初中数学概率解析含答案
初三概率的习题及答案
初三概率的习题及答案初三概率的习题及答案概率是数学中的一个重要概念,也是我们日常生活中经常会遇到的问题。
在初中数学中,概率作为一个重要的章节,需要我们掌握一定的理论知识和解题技巧。
本文将从不同角度出发,给出一些初三概率的习题及答案,帮助同学们更好地理解和应用概率知识。
一、基础概念题1. 小明有一组数字卡片,其中有4张红色卡片和6张蓝色卡片。
小明从中随机抽取一张卡片,请问他抽到红色卡片的概率是多少?答案:红色卡片的数量为4张,总卡片数为10张,所以小明抽到红色卡片的概率为4/10,即2/5。
2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
请问他们抽到的数字相加为偶数的概率是多少?答案:一共有5张卡片,其中有3张偶数卡片(2、4)、2张奇数卡片(1、3、5)。
根据排列组合的知识,甲、乙、丙三个人抽到的数字相加为偶数的情况有两种:奇奇奇和偶偶偶。
所以概率为2/5。
二、条件概率题1. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
已知甲抽到的数字是偶数,乙抽到的数字是奇数,那么丙抽到的数字为奇数的概率是多少?答案:已知甲抽到的数字是偶数,那么甲抽到的数字为2或4。
已知乙抽到的数字是奇数,那么乙抽到的数字为1、3或5。
所以丙抽到的数字为奇数的情况有两种:甲抽到2、乙抽到1或3,或者甲抽到4、乙抽到1或3。
共有4种情况。
而总共有5张卡片,所以丙抽到的数字为奇数的概率为4/5。
三、独立事件题1. 小明有一组数字卡片,其中有2张红色卡片和3张蓝色卡片。
小明从中随机抽取一张卡片,记下颜色后放回,再抽取一张卡片。
请问他两次抽到的卡片颜色都是红色的概率是多少?答案:第一次抽到红色卡片的概率为2/5,第二次抽到红色卡片的概率也为2/5。
由于两次抽取是相互独立的事件,所以两次抽到的卡片颜色都是红色的概率为(2/5)*(2/5)=4/25。
2. 甲、乙、丙三个人分别从一组数字卡片中抽取一张,卡片上的数字分别是1、2、3、4、5。
【单元练】人教版初中九年级数学上册第二十五章《概率初步》知识点总结(含答案解析)
一、选择题1.用如图所示的两个转盘进行“配紫色”(红色与蓝色能配成紫色)游戏,配得紫色的概率是( )A.12B.13C.14D.16D解析:D【分析】先画出树状图,从而可得出两个转盘转动时的所有可能结果,再找出一个为红色,一个为蓝色的结果,然后利用概率公式即可得.【详解】由题意,画树状图如下:由此可知,两个转盘转动时的所有可能结果共有6种,它们每一种出现的可能性都相等,其中,一个为红色,一个为蓝色的结果只有1种,则配得紫色的概率是16P ,故选:D.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.2.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.38D解析:D【分析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值.【详解】根据图示,∵黑色区域的面积等于6块方砖的面积,总面积等于16块方砖的面积,∴小球最终停留在黑色区域的概率是:63=168.故选D.【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=黑色区域的面积与总面积之比.3.下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生A解析:A【解析】分析:根据调查的方式、中位数、可能性和样本知识进行判断即可.详解:A、调查舞水河的水质情况,采用抽样调查的方式,正确;B、数据2.0,-2,1,3的中位数是1,错误;C、可能性是99%的事件在一次实验中不一定会发生,错误;D、从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选A.点睛:此题考查概率的意义,关键是根据调查的方式、中位数、可能性和样本知识解答.4.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14C解析:C【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴,∴,2=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.5.“明天的降水概率为90%”的含义解释正确的是()A.明天90%的地区会下雨B.90%的人认为明天会下雨C.明天90%的时间会下雨D.在100次类似于明天的天气条件下,大约有90次会下雨D解析:D【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得,在100次类似于明天的天气条件下,大约有90次会下雨,正确;故选:D.【点睛】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.6.某校食堂每天中午为学生提供A、B两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A.12B.13C.14D.23A解析:A【分析】画出树状图得出所有等可能的情况数,再找出甲乙两人选择同款套餐的情况数,然后根据概率公式求解即可.【详解】根据题意画图如下:所有等可能的情况有4种,其中甲乙两人选择同款套餐的有2种,则甲乙两人选择同款套餐的概率为:21 42 ;故选:A.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.16C解析:C【分析】画出树状图,找出所有等可能的结果,计算即可.【详解】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴()21 = 63P两盏灯泡同时发光,故选C.【点睛】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键.8.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
初三数学统计与概率试题答案及解析
初三数学统计与概率试题答案及解析1.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?【答案】(1)三年级有12名志愿者,两幅统计图补充完整见解析;(2)两名队长都是二年级志愿者的概率为.【解析】(1)设三年级有x名志愿者,由题意可列得方程 x=(18+30+x)×20%,求解此方程即可得到结果,二年级所占的百分比为1-50%-20%=30%,然后根据这些数据将两幅统计图补充完整即可;(2)首先根据题意画出树状图,然后由树状图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,从而求出两名队长都是二年级志愿者的概率.试题解析:(1)设三年级有x名志愿者,由题意得 x="(18+30+x)×20%" .解得x=12.答:三年级有12名志愿者.····························1分如图所示:···········································3分(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,树形图为··············5分从树形图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,所以P(两名队长都是二年级志愿者)=.···········································7分【考点】条形统计图;扇形统计图;概率公式.2.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)补图见解析;(3)3200;(4).【解析】(1)用B小组的频数除以B小组所占的百分比即可求得结论;(2)分别求得C小组的频数及其所占的百分比即可补全统计图;(3)用总人数乘以D小组的所占的百分比即可;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;(列表方法略,参照给分).P(C粽)=.答:他第二个吃到的恰好是C粽的概率是.考点: 1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.3.为迎接中招体育加试,需进一步了解九年级学生的身体素质,体育老师随机抽取九年级一个班共50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下图所示:请根据图表信息完成下列问题:(1)直接写出表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该班学生进行一分钟跳绳不合格的概率是多少?【答案】(1)18,(2)画图见解析;(3).【解析】分析:(1)用总数分别减去其它组的频数即可,(2)根据频数分布表把直方图补充完整即可,(3)用少于跳120次的人数除以总人数即可.试题解析:(1)根据题意得:a=50-6-8-12-6=18;(2)补充完整后的分数分布直方图如图所示(3)该班测试不合格的概率是;答:该班学生进行一分钟跳绳不合格的概率是.考点:1.频数(率)分布直方图;2.频数(率)分布表.4.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【答案】解:(1)∵较好的所占的比例是:,∴本次抽样共调查的人数是:70÷=200(人)。
初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)
初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。
苏科版八年级下册数学第8章 认识概率含答案(学生专用)
苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为,若袋中原有红球4个,则袋中球的总数大约是()A.32个B.24个C.16个D.12个2、某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑g牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是43、下列事件中,属于必然事件的是()A.打开电视机,它正在播放广告B.两个负数相乘,结果是正数C.明天会下雨D.抛一枚硬币,正面朝下4、不透明的袋子中只有 3 个黑球和 4 个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出 4 个球,下列事件是不可能事件的是()A.摸出的全部是黑球B.摸出 2 个黑球,2 个白球C.摸出的全部是白球D.摸出的有 3 个白球5、下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件6、一个口袋中装有10个红球和若干个黄球,在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋大约有()个黄球.A.7B.10C.15D.207、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色外其他完全相同,那么从袋子中随机摸出一个球是黄球的概率为()A. B. C. D.8、下列事件是必然事件的是()A.抛掷一次硬币,正面向下B.在13名同学中,至少有两名同学出生的月份相同C.某射击运动员射击一次,命中靶心D.任意购买一张电影票,座位号恰好是“7排8号”9、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.10、下列事件中,属于必然事件的是()A.3个人分成两组,其中一组必有2人B.经过路口,恰好遇到红灯 C.打开电视,正在播放动画片 D.抛一枚硬币,正面朝上11、有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是()A.事件A,B都是必然事件B.事件A,B都是随机事件C.事件A必然事件,事件B是随机事件D.事件A随机事件,事件B是必然事件12、掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.必有5次正面向上C.可能有7次正面向上D.不可能有10次正面向上13、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ).A. B. C. D.114、下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大15、在一个不透明的口袋里,装有仅颜色不同的黑球和白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是()摸球的次数100 150 200 500 800 1000摸到白球的次数58 96 116 295 484 601摸到白球的频率0.58 0.64 0.58 0.59 0.605 0.601二、填空题(共10题,共计30分)16、从2,3,4,5,6,7,8,9中随机选出一个数,所选的数是2的倍数或3的倍数的概率为________。
数学初中概率试题及答案
数学初中概率试题及答案1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?答案:抽到红球的概率是5/8。
2. 抛一枚公平的硬币两次,两次都正面朝上的概率是多少?答案:两次都正面朝上的概率是1/4。
3. 在一个班级中,有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,选到男生的概率是多少?答案:选到男生的概率是1/2。
4. 一个转盘被平均分成了8个部分,其中3个部分涂成红色,2个部分涂成蓝色,其余3个部分涂成绿色。
如果转动转盘,停在红色部分的概率是多少?答案:停在红色部分的概率是3/8。
5. 一个袋子里有10个球,其中7个是白球,3个是黑球。
如果随机抽取两个球,两个都是白球的概率是多少?答案:两个都是白球的概率是7/15。
6. 一个骰子有6个面,每个面上分别标有1到6的数字。
如果掷一次骰子,掷出偶数的概率是多少?答案:掷出偶数的概率是1/2。
7. 一个袋子里有6个球,其中4个是红球,2个是黄球。
如果随机抽取两个球,至少抽到一个红球的概率是多少?答案:至少抽到一个红球的概率是2/3。
8. 一个袋子里有5个球,其中3个是红球,2个是白球。
如果随机抽取一个球,抽到白球的概率是多少?答案:抽到白球的概率是2/5。
9. 一个班级有50名学生,其中25名男生和25名女生。
如果随机选择两名学生,两名都是女生的概率是多少?答案:两名都是女生的概率是1/2。
10. 一个袋子里有8个球,其中5个是红球,3个是蓝球。
如果随机抽取两个球,两个都是红球的概率是多少?答案:两个都是红球的概率是5/28。
第23章 概率初步章节易错题型分析(解析版)初中数学
第23章概率初步章节易错题型分析易错点1:事件的分类1.抛掷两枚分别标有1,2,3,4的四面体骰子,写出这个实验中的一个随机事件是____________________;写出这个实验中的一个必然事件是____________________.【难度】★【答案】随机事件:一枚骰子4朝上,一枚骰子3朝上;必然事件:任意两个骰子面朝上的数字和不小于2.【解析】随机事件是有时会发生,有时不会发生;必然事件是每次一定发生,不可能不发生.2.下列三个事件:①明天,上海会下雨;②将汽油滴入水中,汽油会浮在水面上;③任意投掷一枚质地均匀的硬币,硬币停止后,正面朝上;④方程2340-+=有两个不相等的实数x x根,其中必然事件是()A.②④ B.①③④ C.④ D.②【难度】★【答案】D【解析】(1)错,上海明天不一定下雨;(2)水的密度大,油都飘在水面上;(3)错,可能反面朝上;(4)错,方程没有实数根.【解析】考察等可能事件,以及方程的根,生活常识等问题.3.从一副没有大、小王的扑克牌中任意抽取牌,请判断以下事件是必然事件、不可能事件还是随机事件.(1)任意抽取5张牌,其中有一张是大王.(2)任意抽取5张牌,四种花色都有.(3)任意抽取5张牌,都是K.(4)任意抽取13张牌,至少有4张是同一花色.(5)任意抽取13张牌,其中有4张是黑桃.【难度】★【答案】(1)不可能事件;(2)随机事件;(3)不可能事件;(4)必然事件;(5)随机事件.【解析】(1)没有大小王,所以是不可能事件;(2)可能发生;(3)总共有4张K;(4)必然发生;(5)有可能发生.【总结】考察学生对随机事件,必然事件和不可能事件的理解和掌握.4.下列事件中,是不可能发生的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上B.随意掷两个均匀的骰子,朝上面的点数之和为1C.今年冬天黑龙江会下雪D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,指针停在红色区域【难度】★【答案】B【解析】B.朝上面的点数和必定大于等于2;A.随机事件;C.随机事件;D.随机事件【总结】考察学生对随机事件,必然事件和不可能事件的理解和掌握.5.下列事件必然发生的是()A.明天会下雨B.任意买一张电影票,座位号是奇数C.下课铃响了,同学们都走出教室D.在只装有6个白球和4个红球的口袋中,摸不到黑球【难度】★【答案】D【解析】A.随机事件;B.随机事件;C.随机事件;D.必然事件.【总结】考察学生对随机事件,必然事件和不可能事件的理解和掌握.易错点2:事件的概率1.现有2008年奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是()A.110B.310C.14D.15【难度】★★【答案】C【解析】51204p==.【总结】考察学生对事件可能性的大小的掌握情况.2.袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球:(1)摸出的球是蓝色球的概率是________.(2)摸出的球是红色1号球的概率是________.(3)摸出的球是5号球的概率是________.【难度】★【答案】(1)13p=;(2)115p=;(3)15p=.【解析】(3)31155p==.【总结】考察学生对等可能事件的理解和掌握.3.两个装有乒乓球的盒子,其中一个装有2个白球1个黄球,另一个装有1个白球2个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为__________.【难度】★【答案】59.【解析】22115 33339+=.【总结】注意分情况,第一个盒子摸出的是白球或者是黄球两种情况.4.一个袋中装有2个黄球和两个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.【难度】★★【答案】14.【解析】111224p==.【总结】考察学生对概率的理解和掌握,可用树状图或列表法进行计算.5.某家庭电话,打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.15,响第三声或第四声被接的概率都是0.2,则电话在响第五声之前被接的概率为____________.【难度】★【答案】0.65.【解析】0.1+0.15+0.2+0.2=0.65.【总结】考察学生对概率的理解.6.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是()A.18B.13C.38D.35【难度】★★【答案】C【解析】随机摸出一个球,总共有8种情况,摸到黄球的可能性是3种,故38p=.【总结】考察学生对等可能事件的理解和掌握.7.用1、2、3三个数字组成没有重复数字的三位数,其中排出偶数的概率是__________.【难度】★★【答案】13.【解析】组成的三位数有:123,132,213,231,312,321,故偶数概率为:2163p==.【总结】考查学生对枚举法的掌握.8.袋中有红黑蓝3球,从中摸出一个放回,共摸3次,摸到二红一蓝的机会是_________.【难度】★★【答案】31279p==.【解析】三次摸得的颜色共有如下情况:红红红,红红黑,红红蓝,红黑红,红黑黑,红黑蓝,红蓝红,红蓝黑,红蓝蓝,黑红红,黑红黑,黑红蓝,黑黑红,黑黑蓝,黑黑黑,黑蓝红,黑蓝黑,黑蓝蓝,蓝红红,蓝红黑,蓝红蓝,蓝黑黑,蓝黑红,蓝黑蓝,蓝蓝红,蓝蓝黑,蓝蓝蓝,故摸到二红一蓝的机会是31279p==.【总结】考察学生对等可能事件的理解和掌握,注意对所有可能性的分析.9.有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果,(纸牌可用A,B,C,D表示).(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【难度】★★【答案】(1)如图;(2)14.【解析】(1)树状图如图所示;(2)圆与平行四边形是中心对称图形,故概率为:41164p==.【总结】考察学生树状图的理解与掌握,注意分析中心对称图形.10.在一个不透明的口袋中有除了颜色外,大小、形状都一样的5个红球、3个黄球和2个绿球,把它们在口袋中搅匀,请判断以下事件是必然事件、不可能事件,还是随机事件.(1)从口袋中任意取出1个球,是一个绿球.(2)从口袋中一次任意取出5个球,全是黄球.(3)从口袋中一次任意取出5个球,只有黄球和绿球,没有红球.(4)从口袋中一次任意取出6个球,恰好红、黄、绿三种颜色的球都齐了.(5)从口袋中一次任意取出9个球,恰好红、黄、绿三种颜色的球都齐了.【难度】★★【答案】(1)随机事件;(2)不可能事件;(3)随机事件;(4)随机事件;(5)必然事件.