 日
江西省 2018 年中等学校招生考试 数学试题卷 【解析】
说明:1.全卷满分 120 分,考试时间 120 分钟。 2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分.每小题只有一个正确选项) 1. ﹣2 的绝对值是
( )
������,
3 3 和(������ + 2, ������ ������ + 2),两交点
意是错误的选项. D ★★★
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 1 7.若分式 ������ ‒ 1 有意义,则������的取值范围是
. 【解析】 本题考察分式有意义的条件,当分母不为 0 时,分式有意义,所以������ ‒ 1 ≠ 0. 【答案】 ������ ≠ 1 ★ 8.2018 年 5 月 13 日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过 6 万吨,将数 60000 用科学记数法表示应 为 . ������ 【解析】 本题考察科学记数法,把 60000 写成������ × 10 的形式,注意1 ≤ ������<10 4 【答案】 6 × 10 ★ 9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金 十 两。牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛 5 头,羊 2 头,共值金 10 两,
j江西2018年中考数学试题及答案
j江西2018年中考数学试题及答案江西2018年中考数学试题及答案2018年江西省中考数学试题已经公布,以下是部分试题及答案供参考。
一、选择题1. 已知直线AB与x轴的交点为(4, 0),斜率为2/3,下列哪个方程是线段AB的方程?A. y = 2/3xB. y = 2/3x + 4C. y = -2/3x + 4D. y = -2/3x答案:C2. 已知函数y = ax^2 + 2x + 1的图象过点(1, 5),则a的值为多少?A. 2B. 3C. 4D. 5答案:B二、填空题1. 一辆车每小时行驶80公里,行驶4小时共行驶多少公里?答案:320公里2. 若2(x + 3) + 4 = 5(3x - 1),则x的值为多少?答案:4三、解答题1. 计算12+22+32+...+102的值。
解答:首先列出每一项的平方:12=1,22=4,32=9,...,102=100。
将这些数相加:1+4+9+...+100=385。
2. 某商品原价是200元,根据商家的促销活动,价格打折后按照9折出售,打完折后还可以使用一个额外优惠券,再减去80元。
请问最终买家需要支付多少钱?解答:首先将原价打9折,得到9/10*200=180元。
然后减去优惠券的金额,180-80=100元。
最终买家需要支付100元。
四、应用题某公司一共有120名员工,其中男性和女性人数之比为3:5。
如果增加了20名男性员工和30名女性员工后,男性和女性人数之比变为4:7,求原先的男性人数和女性人数各为多少?解答:设原先男性人数为3x,女性人数为5x。
根据题意,有3x+20/(5x+30)=4/7。
通过解方程可得x=10,代入可知原先男性人数为3x=30,女性人数为5x=50。
以上是2018年江西省中考数学试题的部分内容及答案,希望能对你有所帮助。
江西省南昌市2018年中考数学试题(解析)
2018年江西省南昌市中考数学试卷一.选择题<共12小题)1.<2018江西)﹣1的绝对值是< )A. 1 B.0 C.﹣1 D.±1考点:绝对值。
分析:根据绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.xxM0whI3Ex2.<2018南昌)在下列表述中,不能表示代数式“4a”的意义的是< )A.4的a倍B.a的4倍C.4个a相加D.4个a相乘考点:代数式。
分析:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.xxM0whI3Ex解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.xxM0whI3Ex3.<2018江西)等腰三角形的顶角为80°,则它的底角是< )A.20°B.50°C.60°D.80°考点:等腰三角形的性质。
分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=<180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.<2018江西)下列运算正确的是< )A.a3+a3=2a6 B.a6÷a﹣3=a3 C.a3a3=2a3 D.<﹣2a2)3=﹣8a6xxM0whI3Ex考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
(真题)江西省2018年中考数学试题(有答案)-(16926)
机密★2018年6月19日江西省2018年中等学校招生考试数学试题卷【解析】说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣2的绝对值是 A. B. C. D.-22﹣1212【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别.【答案】B ★2.计算的结果为(‒a )2▪ba 2 A. B. C. D.b -b ab ba【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.(‒a )2=a 2b 【答案】A ★3.如图所示的几何体的左视图为乒3乒ABCD【解析】本题考察三视图,容易,但注意错误的选项B和C.【答案】D★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚.【答案】C★5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,ABCD平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A.3个B. 4个C. 5个D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【答案】C★★乒乒乒乒乒乒乒乒2084612(乒4乒)乒乒乒乒乒乒乒252015105DCAB6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲A(m,0)B(m ﹢2,0)x l 1l 2l 1l 2线的关系,下列结论中错误的是y =3xA.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等mC.当时,两条直线与双曲线的交点在轴两侧‒2﹤m ﹤0yD.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当m l 2m l 1时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),m ≠0,m ≠﹣2l 1与l 2A m =1(3,1),到原点的距离都是,所以正确;当时,在轴10B ‒2﹤m ﹤0l 1y 的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距离是,l 2y C (m ,3m)和(m +2,3m +24+36[m (m +2)]2当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.m D 【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .1x ‒1x 【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以.x ‒1≠0【答案】★x ≠18.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为.【解析】本题考察科学记数法,把60000写成的形式,注意a ×10b1≤a <10【答案】★6×1049.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两。
2018年江西省中考数学真题及参考解析
江西省二○一八年初中学业考试暨高中阶段统一招生考试数学试卷注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。
2.答第Ⅰ卷时,必须使用2B 铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。
3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。
