初中数学概率技巧及练习题附解析
初中数学概率统计练习题及参考答案
初中数学概率统计练习题及参考答案初中数学概率统计练习题及参考答案:一、选择题1、某班级三年级有男生35人,女生40人。
从这些人中任选一个人,下列说法中,正确的是()A.女生的概率是 35/75B.女生的概率是 40/75C.男生的概率是 35/75D.男生的概率是 40/752、从 1、2、3、4、5 中任取一个数字,问所得数的个位数为 3 的概率是多少?A.2/5B.1/5C.1/10D.2/103、小明每次买两个鸡蛋,有80%的概率一个鸡蛋没碎,20%的概率两个鸡蛋都碎了。
问题一:小明买8个鸡蛋,不会是全部碎了吧?问题二:小明买8个鸡蛋,不需要赔偿多少个鸡蛋?A.不会全部碎,赔偿两个B.不会全部碎,赔偿四个C.不会全部碎,赔偿六个D.会全部碎二、填空题1、小明从 1、2、3、4、5 中任取一个数,他猜测所得数小于 4 的概率是 ______。
2、小港每小时按外卖订单分别有30%、25%、20%、15%、10%的概率接到0、1、2、3、4个外卖订单。
求小港接到的订单数的期望值是 ______。
3、有 15 条石子 5 个人轮流取,每次只能取 1-3 条,最后取光石子的人失败。
第一个取石子的人应该取几颗才能保证享有取胜的策略?三、解答题1、小明做课外辅导班的概率是 3/4,小华做课外辅导班的概率是1/2。
两人都不做辅导课的概率是多少?解:小明不做辅导班的概率为 1-3/4=1/4,小华不做辅导班的概率为1-1/2=1/2。
根据“都不”的概率公式:P(A且B)=P(A)×P(B),两人都不做辅导班的概率为 1/4×1/2=1/8。
2、有 10 个球,其中有 4 个黑球。
每次抽出 1 个球,观察它的颜色后再放回去。
问需要抽多少次,才可使得抽到 1 个白球的概率大于 0.5?解:这是个典型的随机事件重复试验问题,符合二项分布的模型。
假定抽到白球的次数为 X,则 P(X=i)=(6/10)^i*(4/10)^(10-i)*C(10,i)。
初三概率的习题及答案
初三概率的习题及答案初三概率的习题及答案概率是数学中的一个重要概念,也是我们日常生活中经常会遇到的问题。
在初中数学中,概率作为一个重要的章节,需要我们掌握一定的理论知识和解题技巧。
本文将从不同角度出发,给出一些初三概率的习题及答案,帮助同学们更好地理解和应用概率知识。
一、基础概念题1. 小明有一组数字卡片,其中有4张红色卡片和6张蓝色卡片。
小明从中随机抽取一张卡片,请问他抽到红色卡片的概率是多少?答案:红色卡片的数量为4张,总卡片数为10张,所以小明抽到红色卡片的概率为4/10,即2/5。
2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
请问他们抽到的数字相加为偶数的概率是多少?答案:一共有5张卡片,其中有3张偶数卡片(2、4)、2张奇数卡片(1、3、5)。
根据排列组合的知识,甲、乙、丙三个人抽到的数字相加为偶数的情况有两种:奇奇奇和偶偶偶。
所以概率为2/5。
二、条件概率题1. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
已知甲抽到的数字是偶数,乙抽到的数字是奇数,那么丙抽到的数字为奇数的概率是多少?答案:已知甲抽到的数字是偶数,那么甲抽到的数字为2或4。
已知乙抽到的数字是奇数,那么乙抽到的数字为1、3或5。
所以丙抽到的数字为奇数的情况有两种:甲抽到2、乙抽到1或3,或者甲抽到4、乙抽到1或3。
共有4种情况。
而总共有5张卡片,所以丙抽到的数字为奇数的概率为4/5。
三、独立事件题1. 小明有一组数字卡片,其中有2张红色卡片和3张蓝色卡片。
小明从中随机抽取一张卡片,记下颜色后放回,再抽取一张卡片。
请问他两次抽到的卡片颜色都是红色的概率是多少?答案:第一次抽到红色卡片的概率为2/5,第二次抽到红色卡片的概率也为2/5。
由于两次抽取是相互独立的事件,所以两次抽到的卡片颜色都是红色的概率为(2/5)*(2/5)=4/25。
2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
初中数学概率技巧及练习题附答案
本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.
8.下表显示的是某种大豆在相同条件下的发芽试验结果:
每批粒数 n
100
300
400
600
1000
发芽的粒数 m 96
282
382
570
948
发芽的频率 m 0.960 n
0.940
0.955
0.950
0.948
2000 1904 0.952
初中数学概率技巧及练习题附答案
一、选择题
1.下列事件是必然事件的是( ) A.打开电视机正在播放动画片 上的次数为 50 C.车辆在下个路口将会遇到红灯
B.投掷一枚质地均匀的硬币 100 次,正面向 D.在平面上任意画一个三角形,其内角和是
180 【答案】D 【解析】
【分析】
直接利用随机事件以及必然事件的定义分别判断得出答案.
利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称
图形的情况,利用求简单概率的公式即可求出.
【详解】
由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角
形外其余三种都既是中心对称图形,又是轴对称图形.
设矩形、菱形、圆分别为 Al 、 A2 、 A3 ,等边三角形为 B ,根据题意可画树状图如下
图:
如图所示,共有 16 种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称
图形的情况为 9 种,所以两次都抽到既是中心对称图形又是轴对称图形的概率 P 9 , 16
故选 C .
【点睛】 本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义 与画树状图的方法及求概率的公式是解题关键.
