离散数学习题1

合集下载

离散数学第一学期习题及答案

离散数学第一学期习题及答案

第一章部分习题及参考答案1 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)2.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”3.用真值表判断下列公式的类型:(1)(p→q) →(⌝q→⌝p)(2)(p∧r) ↔(⌝p∧⌝q)(3)((p→q) ∧(q→r)) →(p→r)4.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)5.用等值演算法证明下面等值式:(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)6.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)7.在自然推理系统P中构造下面推理的证明:(1)前提:p→q,⌝(q∧r),r结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r结论:p∧q8.在自然推理系统P中用附加前提法证明下面推理:前提:p→(q→r),s→p,q结论:s→r9.在自然推理系统P中用归谬法证明下面各推理:前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p参考答案:1.(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0 (4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔12.p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学-习题集

离散数学-习题集

离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。

2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。

4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。

5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。

8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。

⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。

2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。

3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。

5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。

6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。

7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。

8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。

9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。

10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。

离散数学习题一,二参考答案

离散数学习题一,二参考答案

《离散数学》习题一参考答案第一节 集合的基数1.证明两个可数集的并是可数集。

证明:设A ,B 是两可数集,},,,,,{321 n a a a a A =,},,,,,{321 n b b b b B = ⎪⎩⎪⎨⎧-→j b i a N B A f j i 212: ,f 是一一对应关系,所以|A ∪B|=|N|=0ℵ。

2.证明有限可数集的并是可数集证:设k A A A A 321,,是有限个可数集,k i a a a a A in i i i i ,,3,2,1),,,,,(321 ==⎪⎩⎪⎨⎧+-→==i k j a N A A f ij k i i )1(:1,f 是一一对应关系,所以|A|=| k i i A 1=|=|N|=0ℵ。

3.证明可数个可数集的并是可数集。

证:设 k A A A A 321,,是无限个可数集, ,3,2,1),,,,,(321==i a a a a A in i i i i⎪⎪⎩⎪⎪⎨⎧+-+-+→=∞=i j i j i a N A A f ij i i )2)(1(21:1 , 所以f 是一一对应关系,所以|A|=| ∞=1i i A |=|N|=0ℵ。

4.证明整系数多项式所构成的集合是可数集。

证明:设整系数n 次多项式的全体记为}|{1110Z a a x a x a x a A i n n n n n ∈++++=--则整系数多项式所构成的集合 ∞==1N n A A ;由于k x 的系数k a 是整数,那么所有k x 的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得n A 是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合 ∞==1N n A A 也是可数集。

5.证明不存在与自己的真子集等势的有限集合.证明:设集合A 是有限集,则|A|=n ,若B 是A 的真子集,则|B|≤|A|=n ,A-B ≠φ,即|A-B|=|A|-|AB|>0;又A=(A-B )∪B ,(A-B )B=φ,所以,,就是|A|>|B|,即得结论。

离散数学习题集(十五套) - 答案

离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有()个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。

