高三高考数学一轮复习(理)大纲
高三数学一轮复习 9.43 平面的基本性质及空间的两条直线课件 理 大纲人教版
![高三数学一轮复习 9.43 平面的基本性质及空间的两条直线课件 理 大纲人教版](https://img.taocdn.com/s3/m/981791f57cd184254b3535f9.png)
1.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ) A.5部分 B.6部分 C.7部分 D.8部分 答案:C
2.如图,正方体ABCD—A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中 点.那么,正方体的过P、Q、R的截面图形是( )
A.三角形
B.四边形
C.五边形
D.六边形
答案:C
4.下列各图是正方体和正四面体,P、Q、R、S分别是所在棱的中点,过四 个点共面的图形是________.(写出符合要求序号)
解析:在④选项中,可证Q点所在棱与PRS平行,因此,P、Q、R、S四 点不共面.可证①中PQRS为梯形;③中可证PQRS为平行四边形;②中 如图取A1A与BC的中点分别为M、N,可证明PMQNRS为平面图形,且 PMQNRS为正六边形. 答案:①②③
2.利用公理2可证明点共线,线共点等问题.
3.求异面直线所成的角,是要将异面直线问题转化为相交直线所成的锐角或直角, 可通过余弦定理解三角形,而作辅助线主要是作已知直线的平行线, 具体可利用平行四边形对边平行,三角形或梯形的中位线与底边平行等,而 对两条异面直线的判定可根据“连结平面外一点和平面内一点的直线与平面 内不经过此点的直线是异面直线”. 这个结论是对异面直线直接判定的重要依据,也是求异面直线成角作辅助线 的 重要依据之一,也可利用向量的夹角求异面直线所成的角.
解法二:以D为空间坐标原点,如图,建立空间直角坐标系,则D1(0,0,2),
F(1,0,0),O(1,1,0),E(0,2,1),∴FD1=(-1,0,2),OE=(-1,1,1),∴FD1·OE
=3,∴cos θ=
,
即两条异面直线D1F与OE所成角的余弦值为
.
高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1
![高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1](https://img.taocdn.com/s3/m/2b920dc2e109581b6bd97f19227916888486b9af.png)
第六节 对数与对数函数对数与对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 知识点一 对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a _N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N . (2)log aMN=log a M -log a N . (3)log a M n =n log a M (n ∈R ).(4)换底公式log a b =log m blog m a (a >0且a ≠1,b >0,m >0,且m ≠1).必记结论1.指数式与对数式互化:a x =N ⇔x =log a N . 2.对数运算的一些结论:①log am b n =nm log a b .②log a b ·log b a =1.③log a b ·log b c ·log c d =log a d .易误提醒 在运算性质log a M n =n log a M 中,易忽视M >0.[自测练习]1.(2015·临川一中模拟)计算⎝⎛⎭⎫lg 1125-lg 82÷4-12=________. 解析:本题考查指数和对数的运算性质.由题意知原式=(lg 5-3-lg 23)2÷2-1=(-3lg 5-3lg 2)2×2=9×2=18.答案:18 2.lg427-lg 823+lg 75=________. 解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:12知识点二 对数函数定义、图象与性质定义函数y =log a x (a >0,且a ≠1)叫作对数函数图 象a >10<a <1性 质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时, y ∈(-∞,0); 当x >1时, y ∈(0,+∞) 当0<x <1时, y ∈(0,+∞); 当x >1时, y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数易误提醒 解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 必记结论1.底数的大小决定了图象相对位置的高低;不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.[自测练习]3.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B. 答案:B4.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.由(1)(2)知a =2或a =12.答案:2或12考点一 对数式的化简与求值|1.(2015·内江三模)lg51 000-823=( )A.235 B .-175 C .-185 D .4 解析:lg 51 000-823=lg 1035-(23)23=35-4=-175.答案:B2.(log 23)2-4log 23+4+log 2 13=( )A .2B .2-2log 2 3C .-2D .2log 2 3-2解析:(log 23)2-4log 23+4=(log 23-2)2=2-log 23,又log 213=-log 23,两者相加即为B.答案:B3.(2015·高考浙江卷)若a =log 43,则2a +2-a =________. 解析:原式=2log 4 3+2-log 4 3=3+13=433.答案:433对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二 对数函数图象及应用|(1)(2016·福州模拟)函数y =lg |x -1|的图象是( )[解析] 因为y =lg |x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意. [答案] A(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 12 12=1,显然4x <log a x 不成立,排除选项A.[答案] B应用对数型函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:作出f (x )的大致图象,不妨设a <b <c ,因为a ,b ,c 互不相等,且f (a )=f (b )=f (c ),由函数的图象可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12).答案:C考点三 对数函数性质及应用|已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. [解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为(-1,1).(2)由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数, 所以f (x )>0⇔x +11-x >1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1).利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.2.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.解:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立, 则f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 5.插值法比较幂、对数大小【典例】 (1)设a =0.50.5,b =0.30.5,c =log 0.3 0.2,则a ,b ,c 的大小关系是( ) A .c <b <aB .a <b <cC .b <a <cD .a <c <b(2)已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b[思路点拨] (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 3 0.3=log 3 103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. [解析] (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性, 可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =⎝⎛⎭⎫15log 3 0.3=5-log 3 0.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2 x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 2 3.4>log 3 103>log 43.6. 法二:∵log 3 103>log 33=1,且103<3.4, ∴log 3103<log 3 3.4<log 2 3.4. ∵log 4 3.6<log 4 4=1,log 3103>1,∴log 4 3.6<log 3 103. ∴log 2 3.4>log 3103>log 4 3.6. 由于y =5x 为增函数,∴5log 2 3.4>5log 3103>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 3 0.3>5log 4 3.6,故a >c >b . (3)因为函数y =f (x )关于y 轴对称, 所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时, [xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π 3<20.2<log 3 9,所以b >a >c ,选A. [答案] (1)C (2)C (3)A[方法点评] (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[跟踪练习] 设a >b >0,a +b =1且x =⎝⎛⎭⎫1a b,y =log ⎝⎛⎭⎫1a +1b ab ,z =log 1b a ,则x ,y ,z 的大小关系是( )A .y <x <zB .z <y <xC .y <z <xD .x <y <z解析:用中间量比较大小.由a >b >0,a +b =1,可得0<b <12<a <1,所以1b >2>1a >1,所以x =⎝⎛⎭⎫1a b>1,y =log ⎝⎛⎭⎫1a +1b ab =log ⎝⎛⎭⎫1ab ab =-1,0>z =log 1b a >log 1bb =-1,则y<z <x ,故选C.答案:CA 组 考点能力演练1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.答案:A2.设a =30.5,b =0.53,c =log 0.5 3,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <b <aD .c <a <b解析:因为a =30.5>30=1,0<b =0.53<0.50=1,c =log 0.5 3<log 0.5 1=0,所以c <0<b <1<a ,故选C.答案:C3.(2015·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6 (a +b ),则1a +1b 的值为( )A .36B .72C .108D.172解析:设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k ,所以1a +1b =a +b ab =6k 2k -23k -3=108.所以选C. 答案:C4.(2015·长春质检)已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 答案:B5.已知函数f (x )=log 2 ⎝⎛⎭⎫21-x +t 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (-x )=-f (x )得log 2 ⎝ ⎛⎭⎪⎫21+x +t =-log 2 ⎝ ⎛⎭⎪⎫21-x +t ,所以21+x +t =121-x +t,整理得1-x 2=(2+t )2-t 2x 2,可得t 2=1且(t +2)2=1,所以t =-1,则f (x )=log 21+x1-x<0,即⎩⎪⎨⎪⎧1+x1-x>01+x 1-x <1,解得-1<x <0.答案:A6.(2015·深圳一模)lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:lg 2+lg 5+20+⎝⎛⎭⎫5132×35=lg 10+1+523×513=32+5=132. 答案:1327.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是________. 解析:∵a 2+1>1,log a ()a 2+1<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,18.(2015·成都摸底)关于函数f (x )=lg x 2+1x,有下列结论: ①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为lg 2;④当x >0时,函数f (x )是增函数.其中正确结论的序号是________(写出所有你认为正确的结论的序号).解析:函数f (x )=lg x 2+1x的定义域为(0,+∞),其为非奇非偶函数,即得①正确,②不正确;由f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ≥lg ⎝⎛⎭⎫2 x ×1x =lg 2,得③正确;函数u =x +1x 在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,函数y =lg u 为增函数,所以函数f (x )在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,即得命题④不正确.故应填①③.答案:①③9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,∴函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求a的取值范围.解:由已知f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,故⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立.则y =|f (x )|的图象如图. 要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时,得a -1≥13≥a ,得0<a ≤13. 综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). B 组 高考题型专练1.(2014·高考福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x =⎝⎛⎭⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.答案:B2.(2014·高考山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.答案:D3.(2015·高考北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2 (x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2 (x +1)的解集是{x |-1<x ≤1},所以选C.答案:C4.(2015·高考浙江卷)log 2 22=________,2log 2 3+log 4 3=________. 解析:log 222=log 22-12=-12,2log 2 3+log 4 3=232log 2 3=2log 2 332=27=3 3. 答案:-12 3 3 5.(2015·高考北京卷)2-3,312,log 25三个数中最大的数是________. 解析:因为2-3=123=18,312=3≈1.732,而log 24<log 25,即log 25>2,所以三个数中最大的数是log 25.答案:log 25。
高三数学人教版A版数学(理)高考一轮复习教案随机事件的概率1
![高三数学人教版A版数学(理)高考一轮复习教案随机事件的概率1](https://img.taocdn.com/s3/m/9248824bcbaedd3383c4bb4cf7ec4afe04a1b1a6.png)
第四节 随机事件的概率事件与概率了解随机事件发生的不确定性和频率的稳定性,了解概率的意 义,了解频率与概率的区别. 了解两个互斥事件的概率加法公式. 知识点一 概率与频率1.在相同条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数附近摆动,即随机事件A 发生的频率具有稳定性.我们把这个常数叫作随机事件A 的概率,记作P (A ).2.频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.3.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0.易误提醒 易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.[自测练习]1.给出下列三个命题,其中正确命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.解析:①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.答案:02.某城市2015年的空气质量状况如下表所示:污染指数T 30 60 100 110 130 140 概率P1101613730215130100<T ≤150时,空气质量为轻微污染,则该城市2015年空气质量达到良或优的概率为________.解析:由题意可知2015年空气质量达到良或优的概率为P =110+16+13=35.答案:35知识点二 互斥事件和对立事件 事件定义性质互斥事件在一个随机试验中,我们把一次试验下不能同时发生的两个事件A 与B 称作互斥事件P (A +B )=P (A )+P (B ),(事件A ,B是互斥事件);P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n )(事件A 1,A 2,…,A n 任意两个互斥)对立事件在一个随机试验中,两个试验不会同时发生,并且一定有一个发生的事件A 和A 称为对立事件P (A )=1-P (A )易误提醒 互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[自测练习]3.装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是( )“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”. A .①② B .①③ C .②③D .①②③解析:从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.答案:A4.运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A.310B.58C.710D.25解析:从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P =310.答案:A考点一 事件的关系|1.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( )A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件解析:根据互斥事件与对立事件的意义作答,A ∩B ={出现点数1或3},事件A ,B 不互斥也不对立;B ∩C =∅,B ∪C =Ω,故事件B ,C 是对立事件.答案:D2.设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.答案:A3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.答案:A集合法判断互斥事件与对立事件的方法1.由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.2.事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.考点二随机事件的概率|(2015·高考陕西卷)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日123456789101112131415 期天晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴气日161718192021222324252627282930 期天晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨气...(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率.[解](1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.1.某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了条形统计图(如图所示),则该中学参加本次数学竞赛的人数为________,如果90分以上(含90分)获奖,那么获奖的概率大约是________.解析:由题图可知,参加本次竞赛的人数为4+6+8+7+5+2=32;90分以上的人数为7+5+2=14,所以获奖的频率为1432=0.437 5,即本次竞赛获奖的概率大约是0.437 5.答案:32 0.437 5考点三 互斥事件与对立事件的概率|某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C .求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120.(2)因为事件A ,B ,C 两两互斥,所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000. (3)P (A ∪B )=1-P (A +B )=1-⎝⎛⎭⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.求复杂互斥事件概率的两种方法(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.(2)间接求法:先求此事件的对立事件,再用公式P (A )=1-P (A )求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就会较简便.2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.解:记A 表示事件:该车主购买甲种保险;B 表示事件:该车主购买乙种保险但不购买甲种保险;C 表示事件:该车主至少购买甲、乙两种保险中的一种;D 表示事件:该车主甲、乙两种保险都不购买.(1)由题意得P (A )=0.5,P (B )=0.3,又C =A ∪B , 所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8.(2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2. 31.正难则反思想求互斥事件的概率【典例】 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量 1至4件5至8件 9至12件13至16件17件及以上顾客数(人) x 30 25 y 10 结算时间(分钟/人)11.522.53(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)[思路点拨] 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.[解] (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.[思想点评] (1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义. (2)正确判定事件间的关系,善于将A 转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.(3)需准确理解题意,特别留心“至多…”“至少…”“不少于…”等语句的含义.[跟踪练习] 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.答案:CA 组 考点能力演练1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:根据对立事件与互斥事件的关系知,甲是乙的必要但不充分条件. 答案:B2.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为( )A .0.5B .0.3C .0.6D .0.9解析:依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:A3.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”解析:A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.故选D.答案:D4.(2016·云南一检)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34 B.58 C.12D.14解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12.答案:C5.(2015·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )A.12B.13C.14D.15解析:已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12.答案:A6.(2016·温州十校联考)记一个两位数的个位数字与十位数字的和为A .若A 是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.解析:根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.答案:297.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是________.解析:设摸出红球、白球、黄球的事件分别为A 、B 、C ,由条件知P (A ∪B )=P (A )+P (B )=0.65,P (B ∪C )=P (B )+P (C )=0.6, 又P (A ∪B )=1-P (C ),∴P (C )=0.35, ∴P (B )=0.25. 答案:0.258.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.答案:19289.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率.解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23. (2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.10.经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:求:(2)至少3人排队等候的概率是多少?解:记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则 G =A ∪B ∪C ,所以P (G )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)法一:记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.B 组 高考题型专练1.(2014·高考陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.2.(2015·高考北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