最新初中数学概率技巧及练习题附答案
最新初中数学概率技巧及练习题附答案一、选择题1.如图,在菱形ABCD中, AC 与 BD 订交于点O.将菱形沿EF折叠,使点 C 与点 O 重合.若在菱形ABCD内任取一点,则此点取自暗影部分的概率为()2335 A.B.C.D.3548【答案】 C【分析】【剖析】依据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形 CEOF的面积,而后依据概率公式计算即可.【详解】菱形 ABCD的面积 = 1AC BD , 2∵将菱形沿EF 折叠 ,使点 C 与点 O 重合 ,∴E F 是△BCD的中位线 ,∴E F=1BD , 2∴菱形 CEOF的面积 =1EF1OC ACBD,28∴暗影部分的面积 = 1AC BD1AC BD3AC BD,2883AC BD3∴此点取自暗影部分的概率为:8.14AC BD2应选 C..【点睛】本题考察了几何概率的计算方法:用整个几何图形的面积n 表示所有等可能的结果数,用某个事件所据有的面积m 表示这个事件发生的结果数,而后利用概率的观点计算出这个事件的概率为:m P.n2.一个盒子内装有大小、形状相同的四个球,此中红球 1 个、绿球 1 个、白球 2 个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.1111B.4C.D.2612【答案】 C【分析】【剖析】画树状图求出共有12 种等可能结果,切合题意得有 2 种,从而求解.【详解】解:画树状图得:∵共有 12 种等可能的结果,两次都摸到白球的有 2 种状况,21∴两次都摸到白球的概率是:.12 6故答案为C.【点睛】本题考察画树状图求概率,掌握树状图的画法正确求出所有的等可能结果及切合题意的结果是本题的解题重点.3.岐山县各学校展开了第二讲堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中 ,若小斌和小宇两名同学每人随机选择此中一个活动参加,则小斌和小宇选到同一活动的概率是()1111A.B.C.D.2369【答案】 B【分析】【剖析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、 B、 C 表示)展现所有9 种等可能的结果数,再找出小斌和小宇两名同学的结果数,而后依据概率公式计算即可.【详解】画树状图为: (国学诗词组、篮球足球组、陶艺茶艺组分别用 A. B. C表示 )共有 9 种等可能的结果数,此中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率= 3 1,9 3应选 B.【点睛】本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出所有可能的结果,列表法合适于两步达成的事件,树状图法合用于两步或两步以上达成的事件.用到的知识点为:概率 =所讨状况数与总状况数之比.4.以下诗句所描绘的事件中,是不行能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星斗【答案】 D【分析】【剖析】不行能事件是指在必定条件下,必定不发生的事件.【详解】A、是必定事件,应选项错误;B、是随机事件,应选项错误;C、是随机事件,应选项错误;D、是不行能事件,应选项正确.应选 D.【点睛】本题主要考察了必定事件,不行能事件,随机事件的观点.理解观点是解决这种基础题的主要方法.必定事件指在必定条件下,必定发生的事件;不行能事件是指在必定条件下,必定不发生的事件;不确立事件即随机事件是指在必定条件下,可能发生也可能不发生的事件.5.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高明 .如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽视不计),则油恰巧落入孔中的概率是()A.B.C.D.【答案】 D【分析】【剖析】用中间正方形小孔的面积除以圆的总面积即可得.【详解】∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽视不计),则油恰巧落入孔中的概率是,应选: D.【点睛】考察几何概率,求概率时,已知和未知与几何相关的就是几何概率.计算方法是长度比,面积比,体积比等.6.将三粒平均的分别标有:1,2, 3, 4, 5,6 的正六面体骰子同时掷出,出现的数字分别为a ,b,c,则a ,b,c正好是直角三角形三边长的概率是()1111 A.B.C.D.366123【答案】 A【分析】【剖析】本题是一个由三步才能达成的事件,共有6×6×6=216种结果,每种结果出现的时机相同,a, b, c 正好是直角三角形三边长,则它们应当是一组勾股数,在这216组数中,是勾股数的有 3, 4,5; 3, 5,4; 4, 3, 5; 4, 5, 3; 5,3,4; 5, 4,3共 6种状况,即可求出 a, b, c 正好是直角三角形三边长的概率.【详解】61P(a, b, c 正好是直角三角形三边长)=216 36应选: A【点睛】本题考察概率的求法,概率等于所讨状况数与总状况数之比.本题属于基础题,也是常考题型.7.以下事件中,是必定事件的是( )A.随意掷一枚质地平均的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会着落C.车辆随机抵达一个路口,恰巧碰到红灯D.明日气温高达30 C ,必定能见到明朗的阳光【答案】 B【分析】【剖析】依据必定事件的观点作出判断即可解答.【详解】解: A、抛随意掷一枚质地平均的骰子,掷出的点数是奇数是随机事件,故 A 错误;B、操场上小明抛出的篮球会着落是必定事件,故 B 正确;C、车辆随机抵达一个路口,恰巧碰到红灯是随机事件,故 C 错误;D、明日气温高达30 C ,必定能见到明朗的阳光是随机事件,故 D 错误;应选: B.【点睛】本题考察了必定事件的定义,必定事件指在必定条件下必定发生的事件,娴熟掌握是解题的重点 .8.从﹣ 1、 2、3、﹣ 6 这四个数中任取两数,分别记为m 、 n ,那么点m, n 在函数y 6)图象的概率是(xA.111D.1 2B.C.834【答案】 B【分析】【剖析】依据反比率函数图象上点的坐标特点可得出mn= 6,列表找出所有mn 的值,依据表格中mn= 6 所占比率即可得出结论.【详解】Q 点m, n在函数 y 6的图象上,xmn 6 .列表以下:m﹣ 1﹣1﹣ 1222333﹣ 6﹣ 6﹣6 n23﹣ 6﹣ 13﹣ 6﹣ 12﹣6﹣ 123 mn﹣ 2﹣36﹣ 26﹣ 12﹣ 36﹣186﹣ 12﹣18mn 的值为6的概率是4 1.12 3应选: B.【点睛】本题考察了反比率函数图象上点的坐标特点以及列表法与树状图法,经过列表找出 mn= 6 的概率是解题的重点.9.如图,在4×3长方形网格中,任选用一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()1B.111A.C.3D.6124【答案】 D【分析】【剖析】【详解】解:∵在 4×3正方形网格中,任选用一个白色的小正方形并涂黑,共有8 种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有 2 种状况,以下图:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2 18 4应选 D.10.以下说法正确的选项是()A.检测某批次灯泡的使用寿命,适合用全面检查B.可能性是 1 %的事件在一次试验中必定不会发生C.数据 3, 5, 4,1, -2 的中位数是4D.“ 367人中有 2 人同月同日出生”为确立事件【答案】 D【分析】【剖析】依据可能性的大小、全面检查与抽样检查的定义及中位数观点、必定事件、不行能事件、随机事件的观点进行判断即可.【详解】A、检测某批次灯泡的使用寿命,检查拥有损坏性,应采纳抽样检查,此选项错误;B、可能性是 1%的事件在一次试验中可能发生,此选项错误;C、数据 3, 5, 4,1, -2 的中位数是 3,此选项错误;D、“367人中有2 人同月同日出生”为必定事件,此选项正确;应选 D.【点睛】本题主要考察可能性的大小、全面检查与抽样检查的定义及中位数观点、随机事件,娴熟掌握基本定义是解题的重点.11.以下说法正确的选项是()A.对角线相等的四边形必定是矩形B.随意掷一枚质地平均的硬币10 次,必定有 5 次正面向上C.假如有一组数据为5,3 ,6, 4, 2,那么它的中位数是6D.“用长分别为5cm、 12cm、6cm的三条线段能够围成三角形”这一事件是不行能事件【答案】 D【分析】【剖析】依据矩形的判断定理,数据出现的可能性的大小,中位数的计算方法,不行能事件的定义挨次判断即可 .【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 随意掷一枚质地平均的硬币10 次,不必定有 5 次正面向上,故该项错误;C. 一组数据为5, 3, 6,4, 2,它的中位数是4,故该项错误;D.