A。

p∧┐p∧qB。

┐p∨qC。

┐p∧qD。

┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。

A。

p→┐qB。

p∨┐qC。

p∧qD。

p∧┐q3.只有语句“1+1=10”是命题(A)。

A。

1+1=10B。

x+y=10___<0D。

x mod 3=24.下列等值式不正确的是(C)。

A。

┐(x)A(x)┐AB。

(x)(B→A(x))B→(x)A(x)C。

(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。

(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。

A。

(x)Q(x,z)→(x)(y)R(x,y,z))B。

Q(x,z)→(y)R(x,y,z)C。

Q(x,z)→(x)(y)R(x,y,z)D。

Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。

}∪IA则对应于R的A的划分是(D)。

A。

{{a},{b,c},{d}}B。

{{a,b},{c},{d}}C。

{{a},{b},{c},{d}}D。

{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。

A。

{Ø,{Ø}}∈BB。

{{Ø,Ø}}∈BC。

{{Ø},{{Ø}}}∈BD。

{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。

A。

(X-Y)-Z=X-(Y∩Z)B。

(X-Y)-Z=(X-Z)-YC。

(X-Y)-Z=(X-Z)-(Y-Z)D。

(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。

A。

a*b=min(a,b)B。

a*b=a+bC。

a*b=GCD(a,b) (a,b的最大公约数)D。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学

离散数学
Ф,i=1,2,…,n,且____________;进一步若____________,则 S 是集合 A 的划分.
10、设集合 M={x|1≤x≤12,x 被2整除,x∈Z},N={x|1≤x≤12,x 被3整除,x∈Z},
则 M-N=________________,M N=________________.

A.P∧Q B.P∨Q C.(P Q) D.(P∨Q)
16.命题公式(P∧(P→Q))→Q 是(

A.矛盾式 B.蕴含式 C.重言式 D.等价式
17.下面联结词运算不可交换的是(

A.∧ B.→ C.∨
D.
18.给定如下4个语句,其中不是复合命题的是( )。
(1)我不会游泳。
(2)如果天不下雨,我就去踢足球。
).
A

P(x)∧S(x)
B.P(a)∧P(b)∧(S(a)∨S(b))
C

P(a)∧S(b)
D.P(a)∧P(b)∧S(a)∨S(b)
9、按照约束变元的改名规则,xP(x)→yR(x,y)不可改写成(
).
A.mP(m)→yR(x,y)
B.xP(x) → zR(x,z)
C.xP(x)→xR(x,x)
5.公式( P Q) ( P _______。
Q)化简为_______,公式 Q (P (P Q))可化简为
6.命题“4是偶数或-1是负数”的否定是_______。
7.设命题公式 G:P→ (Q→P),则使公式 G 为假的真值指派是_______
三、
计算题
1、求下列公式的主析取范式和主合取范式。
(1)(P R) (Q R) P
A.P∧Q B.P∨Q C.(P Q) D.

离散数学习题1

离散数学习题1

,则在代数< S , max >中,S关于max运算的幺元是______,零元是 ______。 6. 谓词公式 xF(x)∧xG(x) 的前束范式为______。 7. 设Z6={0,1,2,3,4,5},为模6加法,即x,y Z6,xy=(x+y)mod 6,若有 方程:1 x 3=2,则x =______。 8. 设p:我努力学习,q:我取得好成绩,命题“除非我努力学习,否则
《离散数学》习题1
一、单项选择题
1.设集合A={2,{a},3,4},B = {{a},3,4,1},E为全集,则下列命题正
确的是( )。A、{2Fra bibliotekAB、{a}A
C、{{a}}BE
D、{{a},1,3,4}B
2. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),
B、任一无向图的点连通度都不超过它的边连通度
C、在一n阶圈Cn(n≥4)上任意去掉两个顶点得到得图都有2个连通分

D、n阶无向完全图的点连通度为n
8.下列语句中是真命题的是(
)。
A.我正在说谎
B.严禁吸烟
C.如果1+2=3,那么雪是黑的
D.如果1+2=5,那
么雪是黑的 “若m是奇数,则2m是偶数”符号化为( ),设是奇数,是
②p ③ p→(qr) ④ qr ⑤ s→r
前提引入 ①化简
前提引入 ②③假言推理 前提引入
⑥s
①化简
⑦r
⑤⑥假言推理
⑧q
④⑦析取三段论
2. 解: (p→q) (q→r)
(p q) (q r)
((p q) (r r)) ((pp) (qr))

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学课后习题答案(第一章)

离散数学课后习题答案(第一章)