高三数学人教版A版数学(理)高考一轮复习教案变量间的相关关系、统计案例1
![高三数学人教版A版数学(理)高考一轮复习教案变量间的相关关系、统计案例1](https://img.taocdn.com/s3/m/c79e1d09ae45b307e87101f69e3143323868f54e.png)
第四节 变量间的相关关系、统计案例变量间的相关关系、统计案例 1.变量间的相关关系(1)会作两个有关联变量的数据的散点图,会利用数点图认识变量间的相关关系. (2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题. (1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用. (2)回归分析了解回归分析的基本思想、方法及其简单应用. 知识点一 回归分析 1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中b ^=∑ni =1x i y i -n x y∑ni =1x 2i -n x 2,a ^=y -b ^x . (3)通过求Q =∑ni =1(y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫作最小二乘法.(4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.易误提醒1.易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(x ,y )点,可能所有的样本数据点都不在直线上 .3.利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).[自测练习]1.已知x ,y 的取值如下表,从散点图可以看出y 与x 线性相关,且回归方程为y ^=0.95x +a ^,则a ^=( )x 0 1 3 4 y2.24.3 4.86.7A.3.25 B .2.6 C .2.2D .0解析:∵回归直线必过样本点的中心(x ,y ),又x =2,y =4.5,代入回归方程,得a ^=2.6.答案:B2.(2016·镇江模拟)如图所示,有A ,B ,C ,D ,E 5组(x ,y )数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.解析:由散点图知呈带状区域时有较强的线性相关关系,故去掉D . 答案:D知识点二 独立性检验 独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)(其中n=a+b+c+d为样本容量).易误提醒(1)独立性检验是对两个变量有关系的可信程度的判断,而不是对其是否有关系的判断.(2)独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表.在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果做出错误的解释.[自测练习]3.下面是2×2列联表:y1y2总计x1 a 2173x2222547总计 b 46120则表中a,b的值分别为()A.94,72B.52,50C.52,74 D.74,52解析:∵a+21=73,∴a=52,又a+22=b,∴b=74.答案:C考点一相关关系的判断|1.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析:易知题中图(1)与图(3)是正相关,图(2)与图(4)是负相关,且图(1)与图(2)中的样本点集中分布在一条直线附近,则r2<r4<0<r3<r1.答案:A2.(2015·高考湖北卷)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关解析:因为y=-0.1x+1,x的系数为负,故x与y负相关;而y与z正相关,故x与z 负相关.答案:C相关关系的判断的两种方法(1)散点图法.(2)相关系数法:利用相关系数判定,当|r|越趋近于1相关性越强.考点二回归分析|(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw∑8i =1(x i -x)2∑8i =1(w i -w)2∑8i =1(x i -x )(y i-y )∑8i =1(w i -w )(y i -y ) 46.6 563 6.8 289.8 1.6 1 469108.8表中w i =x i ,w =18∑i =1w i.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1 (u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^ u . [解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于 d ^=∑8i =1(w i -w )(y i -y )∑8i =1 (w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6, 年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.回归直线方程的求法(1)利用公式,求出回归系数b ^,a ^.(2)待定系数法:利用回归直线过样本点中心求系数.1.(2016·银川一中模拟)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.x 3 4 5 6 y2.5344.5(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^. (2)已知该厂技改前,100吨甲产品的生产能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)解:(1)由对照数据,计算得∑4i =1x 1y 1=66.5,∑4i =1x 21=32+42+52+62=86,x =4.5,y =3.5,b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35,所求的回归方程为y ^=0.7x +0.35.(2)x =100,y ^=100×0.7+0.35=70.35,预测生产100吨甲产品的生产能耗比技改前降低90-70.35=19.65(吨标准煤).考点三 独立性检验|(2016·邯郸模拟)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表.平均每天喝500 mL 以上为常喝,体重超过50 kg 为肥胖.常喝 不常喝 合计 肥胖 2 不肥胖 18 合计30已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415.(1)请将上面的列联表补充完整.(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.(3)设常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:K 2≥k 0 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .[解] (1)设常喝碳酸饮料肥胖的学生有x 人,x +230=415,解得x =6.常喝 不常喝 合计 肥胖 6 2 8 不肥胖 4 18 22 合计102030(2)由已知数据可求得K 2=30×(6×18-2×4)210×20×8×22≈8.523>7.879.因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.(3)设常喝碳酸饮料的肥胖男生为A ,B ,C ,D ,女生为E ,F ,任取两人的取法有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女的取法有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =815.解独立性检验的应用问题的关注点(1)两个明确: ①明确两类主体; ②明确研究的两个问题. (2)两个关键:①准确画出2×2列联表; ②准确理解K 2.提醒:准确计算K 2的值是正确判断的前提.2.通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:男 女 总计 走天桥 40 20 60 走斑马线 20 30 50 总计6050110K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .附表:P (K 2≥k 0)0.050 0.010 0.001 k 03.8416.63510.828A .有99%以上的把握认为“选择过马路的方式与性别有关”B .有99%以上的把握认为“选择过马路的方式与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关” 解析:K 2=110×(40×30-20×20)260×50×60×50≈7.8.P (K 2≥6.635)=0.01=1-99%,∴有99%以上的把握认为“选择过马路的方式与性别有关”,故选A.答案:A12.独立性检验与概率交汇综合问题的答题模板【典例】(12分)(2016·保定调研)某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:(1)判断是否有(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生做进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.下面的临界值表供参考:(参考公式:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)[规范解答](1)由公式K2=55×(20×20-10×5)230×25×25×30≈11.978>7.879,(3分) 所以有99.5%的把握认为喜欢“应用统计”课程与性别有关.(6分)(2)设所抽样本中有m个男生,则630=m20,得m=4,所以样本中有4个男生,2个女生,分别记作B1,B2,B3,B4,G1,G2.从中任选2人的基本事件有(B1,B2),(B1,B3),(B1,B4),(B1,G1),(B1,G2),(B2,B3),(B2,B4),(B2,G1),(B2,G2),(B3,B4),(B3,G1),(B3,G2),(B4,G1),(B4,G2),(G1,G2),共15个,(9分)其中恰有1个男生和1个女生的事件有(B1,G1),(B1,G2),(B2,G1),(B2,G2),(B3,G1),(B3,G2),(B4,G1),(B4,G2),共8个.(11分)所以恰有1个男生和1个女生的概率为815.(12分)[模板形成]分析2×2列联表数据↓利用K 2公式计算K 2值↓对分类变量的相关性作出判断↓求相应事件的概率↓反思解题过程,注意规范化[跟踪练习] 某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据见下表所示:(1)加社团活动且学习积极性一般的学生的概率是多少?(2)运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d );其中n =a +b +c +d .解:(1)随机从该班抽查一名学生,抽到参加社团活动的学生的概率是2250=1125;抽到不参加社团活动且学习积极性一般的学生的概率是2050=25.(2)因为K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=50×(17×20-5×8)225×25×22×28≈11.688>10.828,所以大约有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.A 组 考点能力演练1.根据如下样本数据得到的回归方程为y ^=b ^x +a ^,则( )A.a ^>0,b ^>0 B.a >0,b <0 C.a ^<0,b ^>0D.a ^<0,b ^<0解析:把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图(图略),由图可知b ^<0,a ^>0.故选B.答案:B2.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能为( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y^=-0.3x +4.4解析:依题意知,相应的回归直线的斜率应为正,排除C ,D.且直线必过点(3,3.5),代入A ,B 得A 正确.答案:A3.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附表及公式K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .则下面的正确结论是( )A .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”解析:由2×2列联表得到a =45,b =10,c =30,d =15,则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100,计算得K 2的观测值k 0=100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选A.答案:A4.根据如下样本数据:得到的回归方程为y =b x +a .若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位解析:依题意得,a +b -25=0.9,故a ^+b ^=6.5①;又样本点的中心为(5,0.9),故0.9=5b ^+a ^②,联立①②,解得b ^=-1.4,a ^=7.9,则y ^=-1.4x +7.9,可知当x 每增加1个单位时,y 就减少1.4个单位,故选B.答案:B5.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′解析:由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑6i =1x i y i -6x ·y ∑6i =1x 2i -6x2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a ^=y -b ^x =136-57×72=-13,所以b ^<b ′,a ^>a ′.答案:C6.(2016·忻州联考)已知x ,y 的取值如下表:从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a ^的值为________. 解析:x =2+3+4+54=3.5,y =2.2+3.8+5.5+6.54=4.5,回归方程必过样本的中心点(x ,y ).把(3.5,4.5)代入回归方程,计算得a ^=-0.61.答案:-0.617.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:(请用百分数表示).解析:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=50×(20×15-5×10)225×25×30×20≈8.333>7.879.答案:0.5%8.已知下表所示数据的回归直线方程为y ^=4x +242,则实数a =________.解析:回归直线y ^=4x +242必过样本点的中心点(x ,y ),而x =2+3+4+5+65=4,y =251+254+257+a +2665=1 028+a 5,∴1 028+a 5=4×4+242,解得a =262.答案:2629.(2015·东北三校联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列2×2列联表:主食蔬菜主食肉类合计 50岁以下 50岁以上 合计(2)能否有99% 解:(1)2×2列联表如下:主食蔬菜主食肉类合计 50岁以下 4 8 12 50岁以上 16 2 18 合计201030(2)因为K 2=30×(8-128)212×18×20×10=10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.10.(2015·高考重庆卷)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t12345(1)求y 关于t 的回归方程y =b t +a ;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 附:回归方程y ^=b ^t +a ^中, b ^=∑ni =1t i y i -n t y ∑ni =1t 2i -n t2,a ^=y -b ^t .解:(1)列表计算如下这里n =5,t =1n ∑n i =1t i =155=3,y =1n ∑n i =1y i =365=7.2. 又l tt =∑ni =1t 2i -n t2=55-5×32=10,l ty =∑ni =1t i y i-n t y =120-5×3×7.2=12,从而b ^=l ty l tt =1210=1.2,a ^=y -b ^t =7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).B 组 高考题型专练1.(2015·高考福建卷)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C.12.0万元D.12.2万元^=0.76,∴a^=8-0.76×10=0.4,∴回归方程为y^=0.76x 解析:∵x=10.0,y=8.0,b+0.4,把x=15代入上式得,y^=0.76×15+0.4=11.8(万元),故选B.答案:B2.(2015·高考北京卷)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.解析:(1)由题图分析乙的语文成绩名次略比甲的语文成绩名次靠前,但总成绩名次靠后,所以甲、乙两人中语文成绩名次比总成绩靠前的是乙;(2)丙同学的数学成绩名次位于中间稍微靠后,而总成绩名次相对靠后,所以丙同学的语文成绩名次比较靠后,所以丙同学的成绩名次靠前的科目是数学.答案:乙数学。
高三数学人教版A版数学(理)高考一轮复习教案正弦定理和余弦定理的应用1
![高三数学人教版A版数学(理)高考一轮复习教案正弦定理和余弦定理的应用1](https://img.taocdn.com/s3/m/5a240a69bf1e650e52ea551810a6f524ccbfcb1e.png)
第八节 正弦定理和余弦定理的应用解三角形及其应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.知识点 实际应用中的常用术语 术语名称 术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫作仰角,目标视线在水平视线下方的叫作俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫作方位角.方位角的范围是(0°,360°)正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度例:(1)北偏东m °: (2)南偏西n °:坡角 坡面与水平面的夹角设坡角为α,坡度为i ,则i =hl=tan_α坡度 坡面的垂直高度h 和水平宽度l 的比易误提醒 易混淆方位角与方向角概念:方位角是指北方向与目标方向线按顺时针之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.[自测练习]1.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:如图所示,∠ACB =90°, 又AC =BC ,∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案:B2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案:10 33.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距82n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32考点一 测量距离问题|(2014·济南调研)如图所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?[解] 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°, ∴∠ADB =180°-(45°+30°)=105°, 在△DAB 中,由正弦定理, 得DB sin ∠DAB =ABsin ∠ADB,∴DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=53(3+1)3+12 =103(海里),又∠DBC =∠DBA +∠ABC =60°,BC =203(海里). 在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×12=900.∴CD =30(海里).则需要的时间t =3030=1(小时).求距离问题的两个注意点(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.1.如图,A 、C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A 、C 两岛之间的距离; (2)求∠BAC 的正弦值. 解:(1)在△ABC 中,由已知,得AB =10×5=50(海里),BC =10×3=30(海里), ∠ABC =180°-75°+15°=120°,由余弦定理,得AC 2=502+302-2×50×30cos 120°=4 900, 所以AC =70(海里).故A 、C 两岛之间的距离是70海里. (2)在△ABC 中,由正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC ·sin ∠ABC AC =30sin 120°70=3314.故∠BAC 的正弦值是3314.考点二 测量高度问题|如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________________m.[解析] 在Rt △ABC 中,AC =100 2 m , 在△MAC 中,由正弦定理得MA sin 60°=ACsin 45°, 解得MA =100 3 m ,在Rt △MNA 中,MN =MA ·sin 60°=150 m. 即山高MN 为150 m.[答案]150求解高度问题应注意(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)准确理解题意,分清已知条件与所求,画出示意图.