用“长分别为 5cm、12cm、 6cm 的三条线段能够围成三角形”这一事件是不行能事件,正确,应选: D.【点睛】本题矩形的判断定理,数据出现的可能性的大小,中位数的计算方法,不行能事件的定义,综合掌握各知识点是解题的重点.12.如图,管中搁置着三根相同的绳索AA1、 BB1、 CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳索,若每边每根绳索被选中的时机相等,则两人选到同根绳子的概率为()1111 A.B.C.D.2369【答案】 B【分析】【剖析】画出树状图,得出所有结果和两人选到同根绳索的结果,即可得出答案.【详解】以下图:共有 9 种等可能的结果数,两人选到同根绳索的结果有 3 个,∴两人选到同根绳索的概率为1=1,93应选 B . 【点睛】本题考察了列表法与树状图法:利用列表法和树状图法展现所有可能的结果求出 n ,再从中选出切合事件 A 或 B 的结果数量 m ,求出概率.13. 动物学家经过大批的检查预计:某种动物活到 20 岁的概率为 0.8 ,活到 25 岁的概率为 0.5,活到 30 岁的概率为 0.3 ,此刻有一只 20 岁的动物,它活到 30 岁的概率是 ()A .3B .3C .5D .358810【答案】 B【分析】【剖析】先设出所有动物的只数,依据动物活到各年纪阶段的概率求出相应的只数,再依据概率公式解答即可.【详解】解:设共有这种动物x 只,则活到 20 岁的只数为 0.8x ,活到 30 岁的只数为 0.3x ,故现年 20 岁到这种动物活到30 岁的概率为0.3x= 3 .0.8x 8应选: B . 【点睛】本题考察概率的简单应用,用到的知识点为:概率=所讨状况数与总状况数之比.14. 在一个不透明的口袋中装有 4 个红球和若干个白球,他们除颜色外其余完整相同.通过多次摸球实验后发现,摸到红球的频次稳固在 25% 邻近,则口袋中白球可能有()个.A .20B . 16C . 12D . 15【答案】 C 【分析】【剖析】由摸到红球的频次稳固在25% 邻近,能够得出口袋中获取红色球的概率,从而求出白球个数即可获取答案.【详解】解:设白球个数为x 个,∵摸到红球的频次稳固在25% 左右,∴口袋中获取红色球的概率为25% ,∴4 1 ,4x4解得: x12 ,经查验, x12是原方程的解故白球的个数为12 个.应选 C【点睛】本题主要考察了随机概率,利用频次预计概率,依据大批频频试验下频次稳固值即概率得出是解题重点,应掌握概率与频次的关系,从而更好的解题.15.某市环青云湖竞走活动中,走完整部行程的队员即可获取一次摇奖时机,摇奖机是一个圆形转盘,被平分红16 个扇形,摇中红、黄、蓝色地区,分获一、二、三等奖,奖品分别为自行车、雨伞、署名笔.小明走完了全程,能够获取一次摇奖时机,小明能获取署名笔的概率是()A.1711B.16C.D.1648【答案】 C【分析】【剖析】从题目知道,小明需要获取署名笔,一定获取三等奖,即转到蓝色地区,把圆盘中蓝色的小扇形数出来,再除以总分数,即可获取答案.【详解】解:小明要获取署名笔,则一定获取三等奖,即转到蓝色地区,从转盘中找出蓝色地区的扇形有 4 份,又由于转盘总的平分红了16 份,所以,获取署名笔的概率为:故答案为 C.【点睛】41,16 4本题主要考察了随机事件的概率,概率是对随机事件发生之可能性的胸怀;在做转盘题时,能正确找到事件发生占圆盘的比率是做对题目的重点,还需要注意,转盘是否是被平分的,才能防止错误 .16.以下事件中,是必定事件的是()A.随意画一个三角形,其内角和是180 °B.经过有交通讯号灯的路口,碰到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】 A【分析】【剖析】依据必定事件、不行能事件、随机事件的观点对各个选项进行判断即可.【详解】A.随意画一个三角形,其内角和是180 °是必定事件;B.经过有交通讯号灯的路口,碰到红灯是随机事件;C.掷一次骰子,向上一面的点数是 6 是随机事件;D.射击运动员射击一次,命中靶心是随机事件;应选: A.【点睛】考察的是必定事件、不行能事件、随机事件的观点.必定事件指在必定条件下,必定发生的事件.不行能事件是指在必定条件下,必定不发生的事件,不确立事件即随机事件是指在必定条件下,可能发生也可能不发生的事件.17.在一个不透明的袋子里装有四个小球,球上分别标有6,7, 8, 9 四个数字,这些小球除数字外都相同.甲、乙两人玩“”猜数字游戏,甲先从袋中随意摸出一个小球,将小球上的数字记为 m,再由乙猜这个小球上的数字,记为n.假如 m, n 知足 |m ﹣ n| ≤1,那么就称甲、乙两人“”“”)心领意会,则两人心领意会的概率是(A.3B.5C.1D.1 8842【答案】 B【分析】【剖析】【详解】试题剖析:画树状图以下:由树状图可知,共有16 种等可能结果,此中知足|m ﹣ n| ≤1的有 10 种结果,∴两人“心领意会”的概率是10=5,168应选 B.考点:列表法与树状图法;绝对值.18.以下事件中,属于必定事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.随意画一个三角形,其内角和是180 °D.抛一枚硬币,落地后正面向上【答案】 C【分析】剖析:必定事件就是必定发生的事件,依照定义即可作出判断.详解: A、三角形的外心到三角形的三个极点的距离相等,三角形的心里到三边的距离相等,是不行能事件,故本选项不切合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不切合题意;C、三角形的内角和是180 °,是必定事件,故本选项切合题意;D、抛一枚硬币,落地后正面向上,是随机事件,故本选项不切合题意;应选 C.点睛:解决本题需要正确理解必定事件、不行能事件、随机事件的观点.必定事件指在必定条件下必定发生的事件.不行能事件是指在必定条件下,必定不发生的事件.不确立事件即随机事件是指在必定条件下,可能发生也可能不发生的事件.19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其余差异,每次摸球前先搅拌平均.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能构成“孔孟”的概率是()A.B.C.D.【答案】 B【分析】【剖析】依据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12 中可能,此中能构成孔孟的有 2 种,所以两次摸出的球上的汉字能构成“孔孟”的概率是.应选 B.考点:简单概率计算.20.以下事件中,是必定事件的是( )A.购置一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通讯号灯的路口,碰到红灯D.随意画一个三角形,其内角和是180 °【答案】 D【分析】【剖析】先能必定它必定会发生的事件称为必定事件,预先能必定它必定不会发生的事件称为不行能事件,必定事件和不行能事件都是确立的.【详解】A.购置一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通讯号灯的路口,碰到红灯,属于随机事件,不合题意;D.随意画一个三角形,其内角和是 180 °,属于必定事件,切合题意;应选 D.【点睛】本题主要考察了必定事件,预先能必定它必定会发生的事件称为必定事件.。
最新初中数学概率技巧及练习题
最新初中数学概率技巧及练习题一、选择题1. 有三张正面分别写有数字-2, 1, 3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a, b)在第一彖限的概率为()1114A. -B. -C. -D.-6 3 2 9【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:开始a -1 1 2AAAb 1 2 -1 2 -1 1一共有6种情况,在第二彖限的点有(-1, 1)(-1, 2)共2个,故选:B.【点睛】本题考查了列表法与树状图法,第一彖限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.2. 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()1111A. —B・—C・— D.—2 4 6 12【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:开始绿白白红白白红绿白红縁白•・•共有12种等可能的结果,两次都摸到白球的有2种情况,2 1・••两次都摸到白球的概率是:— =12 6故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.3. 某居委会组织两个检查组,分别对"垃圾分类"和"违规停车"的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )1112A. -B. -C. -D.