1-1,1-2(1)指出下列哪些语句是命题,那些不是命题,如果是命题,指出它的真值。

a)离散数学是计算机科学系的一门必修课。

是命题,真值为T。

b)计算机有空吗?不是命题。

c)明天我去看电影。

是命题,真值要根据具体情况确定。

d)请勿随地吐痰。

不是命题。

e)不存在最大的质数。

是命题,真值为T。

f)如果我掌握了英语,法语,那么学习其他欧洲语言就容易多了。

是命题,真值为T。

g)9+5≤12.是命题,真值为F。

h)X=3.不是命题。

i)我们要努力学习。

不是命题。

(2)举例说明原子命题和复合命题。

原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)设P 表示命题“天下雪。

”Q 表示“我将去镇上。

”R 表示命题“我有时间。

”以符号形式写出下列命题a)如果天不下雪和我有时间,那么我将去镇上。

(┓P ∧R)→Q b)我将去镇上,仅当我有时间时。

Q→R c)天不下雪。

┓P d)天下雪,那么我不去镇上。

P→┓Q(4)用汉语写出一些句子,对应下列每一个命题。

a)()Q R P ∧¬�Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q ↔(R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)R Q∧R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c)()()Q R R Q →∧→Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5)将下列命题符号化。

a)王强身体很好,成绩也很好。

设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)小李一边看书,一边听音乐。

设P:小李看书。

Q:小李听音乐。

P∧Qc)气候很好或很热。

设P:气候很好。

Q:气候很热。

P∨Qd)如果a 和b 是偶数,则a b +是偶数。

设P:a 和b 是偶数。

Q:a+b 是偶数。

P→Qe)四边形ABCD 是平行四边形,当且仅当它的对边平行。

(完整版)哈工大《离散数学》教科书习题答案

(完整版)哈工大《离散数学》教科书习题答案

教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。

解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。

同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。

证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。

(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。

那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。

《离散数学》期末练习题考试卷和答案

《离散数学》期末练习题考试卷和答案

a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5


D. x x是有理数, x 5

6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。

离散数学第1章习题答案

离散数学第1章习题答案

#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void lnitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S_>top__;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);"}while(!Empty(S)){Pop(S, &e);printf("%d ",e);}}void main(){ int n;printf(" 请输入待转换的值n: \n");scanf ("%d",&n);conversion(n);1. 判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1) 离散数学是计算机专业的一门必修课。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学集合论综合练习作业辅导(10秋)离散数学作为信息科学和计算机科学的数学基础,是教育部指定的计算机科学与技术学科核心课程,也是电大计算机科学与技术专业的统设必修学位课程,因此它也是该专业的一门很重要的基础课程,也是该专业的许多专业课程(包括数据结构、操作系统、网络编程技术、数据库应用技术等)的先修课程.本课程4学分,课内72学时,第二学期开设,主要是介绍离散量的结构及其相互关系,其包含的理论与方法在各学科领域都有着广泛的应用.本课程的主要内容包括:集合论、图论、数理逻辑三个部分.本课程的学习目标:通过本课程的学习,使学生具有现代数学的观点和方法,并初步掌握处理离散结构所必须的描述工具和方法.同时,也要培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识,分析和解决实际问题的能力,为学生以后学习计算机基础理论与专业课程打下良好的基础.本次教学活动是本学期的第一次综合作业辅导活动,主要是针对集合论单元的重点学习内容进行辅导,方式是通过讲解一些典型的综合练习题目,帮助大家进一步理解和掌握集合论的基本概念和方法,也使大家尽早地了解本课程期末考试的题型.下面是本学期第2,3次形考作业中的部分题目.一、单项选择题单项选择题主要是第2次形考作业的部分题目。