务必在题号所指示的答题区域内作答。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a )2▪b a 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a )2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为A BC D【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结第3题(第4题)乒乓球径毛球足球篮球论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有A. 3个B. 4个C. 5个D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A (m ,0),B (m ﹢2,0)作x 轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲线 y =3x 的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0 时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是 10,所以B 正确;当−2﹤m ﹤0 时,l 1在y 轴的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是 m ,3m 和(m +2,3m +2),两交点的距离是 4+[m m+2 ]2,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项.【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分) 7.若分式 1x−1 有意义,则x 的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以x −1≠0.(第5题)【答案】 x ≠1★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤a <10【答案】6×104★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两。
中考数学试题-2018年江西省南昌市初中毕业暨中等学校招生考试数学试卷及答案 最新
机密★2018年6月19日江西省南昌市2018年初中毕业暨中等学校招生考试数学试卷说明:本卷共有五个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算2008(1)-的结果为( ) A .2008B .2008-C .1D .1-2.下列各式中,与2(1)a -相等的是( ) A .21a -B .221a a -+C .221a a --D .21a +3.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手 B .冠军属于外国选手 C .冠军属于中国选手甲 D .冠军属于中国选手乙 4.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.下列图案中是轴对称图形的是( )A. B. C. D.6.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )7.下列三角形纸片,能沿直线剪一刀得到等腰梯形的是( )2018年北京 2018年雅典 1988年汉城 1980年莫斯科左面 (第6题)A .B .C.D.8.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A .①与② B .②与③ C .③与④ D .①与④ 二、填空题(本大题共8小题,每小题3分,共24分)9.在“W e l i k e m a t h s .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).10.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .11.如图,AB 是O 的直径,点C D ,是圆上两点, 100AOC ∠=,则D ∠= 度.12.方程212xx =-的解是 . 13.相交两圆的半径分别为5和3,请你写出一个符合条件的圆心距为 .14.在ABC △中,6AB =,8AC =,在DEF △中,4DE =,3DF =,要使ABC △与DEF △相似,需添加的一个条件是 (写出一种情况即可). 15.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .16.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹). 三、(本大题共4小题,每小题6分,共24分) 17.计算:0(2007)132sin 60-+--°.ABFE O(第16题)yxO 1 3(第15题)50 70A .50 80B . 50100C .50 D .A OBDC (第11题)18.化简:24214a a a+⎛⎫+⎪-⎝⎭·.19.下面三张卡片上分别写有一个等式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?20.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?证明你的结论.四、(本大题共3小题,每小题8分,共24分)21.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数. 为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.22.如图,在Rt ABC △中,90A ∠=°,86AB AC ==,.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE BC ∥交AC 于点E ,3.27.07.888.49.812 3 分数人数x1x - 2AD BCFE设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)当x 为何值时,BDE △的面积S 有最大值,最大值为多少?23.2018年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李用8000元做为预订下表中比赛项目门票的资金. (1)若全部资金用来预订男篮门票和乒乓球门票共10张,问男篮门票和乒乓球门票各订多少张?(2)小李想用全部资金预订男篮、足球和乒乓球三种门票共10张,他的想法能实现吗?请说明理由.比赛项目 票价(元/场)男篮 1000 足球 800 乒乓球500五、(本大题共2小题,每小题12分,共24分)24.在同一平面直角坐标系中有6个点:(11)(31)(31)(22)A B C D -----,,,,,,,,(23)E --,,(04)F -,.(1)画出ABC △的外接圆P ,并指出点D 与P 的位置关系;(2)若将直线EF 沿y 轴向上平移,当它经过点D 时,设此时的直线为1l . ①判断直线1l 与P 的位置关系,并说明理由;②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与P 的劣弧..CD 围成的图形的面积(结果保留π).25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写xy654321------ 123456------ 123 321O A E DBC出图1,2,3中的顶点C 的坐标,它们分别是 , , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,(20)Hc ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.y C ()A(40)D ,(12)B , O x图1y C()A(0)D e ,()B c d ,O x图2y C ()A a b ,()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图4江西省南昌市2018年初中毕暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分;但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分)1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.D 二、填空题(本大题共8小题,每小题3分,共24分) 9.0.18; 10.12; 11.40; 12.2-; 13.答案不惟一,如5; 14.2BCEF=(或A D ∠=∠); 15.11x =-,23x =; 16.如图:三、(本大题共4小题,每小题6分,共24分) 17.解:原式31(31)22=+--⨯································································· 3分 1313=+-- ········································································· 4分 0= ··························································································· 6分18.解:原式22442(4)a a a a-++=-······································································· 2分 22(2)(2)a a a a a+=+-······························································· 4分 2aa =- ······················································································ 7分 19.