【解析】(1)21105p==;(2)不可能,总共只有3个黄球;(3)110p=;(4)有6种可能,1黄1绿4红,1黄2绿3红,2黄1绿3红,2黄2绿2红,3黄1绿2红,3黄2绿1红;(5)必然事件,不管剩哪个颜色的球,最后三个颜色肯定都是全的.【总结】考察学生结合实际情况对不可能事件、随机事件以及必然事件的理解和掌握,注意分情况讨论.11.口袋中有5张完全相同的卡片,分别写有1厘米、2厘米、3厘米、4厘米和5厘米,口袋外有2张卡片分别写有4厘米和5厘米.现随机从袋中取出一张卡片,与袋外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能构成三角形的概率.(2)求这三条线段能构成直角三角形的概率.【难度】★★【答案】(1)45p=;(2)15p=.【解析】(1)设第三边长为x,5454x-<<+,即19x<<,符合条件的有4种,故概率为:45p=;(2)构成直角三角形只有一种情况:3、4、5,所以概率为:15p=.【总结】考察三角形的三边关系,注意利用概率问题来解答.12.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为12,求x和y的值.【难度】★★【答案】(1)53y x=;(2)15x=,25y=.【解析】(1)由题意,可得38xx y=+,故53y x=;(2)由题意,可得:101102xx y+=++,又53y x=,故解得:15x=,25y=.【总结】考察对概率公式的准确理解及运用.13.将正面分别标有数字2、3、4背面花色相同的三张卡片洗匀后.背面朝上放在桌面上.(1)随机地抽取一张,求抽得偶数的概率.(2)随机地抽取一张作为个位上的数字(不放回)再抽取一张作为十位上的数字,请你画出树形图,并根据树形图求恰好取到“24”的概率是多少?【难度】★★【答案】(1)23p=,(2)16p=.【解析】(1)抽得的偶数为2或4,故概率为23p=;(2)树形图如图所示,故恰好取到“24”的概率是16p =. 【总结】考察学生对事件可能性的大小的掌握情况.14.某校有A 、B 两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室自习.(1)求甲、乙、丙三名学生在同一个阅览室自习的概率.(2)求甲、乙、丙三名学生中至少有一人在B 阅览室自习的概率.【难度】★★【答案】(1)14p =;(2)17188p =-=. 【解析】(1)经分析可知,共有八种可能性,故甲、乙、丙三名学生在同一个阅览室自习的 概率为:2184p ==; (2)甲、乙、丙三名学生中至少有一人在B 阅览室自习的概率为17188p =-=. 【总结】考察学生对事件可能性的大小的掌握情况,注意进行分析.15.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率是多少?(2)任意闭合两个开关,请用画树状图或列表法的方法求出小灯泡发光的概率.【难度】★★【答案】(1)14p =;(2)12p =. 【解析】(1)共有4种情况,故任意闭合其中一个开关,则小灯泡发光的概率是14p =; (2)如图所示,任意闭合两个开关共有12种情况,只要闭合D 开关,则小灯泡一定发光,DCBA故概率是61122p==.【总结】考察学生对事件可能性的大小的掌握情况,注意进行分析.16.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出现相同手势,则算打平.(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?(3)妞妞和爸爸出相同手势的概率是多少?【难度】★★【答案】(1)13p=;(2)13p=;(3)3193p==.【解析】(1)爸爸可以出三种手势,出“锤子”是其中一种,故概率为13p=;(2)妞妞赢的话,爸爸只能出锤子,故概率为13p=;(3)两人都出锤子,或者都出布,或者都出剪刀,这样有三种情况,总共有9种情况:布剪刀,布锤子,布布,或者剪刀剪刀,剪刀锤子,剪刀布,或者锤子剪刀,锤子锤子,锤子布,故相同手势的概率为3193p==.【总结】考察学生对事件可能性的大小的掌握情况,注意对所有情况的分析.。
初一数学统计与概率试题答案及解析
初一数学统计与概率试题答案及解析1.下列事件是不确定事件的是………………………………………………()A.三角形一条中线把三角形分成面积相等的两部分;B.在图形的旋转变换中,面积不会改变C.掷一枚硬币,停止后正面朝上D.抛出的石子会下落【答案】C【解析】ABD都是一定会发生的事件,而C正面朝上的概率为,为不确定时间,故选C2.某班学生在颁奖大会上得知该班获得奖励的情况如下表:-项目三好学生优秀学生干部优秀团员-已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( )- A.3项- B.4项- C.5项- D.6项【答案】B【解析】试题考查知识点:概率问题思路分析:抓住学生和班干部是不兼容的具体解答过程:如果某同学是一位班干部,那么他最多可获得的奖励可以有市级、校级优秀学生干部和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(是团员),那么他最多可获得的奖励可以有市级、校级三好学生和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(不是团员),那么他最多可获得的奖励可以有市级、校级三好学生等两项奖励;综上所述,该班获得奖励最多的一位同学可获得的奖励为4项。
试题点评:分情况讨论即可。
3.一个扇形统计图,某一部分所对应扇形的圆心角为108°,则该部分在总体中所占的百分比是.【答案】30%.【解析】因为圆心角的度数=百分比×360°,所以该部分在总体中所占有的百分比=108°÷360°=30%.【考点】扇形统计图.4.小明是2013年入学的,现就读的班级是2014-2015学年八年级2班,座位号是15号,他发现他的学号是20130215.若小英的学号是20120310,则小英现就读的班级是班,座位号是号.【答案】2015届九年级3班,10.【解析】根据学号的表示:前四位是年级, 56位是班级,七八位是座位号,可得答案.小英的学号是20120310,则小英现就读的班级是2015届九年级3班,座位号是10号,【考点】用数字表示事件5.已知样本容量为30,在频数分布直方图中共有三个小长方形,各个小长方形的高的比值是2:4:3,则第三组的频数为()A.10B.12C.9D.8【答案】A.【解析】用30乘以第三组的高所占的比例即可,即第三组的频数为30×=10.故答案选A.【考点】频数(率)分布直方图.6.某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为.【答案】9.【解析】用总人数45乘以60﹣70分这组人数占全班总人数的百分比即可得该组的频数,即频数=45×20%=9.【考点】频数与频率.7.下列调查方式,你认为最合适的是()A.了解恒安新区每天的流动人口数,采用抽样调查方式B.要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C.了解矿区居民日平均用水量,采用全面调查方式D.旅客进火车站上车前的安检,采用抽样调查方式【答案】A.【解析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由此可得选项A,了解恒安新区每天的流动人口数,宜采用抽样调查方式;选项B,要了解全市七年级学生英语单词的掌握情况,宜采用抽样调查方式;选项C,了解矿区居民日平均用水量,宜采用抽样调查方式;选项D,旅客进火车站上车前的安检,宜采用全面调查方式.故答案选A.【考点】全面调查与抽样调查.8.(3分)下列抽样调查较科学的是()①小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况②小华为了了解初中三个年级平均身高,在2014-2015学年七年级抽取了一个班的学生做调查③小智为了了解初中三个年级的平均体重,在七、八、2015届九年级各抽一个班学生进行调查④小明为了知道烤箱内的面包是否熟了,任意取出一小块品尝.A.①②B.②③C.③④D.②④【答案】C.【解析】抽样调查只考查总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.由此可得①一年中不同季节气温变化是很大的,调查时只选了一天的情况,调查的对象太少,缺乏代表性,也不符合广泛性;②要了解初中三个年级的情况,一个年级的学生不具代表性,不科学;③和④的抽样调查符合样本的代表性和广泛性的标准,是较科学的,故答案选C.【考点】全面调查与抽样调查.9.下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量【答案】C【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.A、人数多,不容易调查,因而适合抽样调查;B、数量较多,不易全面调查;C、数量较少,易全面调查;D、数量较多,具有破坏性,不易全面调查.【考点】全面调查与抽样调查10.下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【答案】C.【解析】A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选C.【考点】全面调查与抽样调查.11.綦江县教委在推进课堂教学改革的过程中,为了切实减轻学生的课业负担,对义务教育阶段低年级学生原则上要求老师不布置课外作业,2015届九年级学生每天的课外作业总时间不得超过1小时(学生阅读、自学除外):为了了解各校情况,县教委对其中40个学校2015届九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)计算出学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角;(2)将图中的条形图补充完整;(3)计算出学生课外完成作业时间在60~75分钟的学校占调研学校总数的百分比.【答案】(1)162°;(2)补图见解析,(3)10%.【解析】由扇形统计图可知:(1)学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角为360°×45%=162°;(2)15-30段的学校个数为40×30%=12个;(3)60-75分的学校为40-12-18-6=4个,则占的百分比为×100%=10%.试题解析:(1)360°×45%=162°;(2)40×30%=12;如图;(3)40-12-18-6=4,×100%=10%.【考点】1.条形统计图;2.扇形统计图.12.(4分)一组样本数据:101,98,102,100,99的方差是()A.0B.1C.10D.2【答案】D【解析】欲求“方差”,根据题意,先求出这组数据的平均数,再利用方差公式计算.