新人教版初中数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](提高)

合集下载

四边形综合篇(解析版)-2023年中考数学必考考点总结

四边形综合篇(解析版)-2023年中考数学必考考点总结

四边形综合--中考数学必考考点总结+题型专训知识回顾1.平行四边形的性质:①边的性质:两组对边分别平行且相等。

②角的性质:对角相等,邻角互补。

③对角线的性质:对角线相互平分。

即对角线交点是两条对角线的中点。

④对称性:平行四边形是一个中心对称图形,绕对角线交点旋转180°与原图形重合。

⑤面积计算:等于底乘底边上的高。

等底等高的两个平行四边形的面积相等。

2.平行四边形的判定:①一组对边平行且相等的四边形是平行四边形。

∵AB∥DC,AB=DC,∴四边行ABCD是平行四边形②两组对边分别相等(两组对边分别平行)的四边形是平行四边形。

符号语言:∵AB=DC,AD=BC(AB∥DC,AD∥BC),∴四边行ABCD是平行四边形.③两组对角分别相等的四边形是平行四边形。

∵∠ABC=∠ADC,∠DAB=∠,∴四边行ABCD是平行四边形④对角线相互平行的四边形是平行四边形。

∵OA=OC,OB=OD,∴四边行ABCD是平行四边形3.矩形的性质:①具有平行四边形的一切性质。

②矩形的四个角都是直角。

③矩形的对角线相等。

④矩形既是一个中心对称图形,也是轴对称图形。

对角线交点是对称中心,过一组对边中点的直线是矩形的对称。

⑤由矩形的对角线的性质可知,直角三角形斜边上的中线等于斜边的一半。

4.矩形的判定:(1)直接判定:有三个角(四个角)都是直角的四边形是矩形。

(2)利用平行四边形判定:①定义:有一个角是直角(邻边相互垂直)的平行四边形是矩形。

②对角线的特殊性:对角线相等的平行四边形是矩形。

5.菱形的性质:①具有平行四边形的一切性质。

②菱形的四条边都相等。

③菱形的对角线相互垂直,且平分每一组对角。

④菱形既是一个中心对称图形,也是一个轴对称图形。

对称中心为对角线交点,对称轴为对角线所在直线。

⑤面积计算:除了用计算平行四边形的面积计算方法面积,还可以用对角线乘积的一半来计算面积。

6.菱形的判定:(1)直接判定:四条边都相等的四边形是菱形。

中考数学总复习知识点总结四边形

中考数学总复习知识点总结四边形

中考数学总复习知识点总结四边形四边形是指具有四条边的几何图形,在数学中有着重要的地位。

下面是中考数学总复习知识点总结四边形的内容。

一、基本定义和性质1.四边形的定义:具有四个顶点、四条边和四个内角的几何图形称为四边形。

2.四边形的分类:a.顶点关系分类:凸四边形和凹四边形;b.边长关系分类:等边四边形、等腰四边形和普通四边形;c.内角关系分类:矩形、正方形、平行四边形、菱形、梯形等。

3.四边形的性质:a.任意一条对角线将四边形分成两个三角形;b.对角线互相平分;c.相对边平行;d.相对角和为180度。

二、特殊四边形1.平行四边形:a.定义:对边平行的四边形;b.性质:i.对边相等;ii. 相邻内角互补;iii. 对角相等。

c.定理:1)如果一条对角线把平行四边形分成两个等腰三角形,则这条对角线是平行四边形的对称轴;2)如果一个四边形的对角线互相平分,则这个四边形是平行四边形。

2.矩形:a.定义:对边平行且四个内角都是直角的四边形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 相邻内角互补;iv. 对角线互相平分。

3.菱形:a.定义:四个边都相等的平行四边形;b.性质:i.相邻内角互补;ii. 对角线互相垂直;iii. 对角线平分相应的内角。

4.正方形:a.定义:对边相等且四个内角都是直角的矩形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 对角线互相垂直;iv. 对角线平分相应的内角。

5.等腰梯形:a.定义:有两对对边平行且有两条边相等的梯形;b.性质:i.上底和下底平分相应的内、外角;ii. 对角线等分梯形的积。

三、四边形的面积和周长1.面积:a.矩形的面积等于长度乘以宽度;b.平行四边形的面积等于底边长乘以高;c.三角形的面积等于底边长乘以高的一半;d.梯形的面积等于上底和下底的平均值乘以高;e.菱形的面积等于对角线的乘积的一半;f.正方形的面积等于一条边长的平方。