(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.2.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=-20(舍去)或x=40.故电视塔的高度为40 m.答案:D考点三测量角度问题|在海岸A处,发现北偏东45°方向、距离A处(3-1)海里的B处有一艘走私船;在A处北偏西75°方向、距离A处2海里的C处的缉私船奉命以103海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多少时间?[解]如图,设缉私船t小时后在D处追上走私船,则有CD=103t,BD=10t.在△ABC中,AB=3-1,AC=2,∠BAC=120°.利用余弦定理可得BC= 6.由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =26×32=22, ∴∠ABC =45°,因此BC 与正北方向垂直. 于是∠CBD =120°.在△BCD 中,由正弦定理,得sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t =12,得∠BCD =30°, 又CD sin 120°=BC sin 30°,即103t 3=6,得t =610.所以当缉私船沿东偏北30°的方向能最快追上走私船,最少要花610小时. 解决测量角度问题的三个注意点(1)明确方位角的含义.(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.3.如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.解:在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 12.函数思想在解三角形中的应用【典例】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.[思路点拨] (1)利用三角形中的余弦定理,将航行距离表示为时间t 的函数,将原题转化为函数最值问题.(2)注意t 的取值范围.[规范解答] (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇. 则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[思想点评] (1)三角形中的最值问题,可利用正、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.(2)求最值时要注意自变量的范围,要考虑问题的实际意义.A 组 考点能力演练1.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:本题考查正弦定理.依题意与正弦定理得AC sin B =AB sin C ,AB =AC ·sin Csin B=50×sin 45°sin (180°-45°-105°)=50 2 m ,故选A.答案:A 2.在一条东西走向的水平公路的北侧远处有一座高塔,塔底与这条公路在同一水平平面上.为测量该塔的高度,测量人员在公路上选择了A ,B 两个观测点,在A 处测得该塔底部C 在西偏北α的方向上;在B 处测得该塔底部C 在西偏北β的方向上,并测得塔顶D 的仰角为γ.已知AB =a,0<γ<β<α<π2,则此塔的高CD 为( )A.a sin (α-β)sin αtan γB.a sin αsin (α-β)tan γC.a sin (α-β)sin βsin αtan γD.a sin αsin βsin (α-β)tan γ 解析:本题考查正弦定理.依题意得,在△ABC 中,∠CAB =π-α,∠ACB =α-β,由正弦定理得AB sin (α-β)=BC sin (π-α),BC =a sin αsin (α-β);在△BCD 中,∠CBD =γ,CD =BC tan γ=a sin αsin (α-β)tan γ,故选B.答案:B3.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1) mB .180(2-1) mC .120(3-1) mD .30(3+1) m解析:∵tan 15°=tan(60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=2-3,∴BC =60tan 60°-60tan 15°=120(3-1)(m),故选C.答案:C4.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km /hD .10 km/h 解析:设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.选B.答案:B5.(2015·南昌模拟)如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,sin θ的值为( )A.217 B.22C.32D.5714解析:连接BC .在△ABC 中,AC =10,AB =20,∠BAC =120°,由余弦定理,得BC 2=AC 2+AB 2-2AB ·AC ·cos 120°=700,∴BC =107,再由正弦定理,得BC sin ∠BAC =AB sin θ,∴sin θ=217. 答案:A6.(2016·潍坊调研)为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析:在△BCD 中,由正弦定理,得BC sin ∠BDC =CD sin ∠DBC ,解得BC =102米,∴在Rt △ABC中,塔AB 的高是106米.答案:10 67.如图,位于东海某岛的雷达观测站A ,发现其北偏东45°,与观测站A 距离202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为________海里/小时.解析:本题考查解三角形知识在实际问题中的应用.利用余弦定理求解.在△ABC 中,AB =202,AC =10,∠BAC =45°-θ,又cos(45°-θ)=22×45+22×35=7210,由余弦定理可得BC 2=(202)2+102-2×202×10×7210=340,所以BC =285.又行驶时间是12小时,所以该货船的速度为28512=485海里/小时.答案:4858.如图,为了测量河对岸A 、B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A 、B ;找到一个点D ,从点D 可以观察到点A 、C ;找到一个点E ,从点E 可以观察到点B 、C .并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB =48.19°,∠BCE =75°,∠E =60°,则A 、B 两点之间的距离为________.⎝⎛⎭⎫其中cos 48.19°取近似值23解析:依题意知,在△ACD 中,∠A =30°,由正弦定理得AC =CD sin 45°sin 30°=2 2.在△BCE 中,∠CBE =45°,由正弦定理得BC =CE sin 60°sin 45°=3 2. 在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ×BC cos ∠ACB =10,所以AB =10. 答案:109.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音在空气中的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC ,即(x -40)2=10 000+x 2-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =1403(米).故该仪器的垂直弹射高度CH 为1403米.10.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下方法:在岸边设置两个观察点A ,B ,且AB 长为80米,当航模在C 处时,测得∠ABC =105°和∠BAC =30°,经过20秒后,航模直线航行到D 处,测得∠BAD =90°和∠ABD =45°.请你根据以上条件求出航模的速度.(答案保留根号)解:在△ABD 中,∵∠BAD =90°,∠ABD =45°,∴∠ADB =45°,∴AD =AB =80,∴BD =80 2.在△ABC 中,BC sin 30°=AB sin 45°, ∴BC =AB sin 30°sin 45°=80×1222=40 2. 在△DBC 中,DC 2=DB 2+BC 2-2DB ·BC cos 60°=(802)2+(402)2-2×802×402×12=9 600. ∴DC =406,航模的速度v =40620=26米/秒. B 组 高考题型专练1.(2015·高考福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________. 解析:因为sin ∠BAC =223,且AD ⊥AC , 所以sin ⎝⎛⎭⎫π2+∠BAD =223,所以cos ∠BAD =223,在△BAD 中,由余弦定理得, BD =AB 2+AD 2-2AB ·AD cos ∠BAD =(32)2+32-2×32×3×223= 3. 答案: 32.(2014·高考重庆卷)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB =AB sin ∠B AD =2×323=22.由题意知0°<∠ADB <60°,所以∠ADB =45°,则∠BAD =180°-∠B -∠ADB =15°,所以∠BAC =2∠BAD =30°,所以∠C =180°-∠BAC -∠B =30°,所以BC =AB =2,于是由余弦定理,得AC =AB 2+BC 2-2AB ×BC cos 120° =(2)2+(2)2-22×2×⎝⎛⎭⎫-12= 6. 答案: 63.(2015·高考湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________________m.解析:依题意,∠BAC =30°,∠ABC =105°.在△ABC 中,由∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°,因为AB =600 m .由正弦定理可得600sin 45°=BC sin 30°,即BC =300 2 m .在Rt △BCD 中,因为∠CBD =30°,BC =300 2 m ,所以tan 30°=CD BC =CD 3002,所以CD =100 6 m.答案:100 64.(2015·高考四川卷)如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos A sin A; (2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D 2的值. 解:(1)证明:tan A 2=sinA 2cos A 2=2sin 2A 22sin A 2cos A 2=1-cos A sin A . (2)由A +C =180°,得C =180°-A ,D =180°-B .由(1),有tan A 2+tan B 2+tan C 2+tan D 2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B )=2sin A +2sin B . 连接BD (图略).在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C , 所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A .则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422(6×5+3×4)=37. 于是sin A =1-cos 2A = 1-⎝⎛⎭⎫372=2107. 连接AC .同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422(6×3+5×4)=119, 于是sin B =1-cos 2B =1-⎝⎛⎭⎫1192=61019. 所以tan A 2+tan B 2+tan C 2+tan D 2=2sin A +2sin B =2×7210+2×19610=4103.。
2023年高考数学复习提纲及大纲(最新最全)
![2023年高考数学复习提纲及大纲(最新最全)](https://img.taocdn.com/s3/m/463ae6825ebfc77da26925c52cc58bd630869348.png)
2023年高考数学复习提纲及大纲(最新最全)复提纲1. 函数- 函数的概念及分类- 函数的性质及其图像- 常见函数及其性质2. 数列- 数列的概念及其分类- 数列的通项公式及前n项和公式- 常见数列及其性质3. 三角函数- 三角函数的概念及其关系式- 常见三角函数的性质- 解三角函数的基本方程4. 平面向量- 向量的概念及其运算- 向量的线性运算及应用- 向量共线、垂直及夹角的判定5. 解析几何- 二维平面直角坐标系、极坐标系及其应用- 空间直角坐标系及其应用- 点、直线、圆、锥面、曲面及其方程大纲1. 函数与导数1.1 函数的概念与性质1.2 常见函数及其变换1.3 导数概念及其计算法1.4 函数的极值与最值1.5 函数的单调性及曲线的凹凸性2. 不等式组与线性规划2.1 一元一次不等式及其解法2.2 多元一次不等式组及其解法2.3 线性规划基本概念及其解法3. 数列与数学归纳法3.1 数列的概念及性质3.2 等差数列、等比数列及其应用3.3 数学归纳法的原理及应用4. 三角函数4.1 角度及弧度制与三角函数关系4.2 常见三角函数及其性质4.3 三角函数的图像及其变换4.4 解三角形的基本原理及解法5. 平面向量5.1 向量的概念及其运算5.2 向量的线性运算及应用5.3 向量的共线、垂直、平行及夹角的判定6. 解析几何6.1 二维平面直角坐标系、极坐标系及其应用6.2 空间直角坐标系及其应用6.3 几何图形的基本性质及其坐标表示7. 概率论基础7.1 随机事件与概率的概念7.2 基本概型及其计算7.3 条件概率及乘法公式7.4 全概率公式及贝叶斯公式8. 统计与统计图8.1 样本与总体的概念及其统计量8.2 常见统计图及其应用8.3 正态分布及其应用。
高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词
![高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/181fb33e0a4e767f5acfa1c7aa00b52acfc79c2a.png)
第三节简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.知识点一简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p,q有一假为假,p∨q有一真为真,p与非p必定是一真一假.必备方法逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.[自测练习]1.(2015·枣庄模拟)如果命题“p∨q”与命题“綈p”都是真命题,则()A.命题q一定是真命题B.命题p不一定是假命题C.命题q不一定是真命题D.命题p与命题q真假相同解析:由綈p是真命题,则p为假命题.又p∨q是真命题,故q一定为真命题.答案:A知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”、“任意一个”在逻辑中通常叫作全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫作全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫作存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫作特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为∃x 0∈M ,P (x 0),读作“存在M 中的元素x 0,使p (x 0)成立”.3.含有一个量词的命题的否定命 题 命题的否定 ∀x ∈M ,p (x ) ∃x 0∈M ,綈p (x 0) ∃x 0∈M ,p (x 0)∀x ∈M ,綈p (x )易误提醒(1)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.(2)p 或q 的否定易误写成“綈p 或綈q ”;p 且q 的否定易误写成“綈p 且綈q ”. 必备方法 不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.[自测练习]2.(2015·郑州预测)已知命题p :∀x >2,x 3-8>0,那么綈p 是( ) A .∀x ≤2,x 3-8≤0 B .∃x >2,x 3-8≤0 C .∀x >2,x 3-8≤0D .∃x ≤2,x 3-8≤0解析:本题考查全称命题的否定.依题意,綈p 是“∃x >2,x 3-8≤0”,故选B. 答案:B3.下列命题为真命题的是( ) A .∃x 0∈Z,1<4x 0<3 B .∃x 0∈Z,5x 0+1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0解析:1<4x 0<3,14<x 0<34,这样的整数x 0不存在,故A 为假命题;5x 0+1=0,x 0=-15∉Z ,故B 为假命题;x 2-1=0,x =±1,故C 为假命题;对任意实数x ,都有x 2+x +2=⎝⎛⎭⎫x +122+74>0,故D 为真命题.答案:D考点一 含有逻辑联结词的命题的真假判断|1.(2016·石家庄一模)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p 或qB .p 且qC .qD .綈p解析:取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故綈p 为真命题,p 或q 是真命题,p 且q 是假命题,故选B.答案:B2.给定下列三个命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数; p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ). 则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∧p 3 C .p 1∨綈p 3D .綈p 2∧p 3解析:对于p 1:令y =f (x ),当a =12时,f (0)=⎝⎛⎭⎫120+0=1,f (-1)=⎝⎛⎭⎫12-1-1=1,所以p 1为假命题;对于p 2:a 2-ab +b 2=⎝⎛⎭⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3:由cos α=cos β,可得α=2k π±β(k ∈Z ),所以p 3是真命题,所以綈p 2∧p 3为真命题,故选D.答案:D判断一个含有逻辑联结词的命题的真假的三个步骤(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据含有“或”、“且”、“非”的命题的真假判断方法,作出判断即可.考点二 全称命题与特称命题真假判断|1.下列命题中,真命题是( )A .存在x 0∈R ,sin 2x 02+cos 2x 02=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2+1>xD .存在x 0∈R ,x 20+x 0=-1解析:对于A 选项:∀x ∈R ,sin 2x 2+cos 2x2=1,故A 为假命题;对于B 选项:存在x=π6,sin x =12,cos x =32,sin x <cos x ,故B 为假命题;对于C 选项:x 2+1-x =⎝⎛⎭⎫x -122+34>0恒成立,C 为真命题;对于D 选项:x 2+x +1=⎝⎛⎭⎫x +122+34>0恒成立,不存在x 0∈R ,使x 20+x 0=-1成立,故D 为假命题.答案:C2.下列命题中,真命题是( )A .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是偶函数B .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是奇函数C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是偶函数D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )为偶函数”是真命题.答案:A全称命题与特称命题真假的判断方法 命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假存在一个对象使命题假否定为真考点三 利用命题的真假求参数范围|(2015·高考山东卷)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.[解析] 由已知可得m ≥tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4恒成立.设f (x )=tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4,显然该函数为增函数,故f (x )的最大值为tan π4=1,由不等式恒成立可得m ≥1,即实数m 的最小值为1.[答案] 1根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)然后再求出每个命题是真命题时参数的取值范围; (3)最后根据每个命题的真假情况,求出参数的取值范围.已知命题p :∃m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题.则实数m 的取值范围为________.解析:易知命题p 为真命题, 若命题q 为真命题,则Δ=m 2-4<0, 即-2<m <2.当p ∧q 为真时,有⎩⎪⎨⎪⎧m +1≤0,-2<m <2.∴-2<m ≤-1, ∴p ∧q 为假时,m 的取值范围为{m |m ≤-2,或m >-1}. 答案:(-∞,-2]∪(-1,+∞) 2.全称命题的否定不当致误【典例】 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B[解析] “∀x ∈A ”的否定为“∃x ∈A ”,“2x ∈B ”的否定为“2x ∉B ”,故原命题的否定为“∃x ∈A,2x ∉B ”,故选D.[答案] D[易误点评] 此类题目常易犯下列三种错误:(1)否定了结论,并没有否定量词. (2)否定了条件与结论,没有否定量词. (3)否定了条件,没有否定结论.[防范措施] (1)弄清楚是全称命题还是特称命题,尤其是省略了量词的命题.(2)全(特)称命题的否定应从两个方面着手:一是量词变化,“∀”与“∃”互换;二是否定命题的结论,但不是否定命题的条件.[跟踪练习] (2015·高考全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:命题p 是一个特称命题,其否定是全称命题,故选C. 答案:CA 组 考点能力演练1.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0. 答案:C2.已知命题p :∃x ∈R ,x 2-3x +4≤0,则下列说法正确的是( ) A .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为真命题 B .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为假命题 C .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题 D .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为假命题解析:因为x 2-3x +4=⎝⎛⎭⎫x -322+74≥74,所以命题p 为假命题,所以綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题,故选C.答案:C3.(2016·珠海一模)命题p :5的值不超过2,命题q :2是无理数,则( )A .命题“p 或q ”是假命题B .命题“p 且q ”是假命题C .命题“非p ”是假命题D .命题“非q ”是真命题解析:因为5≈2.236>2,故p 为假命题,2是无理数,故q 是真命题,由复合命题的真假判断法则可知B 正确.答案:B4.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真命题解析:A 中命题的否定是:∀x ∈R ,x 2-x >0,故A 不对;B 中当p 为假命题、q 为真命题时,p ∨q 为真,p ∧q 为假,故B 不对;C 中当m =0时,a ,b ∈R ,故C 的说法正确;D 中命题“在△ABC 中,若sin A <12,则A <π6”为假命题,所以其逆否命题为假命题.故选C.答案:C5.(2016·太原模拟)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅解析:若p ∨(綈q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.答案:B6.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是________.解析:本题考查了特称命题与全称命题.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是“对任意的x ∈R ,都有|x -1|-|x +1|≤3”.答案:对任意的x ∈R ,都有|x -1|-|x +1|≤37.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件;命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“綈p ”中为真命题的是________.解析:依题意知p 假,q 真,所以p ∨q ,綈p 为真. 答案:p ∨q ,綈p8.命题:“存在实数x ,满足不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.解析:依题意,“对任意的实数x ,都满足不等式(m +1)x 2-mx +m -1>0”是真命题,则必须满足⎩⎪⎨⎪⎧m +1>0,(-m )2-4(m +1)(m -1)<0,解得m >233.答案:⎝⎛⎭⎫233,+∞ 9.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围.解:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4; 命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假. 若p 真q 假,则a <-12; 若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4). 10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围. (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:由x 2-4ax +3a 2<0,a >0得a <x <3a , 即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4,即2<x ≤3,即q 为真命题时2<x ≤3.(1)a =1时,p :1<x <3.由p ∧q 为真知p ,q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3, 所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3},由题意知p 是q 的必要不充分条件, 所以B A ,有⎩⎪⎨⎪⎧0<a ≤2,3a >3,∴1<a ≤2, 所以实数a 的取值范围为(1,2].B 组 高考题型专练1.(2014·高考辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )解析:对命题p 中的a 与c 可能为共线向量,故命题p 为假命题.由a ,b ,c 为非零向量,可知命题q 为真命题.故p ∨q 为真命题.故选A.答案:A2.(2014·高考安徽卷)命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥0解析:全称命题的否定是特称命题,否定结论. 答案:C3.(2015·高考浙江卷)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:全称命题的否定为特称命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”.答案:D4.(2015·高考湖北卷)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:该命题的否定是将存在量词改为全称量词,等号改为不等号即可,故选A.答案:A。