即平均数=(99+98+101+102+100)=100,方差s2=[(99﹣100)2+(98﹣100)2+(101﹣100)2+(102﹣100)2+(100﹣100)2]=2.故选D.【考点】方差13.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】B【解析】:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.【考点】抽样调查和全面调查14.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A.1500B.1000C.150D.500【答案】 D【解析】大、中、小学生的人数比为2:3:5,所以3份为150人,每份50人,故总数为50×10=500人,故选D.【考点】抽样调查15.已知样本数据为1,2,3,4,5,则它的方差为()A.10B.C.2D.【答案】C.【解析】先计算出数据的平均数,然后根据方差公式计算.平均数=(1+2+3+4+5)=3,所以s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选C.【考点】方差.16.(2015秋•陕西校级期末)在“国庆车展”期间,某汽车经销商推出A、B、C、D四种型号的轿车共1000辆进行展销.C型号轿车销售的成交率为50%,图①是各型号参展轿车的百分比,图②是已售出的各型号轿车的数量.(两幅统计图尚不完整)(1)参加展销的D型号轿车有多少辆?(2)请你将图②的统计图补充完整;(3)通过计算说明哪一款型号的轿车销售情况最好?【答案】(1)250辆;(2)见解析;(3)D型号的轿车销售的情况最好【解析】(1)先利用扇形统计图计算出参加展销的D型号轿车所占的百分比,然后用这个百分比乘以1000即可得到参加展销的D型号轿车的数量;(2)先利用扇形统计图得到参加展销的C型号轿车所占的百分比,则可计算出参加展销的C型号轿车的数量,然后把参加展销的C型号轿车的数量乘以50%得到售出的C型号轿车的数量,再补全条形统计图;(3)分别计算出各型号轿车的销售的成交率,然后比较它们的大小即可判断哪一款型号的轿车销售情况最好.解:(1)1000×(1﹣35%﹣20%﹣20%)=1000×25%=250(辆),所以参加展销的D型号轿车有250辆;(2)1000×20%×50%=100(辆),如图2,(3)四种轿车的成交率分别为:A:×100%=48%,B:×100%=49%,C:50%,D:×100%=52%.所以D型号的轿车销售的情况最好.【考点】条形统计图;扇形统计图.17.下列调查中,适合采用普查方式的是()A.对小北江水质情况的调查B.对市场上腊味质量情况的调查C.对某班48名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【答案】C.【解析】A、对小北江水质情况的调查,不适合采用普查,故选项错误;B、对市场上腊味质量情况的调查,费事费力,不适合采用普查,故选项错误;C、对某班48名同学体重情况的调查,调查范围较小,比较容易做到,适合普查,故本选项正确;D、对某类烟花爆竹燃放安全情况的调查,不适合采用普查,故选项错误.故选C.【考点】全面调查与抽样调查.18.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是()A.1500名学生是总体B.1500名学生的体重是总体C.每个学生是个体D.100名学生是所抽取的一个样本【答案】B【解析】根据题意由抽样调查的意义,可知总体是1500名学生的体重情况,每个学生的体重是个体,100名学生的体重是所抽取的一个样本.故选B【考点】抽样调查19.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是()A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本【答案】D【解析】2000名运动员的年龄是总体;每个运动员的年龄是个体;100名运动员的年龄是抽取的样本.【考点】总体、个体、样本的定义20.(2015•路北区一模)如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定哪一户大【答案】B【解析】根据条形统计图及扇形统计图分别求出甲乙两人教育支出所占的百分比,比较大小即可做出判断.解:由条形统计图可知,甲户居民全年总支出为1200+2000+1200+1600=6000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.【考点】条形统计图;扇形统计图.21.(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b= .【答案】12【解析】根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【考点】频数(率)分布折线图.22.(2015秋•岑溪市期末)为了了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的一模数学成绩D.我区2014年一模考试数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.样本是被抽取的150名考生的一模数学成绩.故选:C.【考点】总体、个体、样本、样本容量.23.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a= ,b= ,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是.【答案】(1)抽样调查,40;(2)a=0.350;b=5;(3)45°.【解析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式,根据已知的一组数据可以求出接受调查的总人数c;(2)总人数乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)用周角乘以其所在小组的频率即可求得其所在扇形的圆心角;解:(1)填抽样调查或抽查;总人数为:8÷0.200=40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=8÷0.200×0.125=5;频数分布直方图如图所示:(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:抽样调查,40;a=0.350,b=5;45°.【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图.24.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【答案】D【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【考点】全面调查与抽样调查.25.(2015•南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【答案】(1)120,30°;(2)见解析;(3)1375人.【解析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【考点】条形统计图;用样本估计总体;扇形统计图.26.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款不少于15元的有()A.40人B.32人C.20人D.12人【答案】B【解析】利用频数分布直方图可得各捐款数段的人数,然后把后两组的人数相加即可.解:由频数分布直方图得后两组的捐款不少于15元,所以捐款不少于15元的有20+12=32(人).故选B.【考点】频数(率)分布直方图.27.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A 1.5小时以上;B 1~1.5小时;C 0.5~1小时;D 0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【答案】(1)本次一共调查了200位学生;(2)画图见解析;(3)学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200﹣60﹣30﹣10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.28.在我市百万读书工程活动中,就我县中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整),设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤3,B:4≤x≤6,C:7≤x≤9,D:x≥10.(1)本次共调查了名教师;(2)扇形统计图中扇形D的圆心角的度数为 °.【答案】(1)200;(2)72.【解析】(1)用A组的频数除以A组所占的百分比即可求得抽查的教师人数;(2)用总人数减去A、B、C组的频数即可求得D组的频数,用该组的频数除以总人数乘以周角的度数即可求得圆心角的度数.解:(1)本次共调查教师38÷19%=200(人),故答案为:200;(2)D组的频数为:200﹣38﹣74﹣48=40,扇形统计图中扇形D的圆心角的度数360°×=72°,故答案为:72.29.为了了解某校七年级期末考数学科各分数段成绩分布情况,从该校七年级抽取200名学生的期末考数学成绩进行统计分析,在这个问题中,样本是()A.200B.被抽取的200名学生C.被抽取的200名学生的期末考数学成绩D.某校七年级期末考数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:为了了解某校七年级考数学科各分数段成绩分布情况,从中抽取200名考生的段考数学成绩进行统计分析,在这个问题中,样本是被抽取的200名考生的段考数学成绩,故选:C.30.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.16【答案】B【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选B.。
最新初中数学概率易错题汇编含答案解析