2.周长:a.四边形的周长等于四条边的长度之和;b.正方形的周长等于边长的四倍。

中考数学总复习知识点总结四边形

中考数学总复习知识点总结四边形

中考数学总复习知识点总结四边形本文将围绕中考数学总复习知识点总结四边形展开,主要包括四边形的性质、特殊四边形、四边形的周长和面积等方面的内容。

希望可以帮助中考学生对这一知识点进行系统性的复习,提高复习效果。

四边形的性质:1.四边形是由四条线段围成的图形,共有四个顶点和四条边。

2.顺序连接四个顶点得到四边形的周界。

3.四边形的内角和为360度。

4.一个四边形的对角线是连接两个非相邻顶点的线段。

5.对角线分割四边形成为两个三角形。

6.对角线相交于一点且互相平分。

特殊四边形:1.矩形:四个顶点都是直角,对角线长度相等。

2.正方形:四个顶点都是直角,对边相等。

3.平行四边形:对边平行。

4.菱形:四个顶点都相等,对边平行。

5.梯形:有两条平行边。

6.等腰梯形:有两条平行边,两个非平行边长度相等。

4.三角形:只有三个顶点。

四边形的周长和面积:1.周长:计算四边形周长的方法是将四条边的长度相加。

如果已知四边形的其中一方向边的长度,可以根据其性质计算其他边的长度再相加。

2.面积:计算四边形面积的方法因四边形的类型不同而不同。

矩形的面积可以通过长度和宽度的乘积得到。

正方形的面积可以直接通过边长的平方得到。

平行四边形的面积可以通过底边的长度和高的长度的乘积得到。

菱形的面积可以通过对角线的长度乘积的一半得到。

梯形的面积可以通过上底和下底的和乘以高再除以2得到。

等腰梯形的面积可以通过上底和下底的和乘以高再除以2得到。

三角形的面积可以通过底边的长度和高的长度的乘积再除以2得到。

为了更好地掌握四边形的知识点,建议中考学生进行以下练习:1.根据已知的四边形性质,判断下列说法是否正确:(1)一个四边形的对角线是连接两个相邻顶点的线段。

(2)一个四边形的内角和为180度。

(3)对角线相交于一点且互相垂直。

(4)矩形是一种特殊的梯形。

(5)等腰梯形的面积可以通过上底和下底的差再乘以高得到。

2.计算下列四边形的周长和面积:(1) 长方形,长为6cm,宽为4cm。

中考四边形综合知识点总结

中考四边形综合知识点总结

中考四边形综合知识点总结一、四边形的性质1. 任意四边形的内角和为360度2. 对角线互相垂直的四边形是矩形3. 对边平行且相等的四边形是平行四边形4. 有一对对边平行的四边形是梯形5. 有一对对边相等的四边形是菱形6. 对角线相等的四边形是菱形7. 有一对对边互相垂直且相等的四边形是正方形8. 矩形和菱形都是平行四边形二、矩形1. 定义:有四个顶点和四条边的四边形2. 性质:内角和为360度,对角线长度相等,对角线互相垂直,相邻边互相垂直且相等3. 公式:周长=2*(长+宽),面积=长*宽三、平行四边形1. 定义:有四个顶点和四条边的四边形,对边平行且相等2. 性质:内角和为360度,对角线互相平分,对边互相相等3. 公式:周长=2*(a+b),面积=底*高四、梯形1. 定义:有四个顶点和四条边的四边形,有一对对边平行2. 性质:内角和为360度,底边平行,上底和下底长度相等,两个底边平行线段的中线互相平行3. 公式:周长=上底+下底+两腰,面积=(上底+下底)*高/2五、菱形1. 定义:有四个顶点和四条边的四边形,对边互相平行且相等2. 性质:内角和为360度,对角线相等,对角线互相平分,对角线互相垂直3. 公式:周长=4*边长,面积=对角线1*对角线2/2六、正方形1. 定义:有四个顶点和四条边的四边形,对角线相等,对边互相平行且相等2. 性质:内角和为360度,对角线相等,对角线互相垂直,边互相平行且相等3. 公式:周长=4*边长,面积=边长^2七、计算题1. 计算四边形的周长和面积2. 计算梯形的高3. 根据题目条件运用四边形的性质进行计算4. 判断四边形的类型和性质八、应用题1. 根据实际场景运用四边形的性质进行解决问题2. 通过综合应用四边形的知识解决问题3. 运用数学推理和逻辑思维解答四边形的实际问题以上就是中考四边形综合知识点总结,希望对大家有所帮助。

四边形知识点和题型归纳

四边形知识点和题型归纳
A D C B F E
(③图) ⑤ 对角线互相垂直的等腰
可得:等腰直角三角形
(④图)
(⑤图)
8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线)
(1) 顺次连结任意四边形各边中点构成的四边形是_______________
(2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形
是__________
13.填空
(1)等腰梯形上底长为3cm,腰长为4cm,其中锐角等于60º,
则下底长是

(2)等腰梯形一个底角是60º,它的上、下底分别是8和18,则这梯形

腰长是
,高是
,面积是

(3)在直角梯形中,垂直于底的腰长5cm,上底长3cm,另一腰与下底

夹角为30º,则另一腰长为
,下底长为

(4)等腰梯形两对角线互相垂直,一条对角线长为6,则高为
A.一组对边平行的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.对角线互相垂直平分的四边形是正方形
6.(2007甘肃陇南)顺次连结任意四边形各边中点所得四边形一定是
()
A.平行四边形
B.菱形
C.矩形
D.
正方形
7.(2007四川眉山)下列命题中的假命题是( )
图41(3)
(3)如图41(4),已知⊿ABD,⊿BCE是等边三角形,A,F是CE,EB上一 点,且CA=EB,求证:四边形ADFC是平行四边形.
图42(4)
42、(2007浙江台州)把正方形绕着点,按顺时针方向旋转得到正方 形,边与交于点(如图).试问线段与线段 相等吗?请先观察猜想,然后再证明你的猜想.