高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量的期望与方差、正态分布1
![高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量的期望与方差、正态分布1](https://img.taocdn.com/s3/m/8fd228597ed5360cba1aa8114431b90d6c8589cd.png)
第九节 离散型随机变量的期望与方差、正态分布1.均值与方差理解取有限个值的离散型随机变量均值、方差的概念,能计算简单 离散型随机变量的均值、方差,并能解决一些实际问题. 2.正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的 意义. 知识点一 均值1.一般地,若离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量,且E (aX +b )=aE (X )+b . 3.(1)若X 服从两点分布,则E (X )=p . (2)若X ~B (n ,p ),则E (X )=np .易误提醒 理解均值E (X )易失误,均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.[自测练习]1.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )A.73 B .4 C .-1D .1 解析:E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案:A知识点二 方差1.设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.2.D (aX +b )=a 2D (X ).3.若X 服从两点分布,则D (X )=p (1-p ). 4.若X ~B (n ,p ),则D (X )=np (1-p ).易误提醒 (1)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ)越大,表明平均偏离程度越大,说明ξ的取值越分散.反之D (ξ)越小,ξ的取值越集中在E (ξ)附近.统计中常用标准差D (ξ) 来描述ξ的分散程度.(2)D (ξ)与E (ξ)一样也是一个实数,由ξ的分布列唯一确定.(3)D (ξ)的单位与随机变量ξ的单位不同,而E (ξ)、D (ξ) 与ξ的单位相同. (4)注意E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[自测练习]2.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( )A .6B .9C .3D .4解析:由E (ξ)=13(1+2+3)=2,得D (ξ)=23,D (3ξ+5)=32×D (ξ)=6. 答案:A3.有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.解析:∵X ~B ⎝⎛⎭⎫3,14,∴D (X )=3×14×34=916. 答案:916知识点三 正态分布 1.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π.(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.2.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)=0.682_6. (2)P (μ-2σ<X ≤μ+2σ)=0.954_4. (3)P (μ-3σ<X ≤μ+3σ)=0.997_4.易误提醒 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.[自测练习]4.若随机变量ξ~N (2,1),且P (ξ>3)=0.158 7,则P (ξ>1)=________.解析:由ξ~N (2,1),得μ=2,因为P (ξ>3)=0.158 7,所以P (ξ<1)=0.158 7,所以P (ξ>1)=1-0.158 7=0.841 3.答案:0.841 3考点一 离散型随机变量的均值|(2015·高考安徽卷)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).[解] (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为X 200 300 400 P110310610E (X )=200×110+300×310+400×610=350.求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值. (2)求X 的每个值的概率. (3)写出X 的分布列. (4)由均值定义求出E (X ).1.(2016·合肥模拟)某校在全校学生中开展物理和化学实验操作大比拼活动,活动要求:参加者物理、化学实验操作都必须参加,有50名学生参加这次活动,评委老师对这50名学生实验操作进行评分,每项操作评分均按等级采用5分制(只打整数分),评分结果统计如表:学生数物理得分y化学得分x1分2分3分4分5分1分 1 3 1 0 1 2分 1 0 7 5 1 3分 2 1 0 9 3 4分 1 2 6 0 1 5分1133分”的学生被抽取的概率;(2)从这50名参赛学生中任取1名,其物理实验与化学实验得分之和为ξ,求ξ的数学期望.解:(1)从表中可以看出,“化学实验得分为4分且物理实验得分为3分”的学生有6名,所以“化学实验得分为4分且物理实验得分为3分”的学生被抽取的概率为650=325.(2)ξ所有可能的取值为2、3、4、5、6、7、8、9、10,则ξ的分布列为:ξ 2 3 4 5 6 7 8 9 10 P1504503509508501650450250350∴E (ξ)=2×150+3×450+4×350+5×950+6×850+7×1650+8×450+9×250+10×350=31150.考点二 方差问题|设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量X 为取出此2球所得分数之和,求X 的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量Y 为取出此球所得分数.若E (Y )=53,D (Y )=59,求a ∶b ∶c .[解] (1)由题意得X =2,3,4,5,6. 故P (X =2)=3×36×6=14,P (X =3)=2×3×26×6=13,P (X =4)=2×3×1+2×26×6=518,P (X =5)=2×2×16×6=19,P (X =6)=1×16×6=136.所以X 的分布列为X 2 3 4 5 6 P141351819136(2)由题意知Y 的分布列为Y 1 2 3 Paa +b +cba +b +cca +b +c所以E (Y )=a a +b +c +2b a +b +c +3c a +b +c =53,D (Y )=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59. 化简得⎩⎪⎨⎪⎧ 2a -b -4c =0,a +4b -11c =0.解得⎩⎪⎨⎪⎧a =3c ,b =2c .故a ∶b ∶c =3∶2∶1.利用均值、方差进行决策的两个方略(1)当均值不同时,两个随机变量取值的水平可见分晓,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.2.有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:X 甲 28 29 30 31 32 P 0.1 0.15 0.5 0.15 0.1 X 乙 28 29 30 31 32 P0.130.170.40.170.13其中X 表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量. 解:由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30.又D (X 甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,D (X 乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),D (X 甲)<D (X 乙),故甲种棉花的质量较好.考点三 正态分布|1.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ22)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ21)的密度曲线较Y ~N (μ2,σ22)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )<P (Y ≥t ),C 错误,D 正确.答案:D2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%解析:由已知μ=0,σ=3.所以P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12(95.44%-68.26%)=12×27.18%=13.59%.故选B.答案:B正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值; (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等. ②P (X <a )=1-P (X ≥a ),P (X <μ-a )=P (X ≥μ+a ).10.离散型随机变量的均值的综合问题的答题模板【典例】 (12分)(2015·高考山东卷)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”; (2)若甲参加活动,求甲得分X 的分布列和数学期望EX .[思路点拨] (1)根据题意明确“三位递增数”的定义,从而得到个位数字是5的“三位递增数”.(2)首先根据题意确定随机变量X 的所有可能取值,然后求出每个取值对应事件的概率,列出分布列,从而求得数学期望.[规范解答] (1)个位数是5的“三位递增数”有 125,135,145,235,245,345.(4分)(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.(8分)所以X 的分布列为则EX =0×23+(-1)×114+1×1142=421.(12分)[模板形成]理解题意求相应事件的概率↓由条件写出随机变量的取值↓求出每个取值对应事件的概率↓列出分布列并求均值↓反思解题过程注意规范化[跟踪练习] 据《中国新闻网》报道,全国很多省、市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了 3 600人就是否应该“取消英语听力”的问题进行调查,调查统计的结果如下表:(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,则应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望E (ξ).解:(1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60. ∴持“无所谓”态度的人数为3 600-2 100-120-600-60=720. ∴应在持“无所谓”态度的人中抽取720×3603 600=72(人).(2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生有120180×6=4(人),社会人士有60180×6=2(人),于是第一组的在校学生人数ξ的所有可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,即ξ的分布列为∴E (ξ)=1×15+2×35+3×15=2.A 组 考点能力演练1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 解析:因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.答案:C2.(2016·长春质量监测)已知随机变量ξ服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15解析:P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 答案:C3.(2016·九江一模)已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( )A .6B .7C .8D .9解析:∵(k -4)+k 2=5,∴k =7,故选B.答案:B4.在某次数学测试中,学生成绩ξ服从正态分布N (100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为( )A .0.05B .0.1C .0.15D .0.2解析:根据正态曲线的对称性可知,ξ在(80,100)内的概率为0.4,因为ξ在(0,100)内的概率为0.5,所以ξ在(0,80)内的概率为0.1,故选B.答案:B5.设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8D .0.16解析:由D (X )=8p (1-p )=1.28,∴p =0.2或p =0.8. 答案:C6.一枚质地均匀的正六面体骰子,六个面上分别刻着1点到6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷得的向上的点数比乙大,则甲掷得的向上的点数的数学期望是________.解析:共有36种可能,其中,甲、乙掷得的向上的点数相等的有6种,甲掷得的向上的点数比乙大的有15种,所以所求期望为6×5+5×4+4×3+3×2+215=143.答案:1437.(2016·贵州七校联考)在我校2015届高三11月月考中理科数学成绩ξ~N (90,σ2)(σ>0),统计结果显示P (60≤ξ≤120)=0.8,假设我校参加此次考试有780人,那么试估计此次考试中,我校成绩高于120分的有________人.解析:因为成绩ξ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤ξ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78(人).答案:788.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为________. 解析:因为随机变量ξ服从正态分布N (3,4),P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,解得a =73.答案:739.市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得20x +0.025×20+0.006 5×20+0.003×2×20=1,所以x =0.012 5.(2)新生上学所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以估计1 200名新生中有144名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P (X =0)=⎝⎛⎭⎫344=81256,P (X =1)=C 14×14×⎝⎛⎭⎫343=2764,P (X =2)=C 24×⎝⎛⎭⎫142×⎝⎛⎭⎫342=27128,P (X =3)=C 34×⎝⎛⎭⎫143×34=364,P (X =4)=⎝⎛⎭⎫144=1256.所以X 的分布列为E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1(或E (X )=4×14=1).所以X 的数学期望为1.10.(2016·郑州模拟)某商场每天(开始营业时)以每件150元的价格购入A 商品若干件(A 商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A 商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A 商品低价处理完毕,且处理完毕后,当天不再购进A 商品).该商场统计了100天A 商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x +y =70)前6小时内的销售量t (单位:件)4 5 6 频数30xy(1)若某天该商场共购入6件该商品,在前6个小时中售出4件.若这些商品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A 商品时所获得的平均利润最大,求x 的取值范围. 解:(1)设“恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客”为事件A ,则P (A )=C 14C 12C 26=815.(2)设销售A 商品获得的利润为ξ(单位:元),依题意,视频率为概率,为追求更多的利润,则商场每天购进的A 商品的件数取值可能为4件,5件,6件. 当购进A 商品4件时,E (ξ)=150×4=600,当购进A 商品5件时,E (ξ)=(150×4-50)×0.3+150×5×0.7=690, 当购进A 商品6件时,E (ξ)=(150×4-2×50)×0.3+(150×5-50)×x100+150×6×70-x100=780-2x ,由题意780-2x ≤690,解得x ≥45,又知x ≤100-30=70,所以x 的取值范围为[45,70],x ∈N *.B 组 高考题型专练1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) A .2 386 B .2 718 C .3 413D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:由题意可得,P(0<x≤1)=12P(-1<x≤1)=0.341 3,设落入阴影部分的点的个数为n,则P=S阴影S正方形=0.341 31=n10 000,则n=3 413,选C.答案:C2.(2015·高考福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为所以E(X)=1×16+2×16+3×23=52.3.(2015·高考陕西卷)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得从而ET=25×0.2+30(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立.且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P(A)=1-P(A)=0.91.。
高三数学人教版A版数学(理)高考一轮复习教案1 直线与圆锥曲线的位置关系1
![高三数学人教版A版数学(理)高考一轮复习教案1 直线与圆锥曲线的位置关系1](https://img.taocdn.com/s3/m/0db150407f21af45b307e87101f69e314232fa4e.png)