最新初中数学概率易错题汇编含答案分析一、选择题1.从一副 (54 张 )扑克牌中随意抽取一张,正好为K 的概率为()2111 A.B.C.D.274542【答案】 A【分析】【剖析】用 K 的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有 4张K,∴正好为 K的概率为4=2,54 27应选: A.【点睛】本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件A 出现 m 种结果,那么事件 A 的概率 P(A) = m.n2.将一枚质地平均的骰子掷两次,则两次点数之和等于9的概率为()A.1111B.6C.D.3912【答案】 C【分析】【剖析】【详解】解:画树状图为:共有 36 种等可能的结果数,其点数之和是9 的结果数为4,所以其点数之和是9 的概率=4=1.369应选 C.点睛:本题考察了列表法与树状图法求概率:经过列表法或树状图法展现所有等可能的结果求出 n,再从中选出切合事件 A 的结果数目m,则事件 A 的概率 P( A)=m.n3.在一个不透明的袋中,装有 3 个红球和 1 个白球,这些球除颜色外其余都同样. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是()1121 A.B.C.D.2334【答案】 A【分析】【剖析】列举出所有状况,看两个球都是红球的状况数占总状况数的多少即可.【详解】画树形图得:一共有 12 种状况,两个球都是红球的有 6 种状况,故这两个球都是红球同样的概率是6=1 ,122应选 A.【点睛】本题考察的是用列表法或树状图法求概率.列表法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件;树状图法合适两步或两步以上达成的事件;解题时要注意此题是放回实验仍是不放回实验.用到的知识点为:概率=所讨状况数与总状况数之比.4.太原是我国生活垃圾分类的 46 个试点城市之一,垃圾分类的强迫实行也马上提上日程依据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其余垃圾现有投放这四类垃圾的垃圾桶各 1 个,若将用不透明垃圾袋分类打包好的两袋不一样垃圾随机投进两个不一样的垃圾桶,投放正确的概率是()1111 A.B.C.D.681216【答案】 C【分析】【剖析】依据题意,由列表法获取投放的所有结果,而后正确的只有 1 种,即可求出概率.【详解】解:由列表法,得:∴共有 12 种等可能的结果数,此中将两包垃圾随机投放到此中的两个垃圾箱中,能实现对应投放的结果为 1 种,1∴投放正确的概率为:P;12应选择: C.【点睛】本题考察了列表法与树状图法求概率,解题的重点是正确求出所有等可能的结果数.5.如图,飞镖游戏板中每一块小正方形除颜色外都同样.若某人向游戏板扔掷飞镖一次(假定飞镖落在游戏板上),则飞镖落在暗影部分的概率是()11A.B.2345C.D.99【答案】 C【分析】【剖析】依据几何概率的求法:飞镖落在暗影部分的概率就是暗影地区的面积与总面积的比值.【详解】∵总面积为3×3=9,此中暗影部分面积为4×1× 1× 2=4,24∴飞镖落在暗影部分的概率是.9故答案选: C.【点睛】本题考察了几何概率的求法,解题的重点是依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件(A);而后计算暗影地区的面积在总面积中占的比率,这个比率即事件( A)发生的概率.6.袋中有8个红球和若干个黑球,小强从袋中随意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了 50次,共有 16 次摸出红球,据此预计袋中有黑球()个.A.15B. 17C. 16D. 18【答案】 B【分析】【剖析】依据共摸球 50次,此中 16 次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可预计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数 .【详解】∵共摸了 50 次,此中 16 次摸到红球,∴有34 次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 178÷8=17(),∴黑球的个数17个,故答案选 B.【点睛】本题主要考察的是经过样本去预计整体,只要将样本 "成比率地放大”为整体是解本题的重点 .7.将三粒平均的分别标有:1,2, 3, 4, 5,6 的正六面体骰子同时掷出,出现的数字分别为a ,b,c,则a ,b,c正好是直角三角形三边长的概率是()1111A.B.C.D.366123【答案】A【分析】【剖析】本题是一个由三步才能达成的事件,共有6×6×6=216种结果,每种结果出现的时机同样,a, b, c 正好是直角三角形三边长,则它们应当是一组勾股数,在这216 组数中,是勾股数的有 3, 4,5; 3, 5,4; 4, 3, 5; 4, 5, 3; 5,3,4; 5, 4,3 共 6 种状况,即可求出 a, b, c 正好是直角三角形三边长的概率 . 【详解】61P(a, b, c 正好是直角三角形三边长)=216 36应选: A【点睛】本题考察概率的求法,概率等于所讨状况数与总状况数之比.本题属于基础题,也是常考题型.8.以下事件中,是必定事件的是( )A.随意掷一枚质地平均的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会着落C.车辆随机抵达一个路口,恰巧碰到红灯D.明日气温高达30 C ,必定能见到明朗的阳光【答案】 B【分析】【剖析】依据必定事件的观点作出判断即可解答.【详解】解: A、抛随意掷一枚质地平均的骰子,掷出的点数是奇数是随机事件,故 A 错误;B、操场上小明抛出的篮球会着落是必定事件,故 B 正确;C、车辆随机抵达一个路口,恰巧碰到红灯是随机事件,故 C 错误;D、明日气温高达30 C ,必定能见到明朗的阳光是随机事件,故 D 错误;应选: B.【点睛】本题考察了必定事件的定义,必定事件指在必定条件下必定发生的事件,娴熟掌握是解题的重点 .9.如图,在4×3长方形网格中,任选用一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()1B.111A.C.3D.6124【答案】 D【分析】【剖析】【详解】解:∵在4×3正方形网格中,任选用一个白色的小正方形并涂黑,共有8 种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有 2 种状况,以下图:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2 18 4应选 D.10.一个不透明的口袋中装有 4 个完整同样的小球,把它们分别标号为1, 2, 3, 4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于 6 的概率为()1111A.B.C.D.6543【答案】 A【分析】【剖析】画树状图得出所有的状况,依据概率的求法计算概率即可.【详解】画树状图得:∵共有 12 种等可能的结果,两次摸出的小球标号之和等于 6 的有 2 种状况,∴两次摸出的小球标号之和等于621的概率 == .126应选 A.【点睛】考察概率的计算,明确概率的意义是解题的重点,概率等于所讨状况数与总状况数的比.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其余差异,每次摸球前先搅拌平均 .随机摸出一球,不放回;再随机摸出一球 .两次摸出的球上的汉字能构成“孔孟”的概率是()A.B.C.D.【答案】 B【分析】【剖析】依据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12 中可能,此中能构成孔孟的有 2 种,所以两次摸出的球上的汉字能构成“孔孟”的概率是.应选 B.考点:简单概率计算.12.以下说法正确的选项是()A.检测某批次灯泡的使用寿命,适合用全面检查B.“ 367人中有 2 人同月同日生”为必定事件C.可能性是1%的事件在一次试验中必定不会犮生D.数据 3, 5, 4, 1,﹣ 2 的中位数是4【答案】 B【分析】【剖析】依据可能性大小、全面检查与抽样检查的定义及中位数的观点、必定事件、不行能事件、随机事件的观点进行判断.【详解】检查某批次灯泡的使用寿命检查拥有损坏性,应采纳抽样检查, A 错;一年有366 天所以367 个人中必定有 2 人同月同日生, B 对;可能性是 1 %的事件在一次试验中有可能发生,故 C 错;3,5, 4, 1, -2 按从小到大排序为-2, 1, 3,4, 5, 3 在最中间故中位数是3,D 错.应选 B.【点睛】划分并掌握可能性、全面检查与抽样检查的定义及中位数的观点、必定事件、不行能事件、随机事件的观点.13.在平面直角坐标系中有三个点的坐标: A 0, 2 ,B 2,0 ,C( 1, 3),从、、A B C 三个点中挨次取两个点,求两点都落在抛物线y x 2x 2 上的概率是()11C.1D.2A.B.23 36【答案】 A【分析】【剖析】先画树状图展现所有 6 种等可能的结果数,再找出两点都落在抛物线y2x 2 上的结x果数,而后依据概率公式求解.【详解】解:在 A 0, 2 ,B 2,0 ,C(1, 3) 三点中,此中AB 两点在 y x 2x2上,依据题意绘图以下:共有 6 种等可能的结果数,此中两点都落在抛物线22,y x x 2 上的结果数为所以两点都落在抛物线221y x x 2 上的概率是;63应选: A.【点睛】本题考察了列表法或树状图法和函数图像上点的特点.经过列表法或树状图法展现所有等可能的结果求出n ,再从中选出切合事件 A 或B的结果数目m,而后依据概率公式求失事件 A 或B的概率.也考察了二次函数图象上点的坐标特点.14.以下事件是必定事件的是()A.翻开电视机正在播放动画片B.扔掷一枚质地平均的硬币100 次,正面向上的次数为50C.车辆在下个路口将会碰到红灯D.在平面上随意画一个三角形,其内角和是180【答案】 D【分析】【剖析】直接利用随机事件以及必定事件的定义分别判断得出答案.【详解】A、翻开电视机正在插放动画片为随机事件,故此选项错误;B、扔掷一枚质地平均的硬币 100 次,正面向上的次数为 50 为随机事件,故此选项错误;C、“车辆在下个路口将会碰到红灯”为随机事件,故此选项错误;D、在平面上随意画一个三角形,其内角和是180 °为必定事件,故此选项正确.应选: D.【点睛】本题考察随机事件以及必定事件,正确掌握有关定义是解题重点.15.在 10 盒红色的笔芯中混放了若干支黑色的笔芯,每盒20 支笔芯,每盒中混放入的黑色笔芯数以下表:黑色笔芯数01456盒数24121以下结论:①黑色笔芯一共有 16支;② 从中随机取一盒,盒中红色笔芯数不低于14 是必定事件;③ 从中随机取一盒,盒中黑色笔芯数不超出 4 的概率为 0.7;④将 10 盒笔芯混在一同,从中随机抽取一支笔芯,恰巧是黑色的概率是0.12 .此中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】 C【分析】【剖析】依据表格的信息分别考证算出黑色笔芯的数目,由每盒黑色笔芯的数目能够算出每盒红色笔芯的数目,即可考证①② 的正确性,再算出盒中黑色笔芯数不超出 4 的概率,即可判断③ ,用黑色的数目除以总的笔数,可考证④.