中考数学知识点复习四边形

中考数学知识点复习四边形

第五单元四边形第19讲多边形与平行四边形知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为()32n n-.多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和( 1 ) 内角和:n边形内角和公式为(n-2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅o,每一个外角为360°/n.( 3 ) 正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.例:如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.5.平行四边形的性质(1)边:两组对边分别平行且相等.即AB∥CD 且AB=CD,BC∥AD且AD=BC. (2)角:对角相等,邻角互补.即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°. (3)对角线:互相平分.即OA=OC,OB=OD(4)对称性:中心对称但不是轴对称.6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)根据平行四边形的面积的求法,可得AE·BC=AF·CD.OD CBA知识点三:平行四边形的判定7.平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.即若AB∥CD,AD∥BC,则四边形ABCD是□.(2)方法二:两组对边分别相等的四边形是平行四边形.即若AB=CD,AD=BC,则四边形ABCD是□.(3)方法三:有一组对边平行且相等的四边形是平行四边形.即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.(4)方法四:对角线互相平分的四边形是平行四边形.即若OA=OC,OB=OD,则四边形ABCD是□.(5)方法五:两组对角分别相等的四边形是平行四边形若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.例:如图四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件BO=DO或AD∥BC或AB∥CD(只添加一个即可),使四边形ABCD为平行四边形.第20讲特殊的平行四边形知识点一:特殊平行四边形的性质与判定关键点拨及对应举例1.性质(具有平行四边形的一切性质,对边平行且相等)矩形菱形正方形(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; _两对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为等边三角形,且四个直角三角形中都有一个30°的锐角.(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边. (1)四个角都是直角(2)对角线相等且互相平分.即AO=CO=BO=DO.(3)面积=长×宽=2S△ABD=4S△AOB.(1)四边相等(2)对角线互相垂直、平分,一条对角线平分一组对角(3)面积=底×高=对角线_乘积的一半(1)四条边都相等,四个角都是直角(2)对角线相等且互相垂直平分(3)面积=边长×边长=2S△ABD=4S△AOB2.判定(1)定义法:有一个角是直角的平行四边形(2)有三个角是直角(3)对角线相等的平行四边形(1)定义法:有一组邻边相等的平行四边形(2)对角线互相垂直的平行四边形(3)四条边都相等的四边形(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形(2)一组邻边相等的矩形(3)一个角是直角的菱形(4)对角线相等且互相垂直、平分例:判断正误.邻边相等的四边形为菱形.()有三个角是直角的四边形式矩形.()对角线互相垂直平分的四边形是菱形. ()对边相等的矩形是正方形.()OD CBA3.联系包含关系:知识点二:特殊平行四边形的拓展归纳4.中点四边形(1)任意四边形多得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.5.特殊四边形中的解题模型(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)图①图②图③图④。

中考数学四边形知识点整理

中考数学四边形知识点整理

中考数学四边形知识点整理学习从来无捷径。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。

下面是小编给大家整理的一些中考数学四边形知识点的学习资料,希望对大家有所帮助。

中考数学知识点总结:平行四边形考点分析1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4。

对称性:平行四边形是中心对称图形.5.平行四边形中常用辅助线的添法1、连对角线或平移对角线2、过顶点作对边的垂线构造直角三角形3、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

5、过顶点作对角线的垂线,构成线段平行或三角形全等。

中考数学易错知识点:四边形四边形易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。

三角形的稳定性与四边形不稳定性。

易错点2:平行四边形注意与三角形面积求法的区分。

平行四边形与特殊平行四边形之间的转化关系。

易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。

对角线将四边形分成面积相等的四部分。

易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。

易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。

矩形与正方形的折叠,(23题必考)易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。

(18题必考)易错点7:(25题可能用到)梯形问题的主要做辅助线的方法。

初中四边形知识点总结归纳

初中四边形知识点总结归纳

初中四边形知识点总结归纳四边形作为初中数学中的重要内容,是学习几何学不可或缺的一部分。

在初中阶段,我们需要系统地学习和掌握四边形的性质、分类以及相关的定理。

本文将对初中四边形的知识点进行总结和归纳,帮助大家更好地理解和掌握这一部分知识。

1. 四边形的定义四边形是由四条线段组成的图形。

四边形的特点是有四个顶点、四条边和四个内角。

2. 四边形的分类根据边长和角度的不同,四边形可以分为以下几类:1) 矩形:具有四个右角的四边形,对边相等。

2) 正方形:具有四个相等边和四个右角的四边形。

3) 平行四边形:具有两对平行边的四边形。

4) 长方形:具有四个右角的四边形,对边相等。

5) 菱形:具有四个相等边的四边形。

6) 梯形:具有两对平行边的四边形。

7) 不规则四边形:没有特殊性质的四边形。

3. 四边形的性质1) 内角和定理:任意四边形的内角和等于360度。

2) 对角线性质:- 矩形、正方形和菱形的对角线相互平分。

- 平行四边形的对角线互相等长。

- 不规则四边形的对角线一般不相等。

3) 矩形、正方形和菱形的边长关系:正方形的边长等于矩形或菱形的长度,矩形和菱形的边长相等。

4) 平行四边形的边长关系:对边相等。

5) 梯形的特点:有一个对角线作为它的中线,两腰相等的梯形是等腰梯形。

6) 不规则四边形的特点:没有特殊性质,边长和角度都可能不相等。

4. 四边形的重要定理1) 矩形的重要定理:- 矩形的对角线相等。

- 矩形的四个角都是直角。

- 矩形的边互相垂直。

2) 正方形的重要定理:- 正方形的对角线相等且垂直。

- 正方形的对角线平分角。

- 正方形的四个角都是直角。

3) 平行四边形的重要定理:- 平行四边形的对边平行且相等。

- 平行四边形的对角线互相平分。

4) 菱形的重要定理:- 菱形的对角线互相垂直。

- 菱形的对角线平分角。

5. 解题技巧和注意事项1) 综合运用已知条件和四边形的性质来解题。

2) 注意图形的标记和注释,保持清晰易懂。

新版初三总复习四边形专题复习-新版.pdf

新版初三总复习四边形专题复习-新版.pdf

中考四边形专题【知识要点】一一般四边形1.四边形的内角和与外角和定理:(1)四边形的内角和等于360°;(2)四边形的外角和等于360°.2.多边形的内角和与外角和定理:(1)n 边形的内角和等于(n -2)180°;(2)任意多边形的外角和等于360°.3.若n 是多边形的边数,则对角线条数公式是:2)3n(n .二平行四边形的判定与性质1. 平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