解:树形图:第一张卡片上的整式 x 1x - 2(第16题) A OE B F第二张卡片上的整式 1x - 2 x 2 x 1x - 所有可能出现的结果1x x - 2x 1x x - 12x - 2x21x - ··················································································································· 4分也可用表格表示: 第一张卡片 上的整式 第二张卡片上的整式x1x - 2x1x x - 2x 1x - 1x x -12x - 22x21x -··················································································································· 4分 所以P (能组成分式)4263==. ····································································· 6分 20.解:AB CF ∥.证明:在ABC △和CFE △中,由DE FE AED CEF AE CE =∠=∠=,,, 得ADE CFE △≌△. ··················································································· 4分 所以A FCE ∠=∠. ······················································································· 5分 故AB CF ∥. ······························································································ 6分 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; ········ 1分 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=; ············································· 2分 方案3最后得分:8; ····················································································· 3分 方案4最后得分:8或8.4. ············································································· 4分(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案. ···························································· 6分 因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案. ········································································ 8分 (说明:少答一个方案扣2分,多答一个方案扣1分)22.解:(1)DE BC ∥,ADE ABC ∴△∽△. AD AEAB AC∴=. ······························································································ 1分 又82AD x =- ,8AB =,AE y =,6AC =,8286x y-∴=. 362y x ∴=-+. ··························································································· 3分自变量x 的取值范围为04x ≤≤. ··································································· 4分(2)11326222S BD AE x x ⎛⎫==-+ ⎪⎝⎭22336(2)622x x x =-+=--+. ····································································· 6分∴当2x =时,S 有最大值,且最大值为6. ······················································· 8分 (或用顶点公式求最大值)23.解:(1)设订男篮门票x 张,乒乓球门票y 张. 由题意,得1000500800010x y x y +=⎧⎨+=⎩,., ································································ 3分解得64.x y =⎧⎨=⎩,答:小李可以订男篮门票6张,乒乓球门票4张. ················································· 4分 (2)能,理由如下: ······················································································ 5分 设小李订男篮门票x 张,足球门门票y 张,则乒乓球门票为(10)x y --张.由题意,得1000800500(10)8000x y x y ++--=. ··········································· 7分 整理得5330x y +=,3053xy -=. x y ,均为正整数,∴当3x =时,5y =,102x y ∴--=.∴小李可以预订男篮门票3张,足球门票5张和乒乓球门票2张.∴小李的想法能实现. ···················································································· 8分 五、(本大题共2小题,每小题12分,共24分)24.解:(1)所画P 如图所示,由图可知P 的半径为5,而5PD =. ∴点D 在P 上. ···························································· 3分 (2)① 直线EF 向上平移1个单位经过点D ,且经过点(03)G -,, ∴2221310PG =+=,25PD =,25DG =.222PG PD DG ∴=+.则90PDC ∠=,1PD l ∴⊥.∴直线1l 与P 相切.(另法参照评分) ··························································································· 7分 ② 5PC PD ==,10CD =,222PC PD CD ∴+=.90CPD ∴∠= .xy 2l1lACPB D EFG 654321------ 123456------ 1233212(5)π5π44S ∴==扇形,215(5)22PCD S ==△.∴直线2l 与劣弧CD 围成的图形的面积为5π542-.………………………………………12分 25.解:(1)(52),,()e c d +,,()c e a d +-,. ·············································· 2分 (2)分别过点A B C D ,,,作x 轴的垂线,垂足分别为1111A B C D ,,,, 分别过A D ,作1AE BB ⊥于E ,1DF CC ⊥于点F . 在平行四边形ABCD 中,CD BA =,又11BB CC ∥,180EBA ABC BCF ABC BCF FCD ∴∠+∠+∠=∠+∠+∠= . EBA FCD ∴∠=∠.又90BEA CFD ∠=∠=,BEA CFD ∴△≌△. ····················································································· 5分 AE DF a c ∴==-,BE CF d b ==-.设()C x y ,.由e x a c -=-,得x e c a =+-.由y f d b -=-,得y f d b =+-.()C e c a f d b ∴+-+-,. ···························· 7分 (此问解法多种,可参照评分)(3)m a c e +=+,n b d f +=+或m c e a =+-,n d f b =+-. ····················· 9分 (4)若GS 为平行四边形的对角线,由(3)可得1(27)P c c -,.要使1P 在抛物线上, 则有274(53)(2)c c c c c =--⨯--,即20c c -=.10c ∴=(舍去),21c =.此时1(27)P -,. ······················································· 10分 若SH 为平行四边形的对角线,由(3)可得2(32)P cc ,,同理可得1c =,此时2(32)P ,. 若GH 为平行四边形的对角线,由(3)可得(2)c c -,,同理可得1c =,此时3(12)P -,. 综上所述,当1c =时,抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形.符合条件的点有1(27)P -,,2(32)P ,,3(12)P -,. 12分 yC ()A a b ,()D e f ,()B c d ,EF1B 1A1C 1D Ox。