高中数学基础知识手册(草稿)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习基础知识手册

一、 集合与简易逻辑

基本考点

1. 元素与集合的关系

U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.摩根公式

();()U U U U U U C A B C A C B C A B C A C B ==.

3.包含关系

A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+.

5.子集个数 集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;

非空的真子集有2n –2个. 6.

7.

8.

9.充要条件

(1)充分条件:若p q ⇒,则p 是q 充分条件.

(2)必要条件:若q p ⇒,则p 是q 必要条件.

(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

常用结论

1.集合的元素具有无序性和互异性,确定性.

2.对集合A B 、,A B =∅时,你是否注意到“极端”情况:A =∅或B =∅;求集合的子集时是否注意到∅是任何集合的子集、∅是任何非空集合的真子集.☹

3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依

次为,n 2,12-n ,12-n .22-n

4.“交的补等于补的并,即()U U U C A

B C A C B =”;“并的补等于补的交,即

()U U U C A B C A C B =”.

5.判断命题的真假

关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.

7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.

注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ☹.

8.充要条件 条件推结论为充分,结论反推条件为必要

二、 函 数

基础考点

1.二次函数的解析式的三种形式 (1)一般式2

()(0)f x ax bx c a =++≠; (2)顶点式2

()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.

2.解连不等式()N f x M <<常有以下转化形式

()N f x M <<⇔[()][()]0f x M f x N --<

⇔|()|22

M N M N

f x +--<⇔

()0()f x N M f x ->- ⇔

11

()f x N M N

>--.

3.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21

≠=++a c bx ax 有且只有一个实根在

),(21k k 内,等价于0)()(21

2211k k a b

k +<-

<,或0)(2=k f 且22122k a

b

k k <-<+. 4.闭区间上的二次函数的最值

二次函数)0()(2

≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a

b

x 2-

=处及区间的两端点处取得,具体如下:

(1)当a>0时,若[]q p a b

x ,2∈-

=,则{}min max max ()(),()(),()2b f x f f x f p f q a

=-=;

[]q p a

b

x ,2∉-

=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a

b

x ,2∈-=,则{}min ()min (),()f x f p f q =,若

[]q p a

b

x ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

5.一元二次方程的实根分布

依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则

(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402

p q p m ⎧-≥⎪

⎨->⎪⎩;

(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()040

2

f m f n p q p m n >⎧⎪>⎪⎪

⎨-≥⎪

⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩

(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402

p q p m ⎧-≥⎪

⎨-<⎪⎩ .

6.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.

(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.

7.函数的单调性

(1)设[]2121,,x x b a x x ≠∈⋅那么

相关文档
最新文档