2. 平行四边形是中心对称图形,对称中心是两条对角线的交点。

3.平行四边形的性质:因为ABCD 是平行四边形.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321.三矩形的判定与性质1. 矩形定义1:有一个角是直角的平行四边形叫做矩形2. 矩形定义2:有三个角是直角的四边形叫做矩形3. 矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。

4.矩形的性质:因为ABCD 是矩形.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(5. 矩形的判定:边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形ABCD 是矩形.四菱形的判定与性质1. 菱形定义1:有一组邻边相等的平行四边形叫做菱形.2. 菱形定义2:四条边都相等的四边形叫做菱形。

3. 菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线。

4.菱形的性质:因为ABCD 是菱形A BCD 1234AB CDABDOCABD OCADBCADBCOCDBAO.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(5.菱形的判定:边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形ABCD 是菱形.五正方形的判定与性质1. 正方形定义1:有一组邻边相等的矩形叫做正方形。

人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)

人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)

第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。

新初中数学四边形知识点总复习附答案解析(2)

新初中数学四边形知识点总复习附答案解析(2)

新初中数学四边形知识点总复习附答案解析(2)一、选择题1.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∵AC ⊥BC ,∴∠ACB =90°,∴∠AED =90°,∴AC ⊥DF ,∴平行四边形ADCF 为菱形故选:D .【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.2.如图,在平行四边形ABCD 中,2=AD AB ,CE 平分BCD ∠交AD 于点E ,且8BC =,则AB 的长为( )A .4B .3C .52D .2【答案】A【解析】【分析】 利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB 即可得出答案.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD ,∴∠DEC=∠ECB ,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.3.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DG CF=( )A.23B.22C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.4.如图,正方形ABDC中,AB=6,E在CD上,DE=2,将△ADE沿AE折叠至△AFE,延长EF交BC于G,连AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S∆FCG=3,其中正确的有().A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确;过点F 作FM ⊥CE ,∴FM ∥CG∴△EFM ∽△EGC∴FM EF GC EG =即235FM =解得65 FM=∴S∆FCG=116344 3.6225ECG ECFS S-=⨯⨯-⨯⨯=V V,故④错误正确的共3个故选:C.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.6.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA= OC, OB=OD,∴四边形ABCD是平行四边形,又∵OA=OC=OD=OB,∴AC=BD,∴四边形ABCD是矩形.故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.7.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.64【答案】C【解析】【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.8.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y =12⨯AB ×BQ =12⨯6v ×23v =63,解得:v =1, 故点P 、Q 的速度分别为:3,3,AB =6v =6=a ,则AC =12,BC =63,如图当点P 在AC 的中点时,PC =6,此时点P 运动的距离为AB +AP =12,需要的时间为12÷3=4,则BQ =3x =43,CQ =BC ﹣BQ =63﹣43=23,过点P 作PH ⊥BC 于点H ,PC =6,则PH =PC sin C =6×12=3,同理CH =33,则HQ =CH ﹣CQ =33﹣23=3,PQ =22PH HQ +=39+=23,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .3B .2C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2, ∴22213CO =-=;∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.10.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE ,∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =,∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.11.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .12.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.13.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()A.100°B.160°C.80°D.60°【答案】D【解析】【分析】由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠B=180°,求得∠A的度数,继而求得答案.【详解】∵四边形ABCD是平行四边形,如图,∴∠A=∠C,AD∥BC,∴∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=180°﹣∠A=60°.故选D.【点睛】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等、邻角互补的知识.14.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD【答案】B【解析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.16.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【答案】C【解析】【分析】根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.17.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.18.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()4,1, 点D的坐标为()0,1,则菱形ABCD的周长等于()A5B.3C.45D.20【答案】C【解析】【分析】如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC、BD,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.19.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A.【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.∆绕点A顺时针旋转90︒到20.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==25AD DCDE=Q,2∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.。