第九节 圆锥曲线的综合问题 第一课时 直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)能解决直线与椭圆、抛物线的位置关系等问题. (2)理解数形结合的思想. (3)了解圆锥曲线的简单应用. 2.定值(定点)与最值问题理解基本几何量,如:斜率、距离、面积等概念,掌握与圆锥曲线有关的定值(定点)、最值问题.3.存在性问题能够合理转化,掌握与圆锥曲线有关的存在性问题.知识点一 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.易误提醒 (1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[自测练习]1.若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:结合图形(图略)分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0),故选C.答案:C2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案:A知识点二 弦长问题设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2. 必备方法 遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =py 0.[自测练习]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析:则由题意得⎩⎪⎨⎪⎧c =2,b2a =1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=14.已知抛物线y =ax 2的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析:由题设p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1.直线过焦点F ,联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6, ∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案:8考点一 直线与圆锥曲线的位置关系|1.(2016·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0解析:∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1,∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B.答案:B2.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 解析:由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k1-k2>0,x 1x 2=-101-k2>0,解得-153<k <-1. 答案:D考点二 弦长问题|已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,O 为坐标原点,点P ⎝⎛⎭⎫-1,22在椭圆上,且PF 1→·F 1F 2→=0,⊙O 是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当OA →·OB →=λ,且满足23≤λ≤34时,求弦长|AB |的取值范围.[解] (1)依题意,可知PF 1⊥F 1F 2,∴c =1,1a 2+12b 2=1,a 2=b 2+c 2,解得a 2=2,b 2=1,c 2=1.∴椭圆的方程为x 22+y 2=1.(2)直线l :y =kx +m 与⊙O :x 2+y 2=1相切,则|m |k 2+1=1,即m 2=k 2+1,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-2=0, ∵直线l 与椭圆交于不同的两点A ,B . 设A (x 1,y 1),B (x 2,y 2). ∴Δ>0⇒k 2>0⇒k ≠0,x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k 2=1-k 21+2k 2,∴OA →·OB →=x 1x 2+y 1y 2=1+k 21+2k 2=λ∴23≤1+k 21+2k 2≤34,∴12≤k 2≤1, ∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=22(k 4+k 2)4(k 4+k 2)+1设u =k 4+k 2⎝⎛⎭⎫12≤k 2≤1, 则34≤u ≤2,|AB |=22u4u +1=212-12(4u +1),u ∈⎣⎡⎦⎤34,2, ∵|AB |(u )在⎣⎡⎦⎤34,2上单调递增, ∴62≤|AB |≤43. 解决弦长问题的注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长.(2)涉及焦点弦长时要注意圆锥曲线定义的应用.已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=( ) A.12 B .1 C .2D .4解析:设P (x 1,y 1),Q (x 2,y 2),由题意可知, |PF |=x 1+2,|QF |=x 2+2,则1|FP |+1|FQ |=1x 1+2+1x 2+2=x 1+x 2+4x 1x 2+2(x 1+x 2)+4,联立直线与抛物线方程消去y 得,k 2x 2-(4k 2+8)x +4k 2=0,可知x 1x 2=4,故1|FP |+1|FQ |=x 1+x 2+4x 1x 2+2(x 1+x 2)+4=x 1+x 2+42(x 1+x 2)+8=12.故选A.答案:A考点三 中点弦问题|弦的中点问题是考查直线与圆锥曲线位置关系的命题热点.归纳起来常见的探究角度有:1.由中点弦确定直线方程. 2.由中点弦确定曲线方程. 3.由中点弦解决对称问题. 探究一 由中点弦确定直线方程1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2).则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.答案:x +2y -8=0探究二 由中点弦确定曲线方程2.过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则抛物线方程为________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p (x-x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p=12,16+8p 22p=12,解得p =1或p =2.答案:x 2=2y 或x 2=4y探究三 由中点弦解决对称问题3.已知双曲线x 2a 2-y 2b 2=1(a ,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( )A.32 B.52 C .2D .3解析:由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m=32,选A. 答案:A对于中点弦问题,常用的解题方法是平方差法.其解题步骤为 ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程.③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解.28.设而不求整体变换思想在圆锥曲线结合问题中的应用【典例】 (2016·台州模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e =12,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的方程;(2)若OM →·ON →=-2,求直线l 的方程;(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |2|MN |为定值.[思维点拨](1)待定系数法求a ,b .(2)注意判断l 的斜率是否存在.(3)利用弦长公式表示出|AB |,|MN |后整体变形得结论.[解] (1)椭圆的顶点为(0,3),即b =3,e =c a =12,∴a =2,∴椭圆的标准方程为x 24+y 23=1. (2)由题可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0), 且M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-(x 1+x 2)+1]=4k 2-123+4k 2+k 2⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-5k 2-123+4k 2=-2,解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1). (3)证明:设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4), 由(2)可得|MN |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8k 23+4k 22-4⎝ ⎛⎭⎪⎫4k 2-123+4k 2=12(k 2+1)3+4k 2,由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx 消去y 并整理得x 2=123+4k 2,|AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,∴|AB |2|MN |=48(1+k 2)3+4k 212(k 2+1)3+4k 2=4,为定值. [方法点评] 对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值.A 组 考点能力演练1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.答案:A2.(2016·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x解析:设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,∴抛物线C 的方程为y 2=2x ,故选B.答案:B3.已知双曲线 x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B .(-3,3) C.⎣⎡⎦⎤-33,33 D .[-3,3]解析:由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.答案:C4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2D .2解析:如图所示,设F 为焦点,取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA →·MB →=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM=90°,则MF ⊥AB ,所以k =-1k MF=2. 答案:D5.已知椭圆x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32 D. 3解析:由椭圆的方程,可知长半轴长为a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3. 答案:D6.抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析:y 2=-12x 的准线方程为x =3,双曲线x 29-y 23=1的渐近线为y =±33x . 设抛物线的准线与双曲线的两条渐近线的交点分别为A ,B ,由⎩⎪⎨⎪⎧ x =3,y =33x ,求得A (3,3),同理B (3,-3),所以|AB |=23,而O 到直线AB 的距离d =3,故所求三角形的面积S =12|AB |×d =12×23×3=3 3. 答案:3 3 7.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.解析:如图,由题知OA ⊥AF ,OB ⊥BF 且∠AOB =120°,∴∠AOF =60°.又OA =a ,OF =c ,∴a c =OA OF =cos 60°=12, ∴c a=2. 答案:28.直线l 过椭圆x 22+y 2=1的左焦点F ,且与椭圆相交于P ,Q 两点,M 为PQ 的中点,O 为原点.若△FMO 是以OF 为底边的等腰三角形,则直线l 的方程为________.解析:法一:由椭圆方程得a =2,b =c =1,则F (-1,0).在△FMO 中,|MF |=|MO |,所以M 在线段OF 的中垂线上,即x M =-12, 设直线l 的斜率为k ,则其方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,得x 2+2k 2(x +1)2-2=0, 即(2k 2+1)x 2+4k 2x +2(k 2-1)=0,∴x P +x Q =-4k 22k 2+1,而M 为PQ 的中点, 故x M =12(x P +x Q )=-2k 22k 2+1=-12, ∴k 2=12,解得k =±22. 故直线l 的方程为y =±22(x +1),即x ±2y +1=0. 法二:设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),由题意知k PQ =-k OM ,由P 、Q 在椭圆上知⎩⎨⎧ x 212+y 21=1,x 222+y 22=1,两式相减整理得k PQ =y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-x 02y 0,而k OM =y 0x 0,故x 02y 0=y 0x 0, 即x 20=2y 20,所以k PQ =±22,直线PQ 的方程为y =±22(x +1),即x ±2y +1=0. 答案:x ±2y +1=09.(2016·洛阳模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (3,0),且椭圆C 经过点P ⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设过点F 的直线l 交椭圆C 于A ,B 两点,交直线x =m (m >a )于M 点,若k P A ,k PM ,k PB 成等差数列,求实数m 的值.解:(1)由题意,⎩⎪⎨⎪⎧ a 2-b 2=3,3a 2+14b 2=1,得a 2=4,b 2=1. ∴椭圆C 的方程为x 24+y 2=1. (2)设直线l :y =k (x -3),A (x 1,y 1),B (x 2,y 2),M (m ,y m ).将直线方程代入椭圆方程x 2+4y 2=4中,得(1+4k 2)x 2-83k 2x +12k 2-4=0,则x 1+x 2=83k 21+4k 2,x 1·x 2=12k 2-41+4k 2. 此时k P A =y 1-12x 1-3=k -12(x 1-3),k PB =y 2-12x 2-3=k -12(x 2-3). ∴k P A +k PB =⎣⎢⎡⎦⎥⎤k -12(x 1-3)+⎣⎢⎡⎦⎥⎤k -12(x 2-3) =2k -x 1+x 2-232[x 1x 2-3(x 1+x 2)+3]=2k -83k 21+4k 2-232⎝ ⎛⎭⎪⎫12k 2-41+4k 2-3·83k 21+4k 2+3=2k - 3.又M (m ,y m )在直线l 上,∴y m =k (m -3),则k PM =y m -12m -3=k -12(m -3).若k P A ,k PM ,k PB 成等差数列,则2k PM =k P A +k PB ,则2k -1m -3=2k -3,解得m =433. 10.已知抛物线C :y 2=2px (p >0)上一点P (x 0,-2)到该抛物线焦点的距离为2,动直线l 与C 交于两点A ,B (A ,B 异于点P ),与x 轴交于点M ,AB 的中点N ,且直线P A ,PB 的斜率之积为1.(1)求抛物线C 的方程;(2)求|AB ||MN |的最大值. 解:(1)因为点P (x 0,-2)在抛物线上,所以2px 0=4⇒x 0=2p. 由抛物线的定义知,2p +p 2=2⇒(p -2)2=0⇒p =2, 故抛物线C 的方程为y 2=4x .(2)由(1)知,x 0=1,得P (1,-2).设A (x 1,y 1),B (x 2,y 2),设直线P A ,PB 的斜率分别为k 1,k 2,设直线AB 的方程为x =my +t ,联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,消去x 得y 2-4my -4t =0. Δ=16m 2+16t >0⇒m 2+t >0,①y 1+y 2=4m ,y 1y 2=-4t ,因为k 1=y 1+2x 1-1=y 1+2y 214-1=4y 1-2. 同理k 2=4y 2-2.所以k 1k 2=4y 1-2·4y 2-2=1,即y 1y 2-2(y 1+y 2)-12=0,即-4t -8m -12=0⇒t =-2m -3.代入①得m 2-2m -3>0⇒m <-1或m >3.因为|AB |=1+m 2|y 1-y 2| =1+m 2·(y 1+y 2)2-4y 1y 2 =1+m 2·16m 2+16t =41+m 2·m 2-2m -3,又y M =0,y N =y 1+y 22=2m , 则|MN |=1+m 2|y M -y N |=21+m 2|m |. 所以|AB ||MN |=2m 2-2m -3|m |=21-2m -3m 2 =2-3⎝⎛⎭⎫1m +132+43, 故当m =-3时,|AB ||MN |取到最大值433. B 组 高考题型专练1.(2015·高考福建卷)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2. 由已知|AF |=3,得2+p 2=3, 解得p =2,所以抛物线E 的方程为y 2=4x .(2)法一:如图,因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223, 所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.法二:设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0,从而r =|22+22|8+9=4217. 又直线GB 的方程为22x +3y +22=0,所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.2.(2015·高考重庆卷)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .解:(1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1. (2)法一:连接QF 1,如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2,求得x 0=±a c a 2-2b 2,y 0=±b 2c. 由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a ,于是(2+2)(1+2e 2-1)=4,解得e=12⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎪⎫42+2-12=6- 3.法二:连接QF1,如图,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=2|PF1|,因此,4a-2|PF1|=2|PF1|,则|PF1|=2(2-2)a,从而|PF2|=2a-|PF1|=2a-2(2-2)a=2(2-1)a,由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=ca =|PF1|2+|PF2|22a=(2-2)2+(2-1)2=9-62=6- 3.。
高三数学人教版A版数学(理)高考一轮复习教案二项式定理1
![高三数学人教版A版数学(理)高考一轮复习教案二项式定理1](https://img.taocdn.com/s3/m/d93f8421591b6bd97f192279168884868762b8af.png)
第三节 二项式定理二项式定理的应用(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 知识点一 二项式定理 1.定理公式(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N *)叫作二项式定理. 2.通项T k +1=C k n an -k b k为展开式的第k +1项. 易误提醒 (1)二项式的通项易误认为是第k 项实质上是第k +1项.(2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)通项是T k +1=C k n an -k b k (k =0,1,2,…,n ).其中含有T k +1,a ,b ,n ,k 五个元素,只要知道其中四个即可求第五个元素.[自测练习]1.⎝⎛⎭⎫2x -1x 6的展开式中常数项为________. 解析:由题意可知常数项为C 46(2x )2⎝⎛⎭⎫-1x 4=60. 答案:602.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项. 解析:∵T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r 4∴r 为4的倍数,故r =0,4,8共3项. 答案:3知识点二 二项式系数与项的系数 1.二项式系数与项的系数 (1)二项式系数二项展开式中各项的系数C k n (k ∈{0,1,…,n })叫作二项式系数. (2)项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.2.二项式系数的性质性质内容对称性与首末两端等距离的两个二项式系数相等,即C m n=C n-mn增减性当k<n+12时,二项式系数逐渐增大;当k>n+12时,二项式系数逐渐减小最大值当n是偶数时,中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大,最大值为Cn2n;当n 是奇数时,中间两项⎝⎛第n-12+1项和⎭⎫第n+12+1项的二项式系数相等,且同时取得最大值,最大值为Cn-12n或Cn+12n3.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+C2n+…+C k n+…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1.易误提醒二项式系数与展开式项的系数的异同:在T k+1=C k n a n-k b k中,C k n就是该项的二项式系数,它与a,b的值无关;T k+1项的系数指化简后除字母以外的数,如a=2x,b=3y,T k+1=C k n2n-k·3k x n-k y k,其中C k n2n-k3k就是T k +1项的系数.[自测练习]3.(2015·高考四川卷)在(2x-1)5的展开式中,含x2的项的系数是________.(用数字填写答案).解析:由二项展开式的通项T r+1=C r5(2x)5-r(-1)r(r=0,1,…,5)知,当r=3时,T4=C35(2x)5-3(-1)3=-40x2,所以含x2的项的系数是-40.答案:-404.C0n+3C1n+5C2n+…+(2n+1)C n n=________.解析:设S=C0n+3C1n+5C2n+…+(2n-1)·C n-1n+(2n+1)C n n,∴S=(2n+1)C n n+(2n-1)C n-1n+…+3C1n+C0n,∴2S=2(n+1)(C0n+C1n+C2n+…+C n n)=2(n+1)·2n,∴S=(n+1)·2n.答案:(n +1)·2n考点一 二项展开式中特定项与系数问题|1.(2016·海淀模拟)⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为( ) A .12 B .-12 C .6D .-6解析:由题意可得,二项展开式的通项为T r +1=C r 3·(x 2)3-r ⎝⎛⎭⎫-2x r =(-2)r C r 3x 6-3r ,令6-3r =0,得r =2,∴⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为T 2+1=(-2)2C 23=12,故选A. 答案:A2.(2015·高考安徽卷)⎝⎛⎭⎫x 3+1x 7的展开式中x 5的系数是________.(用数字填写答案) 解析:由题意知,展开式的通项为T r +1=C r 7(x 3)7-r ⎝⎛⎭⎫1x r =C r 7x 21-4r ,令21-4r =5,则r =4,∴T 5=C 47x 5=35x 5,故x 5的系数为35.答案:353.若⎝⎛⎭⎫1x -x x n 展开式中含有x 2项,则n 的最小值是________.解析:⎝⎛⎭⎫1x -x x n 的展开式的通项是T r +1=C r n ·⎝⎛⎭⎫1x n -r ·(-x x )r =C r n ·(-1)r ·x 52r -n .依题意得,关于r 的方程52r -n =2,即r =2×(n +2)5有正整数解;又2与5互质,因此n +2必是5的倍数,即n +2=5k ,n =5k -2,n 的最小值是3.答案:3求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.考点二 二项式系数性质与各项系数和问题|(1)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是( )A .360B .180C .90D .45(2)若a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,则a 2+a 3+a 4=________. [解析] (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10, 通项公式为T r +1=C r 10(x )10-r ·⎝⎛⎭⎫2x 2r =C r 102r x 5-52r , 所以r =2时,常数项为180.(2)x 4=[(x -1)+1]4=C 04(x -1)4+C 14(x -1)3+C 24(x -1)2+C 34(x -1)+C 44,对照a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4得a 2=C 14,a 3=C 24,a 4=C 34,所以a 2+a 3+a 4=C 14+C 24+C 34=14.[答案] (1)B (2)14(1)赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大. (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第⎝⎛⎭⎫n +12+1项的二项式系数相等并最大.(2015·成都一中模拟)设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:令等式中x =-1可得a 0+a 1+a 2+…+a 11=(1+1)(-1)9=-2,故选A. 答案:A考点三 多项式展开式中特定项或系数问题|在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力,归纳起来常见的命题角度有:1.几个多项式和的展开式中的特定项(系数)问题. 2.几个多项式积的展开式中的特定项(系数)问题. 3.三项展开式中的特定项(系数)问题.探究一几个多项式和的展开式中的特定项(系数)问题1.(2016·商丘月考)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121C.-74 D.-121解析:展开式中含x3项的系数为C35(-1)3+C36(-1)3+C37(-1)3+C38(-1)3=-121.答案:D探究二几个多项式积的展开式中的特定项(系数)问题2.(2015·高考全国卷Ⅱ)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:法一:直接将(a+x)(1+x)4展开得x5+(a+4)x4+(6+4a)x3+(4+6a)x2+(1+4a)x +a,由题意得1+(6+4a)+(1+4a)=32,解得a=3.法二:(1+x)4展开式的通项为T r+1=C r4x r,由题意可知,a(C14+C34)+C04+C24+C44=32,解得a=3.答案:3探究三三项展开式中特定项(系数)问题3.(2015·高考全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60解析:(x2+x+y)5=[(x2+x)+y]5的展开式中只有C25(x2+x)3y2中含x5y2,易知x5y2的系数为C25C13=30,故选C.答案:C(1)对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.(3)对于三项式问题一般先变形化为二项式再解决.30.一般与特殊的思想在二项式问题中的应用(赋值法)【典例】若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是________.[思维点拨] 要求解的问题与二项式系数有关考虑赋值法,令x =±1,可求得奇数项与偶数项系数之和.