-9 6 3 3【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为討!故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率二所求情况数与总情况数之比.4. 在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球・1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()1 - 3 1 - 6【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是丄:6则摸到不是绿球的概率为1-|=|.6 6故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.5. 一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为那么袋中有多少个黑球()A. 4个B. 12个C. 8个D.不确定【答案】C【解析】【分析】4 1首先设黑球的个数为x个,根据题意得:—- = 解此分式方程即可求得答案・4+x 3【详解】设黑球的个数为X个,4 1根据题意得:4 + x 3解得:x=&经检验:X=8是原分式方程的解;・••黑球的个数为&故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率二所求情况数与总情况数之比.6. 如图,由四个直角边分别是6和8的全等直角三角形拼成的〃赵爽弦图S随机往大正方形区域内投针一次,则针扎在小正方形GHE尸部分的概率是()【答案】D【解析】【分析】求出AB.HG的边长,进而得到正方形GHEF的面枳和四个小直角三角形的面枳,求出比值即可. 【详解】解:I A H= 6,B H= 8,勾股定理得A B= 1 0,・・・HG=8—6=2,S AAHB=2 4,S正方形GHEF= 4,四个直角三角形的面积=9 6 ,4 1・••针扎在小正方形GHEF部分的概率是——=—100 25故选D.【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.7. 从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()2 111A. —B. —C. —D.—27 4 54 2【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:•・•一副扑克共54张,有4张K,4 2正好为K的概率为—=—故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=—・n&卞列事件中是确定事件的为()A. 两条线段可以组成一个三角形B.打开电视机正在播放动画片C.车辆随机经过一个路II,遇到绿灯D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A.两条线段可以组成一个三角形是不可能事件,也是确定爭件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路II,遇到绿灯是随机爭件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机爭件,故本选项错误。
新初中数学概率技巧及练习题附答案
新初中数学概率技巧及练习题附答案一、选择题1.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.3.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.4.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.5.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.6.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C ,一定能见到明媚的阳光【答案】B【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.8.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.9.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.10.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为( )A .1B .34C .12D .14【答案】B 【解析】 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个, ∴P (中心对称图形)=34, 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<【答案】B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.13.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )A.15B.110C.25D.225【答案】B【解析】【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.【详解】用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,所以,正好抽中养老保险和医疗保险的概率P=21 2010.故选B.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.下表显示的是某种大豆在相同条件下的发芽试验结果:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率mn0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.其中推断合理的是()A.①②③B.①②C.①③D.②③【答案】D【解析】【分析】利用频率估计概率,大量反复试验下频率稳定值即为概率可解题.【详解】解:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955,此推断错误,②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95,此结论正确,③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒,此结论正确,故选D.本题考查了利用频率估计概率, 大量反复试验下频率稳定值即为概率,属于简单题,熟悉概念是解题关键.15.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.16.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.A 、打开电视机正在插放动画片为随机事件,故此选项错误;B 、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C 、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D 、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D . 【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.17.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).A B .2π C D .2π【答案】D 【解析】 【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得. 【详解】∵半径为2的圆内接正方形边长为 ∴圆的面积为4π,正方形的面积为8, 则石子落在此圆的内接正方形中的概率是82=4ππ, 故选D . 【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.18.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上 【答案】C 【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD .现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.13【答案】D 【解析】【分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴»»»==AC CDDB , ∴∠AOC =∠COD =∠DOB =60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD ,∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.。