人教版初中数学四边形知识点总复习含解析

人教版初中数学四边形知识点总复习含解析

人教版初中数学四边形知识点总复习含解析一、选择题1.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .25C .6D .26【答案】D【解析】【分析】 利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE ∆Q 绕点A 顺时针旋转90︒到ABF ∆的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,25AD DC ∴==,2DE =Q ,Rt ADE ∴∆中,2226AE AD DE =+=故选:D .【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应 边关系是解题关键.2.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.3.设四边形的内角和等于α,五边形的外角和等于β,则α与β的关系是( ) A .αβ>B .αβ=C .αβ<D .180βα=+o【答案】B【解析】【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于β,∴β =360°,∴a=β. 故选B .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.4.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.5.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C6.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=2234=5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.8.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD是菱形,AC=6,DB=8,∴OA=3,OB=4,AC⊥BD,在Rt△AOB中,AB=22OA OB+=5,∵S菱形ABCD=12AC BD AB NQ=g g,∴18652NQ ⨯⨯=,∴NQ=245,∴PM+PN的最小值为245,故选D.【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长是4×6=24,故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.10.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =3OD = ∴2221OA AD OD +=∴21OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.11.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D .5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点,∴1 2.52DE AB ==, 故选:B .【点睛】 本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.12.如图11-3-1,在四边形ABCD 中,∠A=∠B=∠C ,点E 在边AB 上,∠AED=60°,则一定有( )A .∠ADE=20°B .∠ADE=30°C .∠ADE=12∠ADCD .∠ADE=13∠ADC 【答案】D【解析】【分析】【详解】设∠ADE=x ,∠ADC=y ,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0, 所以13x y =,即∠ADE=13∠ADC . 故答案选D .考点:三角形的内角和定理;四边形内角和定理.13.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】 因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC ⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.4,1, 点D的坐标为15.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()()0,1,则菱形ABCD的周长等于()A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.16.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A.1个B.2个C.3个D.4个【答案】D【解析】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.18.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,可添加的条件不正确的是()A.AB∥CD B.∠B=∠D C.AD=BC D.AB=CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD∥BC,AB∥CD,∴四边形ABCD 是平行四边形,故A 正确;∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 正确;∵AD ∥BC ,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.19.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD≌△ECD.20.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.。

人教版初中数学四边形知识点总复习附解析

人教版初中数学四边形知识点总复习附解析

人教版初中数学四边形知识点总复习附解析一、选择题1.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD ,又BE=DH ,∠AEB=∠HDF=45°∴△BEH ≌△HDF (ASA ),∴BH=HF ,HE=DF ,故③正确;由上述①、②、③可得CD=BE 、DF=EH=CE ,CF=CD-DF ,∴BC-CF=(CD+HE )-(CD-HE )=2HE ,所以④正确;∵AB=AH ,∠BAE=45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C .【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质2.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .22aD .32a 【答案】C【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=2a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =3.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A 213B 313C .23D 13 【答案】B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED的面积为6,∴111622x x x⋅⋅+⋅⨯=,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,222313BE=+=,∴313 cos13BFEBFBE∠===.故选B.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.4.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.5.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA= OC, OB=OD,∴四边形ABCD是平行四边形,又∵OA=OC=OD=OB,∴AC=BD,∴四边形ABCD是矩形.故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.6.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.7.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.8.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】 依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH,若BE:EC=2:1,则线段CH 的长是( )A .3B .4C .5D .6【答案】B【解析】 试题分析:设CH =x , 因为BE :EC =2:1,BC =9,所以,EC =3, 由折叠知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理,得:222(9)3x x -=+,解得:x =4,即CH=4考点:(1)图形的折叠;(2)勾股定理10.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x ,y ,z ,则111x y z ++的值为( ) A .1 B .23 C .12 D .13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-,∴当0y =时,21019x =-, 解得:=3x ±, ∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度=2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∵AC ⊥BC ,∴∠ACB =90°,∴∠AED =90°,∴AC ⊥DF ,∴平行四边形ADCF 为菱形故选:D .【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.13.已知ABCD Y (AB BC >),用尺规在ABCD 内作菱形,下列作法错误的是( )A .如图1所示,作对角线AC 的垂直平分线EF ,则四边形AECF 为所求B .如图2所示,在AB DC ,上截取AE AD DF DA ==,,则四边形AEFD 为所求 C .如图3所示,作ADC ABC ∠∠、的平分线DE BF ,,则四边形DEBF 为所求 D .如图4所示,作BDE BDC DBF DBA ∠=∠∠=∠,,则四边形DEBF 为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A 、根据线段的垂直平分线的性质可知AB =AD ,一组邻边相等的平行四边形是菱形;符合题意;B 、根据四条边相等的四边形是菱形,符合题意;C 、根据两组对边分别平行四边形是平行四边形,不符合题意;D 、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C .【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.14.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【答案】B【解析】【分析】 根据正方形的性质得到∠DAC =∠ACD =45°,由四边形EFGH 是正方形,推出△AEF 与△DFH 是等腰直角三角形,于是得到DE 2EH 2EF ,EF 2AE ,即可得到结论. 【详解】解:∵在正方形ABCD 中,∠D =90°,AD =CD =AB ,∴∠DAC =∠DCA =45°,∵四边形EFGH 为正方形,∴EH =EF ,∠AFE =∠FEH =90°,∴∠AEF =∠DEH =45°,∴AF =EF ,DE =DH ,∵在Rt △AEF 中,AF 2+EF 2=AE 2,∴AF =EF =22AE , 同理可得:DH =DE =22EH 又∵EH =EF ,∴DE =22EF =22×22AE =12AE , ∵AD =AB =6,∴DE =2,AE =4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.15.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连结BF,交AC于点M,连结DE,BO.若∠BOC=60°,FO=FC,则下列结论:①AE=CF;②BF 垂直平分线段OC;③△EOB≌△CMB;④四边形是BFDE菱形.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.【详解】解:∵矩形ABCD中,O为AC中点∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,故①正确∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故②正确;∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故③错误;连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,且BO=DO由①可知△AOE≌△COF,∴OE=OF∴四边形EBFD是平行四边形由②可知,OB=CB,OF=FC又∵BF=BF∴△OBF≌△OCF∴BD⊥EF∴平行四边形EBFD是菱形,故④正确所以其中正确结论的个数为3个;故选:C.【点睛】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.16.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().A.1个B.2个C.3个D.4个【答案】D【解析】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD 上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.EF BC,分别交AB、18.如图点P是矩形ABCD的对角线AC上一点,过点P作//CD于点E、F,连接PB、PD,若1PF=,则图中阴影部分的面积为AE=,8()A.5B.6C.8D.9【答案】C【解析】【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×1×8=4,∴S阴=4+4=8,故选:C.【点睛】此题考查矩形的性质、三角形的面积,解题的关键是证明S△PEB=S△PFD.19.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFE AB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.20.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S 矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.。

人教版八年级四边形知识点归纳很实用(优选.)