【详解】解:① 依据表格的信息,获取黑色笔芯数 =0 2 1441526124 ,故① 错误;② 每盒笔芯的数目为20 支,∵每盒黑色笔芯的数目都≤6,∴每盒红色笔芯≥14,所以从中任取一盒,盒中红色笔芯数不低于14是必定事件,故② 正确;③ 依据图表信息,获取黑色笔芯不超出4的一共有 7 盒,所以从中随机取一盒,盒中黑色笔芯数不超出 4 的概率为 7÷10=0.7故③ 正确④10 盒笔芯一共有 10× 20=200(支),由详解①知黑色笔芯共有 24 支,将 10 盒笔芯混在一同,从中随机抽取一支笔芯,恰巧是黑色的概率是24÷200=0.12,故④ 正确;综上有三个正确结论,故答案为 C.【点睛】本题主要考察了与概率有关的知识点. 在本题中求出黑色笔芯的数目是重点,求某事件的概率时,主要求该事件的数目与总数目的比值;还需要掌握必定事件的观点,即必定事件是必定会发生的事件 .16.在一个不透明的口袋中装有 4 个红球和若干个白球,他们除颜色外其余完整同样.通过多次摸球实验后发现,摸到红球的频次稳固在25% 邻近,则口袋中白球可能有()个.A.20B. 16C. 12D. 15【答案】 C【分析】【剖析】由摸到红球的频次稳固在 25% 邻近,能够得出口袋中获取红色球的概率,从而求出白球个数即可获取答案 .【详解】解:设白球个数为x 个,∵摸到红球的频次稳固在25% 左右,∴口袋中获取红色球的概率为25% ,∴4 1 ,4x4解得: x12 ,经查验, x12是原方程的解故白球的个数为12 个.应选 C【点睛】本题主要考察了随机概率,利用频次预计概率,依据大批频频试验下频次稳固值即概率得出是解题重点,应掌握概率与频次的关系,从而更好的解题.17.某市环青云湖竞走活动中,走完整部行程的队员即可获取一次摇奖时机,摇奖机是一个圆形转盘,被平分红16 个扇形,摇中红、黄、蓝色地区,分获一、二、三等奖,奖品分别为自行车、雨伞、署名笔.小明走完了全程,能够获取一次摇奖时机,小明能获取署名笔的概率是()A.1711B.C.D.161648【答案】 C【分析】【剖析】从题目知道,小明需要获取署名笔,一定获取三等奖,即转到蓝色地区,把圆盘中蓝色的小扇形数出来,再除以总分数,即可获取答案.【详解】解:小明要获取署名笔,则一定获取三等奖,即转到蓝色地区,从转盘中找出蓝色地区的扇形有4 份,又由于转盘总的平分红了16 份,所以,获取署名笔的概率为:故答案为 C.【点睛】4 1 ,164本题主要考察了随机事件的概率,概率是对随机事件发生之可能性的胸怀;在做转盘题时,能正确找到事件发生占圆盘的比率是做对题目的重点,还需要注意,转盘是否是被平分的,才能防止错误 .18. 如图,由四个直角边分别是 6 和 8 的直角三角形拼成的 “赵爽弦图 ”,随机往大正方形ABCD 内投针一次,则针扎在小正方形 EFGH 内的概率是( )A .1 1 1 1B .20C .D .162425【答案】 D【分析】【剖析】依据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算依据直角三角形的边长求算边长再算面积.【详解】依据题意, “赵爽弦图 ”中,直角三角形的直角边分别为 6 和 8 所以小正方形的边长为: 8 6 2 ,小正方形的面积为4 ,依据勾股定理,大正方形的边长为62 8210 ,大正方形的面积为 100.所以针扎在小正方形 EFGH 内的概率是4 = 1,答案选 D .100 25【点睛】本题借助 “赵爽弦图 ”考察了几何概率,要注意针扎在小正方形EFGH 内的概率是小正方形与大正方形的面积比.19.如图,在△ABC中, AB= AC,∠ BAC=90°,直角∠ EPF的极点 P 是 BC的中点,两边PE, PF 分别交 AB,AC 于点 E,F,现给出以下四个结论:(1)AE= CF;( 2)△EPF是等腰直角三角形;( 3)S 四边形AEPF=1△ABC4EPF ABC内绕极点P旋转时一直有2S;()当∠在△EF= AP.(点 E 不与 A、 B 重合),上述结论中是正确的结论的概率是()A.1 个B.3 个13 C.D.44【答案】 D【分析】【剖析】依据题意,简单证明△AEP≌△ CFP,而后能推理获取选项A,B, C 都是正确的,当EF= AP一直相等时,可推出AP22PF2,由 AP 的长为定值,而PF 的长为变化值可知选项 D 不正确.从而求出正确的结论的概率.【详解】解:∵ AB=AC,∠ BAC= 90°,点 P 是 BC 的中点,∴ EAP1BAC 45 ,AP 1BC CP.22(1)在△AEP与△CFP中,∵∠ EAP=∠ C=45°, AP= CP,∠ APE=∠ CPF= 90°﹣∠ APF,∴△ AEP≌△ CFP∴AE= CF.( 1)正确;(2)由( 1)知,△AEP≌△ CFP,∴PE= PF,又∵∠ EPF= 90°,∴△ EPF是等腰直角三角形.( 2)正确;(3)∵△ AEP≌△ CFP,同理可证△APF≌△ BPE.∴ S1SVAEPSVAPFSVCPFSVBPESVABC.(3)正确;四边形 AEPF2(4)当 EF= AP 一直相等时,由勾股定理可得:EF 22PF 2则有:AP22PF2,∵AP 的长为定值,而 PF 的长为变化值,∴ AP2与2PF2 不行能一直相等,即 EF与 AP 不行能一直相等,(4)错误,综上所述,正确的个数有 3 个,故正确的结论的概率是3.4应选: D.【点睛】用到的知识点为:概率 =所讨状况数与总状况数之比;解决本题的重点是利用证明三角形全等的方法来获取正确结论.20.在一个不透明的布袋中,红色、黑色、白色的小球共有50 个,除颜色外其余完整相同.乐乐经过多次摸球试验后发现,摸到红色球、黑色球的频次分别稳固在27%和 43%,则口袋中白色球的个数很可能是()A.20B. 15C. 10D. 5【答案】 B【分析】【剖析】由频次获取红色球和黑色球的概率,用总数乘以白色球的概率即可获取个数.【详解】白色球的个数是50? (1 27% - 43%) = 15个,应选: B.【点睛】本题考察概率的计算公式,频次与概率的关系,正确理解频次即为概率是解题的重点.。
初二数学概率试题答案及解析
初二数学概率试题答案及解析1.袋中共有2个红球,2个黄球,4个紫球,从中任取—个球是白球,这个事件是事件.【答案】不可能【解析】∵袋子中有2个红球,2个黄球,4个紫球,∴从中任取一个球可能出现的情况有2+2+4=8种,∵没有白球,∴是白球的概率为0.故答案为:不可能【考点】1、随机事件;2、概率的意义2.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤菱形,将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【答案】B【解析】从中任抽一张,正面图案有5种情况,其中正面图形既是轴对称图形,又是中心对称图形的有①线段、⑤菱形共两种,所以P(正面图形既是轴对称图形,又是中心对称图形)=;故选B【考点】概率3.下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红【答案】A.【解析】A、购买一张福利彩票,可能中奖,也可能不中奖,是随机事件,符合题意;B、一定会发生,属必然事件,不符合题意;C、一定不会发生,是不可能事件,不符合题意;D、一定不会发生,是不可能事件,不符合题意.故选A.【考点】随机事件.4.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数摸到白球的次数摸到白球的频率(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2分)(2)假如你摸一次,你摸到白球的概率.(2分)(3)试估算盒子里黑、白两种颜色的球各有多少只?(4分)【答案】(1)0.6;(2)0.6.;(3)黑球有16个,白球有24个.【解析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16.答:不透明的盒子里黑球有16个,白球有24个.【考点】利用频率估计概率.5.为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。
(易错题精选)初中数学概率经典测试题附答案解析(1)
(易错题精选)初中数学概率经典测试题附答案解析(1)一、选择题1.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.2.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是( ) A .13B .49C .19D .23【答案】A 【解析】 【分析】将三个小区分别记为A 、B 、C ,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A 、B 、C ,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况, 所以他们恰好抽到同一个小区的概率为31=93.故选:A . 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.3.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .59【答案】C 【解析】 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】 解不等式组得:7x ax ≤⎧⎨>-⎩ ,由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x=52a-,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.4.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.5.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.8.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.9.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A .1B .34C .12D .14【答案】B 【解析】 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个, ∴P (中心对称图形)=34, 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.11.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56【答案】B 【解析】 【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】∵这组数中无理数有 共2个, ∴卡片上的数为无理数的概率是21=63.故选B. 【点睛】本题考查了无理数的定义及概率的计算.12.