数学初中概率试题及答案
数学初中概率试题及答案1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?答案:抽到红球的概率是5/8。
2. 抛一枚公平的硬币两次,两次都正面朝上的概率是多少?答案:两次都正面朝上的概率是1/4。
3. 在一个班级中,有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,选到男生的概率是多少?答案:选到男生的概率是1/2。
4. 一个转盘被平均分成了8个部分,其中3个部分涂成红色,2个部分涂成蓝色,其余3个部分涂成绿色。
如果转动转盘,停在红色部分的概率是多少?答案:停在红色部分的概率是3/8。
5. 一个袋子里有10个球,其中7个是白球,3个是黑球。
如果随机抽取两个球,两个都是白球的概率是多少?答案:两个都是白球的概率是7/15。
6. 一个骰子有6个面,每个面上分别标有1到6的数字。
如果掷一次骰子,掷出偶数的概率是多少?答案:掷出偶数的概率是1/2。
7. 一个袋子里有6个球,其中4个是红球,2个是黄球。
如果随机抽取两个球,至少抽到一个红球的概率是多少?答案:至少抽到一个红球的概率是2/3。
8. 一个袋子里有5个球,其中3个是红球,2个是白球。
如果随机抽取一个球,抽到白球的概率是多少?答案:抽到白球的概率是2/5。
9. 一个班级有50名学生,其中25名男生和25名女生。
如果随机选择两名学生,两名都是女生的概率是多少?答案:两名都是女生的概率是1/2。
10. 一个袋子里有8个球,其中5个是红球,3个是蓝球。
如果随机抽取两个球,两个都是红球的概率是多少?答案:两个都是红球的概率是5/28。
初中数学概率技巧及练习题附答案解析
故答案为A.
【点睛】
本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握:
必然事件:事先肯定它一定会发生的事件;
不确定事件:无法确定它会不会发生的事件;
不可能事件:一定不会发生的事件.
16.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()
【详解】
检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;
一年有366天所以367个人中必然有2人同月同日生,B对;
可能性是1%的事件在一次试验中有可能发生,故C错;
3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.
故选B.
【点睛】
区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
10.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是 ,乙组数据的方差是 ,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
中学初三数学概率试卷试题总结计划大全含答案
一、概率基础知识1.随机事件的定义:在相同条件下,可能发生也可能不发生的事件叫做随机事件。
2.必然事件的定义:在一定条件下一定发生的事件叫做必然事件。
3.不可能事件的定义:在一定条件下一定不发生的事件叫做不可能事件。
4.概率的定义:一个事件发生的可能性叫做这个事件的概率,用0到1之间的实数表示,其中0表示不可能发生,1表示必然发生。
二、概率计算方法1.直接计算法:如果一个事件包含的样本点数是有限的,可以直接计算每个样本点发生的可能性,然后求和得到事件的概率。
2.间接计算法:如果一个事件不包含所有样本点,可以通过计算不发生这个事件的概率,然后用1减去这个概率得到事件的概率。
3.条件概率:在条件B发生的条件下,事件A发生的概率叫做A 在B条件下的条件概率,用P(A|B)表示。
4.独立事件的概率:如果两个事件A和B相互独立,那么事件A 发生的条件下事件B发生的概率等于事件B发生的概率,即P(B|A)=P(B)。
三、典型题型及解题方法1.求一个事件的概率:直接根据定义计算,或者利用间接计算法。
例1:抛一枚硬币,求正面向上的概率。
解:因为硬币只有正反两面,所以正面向上和反面向上的概率都是1/2。
2.求条件概率:利用条件概率的定义,即P(A|B)=P(A∩B)/P(B)。
例2:抛两枚硬币,求第一枚硬币正面向上,第二枚硬币反面向上的条件概率。
解:第一枚硬币正面向上,第二枚硬币反面向上的样本点有(正,反)和(反,正),总共4个样本点,所以P(A∩B)=2/4=1/2。
第一枚硬币正面向上的概率是1/2,所以P(B)=1/2。
所以P(A|B)=(1/2)/(1/2)=1。
3.求独立事件的概率:利用独立事件的定义,即P(A∩B)=P(A)P(B)。
例3:抛两枚硬币,求第一枚硬币正面向上,第二枚硬币反面向上同时发生的概率。
解:第一枚硬币正面向上的概率是1/2,第二枚硬币反面向上的概率是1/2,所以P(A∩B)=1/2×1/2=1/4。
初中数学概率技巧及练习题附答案(1)
初中数学概率技巧及练习题附答案(1)一、选择题1.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.A.15 B.17 C.16 D.18【答案】B【解析】【分析】根据共摸球50次,其中16次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可估计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数.【详解】∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 17,∴黑球的个数8÷817= 17(个),故答案选B.【点睛】本题主要考查的是通过样本去估计总体,只需将样本"成比例地放大”为总体是解本题的关键.5.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.6.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C ,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C ,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.12.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.13.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13B .16C .12D .23【答案】A 【解析】 【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解. 【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A . 【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.14.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45B .35C .25D .15【答案】B 【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.15.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105168=, 故选B . 考点:列表法与树状图法;绝对值.18.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.19.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.20.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.。
初二数学概率试题答案及解析