人教版八年级四边形知识点归纳很实用(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改八年级四边形知识点归纳一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定: ⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8.菱形的判定:A BCD 1234AB DABDOCAD BC AD BCOCDBAO⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( C D AB (1)A BC D O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形 又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定: ⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形(4)∵ABCD 是梯形且AD ∥BC∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理: 三角形的中位线平行第三边,并且等于它的一半. 15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =ch ab =21(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) E F D A B C ED CB A A B CD OABC D O2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =Lh h b a =+)(21.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.梯形中常见的辅助线:最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改平行四边形矩形菱形正方形。

人教版八年级四边形知识点归纳-很实用

人教版八年级四边形知识点归纳-很实用

八年级四边形知识点归纳一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(A BCD 1234AB DABDOCAD BC AD BCOCDBAO8.菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( (1) (2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (4)∵ABCD 是梯形且AD ∥BC ∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.CDABA BCD OE FD ABCE DCBAABCDOA BC D O二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =ch ab =21(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =Lh h b a =+)(21.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.梯形中常见的辅助线:平行四边形矩形菱形正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:四边形综合复习—知识讲解(提高)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底. (2)不平行的两边叫做梯形的腰. (3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等. 5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形; (3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a 、b 是梯形的上、下底,h 是梯形的高).【要点诠释】解决四边形问题常用的方法(1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决. (3)有时也可以运用平移、轴对称来构造图形,解决四边形问题. 考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n 种正多边形组合起来镶嵌成一个平面的条件: ①n 个正多边形中的一个内角的和的倍数是360°;②n 个正多边形的边长相等,或其中一个或n 个正多边形的边长是另一个或n 个正多边形的边长的整数倍.【典型例题】类型一、特殊的四边形1.如图所示,已知P 、R 分别是矩形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定ABCD EF PR【思路点拨】此题的考点是矩形的性质;三角形中位线定理. 【答案】C.【解析】点R 固定不变,点P 在BC 上从B 向C 移动,在这个过程中△APR 的AR 边不变,EF 是△APR 的中位线,EF =12AR ,所以EF 的长不变. 【总结升华】本题考查矩形的性质及三角形中位线定理,难度适中,根据中位线定理得出EF=12AR 是解题的突破口.2.(2015•绵阳模拟)正方形ABCD 中,P 为AB 边上任一点,AE⊥DP 于E ,点F 在DP 的延长线上,且DE=EF ,连接AF 、BF ,∠BAF 的平分线交DF 于G ,连接GC . (1)求证:△AEG 是等腰直角三角形; (2)求证:AG+CG=;(3)若AB=2,P 为AB 的中点,求BF 的长.【思路点拨】(1)由条件可以得出∠AFD=∠PAE,再由直角三角形的性质两锐角互余及角平分线的性质就可以得出2∠GAP+2∠PAE=90°,从而求出结论;(2)如图2,作CH⊥DP,交DP于H点,可以得出△ADE≌△DCH根据全等三角形的性质就可以得出△GHC是等腰直角三角形,由其性质就可以得出CG=GH,AG=EG,再根据线段转化就看以得出结论;(3)如图3,延长DF,CB交于点K,根据正方形的性质可以得出△ADP≌△BKP,再由勾股定理就可以得出F是KG的中点,由三角形的中位线的性质就可以求出结论.【答案与解析】(1)证明:如图1,∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:如图2,作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG;(3)如图3,延长DF,CB交于点K,∵P是AB的中点,∴AP=BP=1.