第2次作业由10个单项选择题组成,每小题10分,满分100分。

在每次作业关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩。

需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目。

1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}∈A B.{1,2}∉A C.{a}⊆A D.∅∈A 正确答案:C2.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.A⊂B,且A∈B B.B⊂A,且A∈BC.A⊂B,且A∉B D.A⊄B,且A∈B正确答案:A注意:这两个题是重点,大家一定要掌握,还有灵活运用,譬如,将集合中的元素作一些调整,大家也应该会做.例如,2010年1月份考试的试卷的第1题若集合A={ a,{a}},则下列表述正确的是( ).A.{a}⊆A B.{{{a}}}⊆AC.{a,{a}}∈A D.∅∈A答案:A3.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}正确答案:C注意:若A是n元集,则幂集P(A )有2 n个元素.当n=10时,A的幂集的元素有多少个?(应该是1024个)4.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().A.不是自反的B.不是对称的C.传递的D.反自反的正确答案:C因为写出二元关系R的集合表达式为R = {<1 , 1>,<2 , 2>,<3 , 3>,<4 , 4>}显然,R是一个恒等关系,因此它是自反的、对称的、传递的,不是反自反的.要求大家能熟练地写出二元关系R的集合表达式,并能判别R具有的性质.5.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.3正确答案:B教材第40页第三行指出,若R1和R2是A上的自反关系,则R1∪R2,R1∩R2也是A上的自反关系.6.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S是R的()闭包.A.自反B.传递C.对称D.以上都不对正确答案:C利用教材第42页定义2.3.4可以判定S是R的对称闭包.由42页定义2.3.4知道,关系R的对称闭包s (R)是包含R并具有对称性的最小的关系,由此也可以判定S是R的对称闭包.7.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3 , 4 , 5},则元素3为B的().A.下界B.最大下界C.最小上界D.以上答案都不对5正确答案:C由教材第4页的定义2.5.11知道,集合B的最大元一定是B的上界,而且是B的最小上界.因此可以判定选项C 正确.8.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A.8、2、8、2 B.8、1、6、1C.6、2、6、2 D.无、2、无、2正确答案:D Array集合A上的整除关系R的哈斯图如右图所示.由哈斯图可知,集合B的无最大元和上界,最小元和下界都是2,因此,选项D正确9.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A.R1B.R2C.R3D.R1和R3正确答案:B由教材第55页的定义2.6.1知道,函数是单值性,也就是说,定义域A中任意一个a与值域B中唯一的b有关系,而R2中的a有两个值2,1与它有关系,所以而R2不是函数.10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().A.2 B.3 C.6 D.8正确答案:D因为:f1= {<a , 1>,<b , 1>,<c , 1>},f2= {<a , 1>,<b , 1>,<c , 2>},f3={<a , 1>,<b , 2>,<c , 1>},f4= {<a , 2>,<b , 1>,<c , 1>},f5={<a , 1>,<b , 2>,<c , 2>},f6= {<a , 2>,<b , 1>,<c , 2>},f7={<a , 2>,<b , 2>,<c , 1>},f8=<a , 2>,<b , 2>,<c , 2>}.下面的内容主要是第3次形考作业的部分题目。