初二数学概率试题答案及解析1.袋中共有2个红球,2个黄球,4个紫球,从中任取—个球是白球,这个事件是事件.【答案】不可能【解析】∵袋子中有2个红球,2个黄球,4个紫球,∴从中任取一个球可能出现的情况有2+2+4=8种,∵没有白球,∴是白球的概率为0.故答案为:不可能【考点】1、随机事件;2、概率的意义2.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤菱形,将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【答案】B【解析】从中任抽一张,正面图案有5种情况,其中正面图形既是轴对称图形,又是中心对称图形的有①线段、⑤菱形共两种,所以P(正面图形既是轴对称图形,又是中心对称图形)=;故选B【考点】概率3.下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红【答案】A.【解析】A、购买一张福利彩票,可能中奖,也可能不中奖,是随机事件,符合题意;B、一定会发生,属必然事件,不符合题意;C、一定不会发生,是不可能事件,不符合题意;D、一定不会发生,是不可能事件,不符合题意.故选A.【考点】随机事件.4.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数摸到白球的次数摸到白球的频率(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2分)(2)假如你摸一次,你摸到白球的概率.(2分)(3)试估算盒子里黑、白两种颜色的球各有多少只?(4分)【答案】(1)0.6;(2)0.6.;(3)黑球有16个,白球有24个.【解析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16.答:不透明的盒子里黑球有16个,白球有24个.【考点】利用频率估计概率.5.为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。
初三数学概率试题答案及解析
初三数学概率试题答案及解析1.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_________个黄球.【答案】15.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得红球的频率,再乘以总球数求解.试题解析:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,设黄球有x个,∴0.4(x+10)=10,解得x=15.答:口袋中黄色球的个数很可能是15个.考点: 利用频率估计概率.2.五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.【答案】.【解析】解:∵五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),∴该卡片上的数字是负数的概率是:.【考点】概率公式.3.如图所示,转盘均被分成四个相同的扇形,转动转盘时指针落在每个扇形内的机会均等,转动转盘,则指针落在标有2的扇形内的概率为()A.B.C.D.【答案】C.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵一个圆形转盘被分成四个相同的扇形,∴转动转盘,指针落在标有2的扇形内的概率为.故选C.【考点】概率.4.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为()A.B.C.D.【答案】B【解析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K1、K3与K3、K1,∴能让两盏灯泡同时发光的概率为:=.故选B.5.如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.其中正确的判断有()个.A.1个B.2个C.3个D.4个【答案】C【解析】此题主要考查了可能性的大小问题,根据出水量假设出第一次分流都为1,可以得出下一次分流的水量,依此类推得出最后得出每个出水管的出水量,进而得出答案.解:根据图示可以得出:①根据图示出水口之间存在不同,故此选项错误;②2号出口的出水量与4号出口的出水量相同;根据第二个出水口的出水量为:+=,第4个出水口的出水量为:+=,故此选项正确;③1,2,3号出水口的出水量之比约为1:4:6;根据第一个出水口的出水量为:,第二个出水口的出水量为:,第三个出水口的出水量为:,∴1,2,3号出水口的出水量之比约为1:4:6;故此选项正确;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.∵1号与5号出水量为,此处三角形材料损耗速度最慢,第一次分流后的水量为(即净化塔最上面一个等腰直角三角形两直角边的水量为),∴净化塔最上面的三角形材料损耗最快,故更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.故此选项正确;故正确的有3个.故选:C.6.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A1表示,女生用B1表示)和九年(2)班的1名男生1名女生(男生用A2表示,女生用B2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.【答案】(1)画树状图见解析;(2);(3).【解析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果;(2)由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得;(3)由选出的是2名主持人恰好1男1女的情况,然后由概率公式即可求得.试题解析:(1)画树状图得:共有20种等可能的结果,(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:;(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为:.考点: 概率公式.7.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答.在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是( ) .A.B.C.D.【答案】C.【解析】前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为.故选C.【考点】概率公式.8.小芳掷一枚硬币次,有7次正面向上,当她掷第次时,正面向上的概率为______.【答案】【解析】掷一枚硬币正面向上的概率为,概率是个固定值,不随试验次数的变化而变化.9.小烈和小伟玩一种扑克版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑克牌()A.4张B.9张C.12张D.15张【答案】C.【解析】设小烈手里有x中扑克牌,再根据小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,求出x的值即可.设小烈手里有x中扑克牌,∵小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,∴,解得x=12.故选C.考点: 概率公式.10.从-1,0,1,2四个数中选出不同的三个数用作二次函数y=ax2+bx+c的系数,其中不同的二次函数有个,这些二次函数开口向下且对称轴在y轴的右侧的概率是.【答案】18;.【解析】从-1,0,1,2中选出不同的三个数的情况有:-1,0,1;-1,0,2;-1,1,2;0,1,2,作二次函数y=ax2+bx+c的系数,其中不同的二次函数有18个,分别为:-1,0,1;-1,1,0;1,-1,0;1,0,-1;-1,0,2;-1,2,0;2,0,-1;2,-1,0;-1,1,2;-1,2,1;1,-1,2;1,2,-1;2,-1,1;2,1,-1;1,0,2;1,2,0;2,0,1;2,1,0.其中二次函数开口向下且对称轴在y轴的右侧的情况有4种,分别为:-1,1,0;-1,2,0;-1,1,2;-1,2,1.∴P=.【考点】1.二次函数的性质;2.概率.11.在一个不透明的袋子中,装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求:(1)两次都摸出红球的概率;(2)两次都摸到不同颜色球的概率.【答案】(1);(2).【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,(1)根据9种情况中,两次都摸出红球的情况有1种求出两次都摸出红球的概率;(2)根据9种情况中,两次都摸到不同颜色球的情况有6种求出两次都摸到不同颜色球的概率试题解析:(1)列表如下:则P(两次都摸到红球)=.(2)由(1)中表得,则P(两次都摸到不同颜色球)=.【考点】1.列表法或树状图法;2.概率.12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【答案】C.【解析】用绿灯亮的时间除以时间总数60即为所求的概率.一共是60秒,绿的是25秒,所以绿灯的概率是=.故选C.考点: 概率公式.13.甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
初中求概率的三种方法例题
初中求概率的三种方法例题
以下是三种求解概率的方法及其例题:
1.频率法:通过实验的结果来计算概率。
例如,某班级30人中,有10人喜欢足球,那么在这个班级里,喜欢足球的概率是多少?