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠ABC=∠ABK=90°.∵在△ADP和△BKP中,∴△ADP≌△BKP(ASA),∴AD=KB=BC=2.在Rt△ADP中由勾股定理,得PD=,∴AE=PA•AD,∴AE=,DE=,∴EG=,DF=,∴FG=.在Rt△KCD中,由勾股定理,得KD=2,∴KF=,∴KF=FG,∵KB=BC,∴FB∥CG,BF=CG,∴BF=•CH=DE=.【总结升华】本题考查了等腰三角形的性质的运用,直角三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,正方形的性质的运用,三角形的中位线的判定及性质的运用,解答时合理运用全等是重点,运用三角形的中位线的性质求解是难点.举一反三:【变式】如图,E是正方形ABCD外的一点,连接AE、BE、DE,且∠EBA=∠ADE,点F在DE上,连接AF,BE=DF.(1)求证:△ADF≌△ABE;(2)小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=2AE.请你说明理由.【答案】证明:(1)∵四边形正ABCD是正方形,∴AB=AD,∵在△ADF 和△ABE 中,AD AB ADF EBA DF BE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABE ;(2)理由如下:由(1)有△ADF ≌△ABE , ∴AF=AE ,∠1=∠2,在正方形ABCD 中,∠BAD=90°, ∴∠BAF+∠3=90°, ∴∠BAF+∠4=90°, ∴∠EAF=90°,∴△EAF 是等腰直角三角形,∴EF 2=AE 2+AF 2,∴EF 2=2AE 2, ∴EF=2AE ,即DE-DF=2AE , ∴DE-BE=2AE . 【四边形综合复习 例2】3.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AB=8,34tan =∠CAD ,CA=CD ,E 、F 分别是线段AD 、AC 上的动点(点E 与点A 、D 不重合),且∠FEC=∠ACB ,设DE=x ,CF=y. (1)求AC 和AD 的长; (2)求y 与x 的函数关系式;(3)当△EFC 为等腰三角形时,求x 的值.【思路点拨】本题涉及到的考点有相似三角形的判定与性质;等腰三角形的判定;直角梯形;锐角三角函数的定义. 【答案与解析】F CBDAE(1)∵AD ∥BC ,∠B=90°, ∴∠ACB=∠CAD . ∴tan ∠ACB=tan ∠CAD=43. ∴AB BC =43. ∵AB=8,∴BC=6.则AC=10. 过点C 作CH ⊥AD 于点H , ∴CH=AB=8,则AH=6. ∵CA=CD ,∴AD=2AH=12. (2)∵CA=CD , ∴∠CAD=∠D .∵∠FEC=∠ACB ,∠ACB=∠CAD , ∴∠FEC=∠D .∵∠AEC=∠1+∠FEC=∠2+∠D , ∴∠1=∠2.∴△AEF ∽△DCE . ∴DE CDAF AE=,即101012x y x =--. ∴y=21610105x x -+. (3)若△EFC 为等腰三角形.①当EC=EF 时,此时△AEF ≌△DCE , ∴AE=CD .∵12-x=10,∴x=2.②当FC=FE 时,有∠FCE=∠FEC=∠CAE , ∴CE=AE=12-x .在Rt △CHE 中,由(12-x )2=(6-x )2+82,解得x=113. ③当CE=CF 时,有∠CFE=∠CEF=∠CAE ,此时点F 与点A 重合,故点E 与点D 也重合,不合题意,舍去. 综上,当△EFC 为等腰三角形时,x=2或x=113. 【总结升华】本题考查了相似三角形的判定和性质、等腰三角形的判定、直角梯形及锐角三角形函数的定义等知识;应用相似的性质,得到比例式,借助比例式解题是很重要的方法,做题时注意应用,对于等腰三角形问题要注意分类讨论也是比较重要的,注意掌握.举一反三:【变式】在直角梯形ABCD 中,AB ∥DC ,AB ⊥BC ,∠A =60°,AB =2CD ,E 、F 分别为AB 、AD 的中点,连结EF 、EC 、BF 、CF .⑴判断四边形AECD 的形状(不证明);⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明. ⑶若CD =2,求四边形BCFE 的面积.【答案】(1)平行四边形;(2)△BEF ≌△CDF 或(△AFB ≌△EBC ≌△EFC ) 证明:连接DE ,∵AB=2CD ,E 为AB 中点, ∴DC=EB , 又∵DC ∥EB ,∴四边形BCDE 是平行四边形, ∵AB ⊥BC ,∴四边形BCDE 为矩形,∴∠AED=90°,∠CDE=∠BED=90°,BE=CD , 在Rt △AED 中,∠A=60°,F 为AD 的中点, ∴AF=12AD=EF , ∴△AEF 为等边三角形,∴∠DFE=180°-60°=120°, ∵EF=DF ,∴∠FDE=∠FED=30°. ∴∠CDF=∠BEF=120°, 在△BEF 和△FDC 中,120DF EF CDF BEF DC BE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BEF≌△CDF(SAS).(3)若CD=2,则AD=4,∵∠A=60°,∴sin60°=DEAD=32,∴DE=AD•32=23∴DE=BC=23,∵四边形AECD为平行四边形,∴S△ECF与S四边形AECD等底同高,∴S△ECF=12S四边形AECD=12CD•DE=12×2×23=23,S△CBE=12BE•BC=12×2×23=23,∴S四边形BCFE=S△ECF+S△EBC=23+23=43.类型二、四边形与其他知识的综合运用4. 有矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于点F、G,AF=23,求DE的长;(2)如果折痕FG分别与CD、DA交于点F、G,△AED的外接圆与直线BC相切,求折痕FG的长.【思路点拨】(1)根据AF,AD的长可以求得DF的长,根据折叠知EF=AF,再根据勾股定理即可计算得到DE的长;(2)根据直角三角形的外接圆的圆心是斜边的中点,则折痕与AE的交点O即是其外接圆的圆心.设DE=x,根据三角形ADE的中位线定理求得OM=12x,进一步表示出ON的长.根据直线和圆相切,则圆心到直线的距离等于圆的半径得到AE=2ON,在直角三角形ADE中,根据勾股定理列方程求解.再根据直角三角形FOE相似于直角三角形ADE,求得OF的长,从而根据轴对称的性质得到FG=2OF.【答案与解析】(1)在矩形ABCD中,AB=2,AD=1,AF=23,∠D=90°.