[解析] 令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,① 令x =-1,得a 0-a 1+a 2-a 3+a 4=(-2+3)4.②故(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)(a 0+a 2+a 4-a 1-a 3)=(2+3)4×(-2+3)4=(3-4)4=1.[答案] 1[方法点评] 赋值法是求展开式中的系数与系数和的常用方法,注意所赋的值要有利于问题的解决,可以取一个或几个值,常赋的值为0,±1.一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. [跟踪练习] 若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案:364A 组 考点能力演练1.若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为( ) A .-84 B .84 C .-36D .36解析:由二项式系数之和为2n =512,得n =9.又T r +1=(-1)r C r 9x18-3r , 令18-3r =0,得r =6,故常数项为T 7=84.故选B. 答案:B2.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2D .-1解析:(1+x )5中含x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1.答案:D3.(2016·青岛模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3解析:∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3.答案:B4.(2016·西城一模)若⎝⎛⎭⎪⎫3x -13x 2m 的展开式中二项式系数之和为128,则展开式中1x 3的系数是( )A .21B .-21C .7D .-7解析:∵2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r ·⎝ ⎛⎭⎪⎫-13x 2r =C r 737-r (-1)r x 7-5r3, 令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21,故选A. 答案:A5.(2016·广州调研)已知a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x ,则二项式⎝⎛⎭⎫x 2+ax 5的展开式中x 的系数为( )A .10B .-10C .80D .-80解析:a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x =2sin ⎝⎛⎭⎫x +π6| π0=-2,展开式的通项为T r +1=C r 5(-2)r x 10-3r ,令10-3r =1,则r =3,T 4=C 35(-2)3x =-80x.答案:D6.⎝⎛⎭⎫x -12x 6的展开式中常数项为________. 解析:⎝⎛⎭⎫x -12x 6的通项为T k +1=C k 6x 6-k ⎝⎛⎭⎫-12x k =⎝⎛⎭⎫-12k C k 6x 6-2k ,令6-2k =0,得k =3,故展开式中常数项为-52.答案:-527.(2015·高考天津卷)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. 解析:二项式⎝⎛⎭⎫x -14x 6展开式的第r +1项为T r +1=C r 6x 6-r ·⎝⎛⎭⎫-14r x -r =C r 6⎝⎛⎭⎫-14r x 6-2r ,令6-2r =2,解得r =2,故x 2的系数为C 26⎝⎛⎭⎫-142=1516. 答案:15168.若(1-2x)2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015,则a 12+a 222+…+a 2 01522 015=________.解析:当x 0=0时,左边=1,右边=a 0,∴a 0=1 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01522 015∴0=1+a 12+a 222+…+a 2 01522 015∴a 12+a 222+…+a 2 01522 015=-1 答案:-19.已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求正数a 的值.解:⎝⎛⎭⎫165x 2+1x 5展开式的通项T r +1=C r5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r C r 5x 20-5r 2, 令20-5r =0,得r =4,故常数项T 5=C 45·165=16,又(a 2+1)n 展开式的各项系数之和为2n , 由题意,得2n =16,∴n =4.∴(a 2+1)4展开式中系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3.10.(1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除;(2)求S =C 127+C 227+…+C 2727除以9的余数.解:(1)证明:∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.B 组 高考题型专练1.(2014·高考湖北卷)若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B.54 C .1D.24解析:T r +1=C r 7·(2x )7-r ·⎝⎛⎭⎫a x r =27-r C r 7a r ·1x 2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1,故选C.答案:C2.(2014·高考四川卷)在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .10解析:在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15.答案:C3.(2015·高考湖北卷)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212解析:因为(1+x )n 的展开式中第4项与第8项的二项式系数相等,所以C 3n =C 7n,解得n =10,所以二项式(1+x )10的展开式中奇数项的二项式系数和为12×210=29.答案:A4.(2015·高考广东卷)在(x -1)4的展开式中,x 的系数为________. 解析:由题意得T r +1=C r 4(x )4-r (-1)r =(-1)r C r 4·x 4-r 2,令4-r2=1,得r =2,所以所求系数为(-1)2C 24=6.答案:65.(2013·高考浙江卷)设二项式⎝⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:展开式通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎫-13x r =C r 5(-1)r x 52-56r .令52-56r =0,得r =3, 当r =3时,T 4=C 35(-1)3=-10.故A =-10.答案:-10。
高三数学人教版A版数学(理)高考一轮复习教案等差数列及其前n项和1
![高三数学人教版A版数学(理)高考一轮复习教案等差数列及其前n项和1](https://img.taocdn.com/s3/m/b9463ee7a0c7aa00b52acfc789eb172ded639933.png)
第二节 等差数列及其前n 项和等差数列(1)理解等差数列的概念.(2)掌握等差数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数的关系. 知识点一 等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.符号表示为a n +1-a n =d (n ∈N +,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.易误提醒1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.[自测练习]1.现给出以下几个数列:①2,4,6,8,…,2(n -1),2n ;②1,1,2,3,…,n ;③常数列a ,a ,a ,…,a ;④在数列{a n }中,已知a 2-a 1=2,a 3-a 2=2.其中等差数列的个数为( )A .1B .2C .3D .4解析:①由4-2=6-4=…=2n -2(n -1)=2,得数列2,4,6,8,…,2(n -1),2n 为等差数列;②因为1-1=0≠2-1=1,所以数列1,1,2,3,…,n 不是等差数列;③常数列a ,a ,a ,…,a 为等差数列;④当数列{a n }仅有3项时,数列{a n }是等差数列,当数列{a n }的项数超过3项时,数列{a n }不一定是等差数列.故等差数列的个数为2.答案:B2.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公式d =9-25-1=74,所以c -a =2d =72.答案:72知识点二 等差数列的通项及求和公式 等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 必记结论1.巧用等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.2.前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.[自测练习]3.(2016·日照模拟)已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,那么a 4+a 5+a 6等于( )A .40B .42C .43D .45解析:设等差数列公差为d ,则有a 2+a 3=2a 1+3d =4+3d =13,解得d =3,故a 4+a 5+a 6=3a 5=3(a 1+4d )=3×(2+4×3)=42,故选B.答案:B4.(2015·兰州诊断)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54D .72解析:由S 8=8×(a 1+a 8)2,又a 4+a 5=a 1+a 8=18,∴S 8=8×182=72.答案:D5.数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S 5a 5=________.解析:在等差数列中,由a 2+a 6=a 8得2a 1+6d =a 1+7d ,即a 1=d ≠0, 所以S 5a 5=5a 1+5×42d a 1+4d =5a 1+10da 1+4d =155=3.答案:3考点一 等差数列的基本运算|1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11解析:法一:数列{a n }为等差数列,设公差为d ,∴a 1+a 3+a 5=3a 1+6d =3,∴a 1+2d =1,∴S 5=5a 1+5×42×d =5(a 1+2d )=5.法二:数列{a n }为等差数列,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5×2a 32=5.答案:A2.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d 为________.解析:∵a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,∴(m -n )d =1n -1m ,∴d =1mn ,∴a m =12 015+(m -1)1mn =1n ,解得1mn =12 015,即d =12 015. 答案:12 0153.(2015·通州模拟)已知等差数列{a n }中,a 2=-2,公差d =-2,那么数列{a n }的前5项和S 5=________.解析:将已知条件代入公式易得S 5=5(a 2-d )+5×42d =-20.答案:-20等差数列的基本运算的两个解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明|已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. [解] (1)证明:1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.等差数列的四种判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52,∴数列{b n }是以-52为首项,1为公差的等差数列.考点三 等差数列的性质及最值|(1)(2016·泉州质检)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18=( )A .20B .60C .90D .100[解析] 因为{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90,故选择C.[答案] C(2)(2015·广州模拟)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40[解析] 本题考查等差数列的性质.这个数列的项数为2n ,于是有2×n =25-15=10,2n =10,即这个数列的项数为10,故选A.[答案] A(3)已知在等差数列{a n }中,a 1=31,S n 是它的前n 项的和,S 10=S 22. ①求S n ;②这个数列前多少项的和最大?并求出这个最大值.[解] ①∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0. 又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.②法一:由①知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由①知,令⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *),解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q 2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.2.(2015·深圳调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:C3.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=18,则a 8=________.解析:等差数列性质可得S 3=3,S 6-S 3=15,S 9-S 6=a 7+a 8+a 9=3a 8成等差数列,故有2(S 6-S 3)=S 3+S 9-S 6⇒2×15=3+3a 8,解得a 8=9.答案:917.整体思想在等差数列中的应用【典例】 已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4[思路点拨] 若利用a ,d 基本计算较繁,可考虑S 2,S 4-S 2,S 6-S 4成等差数列,采用整体求值较简便.[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4,得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.[答案] A[方法点评] 利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少等差数列题,其首项、公差无法确定或计算烦琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[跟踪练习] 已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, 且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-S 20=10+2×10=30, ∴S 30=60.答案:60A 组 考点能力演练1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选择B.答案:B2.(2016·宝鸡质检)设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n=336,则n 的值为( )A .18B .19C .20D .21解析:因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选择D.答案:D3.(2015·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21解析:a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.答案:C4.在等差数列{a n }中,a 2+a 3+a 4+a 5=40,则3a 1+a 11=( ) A .20 B .30 C .40D .60解析:本题考查等差数列的通项公式及性质的应用.由等差数列的性质得a 2+a 3+a 4+a 5=2(a 3+a 4)=40,解得a 3+a 4=20,即a 3+a 4=2a 1+5d =20,又3a 1+a 11=4a 1+10d =2(2a 1+5d )=40,故选C.答案:C5.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,并且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=( ) A.345 B .5 C.314D.315解析:法一:令S n =(7n +1)n ,T n =(n +3)n ,则a n =14n -6,b n =2n +2,所以a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=22+64+232+30218+22+26+34=315.法二:设等差数列{a n },{b n }的公差分别为d 1,d 2,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=4a 1+42d 14b 1+42d 2=2a 1+21d 12b 1+21d 2=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案:D6.(2015·广州一模)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________. 解析:因为{a n }是等差数列,所以S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20,所以a 6=4,所以S 11=11(a 1+a 11)2=11a 6=44.答案:447.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式为a n =________.解析:设b n =nS n +(n +2)a n ,则b 1=1×S 1+(1+2)a 1=1×a 1+3a 1=4,b 2=2×S 2+(2+2)a 2=2×(a 1+a 2)+(2+2)a 2=8,所以等差数列{b n }的首项为4,公差为4,所以b n =4+(n -1)×4=4n ,即nS n +(n +2)a n =4n .当n ≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0,所以2(n +1)n a n =n +1n -1a n -1,即2·a n n =a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是以12为公比,1为首项的等比数列,所以a n n =⎝⎛⎭⎫12n -1,所以a n =n2n -1. 答案:n 2n-18.设等差数列{a n }满足公差d ∈N *,a n ∈N *,且数列{a n }中任意两项之和也是该数列的一项.若a 1=35,则d 的所有可能取值之和为________.解析:本题考查等差数列的通项公式.依题意得a n =a 1+(n -1)d ,a i +a j =2a 1+(i +j -2)d =a 1+(m -1)d (i ,j ,m ∈N *),即(m -i -j +1)d =a 1,kd =a 1=35(其中k ,d ∈N *),因此d 的所有可能取值是35的所有正约数,即分别是1,3,32,33,34,35,因此d 的所有可能取值之和为1-35×31-3=364. 答案:3649.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若数列{b n }满足:b 1=a 1且b n =a n +b n -1(n ≥2,n ∈N *),求数列{b n }的通项公式.解:(1)由题意得:⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16,∵公差d >0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n ≥2,n ∈N *), ∴b n -b n -1=2n -1(n ≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n ≥2,n ∈N *),且b 1=a 1=1, ∴b n =2n -1+2n -3+…+3+1=n 2(n ≥2,n ∈N *). ∴b n =n 2(n ∈N *).10.(2015·南昌一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解:(1)∵a 1=1,S 3=6,∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n ,①b 1·b 2·b 3·…·b n -1=2S n -1(n ≥2),②①÷②得b n =2S n -S n -1=2a n =2n (n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n . (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设c n =n 2n ,则c n +1c n =n +12n, 当n ≥2时,c n <1,数列{c n }单调递减,∴(c n )max =12,故λ>12. B 组 高考题型专练1.(2015·高考重庆卷)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质知a 2+a 6=2a 4,所以a 6=2a 4-a 2=0,故选B. 答案:B2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12解析:设等差数列{a n }的首项为a 1,公差为d .由题设知d =1,S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=12+9=192,选B. 答案:B3.(2015·高考北京卷)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:若{a n }是递减的等差数列,则选项A ,B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 答案:C4.(2015·高考安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:因为a 1=1,a n =a n -1+12(n ≥2),所以数列{a n }是首项为1、公差为12的等差数列,所以前9项和S 9=9+9×82×12=27. 答案:275.(2015·高考北京卷)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).(2)设等比数列{b n }的公比为q .因为b 2=a 3=8,b 3=a 7=16,所以q =2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n =63.所以b 6与数列{a n }的第63项相等.6.(2015·高考重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92, 即a 1+2d =2,a 1+d =32, 解得a 1=1,d =12, 故通项公式为a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.。
高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1
![高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1](https://img.taocdn.com/s3/m/c2fe540abdd126fff705cc1755270722192e59c8.png)