解法:进行实验,即随机选择一个人,看TA是否喜欢足球,进行多次实验后得出喜欢足球的人数,将其除以总人数即可。
在这个例子中,喜欢足球的人数是10,总人数是30,因此喜欢足球的概率是10/30,即约为0.33。
2.等可能法:将所有可能发生的结果数量相等的情况下,计算事件发生的概率。
例如,一个骰子的点数是1~6,那么投掷出3点的概率是多少?
解法:根据等可能性,投掷一个骰子,每个点数出现的概率都是1/6,因此投掷出3点的概率是1/6。
3.组合法:通过计算组合的方式,计算事件发生的概率。
例如,从一副扑克牌中,抽取一张牌,这张牌是红桃的概率是多少?解法:一副扑克牌中共有52张牌,其中有13张红桃牌,因此红桃牌的概率是13/52,即1/4。
以上是三种求解概率的方法及其例题。
需要注意的是,不同的问题适用不同的方法,掌握这些方法及其应用场景,才能更好地解决各类概率问题。
初一数学概率试题答案及解析
初一数学概率试题答案及解析1.小明和妹妹做游戏:在一个不透明的箱子里放入20张纸条(除所标字母外其余相同),其中12张纸条上字母为A,8张纸条上的字母为B,将纸条摇匀后任意摸出一张,如果摸到纸条上的字母为A,则小明胜;如果摸到纸条上的字母为B,则妹妹胜。
(1)这个游戏公平吗?请说明理由;(2)若妹妹在箱子中再放入3张与前面相同的纸条,所标字母为B,此时这个游戏对谁有利?【答案】这个游戏对小明有利【解析】(1)不公平,可通过计算他们各自的概率比较即可;(2)这个游戏对小明有利.可分别计算小明和妹妹的概率试题解析:(1)游戏不公平,理由如下:∵P(小明胜)==,P(妹妹胜)==∴P(小明胜)>P(妹妹)∴这个游戏不公平;(2)这个游戏对小明有利.理由如下:∵P(小明胜)=,P(妹妹胜)=∴P(小明胜)>P(妹妹胜)∴这个游戏对小明有利.【考点】游戏公平性2.将100个数据分成8个组,如下表:则第六组的频数为()A.12B.13C.14D.15【答案】D.【解析】根据表格,得第六组的频数x=100-(11+14+12+13+13+12+10)=15.故选D.【考点】频数与频率.3.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关,那么一次过关的概率是()A.B.C.D.【答案】C【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.∵等腰梯形、等腰三角形只是轴对称图形,平行四边形、圆、菱形是中心对称图形∴一次过关的概率是故选C.本题涉及了轴对称图形与中心对称图形的定义,概率的求法,本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.4.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为___________.【答案】【解析】概率的求法:概率=所求情况数与总情况数的比值.解:由题意得取到字母e的概率为.【考点】概率的求法点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.5.袋中有红色和黄色两种球:①若红色球有10个,黄色球有5个,那么从袋中摸出一个球是红颜色的可能性P是多少?②若黄色球有5个,如何配置袋中的红色球使摸出的黄色球的概率为25%?【答案】解:① P(红)= =②设袋中有x个红球, 则 P(黄)= = 25% , ,【解析】①求红色球占总数的几分之几②设袋中有x个红球,根据黄色球占总数的25%进行求解6.小亮周末去奶奶家,因为修路,他这次走了一条他不太熟悉的新路,走到一个有三岔路的路口突然迷了路,而这三个岔路中只有一个通往奶奶家,小亮能一次选对的概率是 .【答案】【解析】解:在这三个岔路中能一次选对的概率.7.小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是.【答案】【解析】根据题意,小明在4个选项中随意选了一个答案,而4个选项中只有一个是正确的;故他选对的概率是.8.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.【答案】黄【解析】解:因为袋子中有7个红球、3个黄球和5个蓝球,从中任意摸出一个球,为红球的概率是,②为黄球的概率是,为蓝球的概率是,可见摸出黄球的概率最小.9.如图,有两个可以自由转动的均匀转盘A、B,转盘A、B被均匀地分成几等份,每份分别标上数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次),指针同时指向的两个数都是偶数,那么甲胜;否则乙胜.你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
中考数学复习《概率》考点及经典题型
中考数学复习《概率》考点及经典题型知识点一:概率 1. 概率及公式(1)定义:表示一个事件发生的可能性大小的数. (2)概率公式:P (A )=mn(m 表示试验中事件A 出现的次数,n 表示所有等可能出现的结果的次数). 2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.变式练习2:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是14.2. 用频率可以估计概率一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p =m n. 变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.注意:(1)在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(2)在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
变式练习2:在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A. 2B. 3C. 4D. 12【解析】B 由已知得4个黄球占总球的13,所以共有12个球,则白球的个数为12-5-4=3(个).变式练习3:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.3. 事件的类型及其概率 1)确定事件和随机事件 (1)确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
新初中数学概率技巧及练习题含答案
新初中数学概率技巧及练习题含答案一、选择题1.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰【答案】D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.6.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.7.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()3234【答案】C【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.8.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()9399【答案】A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.13.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13 B .16 C .12 D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.14.下列事件中,确定事件是( ) A .向量BC uuu r 与向量CD uuu r 是平行向量B 2140x -=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形【答案】B【解析】【分析】 根据“必然事件和不可能事件统称确定事件”逐一判断即可.【详解】 A. 向量BC uuu r 与向量CD uuu r 是平行向量,是随机事件,故该选项错误;B. 方程2140x -+=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B .【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.15.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况, ∴这两个球上的数字之积为奇数的概率是21=126. 故选A .【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.下列事件是必然事件的是( )A .打开电视机正在播放动画片B .投掷一枚质地均匀的硬币100次,正面向上的次数为50C .车辆在下个路口将会遇到红灯D .在平面上任意画一个三角形,其内角和是180︒ 【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.17.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.18.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.19.下列事件是必然发生事件的是( )A .打开电视机,正在转播足球比赛B .小麦的亩产量一定为1000公斤C .在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.20.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。
人教版初中数学概率技巧及练习题附答案