根据轴对称的性质,得EF=AF=23.3在Rt △DEF 中,DE=22213-=333()().(2)设AE 与FG 的交点为O .根据轴对称的性质,得AO=EO .取AD 的中点M ,连接MO . 则MO=12DE ,MO ∥DC . 设DE=x ,则MO=12x , 在矩形ABCD 中,∠C=∠D=90°,∴AE 为△AED 的外接圆的直径,O 为圆心.延长MO 交BC 于点N ,则ON ∥CD .∴∠CNM=180°-∠C=90°.∴ON ⊥BC ,四边形MNCD 是矩形.∴MN=CD=AB=2.∴ON=MN-MO=2-12x . ∵△AED 的外接圆与BC 相切,∴ON 是△AED 的外接圆的半径.∴OE=ON=2-12x ,AE=2ON=4-x . 在Rt △AED 中,AD 2+DE 2=AE 2,∴12+x 2=(4-x )2.解这个方程,得x=158. ∴DE=158,OE=2-12x=1716. 根据轴对称的性质,得AE ⊥FG .∴∠FOE=∠D=90°.可得FO=1730. 又AB ∥CD ,∴∠EFO=∠AGO ,∠FEO=∠GAO .∴△FEO ≌△GAO .∴FO=GO .15∴折痕FG的长是17 15.【总结升华】本题通过矩形纸片折叠,利用轴对称图形的性质,在丰富的图形关系中,考查学生获取信息和利用所得信息认识新事物的能力,本题对图形折叠前后的不变量的把握、直线与圆位置关系的准确理解、方程思想的运用意识和策略等具有可再抽象性.【四边形综合复习例3】5.(2015•黄岛区校级模拟)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t为何值时,DE∥AB?(2)求四边形BQPC的面积s与t的函数关系式;(3)是否存在某一时刻t,使四边形BQPC的面积与Rt△ABC的面积比为13:15?若存在,求t的值.若不存在,请说明理由;(4)若DE经过点C,试求t的值.【思路点拨】(1)根据DE∥AB,得到△AQP∽△ACB,根据相似三角形的对应边成比例,求出t;(2)根据四边形BQPC的面积=△ABC的面积﹣△AQP的面积,列出关于x、y的函数关系式;(3)根据(2)中的函数关系式和面积比,求出t;(4)DE经过点C,作QH⊥BC于H,得到DH∥AC,用t表示出QH、EH,根据垂直平分线的性质和勾股定理列出关系式求出t.【答案与解析】解:(1)当DE∥AB时,∠AQP=90°,则△AQP∽△ACB,=,=,t=;(2)∠C=90°,AC=3,AB=5,根据勾股定理得,BC=4,S△ABC=×3×4=6,作QF⊥BC于F,则QF∥BC,=,即=,QF=t,S△AQP=×(3﹣t)×t=﹣t2+t,S=6﹣(﹣t2+t)=t2﹣t+6;(3)(t2﹣t+6):6=13:15,整理得,t2﹣3t+2=0解得:t1=1,t2=3(舍去);当t=1时,四边形BQPC的面积与Rt△ABC的面积比为13:15;(4)如图,DE经过点C,作QH⊥BC于H,∵DH∥AC,∴==,=,QH=,=,BH=,HC=t,∵DE垂直平分PQ,∴PC=CQ,()2+(t)2=t2,90t=225,t=.【总结升华】本题考查的是相似三角形的判定和性质,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,注意方程思想的正确运用.6 .如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转а度得到四边形OAB'C',此时直线OA’、直线B’C’分别与直线BC相交于点P、Q.(1)四边形OABC的现状是,当а=90°时,BP:PQ的值是;(2)①如图,当四边形OA’B’C’的顶点B’落在y轴正半轴时,求BP:BQ的值;②如图,当四边形OA’B’C’的顶点B’落在直线BC上时,求△OPB'的面积;(3)在四边形OA’B’C’旋转过程中,当0<а°≤180°时,是否存在这样的点P和点Q,使BP=0.5BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【思路点拨】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.【答案与解析】(1)四边形OA′B′C′的形状是矩形;根据题意即是矩形的长与宽的比,即43.(2)①∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴CPA B''=OCOA',即6CP=68,∴CP=92,BP=BC-CP=72.同理△B′CQ∽△B′C′O,∴CQC O'=B CB C''',即6CQ=1068-,∴CQ=3,BQ=BC+CQ=11.∴BP PQ =72932+=715; ②在△OCP 和△B ′A ′P 中,90OPC B PA OCP A OC B A ''∠=∠⎧⎪'∠=∠=︒⎨⎪''=⎩,∴△OCP ≌△B ′A ′P (AAS ).∴OP=B ′P .设B ′P=x ,在Rt △OCP 中,(8-x )2+62=x 2,解得x=254. ∴S △OPB′=12×254×6=754; (3)过点Q 画QH ⊥OA ′于H ,连接OQ ,则QH=OC ′=OC ,∵S △POQ =12PQ •OC ,S △POQ =12OP •QH , ∴PQ=OP . 设BP=x ,∵BP=12BQ , ∴BQ=2x ,如图1,当点P 在点B 左侧时,OP=PQ=BQ+BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得 x 1=1+362,x 2=1-362(不符实际,舍去). ∴PC=BC+BP=9+362, ∴P 1(-9-362,6). 如图2,当点P 在点B 右侧时,∴OP=PQ=BQ-BP=x ,PC=8-x .在Rt △PCO 中,(8-x )2+62=x 2,解得x=254. ∴PC=BC-BP=8-254=74, ∴P 2(-74,6), 综上可知,点P 1(-9-362,6),P 2(-74,6),使BP=12BQ . 【总结升华】本题考查了旋转的性质;勾股定理;矩形的判定与性质;相似三角形的判定与性质.举一反三:【变式】如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG..求证:CD 垂直平分EG.(3)延长BE 交CD 于点P .求证:P 是CD 的中点.【答案】(1)延长DE 交BC 于F ,∵AD ∥BC ,AB ∥DF ,∴AD=BF ,∠ABC=∠DFC .在Rt △DCF 中,∵tan ∠DFC=tan ∠ABC=2,∴2CD CF=, 即CD=2CF ,∵CD=2AD=2BF ,∴BF=CF ,∴BC=BF+CF=12CD+12CD=CD .即BC=CD .A DGEC B。

相关文档
最新文档