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( ) A .12B .14C .35D .23【答案】D 【解析】 【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案 【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432; ∴排出的数是偶数的概率为:46=23. 【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.14.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A .指针落在标有5的区域内B .指针落在标有10的区域内C .指针落在标有偶数或奇数的区域内D .指针落在标有奇数的区域内【答案】C 【解析】 【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可. 【详解】解:A 、指针落在标有5的区域内的概率是18;B 、指针落在标有10的区域内的概率是0;C 、指针落在标有偶数或奇数的区域内的概率是1;D 、指针落在标有奇数的区域内的概率是12; 故选:C . 【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.15.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .16.下列事件中,属于确定事件的是( ) A .抛掷一枚质地均匀的骰子,正面向上的点数是6 B .抛掷一枚质地均匀的骰子,正面向上的点数大于6 C .抛掷一枚质地均匀的骰子,正面向上的点数小于6D .抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次 【答案】B 【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.18.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.19.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为()A.23B.13C.14D.16【答案】A【解析】【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.。
初中概率题含答案
求出数字之积为奇数的概率
分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示)。欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘。
(2)如果该校有1 500名初三学生,利用样本估计选择“感恩”观点的初三学生约有________人.
(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树形图或列表法分析解答).
【答案】解:(1)536(2)420
)(用树形图如图所示)设平等、进取、和谐、感恩、互助的序号依次是①②③④⑤.
那么全部就有8×8=64种可能,
因此一次就能取出款的概率是1/64
从写有1、2、3、4、5、6、7、8、9的9张卡片中任取一张,求下列事件发生的概率;⑴抽得偶数;⑵抽得3的倍数;⑶抽得不是合数。
【答案】⑴中所有机会均等的结果有9个,所关注的结果有2、4、6、8共4个,所以P(抽得偶数)= 。
⑵中所有机会均等的结果有9个,所关注的结果有3、6、9共3个,所以P(抽得3的倍数)= 。⑶中所有机会均等的结果有9个,所关注的结果有1、2、3、5、7、共5个,所以P(抽得不是合数)= 。
【答案】解:(1)用列表法表示(x,y)所有可能出现的结果如下:
-2
-1
1
-2
(-2,-2)
(-1,-2)
华师大版九年级上册数学第25章 随机事件的概率含答案(参考答案)
华师大版九年级上册数学第25章随机事件的概率含答案一、单选题(共15题,共计45分)1、某校初中部20个班开展合唱比赛,以抽签方式决定每个班的出场顺序,签筒中有20根形状、大小完全相同的纸签。
上面分别标有1,2,…,20,某班长首先抽签,他在看不到纸签上的数字的情况下,从签筒中随机抽取一根纸签,抽中序号是5的倍数的概率是:()A. B. C. D.2、甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现6点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率3、一个事件发生的概率不可能是()A.0B.1C.D.4、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是( )A.0.2B.0.3C.0.4D.0.55、一个不透明的布袋里装有1个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为( )A. B. C. D.6、下列事件中,属于必然事件的是()A.抛掷一枚1元硬币落地后,有国徽的一面向上B.打开电视任选一频道,正在播放新闻联播C.到一条线段两端点距离相等的点在该线段的垂直平分线上D.某种彩票的中奖率是10%,则购买该种彩票100张一定中奖7、在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()A.2B.3C.4D.128、不透明的袋子中装有2个红球,6个白球,这些球除了颜色外无其他差别.现从袋子中随机摸出1个球,则摸出的球是白球的概率为()A. B. C. D.9、下列说法中正确的是().A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查10、如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A. B. C. D.11、下列说法(或做法)中正确的是()A.明明的幸运数字是3,他抛出骰子时出3的机会比其它数字的机会大B.妈妈买彩票没中过奖,她再买彩票中奖的机会一定比别人要大些C.要知道抛一枚硬币正面朝上的机会,没有硬币可用啤酒瓶盖代替D.在抛硬币实验中,婧婧认为一个一个地抛太慢,她用10枚硬币同时抛算作10次抛掷12、某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A. B. C. D.13、小明要给小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A. B. C. D.14、下列说法中正确的是()A.“明天降雨的概率为”,表示明天有半天都在降雨B.抛一枚硬币,正面朝上的概率为”,表示每抛两次就有一次正面朝上 C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”,表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的概率稳定在附近 D.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖15、下列事件是必然事件的是()A.某运动员射击一次击中靶心.B.抛一枚硬币,正面朝上.C.3个人分成两组,一定有2个人分在一组. D.明天一定是晴天.二、填空题(共10题,共计30分)16、不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.17、一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为________.18、从-,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是________.19、一只不透明的袋子中装有三只形状一样的小球,它们的标号分别是1,2,3,从中摸出1个小球,标号为奇数的概率是________20、在长度为3,6,8,10的四条线段中,任意选择一条线段,使它与已知线段4和7能组成三角形的概率为________.21、五张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、菱形、平行四边形五个图案,现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为________.22、三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________23、在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其余都相同,若分别从两个口袋中随机取出一个小球,则取出的两个小球颜色相同的概率是________ .24、从1,2,3,4,5五个数中任意取2个(不可重复),它们的和是偶数的概率为________ .25、已知关于x的一元二次方程x2+bx+c=0,从﹣1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是________.三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从,两个景点中任意选择一个游玩,下午从、、三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点和的概率.28、甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.29、把一副扑g牌中的三张黑桃牌(它们的正面数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你分析游戏规则对双方是否公平,并说明理由.30、如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、B6、C7、B8、A9、D10、B11、D12、C13、B14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
初中数学概率经典测试题及答案解析
0
1
4
5
6
盒数
2
4
1
2
1
下列结论:
①黑色笔芯一共有16支;
②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;
③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;
④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.
其中正确的结论有()
A.1个B.2个C.3个D.4个
圆的直径正好是大正方形边长,
根据勾股定理,其 ,
则大正方形的面积为 ,则小球停在小正方形内部(阴影)区域的概率为 .