第六节 简单的三角恒等变换 简单的三角恒等变换能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 半角公式1.用cos α表示sin 2 α2,cos 2 α2,tan 2 α2.sin 2α2=1-cos α2;cos 2 α2=1+cos α2; tan 2 α2=1-cos α1+cos α.2.用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.易误提醒 应用“sin α2=±1-cos α2”或“cos α2=± 1+cos α2”求值时,可由α2所在象限确定该三角函数值的符号.易混淆由α决定.必记结论 用tan α表示sin 2α与cos 2αsin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[自测练习]1.已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A.105 B .-105 C.155D .-155解析:∵5π2<θ<3π,∴5π4<θ2<3π2.∴sin θ2=-1-cos θ2=-1+152=-155. 答案:D知识点二 辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba . 易误提醒 在使用辅助角公式易忽视φ的取值,应由点(a ,b )所在象限决定,当φ在第一、二象限时,一般取最小正角,当φ在第三、四象限时,一般取负角.[自测练习]2.函数f (x )=sin 2x +cos 2x 的最小正周期为( ) A .π B.π2 C .2πD.π4解析:f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴T =π. 答案:A3.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1]D.⎣⎡⎦⎤-32,32 解析:∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3]. 答案:B考点一 三角函数式的化简|化简:(1)sin 50°(1+3tan 10°);(2)2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫x +π4.解:(1)sin 50°(1+3tan 10°) =sin 50°(1+tan 60°tan 10°)=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)原式=2cos 2x (cos 2x -1)+122tan ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x=-4cos 2x sin 2x +14cos ⎝⎛⎭⎫π4-x sin ⎝⎛⎭⎫π4-x =1-sin 22x2sin ⎝⎛⎭⎫π2-2x=cos 22x 2cos 2x =12cos 2x . 考点二 辅助角公式的应用|(1)函数y =sin 2x +2 3sin 2x 的最小正周期T 为________.[解析] y =sin 2x +23sin 2x =sin 2x -3cos 2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.[答案] π(2)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. [解析] f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -φ),其中sin φ=255,cos φ=55,当x -φ=2k π+π2(k ∈Z )时函数f (x )取到最大值,即θ=2k π+π2+φ时函数f (x )取到最大值,所以cos θ=-sin φ=-255.[答案] -255(1)利用a sin x +b cos x =a 2+b 2sin(x +φ)把形如y =a sin x +b cos x +k 的函数化为一个角的一种函数的一次式,可以求三角函数的周期、单调区间、值域、最值和对称轴等.(2)化a sin x +b cos x =a 2+b 2sin(x +φ)时φ的求法:①tan φ=ba ;②φ所在象限由(a ,b )点确定.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. 求函数f (x )的最小正周期和单调递增区间. 解:f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z .考点三 三角恒等变换的综合应用|三角恒等变换是高考必考内容,考查时多与三角函数的图象与性质、解三角形及平面向量交汇综合考查,归纳起来常见的命题探究角度有:1.三角恒等变换与三角函数性质的综合. 2.三角恒等变换与三角形的综合.3.三角恒等变换与向量的综合.探究一 三角恒等变换与三角函数性质的综合1.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值; (2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3, 求cos ⎝⎛⎭⎫α+3π2的值. 解:(1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,…. 因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝⎛⎭⎫α2=3sin ⎝⎛⎭⎫2·α2-π6=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3,得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154. 因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12=3+158. 探究二 三角恒等变换与三角形的结合2.(2016·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +c tan C =2atan A,试判断△ABC 的形状,并说明理由.解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎫2ωx +π6+1, 由题意得T =π,∴2π2ω=π.∴ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 即sin ⎝⎛⎭⎫2A +π6=12. ∵0<A <π,∴π6<2A +π6<13π6,∴2A +π6=5π6,即A =π3.由b tan B +c tan C =2a tan A 得b cos B sin B +c cos C sin C =2a cos A sin A,所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝⎛⎭⎫2π3-B =1, 即sin ⎝⎛⎭⎫B +π6=1,所以B =C =π3. 综上,△ABC 是等边三角形. 探究三 三角恒等变换与向量的综合3.(2015·合肥模拟)已知向量a =⎝⎛⎭⎫cos ⎝⎛⎭⎫θ-π4,1,b =(3,0),其中θ∈⎝⎛⎭⎫π2,5π4,若a·b =1.(1)求sin θ的值; (2)求tan 2θ的值.解:(1)由已知得:cos ⎝⎛⎭⎫θ-π4=13,sin ⎝⎛⎭⎫θ-π4=223,sin θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫θ-π4+π4=sin ⎝⎛⎭⎫θ-π4cos π4+cos ⎝⎛⎭⎫θ-π4·sin π4=4+26.(2)由cos ⎝⎛⎭⎫θ-π4=13得sin θ+cos θ=23,两边平方得:1+2sin θcos θ=29,即sin 2θ=-79,而cos 2θ=1-2sin 2θ=-429,∴tan 2θ=728. 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.5.三角恒等变换与解三角形的综合的答题模板【典例】 (12分)(2015·高考山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫A 2=0,a =1,求△ABC 面积的最大值.[思路点拨] (1)首先利用二倍角公式及诱导公式将f (x )的解析式化为“一角一函数”的形式,然后求解函数f (x )的单调区间.(2)首先求出角A 的三角函数值,然后根据余弦定理及基本不等式求出bc 的最大值,最后代入三角形的面积公式即可求出△ABC 面积的最大值.[规范解答] (1)由题意知f (x )=sin 2x2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x2=sin 2x -12.(3分)由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π, k ∈Z ;(4分)由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z );(5分)单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ).(6分) (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.(8分) 由余弦定理a 2=b 2+c 2-2bc cos A ,(9分) 可得1+3bc =b 2+c 2≥2bc ,(10分) 即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.(11分)所以△ABC 面积的最大值为2+34.(12分) [模板形成][跟踪练习] 已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)已知△ABC 为锐角三角形,A =π3,且f (B )=65,求cos 2B 的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1得 f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.因为f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数, 又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1, 所以f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)因为△ABC 为锐角三角形,且A =60°,所以⎩⎨⎧0<B <π2,0<C =2π3-B <π2,即B ∈⎝⎛⎭⎫π6,π2,所以2B +π6∈⎝⎛⎭⎫π2,7π6. 由(1)可知f (B )=2sin ⎝⎛⎭⎫2B +π6=65, 即sin ⎝⎛⎭⎫2B +π6=35,cos ⎝⎛⎭⎫2B +π6=-45, 所以cos 2B =cos ⎝⎛⎭⎫2B +π6-π6 =cos ⎝⎛⎭⎫2B +π6cos π6+sin ⎝⎛⎭⎫2B +π6sin π6 =3-4310.A 组 考点能力演练1.(2015·洛阳统考)已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23C.13D.23解析:∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 答案:D2.已知2sin θ+3cos θ=0,则tan 2θ=( ) A.59 B.125 C.95D.512解析:∵2sin θ+3cos θ=0,∴tan θ=-32,∴tan 2θ=2tan θ1-tan 2θ=2×⎝⎛⎭⎫-321-94=125.答案:B3.sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( )A.15 B .-15C.75D .±15解析:因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,所以2cos ⎝⎛⎭⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝⎛⎭⎫π4-α=±75,因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝⎛⎭⎫π4-α=75. 答案:C4.(2015·太原一模)设△ABC 的三个内角分别为A ,B ,C ,且tan A ,tan B ,tan C,2tan B 成等差数列,则cos(B -A )=( )A .-31010B .-1010C.1010D.31010解析:由题意得tan C =32tan B ,tan A =12tan B ,所以△ABC 为锐角三角形.又tan A =-tan(C +B )=-tan C +tan B 1-tan C tan B =-52tan B 1-32tan 2B =12tan B ,所以tan B =2,tan A =1,所以tan(B -A )=tanB -tan A 1+tan B tan A =2-11+2×1=13.因为B >A ,所以cos(B -A )=31010,故选D.答案:D5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718解析:依题意得3(cos 2α-sin 2α)=22(cos α-sin α),cos α+sin α=26,(cos α+sin α)2=⎝⎛⎭⎫262=118,即1+sin 2α=118,sin 2α=-1718,故选D.答案:D6.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 答案:127.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 法二:令α=0,则原式=14+14=12. 答案:128.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 答案: 39.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合; (2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期. 解:由已知:f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4.又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,∴f (x )max =2,此时12x -π4=2k π+π2,k ∈Z , 即x ∈⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z . (2)∵x =π8是函数f (x )的一个零点, ∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z , 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,此时其最小正周期为π. 10.(2016·沈阳模拟)已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2,cos α),b =⎝⎛⎭⎫1,tan ⎝⎛⎭⎫α+β2⎝⎛⎭⎫0<α<π4,且a·b =73. (1)求f (x )在区间⎣⎡⎦⎤2π3,4π3上的最值;(2)求2cos 2α-sin 2(α+β)cos α-sin α的值. 解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎫x -π3+2, ∵x ∈⎣⎡⎦⎤2π3,4π3,∴x -π3∈⎣⎡⎦⎤π3,π, ∴f (x )的最大值是4,最小值是2.(2)∵β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73, ∴sin α=13, ∴2cos 2α-sin 2(α+β)cos α-sin α=2cos 2α-sin 2αcos α-sin α=2cos α =21-sin 2α=423. B 组 高考题型专练1.(2015·高考北京卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. 2.(2013·高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 解:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x ) =3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6. 当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6,即x =0时,f (0)=-12, 当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12, ∴f (x )的最小值为-12.因此,f (x )在⎣⎡⎦⎤0,π2上的最大值是1,最小值是-12. 3.(2014·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b .sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值. 解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104. 于是,cos 2A =2cos 2A -1=-14, sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.。
高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1
![高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1](https://img.taocdn.com/s3/m/18de112fe97101f69e3143323968011ca300f795.png)
第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。
高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质
![高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质](https://img.taocdn.com/s3/m/c8ba0d6db207e87101f69e3143323968011cf495.png)
第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。
高三数学人教版A版数学(理)高考一轮复习教案直线的倾斜角与斜率、直线方程1
![高三数学人教版A版数学(理)高考一轮复习教案直线的倾斜角与斜率、直线方程1](https://img.taocdn.com/s3/m/e438682753ea551810a6f524ccbff121dd36c51e.png)
第一节 直线的倾斜角与斜率、直线方程直线及其方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 知识点一 直线的倾斜角与斜率 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫作直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫作这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α.(2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.易误提醒 任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率(当直线与x 轴垂直,即倾斜角为π2时,斜率不存在)[自测练习]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2.∴y =-3.答案:B2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D.k1<k3<k2解析:由题图可知k1<0,k2>0,k3>0,且k2>k3,∴k1<k3<k2.答案:D知识点二直线方程名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点y-y1y2-y1=x-x1x2-x1与两坐标轴均不垂直的直线续表截距式纵、横截距xa+yb=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线易误提醒(1)利用两点式计算斜率时易忽视x1=x2时斜率k不存在的情况.(2)用直线的点斜式求方程时,在斜率k不明确的情况下,注意分k存在与不存在讨论,否则会造成失误.(3)直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax+By+C=0确定斜率k时易忽视判断B是否为0,当B=0时,k不存在;当B≠0时,k=-AB.[自测练习]3.过点(-1,2)且倾斜角为30°的直线方程为()A.3x-3y-6+3=0B.3x-3y+6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=0解析:直线斜率k=tan 30°=3 3,直线的点斜式方程为y-2=33(x+1),整理得3x -3y +3+6=0,故选B. 答案:B4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a =a +2,解得a =-2或a =1. 答案:D考点一 直线的倾斜角与斜率|1.直线x +3y +m =0(m ∈R )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.故选C. 答案:C2.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求:当a ≠-1时,直线l 的斜率为-aa +1,则有-a a +1>1或-a a +1<0, 解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12∪(0,+∞).答案:⎝⎛⎭⎫-∞,-12∪(0,+∞) 3.(2016·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34. 要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞ 求倾斜角α的取值范围的一般步骤(1)求出tan α的取值范围;(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 注意已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用: 当k =tan α,α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π时的图象如图:考点二 直线的方程|根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用.求直线过点(5,10)且到原点的距离为5的直线方程.解:当斜率不存在时,所求直线方程为x -5=0,适合题意,当斜率存在时,设斜率为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用|直线方程的综合应用是高考常考内容之一,它经常与不等式、导数、平面向量、数列等有关知识进行交汇,考查学生综合运用直线知识解决问题的能力.归纳起来常见的命题探究角度有: 1.与最值相结合问题.2.与导数的几何意义相结合问题. 3.与平面向量相结合问题. 4.与数列相结合问题. 探究一 与最值相结合问题1.(2015·高考福建卷)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )C .4D .5解析:法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b ≥21a ·1b=2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 答案:C探究二 与导数的几何意义相结合问题2.已知函数f (x )=x -4ln x ,则曲线y =f (x )在点(1,f (1))处的切线方程为________. 解析:由f ′(x )=1-4x ,则k =f ′(1)=-3,又f (1)=1,故切线方程为y -1=-3(x-1),即3x +y -4=0.答案:3x +y -4=0探究三 与平面向量相结合问题3.在平面直角坐标平面上,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线的方向向量上的投影的长度相等,则直线l 的斜率为( )A .-14B.25 C.25或-43D.52解析:直线l 的一个方向向量可设为h =(1,k ),由题⎪⎪⎪⎪⎪⎪OA →·h |h |=⎪⎪⎪⎪⎪⎪OB →·h |h |⇒|1+4k |=|-3+k |,解得k =25或k =-43,故选C.答案:C探究四 与数列相结合问题4.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线xn +1+yn=1与坐标轴所围成三角形的面积为( ) A .36B .45解析:由a n =1n (n +1)可知a n =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,∴1-1n +1=910,∴n =9. ∴直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),∴直线与坐标轴所围成的三角形的面积为12×10×9=45,故选B.答案:B(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.17.忽视零截距致误【典例】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.[解] (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零.∴a =2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.[易误点评] 本题易错点求直线方程时,漏掉直线过原点的情况.[防范措施] (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[跟踪练习] 若直线过点P (2,1)且在两坐标轴上的截距相等,则这样的直线的条数为( )A .1B .2C .3D .