二、填空题1.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈∈xyR⋂且=且<>∈x{B,,x}AAyyB则R的有序对集合为.应该填写:R = {<2 , 2>,<2 , 3>,<3 , 2>,<3 , 3>}因为A∩B={2, 3 },所以从集合A,B中只能分别去2,3组成关系R.2.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈<y>=,,2,{ByxAx那么R-1=应该填写:{<6,3>,<8,4>}因为R={<3,6>,<4,8>},所以R-1={<6,3>,<8,4>}3.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则二元关系R具有的性质是.应该填写:反自反的根据教材第38页的定义2.3.1,若对任意a∈A,a与a都没有关系,即<a , a>∉R,则称R为A上反自反的关系.4.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素,则新得到的关系就具有对称性.应该填写:<c, b>, <d, c>注意:第3,4题是重点,我们不仅要熟练掌握,尤其是A和R的元素都减少的情况,而且如果新得到的关系具有自反性,那么应该增加哪两个元素呢?5.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为.应该填写:I A因为满足条件x∈A,y∈A, x+y =10的关系只有空关系,空关系的闭包是I A.6.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含等元素.应该填写:<1, 1>, <2, 2>, <3, 3>因为等价关系一定是自反的、对称的、传递的,由二元关系R是自反的,所以它至少包含<1, 1>, <2, 2>, <3, 3>等元素.7.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是.应该填写:{<1, a >, <2, b >},{<1, b >, <2, a >}想一想:集合A到B的不同函数的个数有几个?三、判断说明题(判断下列各题,并说明理由.)1.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:正确.因为R1和R2是A上的自反关系,即I A⊆R1,I A⊆R2.由逆关系定义和I A⊆R1,得I A⊆ R1-1;由I A⊆R1,I A⊆R2,得I A⊆ R1∪R2,I A⊆ R1⋂R2.所以,R1-1、R1∪R2、R1⋂R2是自反的.2.若偏序集<A,R>的哈斯图如右图所示,则集合A的最大元为a,最小元不存在.解:错误.集合A的最大元不存在,a是极大元.οοοοab cd οοοg e fh ο结论不成立.因为a与g、h没有关系,由关于最大元、最小元、极大元和极小元的定义2.5.9知道,A的最大元应该大于等于A中其它各元素,而A的极大元应该大于等于A中的一些元素,可以与A中另一些元素无关系.所以集合A的最大元不存在,a应该是极大元.3.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},判断下列关系f:A→B是否构成函数,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f不能构成函数.因为A中的元素3在f中没有出现.(2) f不能构成函数.因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.四、计算题1.设集合A={{1}, {2}, 1, 2},B={1, 2, {1, 2}},试计算(1)A-B;(2)A∩B;(3)A×B.解:(1)A-B={{1}, {2}, 1, 2}- {1, 2, {1, 2}}={{1}, {2}}(2)A∩B ={{1}, {2}, 1, 2}∩{1, 2, {1, 2}}={1, 2}(3)A⨯ B ={{1}, {2}, 1, 2}⨯{1, 2, {1, 2}}={<{1}, 1>, <{1}, 2>, <{1}, {1, 2 }>, <{2}, 1>, <{2}, 2>, <{2}, {1, 2 }>, <1, 1>, <1, 2>, <1, {1, 2 }>, < 2, 1>, < 2, 2>, < 2, {1, 2 }}2.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y <0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <3, 1>}, S= ∅,R•S=∅,S•R=∅,R-1= R,S-1= ∅,r(S)=I A.s(R) ={<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <3, 1>}3.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1)写出关系R的表示式;(2)画出关系R的哈斯图;(3)求出集合B的最大元、最小元.解:(1)R=I⋃{<1, 2>, <1, 3>, <1, 4>, <1, 5>,<1, 6>, <1, 7>, <1, 8>, <2, 4>,<2, 6>, <2, 8>, <3, 6>, <4, 8>}(2)关系R的哈斯图如下图所示7(3)集合B没有最大元,最小元是:2.五、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).证:若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即x∈A或x∈B且x∈A或x∈C.即x∈A⋃B且x∈A⋃C,即x∈T=(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂ (A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B且x∈A⋃C,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).注意:第1题也是重点,我们要熟练掌握.想一想:等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C)如何证明?2.对任意三个集合A, B和C,试证明:若A⨯B = A⨯C,且A则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈ A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈ A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得A=B.注意:这个题09秋学期的教学辅导活动重点强调了,但2010年1月份考卷中的证明题:设A,B是任意集合,试证明:若A⨯A=B⨯B,则A=B.许多同学不会做,是不应该的.我们看一看证明:设x∈A,则<x,x>∈A⨯A,因为A⨯A=B⨯B,故<x,x>∈B⨯B,则有x∈B,所以A⊆B.设x∈B,则<x,x>∈B⨯B,因为A⨯A=B⨯B,故<x,x>∈A⨯A,则有x∈A,所以B⊆A.故得A=B.大家可以看到,这两个题的证明方法是不仅类似,而且1月份考题更容易.3.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:设∀x∈A,因为R自反,所以xRx,即< x, x>∈R;又因为S自反,所以xSx,即< x, x >∈S.即< x, x>∈R∩S故R∩S自反.。

相关文档
最新文档