人教版初中数学概率技巧及练习题附答案一、选择题1.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰【答案】D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636=故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.5.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122=.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.6.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()4324【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.7.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.8.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()9633【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.12.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于12B.等于12C.小于12D.无法确定【答案】B【解析】【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.13.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.14.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.15.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.18.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个【答案】B【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:44x+=0.2,解得:x=16,故选:B..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ 10盒笔芯一共有10×20=200(支),
由详解①知黑色笔芯共有24支,
将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,
故④正确;
综上有三个正确结论,
故答案为C.
【点睛】
本题主要考查了与概率有关的知识点.在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.
故选C
4.下列事件是必然事件的是()
A.某彩票中奖率是 ,买100张一定会中奖
B.长度分别是 的三根木条能组成一个三角形
C.打开电视机,正在播放动画片
D.2018年世界杯德国队一定能夺得冠军
【答案】B
【解析】
【分析】
必然事件就是一定发生的事件,即发生的概率是1的事件.
【详解】
A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;
9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
【答案】A
【解析】
【分析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为 ,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
A. B. C. D.
【答案】B
【解析】
【分析】
根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.
【详解】
用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:
共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,
解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是
∴抛掷第100次正面朝上的概率是
故答案选:B
【点睛】
本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.
8.动物学家通过大量的调查估计:某种动物活到 岁的概率为 ,活到 岁的概率为 ,活到 岁的概率为 ,现在有一只 岁的动物,它活到 岁的概率是()
【分析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
12.下列事件中,属于随机事件的是().
A.凸多边形的内角和为
B.凸多边形的外角和为
C.四边形绕它的对角线交点旋转 能与它本身重合
初中数学概率技巧及练习题附解析
一、选择题
1.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )
5.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()
A. B. C. D.
【答案】C
【解析】
【分析】
【详解】
用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,
于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,
∴落地后至多有一次正面朝下的概率为 .
故选:A
【点睛】
本题考核知识点:求概率.解题关键点:用列举法求出所有情况.
7.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()
A.小于 B.等于 C.大于 D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义分析即可.
【详解】
、四边形中,平行四边形绕它的对角线交点旋转 能与它本身重合,故四边形绕它的对角线交点旋转 能与它本身重合是随机事件;
、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.
故选: .
【点睛】
本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
A. B.
C. D.
【答案】C
【解析】
【分析】
根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
【详解】
∵总面积为3×3=9,其中阴影部分面积为4× ×1×2=4,
∴飞镖落在阴影部分的概率是 .
故答案选:C.
【点睛】
本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
所以,正好抽中养老保险和医疗保险的概率P= .
故选B.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;
④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.
其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.
【详解】
检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;
一年有366天所以367个人中必然有2人同月同日生,B对;
可能性是1%的事件在一次试验中有可能发生,故C错;
3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.
故选B.
【点睛】
区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.
10.下列说法正确的是( )
A.检测某批次灯泡的使用寿命,适宜用全面调查
B.“367人中有2人同月同日生”为必然事件
C.可能性是1%的事件在一次试验中一定不会犮生
D.数据3,5,4,1,﹣2的中位数是4
【答案】B
【解析】
【分析】
根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.
【详解】
由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.
B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;
C、打开电视机,正在播放动画片,属于随机事件,不符合题意;
D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.
故选:B.
【点睛】
此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.
【详解】
解:①根据表格的信息,得到
黑色笔芯数= ,
故①错误;
②每盒笔芯的数量为20支,
∵每盒黑色笔芯的数量都≤6,
∴每盒红色笔芯≥14,
因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,
故②正确;
③根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此
从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7
所以,所求概率为 ,故选C.
考点:简单事件的概率.
6.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.
【详解】
∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.
D.任何一个三角形的中位线都平行于这个三角形的第三边
【答案】C
【解析】
【分析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.
【详解】
解: 、凸n多边形的内角和 ,故不可能为 ,所以凸多边形的内角和为 是不可能事件;
、所有凸多边形外角和为 ,故凸多边形的外角和为 是必然事件;