故选: .
【点睛】
概率 相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.
【答案】B
【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.
6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组 至少有四个整数解,且关于x的分式方程 =1有非负整数解的概率是( )
10.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.
14.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )
(易错题精选)初中数学概率知识点总复习附答案解析
(易错题精选)初中数学概率知识点总复习附答案解析一、选择题1.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.3.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.4.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126 ==故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 5.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )A.12B.14C.35D.23【答案】D【解析】【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:46=23.【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.7.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于12B.等于12C.小于12D.无法确定【答案】B【解析】【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.8.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。
初中数学概率经典测试题含解析(1)
初中数学概率经典测试题含解析(1)一、选择题1.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.2.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD .现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A .19B .29C .23D .13【答案】D【解析】【分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴»»»==AC CDDB , ∴∠AOC =∠COD =∠DOB =60°,∵OC=OD , ∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD ,∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.3.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.4.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.5.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.6.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.7.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A .49B .29C .23D .13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49. 故选A .【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.9.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是( )A .抛一枚硬币,出现正面朝上B .掷一个正六面体的骰子,掷出的点数是5C .任意写一个整数,它能被2整除D .从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A 、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B 、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误; C 、任意写一个能被2整除的整数的可能性为12,故此选项错误; D 、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.10.下列事件中,确定事件是( )A .向量BC uuu r 与向量CD uuu r 是平行向量B 40=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形【答案】B【解析】【分析】根据“必然事件和不可能事件统称确定事件”逐一判断即可.【详解】A. 向量BC uuu r 与向量CD uuu r是平行向量,是随机事件,故该选项错误;B. 40=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B .【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.11.下列事件是必然发生事件的是( )A .打开电视机,正在转播足球比赛B .小麦的亩产量一定为1000公斤C .在只装有5个红球的袋中摸出1球,是红球D .农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A.45B.35C.25D.15【答案】B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.13.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.15.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.16.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A .12B .14C .16D .116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41=164, 故选B .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD 内投针一次,则针扎在小正方形EFGH 内的概率是( )A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,226810+=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.18.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,现给出以下四个结论:(1)AE =CF ;(2)△EPF 是等腰直角三角形;(3)S 四边形AEPF =12S △ABC ;(4)当∠EPF 在△ABC 内绕顶点P 旋转时始终有EF =AP .(点E 不与A 、B 重合),上述结论中是正确的结论的概率是( )A .1个B .3个C .14D .34【答案】D【解析】【分析】 根据题意,容易证明△AEP ≌△CFP ,然后能推理得到选项A ,B ,C 都是正确的,当EF =AP 始终相等时,可推出222AP PF =,由AP 的长为定值,而PF 的长为变化值可知选项D 不正确.从而求出正确的结论的概率.【详解】解:∵AB =AC ,∠BAC =90°,点P 是BC 的中点,∴1245EAP BAC ∠=∠=︒,12AP BC CP ==. (1)在△AEP 与△CFP 中, ∵∠EAP =∠C =45°,AP =CP ,∠APE =∠CPF =90°﹣∠APF ,∴△AEP ≌△CFP∴AE =CF .(1)正确;(2)由(1)知,△AEP ≌△CFP ,∴PE =PF ,又∵∠EPF =90°,∴△EPF 是等腰直角三角形.(2)正确;(3)∵△AEP ≌△CFP ,同理可证△APF ≌△BPE .∴12AEP APF CPF BPE ABC AEPF S S S S S S =+=+=V V V V V 四边形.(3)正确;(4)当EF =AP 始终相等时,由勾股定理可得:222EF PF =则有:222AP PF =,∵AP 的长为定值,而PF 的长为变化值,∴2AP 与22PF 不可能始终相等,即EF 与AP 不可能始终相等,(4)错误,综上所述,正确的个数有3个, 故正确的结论的概率是34. 故选:D .【点睛】用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是利用证明三角形全等的方法来得到正确结论.20.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88x x -的解为整数的概率是( )A .12B .13C .14D .23 【答案】B【解析】【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88x x -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】 解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88x x -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8, ∴163π+≠8, ∴m ≠8, ∵分式方程8mx x -=3x+88x x -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mx x -=3x+88x x -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mx x -=3x+88x x -的解为整数的概率为26=13; 故选:B .【点睛】 本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.。
新初中数学概率技巧及练习题附答案解析(1)
新初中数学概率技巧及练习题附答案解析(1)一、选择题1.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.4.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.5.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.6.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.7.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.8.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.1 B.34C.12D.14【答案】B【解析】【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可.【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个,∴P(中心对称图形)=34,故选B.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.13.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.14.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.15.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D 【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,根据勾股定理,大正方形的边长为226810+=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.18.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.56【答案】B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算.19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.20.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:∵一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限,﹣m+1<0,11﹣m>0,
∴1<m<11,
∴符合条件的有:2,5,7,8,
把分式方程 =3x+ 去分母,整理得:3x2﹣16x﹣mx=0,
A.0.1B.0.2C.0.3D.0.6
【答案】D
【解析】
【分析】
直接利用概率公式进行求解,即可得到答案.
【详解】
解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.
∴1张抽奖券中奖的概率是: =0.6,
故选:D.
【点睛】
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
故选:C.
【点睛】
此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.
2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
【详解】
画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)
共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,
∴从中随机抽取2本都是小说的概率= = .
故选:A.
【点睛】
本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.
12.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在 附近,则口袋中白球可能有()个.
解得:x=0,或x= ,
∵x≠8,
∴ ≠8,
∴m≠8,
∵分式方程 =3x+ 的解为整数,
∴m=2,5,
∴使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的整数有2,5,
∴使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的概率为 = ;
故选C
【点睛】
本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.
13.下列事件中,是必然事件的是( )
A.任意画一个三角形,其内角和是180°
B.经过有交通信号灯的路口,遇到红灯
C.掷一次骰子,向上一面的点数是6
D.射击运动员射击一次,命中靶心
【详解】
∵半径为2的圆内接正方形边长为2 ,
∴圆的面积为4π,正方形的面积为8,
则石子落在此圆的内接正方形中的概率是 ,
【详解】
A.购买一张彩票中奖,属于随机事件,不合题意;
B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;
C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;
D.;
故选D.
【点睛】
本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.
7.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
A.易建联罚球投篮2次,一定全部命中
B.易建联罚球投篮2次,不一定全部命中
C.易建联罚球投篮1次,命中的可能性较大
D.易建联罚球投篮1次,不命中的可能性较小
【答案】A
【解析】
【分析】
根据概率的意义对各选项分析判断后利用排除法求解.
【详解】
解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;
B、易建联罚球投篮2次,不一定全部命中,故本选项正确;
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
16.在六张卡片上分别写有 ,π,1.5,5,0, 六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
8.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()
A.小于 B.等于 C.大于 D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义分析即可.
【详解】
解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是
∴抛掷第100次正面朝上的概率是
故答案选:B
【点睛】
本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.
A. B. C. D.
【答案】A
【解析】
【分析】
将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
【详解】
∵总面积为3×3=9,其中阴影部分面积为4× ×1×2=4,
∴飞镖落在阴影部分的概率是 .
故答案选:C.
【点睛】
本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
14.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )
5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是( )
A. B. C. D.
【答案】B
【解析】
分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.
详解:∵红球、黄球、黑球的个数之比为5:3:1,
∴从布袋里任意摸出一个球是黄球的概率是 .
∴两次都摸到白球的概率是: .
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()
故选:B.
点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.
6.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心
C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°
【答案】D
【解析】
【分析】
先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程 =3x+ 的解为整数的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】
【答案】A
【解析】
【分析】
根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.
【详解】
A.任意画一个三角形,其内角和是180°是必然事件;
B.经过有交通信号灯的路口,遇到红灯是随机事件;
C.掷一次骰子,向上一面的点数是6是随机事件;
D.射击运动员射击一次,命中靶心是随机事件;
故选:A.
【点睛】
【详解】
∵这组数中无理数有 , 共2个,
∴卡片上的数为无理数的概率是 .
故选B.
【点睛】
本题考查了无理数的定义及概率的计算.
17.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是().
A. B. C. D.
【答案】D
【解析】
【分析】
先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.