以上都有可能解析:当截距均为零时,显然有一条;当截距不为零时,设直线方程为x +y =a ,则a =2+1=3,有一条.综上知,直线过点P (2,1)且在两坐标轴上的截距相等的直线有两条,故选B.答案:BA 组 考点能力演练1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:A2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3D.⎝⎛⎭⎫-12,-3 解析:∵(2x +1)-m (y +3)=0恒成立, ∴2x +1=0,y +3=0,∴x =-12,y =-3.∴定点为⎝⎛⎭⎫-12,-3. 答案:D4.(2016·海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( )A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析:|AB |= (cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33,选B. 答案:B5.(2016·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得.也可以利用数形结合.选D.6.(2016·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k3=2,所以k =-24.答案:-247.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________.解析:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k .由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=09.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b时等号成立, 这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0.则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立, 即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y 2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12, 则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.B 组 高考题型专练1.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3解析:法一:如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k2≤1. 解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3. 答案:D2.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:∵y =ax 2+b x ,∴y ′=2ax -b x 2, 由题意可得⎩⎨⎧ 4a +b 2=-5,4a -b 4=-72解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a+b=-3.答案:-33.(2014·高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx -y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解析:易知A(0,0),B(1,3),且P A⊥PB,∴|P A|2+|PB|2=|AB|2=10,∴|P A|·|PB|≤|P A|2+|PB|22=5(当且仅当|P A|=|PB|时取“=”).答案:5。
高三数学人教版A版数学(理)高考一轮复习教案:8.8 曲线与方程 Word版含答案
![高三数学人教版A版数学(理)高考一轮复习教案:8.8 曲线与方程 Word版含答案](https://img.taocdn.com/s3/m/d26df7403b3567ec102d8a46.png)
第八节 曲线与方程轨迹与轨迹方程了解方程的曲线与曲线的方程的对应关系.知识点 曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式.(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解.若此方程组无解,则两曲线无交点.易误提醒 (1)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).(2)求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.[自测练习]1.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:把点(-2,3)和点(2,3)的坐标代入方程(a -1)x -y +2a +1=0.验证知(-2,3)适合方程,而(2,3)不一定适合方程,故选A.答案:A2.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为____________.解析:AB →=⎝⎛⎭⎫2,-y 2,BC →=⎝⎛⎭⎫x ,y 2,由AB →⊥BC →,得AB →·BC →=0,即2x +⎝⎛⎭⎫-y 2·y 2=0,∴动点C 的轨迹方程为y 2=8x .答案:y 2=8x3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点). 答案:x 24+y 23=1(y ≠0)考点一 直接法求轨迹方程|1.(2016·津南一模)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.答案:A2.(2016·南昌模拟)方程(x 2+y 2-2x )x +y -3=0表示的曲线是( )A .一个圆和一条直线B .一个圆和一条射线C .一个圆D .一条直线解析:本题考查曲线与方程、数形结合思想.依题意,题中的方程等价于①x +y -3=0或②⎩⎪⎨⎪⎧x +y -3≥0,x 2+y 2-2x =0.注意到圆x 2+y 2-2x =0上的点均位于直线x +y -3=0的左下方区域,即圆x 2+y 2-2x =0上的点均不满足x +y -3≥0,②不表示任何图形,因此题中的方程表示的曲线是直线x +y -3=0,故选D.答案:D3.在直角坐标平面xOy 中,过定点(0,1)的直线l 与圆x 2+y 2=4交于A ,B 两点.若动点P (x ,y )满足OP →=OA →+OB →,则点P 的轨迹方程为________.解析:设AB 的中点为M ,则OM →=12OP →,M ⎝⎛⎭⎫x 2,y 2.又因为OM ⊥AB ,AB →的方向向量为⎝⎛⎭⎫x 2,y 2-1,OM →=⎝⎛⎭⎫x 2,y 2,所以⎝⎛⎭⎫x 2,y 2-1·⎝⎛⎭⎫x 2,y 2=0,x 2+y (y -2)=0,即x 2+(y -1)2=1. 答案:x 2+(y -1)2=1直接法求轨迹方程的常见类型(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.考点二 定义法求轨迹方程|已知点F (1,0),圆E :(x +1)2+y 2=8,点P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)若直线l 与圆O :x 2+y 2=1相切,并与(1)中轨迹Γ交于不同的两点A ,B ,当OA →·OB →=λ,且满足23≤λ≤34时,求△AOB 面积S 的取值范围.[解] (1)连接QF (图略).∵|QE |+|QF |=|QE |+|QP |=|PE |=22(22>|EF |=2),∴点Q 的轨迹是以E (-1,0),F (1,0)为焦点,长轴长2a =22的椭圆,即动点Q 的轨迹Γ的方程为x 22+y 2=1. (2)依题结合图形(图略)知直线l 的斜率不可能为零,所以设直线l 的方程为x =my +n (m ∈R ).∵直线l 即x -my -n =0与圆O :x 2+y 2=1相切,∴|n |m 2+1=1,得n 2=m 2+1. 又∵点A ,B 的坐标(x 1,y 1),(x 2,y 2)满足:⎩⎪⎨⎪⎧x =my +n ,x 2+2y 2-2=0, 消去x 并整理,得(m 2+2)y 2+2mny +n 2-2=0.由一元二次方程根与系数的关系,得y 1+y 2=-2mnm 2+2,y 1y 2=n 2-2m 2+2.其判别式Δ=4m 2n 2-4(m 2+2)(n 2-2)=8(m 2-n 2+2)=8, 又由求根公式得y 1,2=-2mn ±Δ2(m 2+2).∵λ=OA →·OB →=x 1x 2+y 1y 2=(my 1+n )(my 2+n )+y 1y 2=(m 2+1)y 1y 2+mn (y 1+y 2)+n 2=3n 2-2m 2-2m 2+2=m 2+1m 2+2.S △AOB =12|OA →||OB →|sin ∠AOB =12OA →2·OB →2-(OA →·OB →)2=12|x 1y 2-x 2y 1|=12|(my 1+n )y 2-(my 2+n )y 1|=12|n (y 2-y 1)|=12|n |·Δm 2+2=2·m 2+1(m 2+2)2=2·m 2+1m 2+2·1m 2+2∵m 2+1m 2+2+1m 2+2=1,且λ=m 2+1m 2+2∈⎣⎡⎦⎤23,34, ∴S △AOB =2·λ·(1-λ)∈⎣⎡⎦⎤64,23.定义法求轨迹方程的思路(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知轨迹是什么曲线,其方程是什么形式的方程的情况.利用条件把待定系数求出来,使问题得解.1.已知动圆过定点F (0,2),且与定直线l :y =-2相切. (1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过点F (0,2),分别以A ,B 为切点作轨迹C 的切线,设两切线交点为Q ,求证:AQ ⊥BQ .解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,l :y =-2为准线的抛物线,因为抛物线焦点到准线的距离等于4,所以圆心的轨迹方程是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直,设直线AB 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,得x 2-8kx -16=0. 所以x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x .所以过抛物线上A ,B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1·k 2=14x 1·14x 2=116x 1·x 2=-1.所以AQ ⊥BQ .考点三 代入法求轨迹方程|在圆O :x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.设M 为线段PD 的中点.(1)当点P 在圆O 上运动时,求点M 的轨迹E 的方程;(2)若圆O 在点P 处的切线与x 轴交于点N ,试判断直线MN 与轨迹E 的位置关系. [解] (1)设M (x ,y ),则P (x,2y ).∵点P 在圆x 2+y 2=4上,∴x 2+(2y )2=4,即点M 的轨迹E 的方程为x 24+y 2=1.(2)当直线PN 的斜率不存在时,直线MN 的方程为x =2或x =-2.显然与轨迹E 相切. 当直线PN 的斜率存在时,设PN 的方程为y =kx +t (k ≠0). ∵直线PN 与圆O 相切,∴|t |k 2+1=2,即t 2-4k 2-4=0. 又∵直线MN 的斜率为k 2,点N 的坐标为⎝⎛⎭⎫-t k ,0,∴直线MN 的方程为y =k2⎝⎛⎭⎫x +t k , 即y =12(kx +t ).由⎩⎨⎧y =12(kx +t ),x24+y 2=1,得(1+k 2)x 2+2ktx +t 2-4=0.∵Δ=(2kt )2-4(1+k 2)(t 2-4)=-4(t 2-4k 2-4)=0,∴直线MN 与轨迹E 相切. 综上可知,直线MN 与轨迹E 相切.代入法求轨迹方程的四个步骤(1)设出所求动点坐标P (x ,y ).(2)寻求与所求动点P (x ,y )与已知动点Q (x ′,y ′)的关系. (3)建立P ,Q 两坐标的关系表示出x ′,y ′. (4)将x ′,y ′代入已知曲线方程中化简求解.2.已知F 1,F 2分别为椭圆C :x 24+y 23=1的左,右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0)解析:依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎨⎧x =x 0-1+13,y =y 03.即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y .代入x 204+y 203=1得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).答案:C27.分类讨论思想在由方程讨论曲线类型中的应用【典例】 已知两个定点A 1(-2,0),A 2(2,0),动点M 满足直线MA 1与MA 2的斜率之积是定值m4(m ≠0).求动点M 的轨迹方程,并指出随m 变化时方程所表示的曲线C 的形状.[思路点拨] 依题直接写出方程后,结合方程结构特征分类判断曲线类型,注意分类标准的确定.[解] 设动点M (x ,y ),依题意有y x -2·y x +2=m4(m ≠0),整理得x 24-y 2m=1(x ≠±2),即为动点M 的轨迹方程.当m >0时,轨迹是焦点在x 轴上的双曲线;当m ∈(-4,0)时,轨迹是焦点在x 轴上的椭圆; 当m =-4时,轨迹是圆;当m ∈(-∞,-4)时,轨迹是焦点在y 轴上的椭圆.且点A 1(-2,0),A 2(2,0)不在曲线上.[方法点评] 由曲线方程讨论曲线类型时,常用到分类讨论思想,其分类的标准有两类: (1)二次项系数为0的值. (2)二次项系数相等的值.[跟踪练习] 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )解析:a >b >0得1b 2>1a 2>0,方程a 2x 2+b 2y 2=1,即x 21a 2+y 21b 2=1表示的是焦点在y 轴上的椭圆;方程ax +by 2=0,即y 2=-ab x 表示的是焦点在x 轴的负半轴上的抛物线上,结合各选项知,选D.答案:DA 组 考点能力演练1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程2x +y =0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件解析:点M 的坐标满足方程2x +y =0,则点M 在曲线y 2=4x 上,是必要条件;但当y >0时,点M 在曲线y 2=4x 上,点M 的坐标不满足方程2x +y =0,不是充分条件.2.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:∵PM →·PN →=0,∴PM ⊥PN . ∴点P 的轨迹是以线段MN 为直径的圆. 答案:A3.(2016·梅州质检)动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:双曲线x 2-y 23=1的左焦点F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .答案:B4.(2016·沈阳质检)已知点O (0,0),A (1,-2),动点P 满足|P A |=3|PO |,则P 点的轨迹方程是( )A .8x 2+8y 2+2x -4y -5=0B .8x 2+8y 2-2x -4y -5=0C .8x 2+8y 2+2x +4y -5=0D .8x 2+8y 2-2x +4y -5=0解析:设P 点的坐标为(x ,y ),则(x -1)2+(y +2)2=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0,故选A.答案:A5.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y解析:M 点的轨迹是双曲线x 216-y 29=1,依题意,是“好曲线”的曲线与M 点的轨迹必有公共点.四个选项中,只有圆x 2+y 2=9与M 点的轨迹没有公共点,其他三个曲线与M 点的轨迹都有公共点,所以圆x 2+y 2=9不是“好曲线”.6.(2016·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是_____________________________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是________.解析:本题考查曲线的方程.因为抛物线x 2=4y 的焦点F (0,1),设线段PF 的中点坐标是(x ,y ),则P (2x,2y -1)在抛物线x 2=4y 上,所以(2x )2=4(2y -1),化简得x 2=2y -1.答案:x 2=2y -18.已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).则动点P 的轨迹C 的方程为________.解析:由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ, 整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).答案:x 2-y 2λ=1(λ≠0,x ≠±1)9.在直角坐标系xOy 中,动点P 与定点F (1,0)的距离和它到定直线x =2的距离之比是22. (1)求动点P 的轨迹Γ的方程; (2)设曲线Γ上的三点A (x 1,y 1),B ⎝⎛⎭⎫1,22,C (x 2,y 2)与点F 的距离成等差数列,线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .解:(1)设P (x ,y ).由已知,得(x -1)2+y 2|x -2|=22,两边同时平方,化简得x 22+y 2=1,故动点P 的轨迹Γ的方程是x 22+y 2=1.(2)由已知得|AF |=22(2-x 1),|BF |=22×(2-1), |CF |=22(2-x 2),因为2|BF |=|AF |+|CF |,所以22(2-x 1)+22(2-x 2)=2×22×(2-1), 所以x 1+x 2=2.①故线段AC 的中点坐标为⎝⎛⎭⎫1,y 1+y 22,其垂直平分线的方程为y -y 1+y 22=-x 1-x 2y 1-y 2(x -1).②因为A ,C 在椭圆上,所以代入椭圆,两式相减, 把①代入化简,得-x 1-x 2y 1-y 2=y 1+y 2.③把③代入②,令y =0,得x =12,所以点T 的坐标为⎝⎛⎭⎫12,0.所以直线BT 的斜率k =22-01-12= 2.10.在平面直角坐标系xOy 中,动点P (x ,y )到F (0,1)的距离比到直线y =-2的距离小1.(1)求动点P 的轨迹W 的方程;(2)过点E (0,-4)的直线与轨迹W 交于两点A ,B ,点D 是点E 关于x 轴的对称点,点A 关于y 轴的对称点为A 1,证明:A 1,D ,B 三点共线.解:(1)由题意可得动点P (x ,y )到定点F (0,1)的距离和到定直线y =-1的距离相等,所以动点P 的轨迹是以F (0,1)为焦点,以y =-1为准线的抛物线.所以动点P 的轨迹W 的方程为x 2=4y .(2)证明:设直线l 的方程为y =kx -4,A (x 1,y 1),B (x 2,y 2),则A 1(-x 1,y 1).由⎩⎪⎨⎪⎧y =kx -4,x 2=4y ,消去y ,整理得x 2-4kx +16=0. 则Δ=16k 2-64>0,即|k |>2. x 1+x 2=4k ,x 1x 2=16.直线A 1B :y -y 2=y 2-y 1x 2+x 1(x -x 2),所以y =y 2-y 1x 2+x 1(x -x 2)+y 2,即y =x 22-x 214(x 1+x 2)(x -x 2)+14x 22,整理得y =x 2-x 14x -x 22-x 1x 24+14x 22,即y =x 2-x 14x +x 1x 24.直线A 1B 的方程为y =x 2-x 14x +4,显然直线A 1B 过点D (0,4).所以A 1,D ,B 三点共线. B 组 高考题型专练1.(2014·高考广东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)依题意知c =5,c a =53,∴a =3,b 2=a 2-c 2=4,∴椭圆C 的标准方程为x 29+y 24=1. (2)若过点P (x 0,y 0)的切线的斜率不存在或者斜率为零,则易知点P 的坐标为(3,2)或(3,-2)或(-3,2)或(-3,-2).若过点P (x 0,y 0)的切线的斜率存在且不为0,设切点分别为A (x 1,y 1),B (x 2,y 2),切线P A 的斜率为k ,∵P A ⊥PB ,则切线PB 的斜率为-1k. 切线P A 的方程为y -y 0=k (x -x 0),由⎩⎪⎨⎪⎧y -y 0=k (x -x 0)x 29+y 24=1得4x 2+9[k (x -x 0)+y 0]2=36,即(4+9k 2)x 2+18k (y 0-kx 0)x +9(y 0-kx 0)2-36=0,∵切线P A 与椭圆相切, ∴Δ=[18k (y 0-kx 0)]2-4(4+9k 2)[9(y 0-kx 0)2-36]=0,化简得4+9k 2-k 2x 20+2kx 0y 0-y 20=0.①同理,切线PB 的方程为y -y 0=-1k (x -x 0),与椭圆方程x 29+y 24=1联立可得,4+9k 2-x 20k 2-2x 0y 0k-y 20=0,即4k 2+9-x 20-2kx 0y 0-k 2y 20=0.② 由①+②得13(1+k 2)-(1+k 2)(x 20+y 20)=0,即(1+k 2)(x 20+y 20-13)=0,∵1+k 2≠0,∴x 20+y 20-13=0,即x 20+y 20=13.经检验可知点(3,2),(3,-2),(-3,2),(-3,-2)均满足x 20+y 20=13,故点P (x 0,y 0)的轨迹方程为x 2+y 2=13.2.(2015·高考广东卷)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解:(1)C 1:(x -3)2+y 2=4,圆心C 1(3,0).(2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝⎛⎭⎫x -322+y 2=94. 故线段AB 的中点M 的轨迹C 的方程是⎝⎛⎭⎫x -322+y 2=94在圆C 1:(x -3)2+y 2=4内部的部分,即⎝⎛⎭⎫x -322+y 2=94⎝⎛⎭⎫53<x ≤3. (3)联立⎩⎨⎧x =53,⎝⎛⎭⎫x -322+y 2=94,解得⎩⎨⎧ x =53,y =±253. 不妨设其交点为P 1⎝⎛⎭⎫53,253,P 2⎝⎛⎭⎫53,-253, 设直线L :y =k (x -4)所过定点为P (4,0), 则kPP 1=-257,kPP 2=257. 当直线L 与圆C 相切时,⎪⎪⎪⎪32-k -4k ||k 2+1=32,解得k =±34. 故当k ∈⎩⎨⎧⎭⎬⎫-34∪⎝⎛⎭⎫-257,257∪⎩⎨⎧⎭⎬⎫34时,直线L 与曲线C 只有一个交点.。
高三数学人教版a版数学(理)高考一轮复习教案:2.1 函数及其表示 word版含答案
![高三数学人教版a版数学(理)高考一轮复习教案:2.1 函数及其表示 word版含答案](https://img.taocdn.com/s3/m/cb30dfb7910ef12d2af9e7f9.png)
第一节函数及其表示1.函数的概念及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.分段函数及其应用了解简单的分段函数,并能简单应用.知识点一函数与映射的概念函数映射两集合A,B设A、B是两个非空的数集设A、B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称f:A→B为从集合A到集合B的一个映射易误提醒易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.[自测练习]1.下列图形可以表示函数y=f(x)图象的是()解析:本题考查函数的概念,根据函数的概念,定义域中一个x只能对应一个y,所以排除A,B,C,故选D.答案:D知识点二函数的有关概念1.函数的定义域、值域(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.函数的表示方法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.易误提醒(1)解决函数的一些问题时,易忽视“定义域优先”的原则.(2)误把分段函数理解为几个函数组成.必备方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;函数的实际应用问题多用此法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[自测练习]2.(2016·贵阳期末)函数f (x )=log 2(x +1)的定义域为( ) A .(0,+∞) B .[-1,+∞) C .(-1,+∞)D .(1,+∞)解析:由x +1>0知x >-1,故选C. 答案:C3.f (x )与g (x )表示同一函数的是( ) A .f (x )=x 2-1与g (x )=x -1·x +1 B .f (x )=x 与g (x )=x 3+x x 2+1C .y =x 与y =(x )2D .f (x )=x 2与g (x )=3x 3解析:选项A ,C 中的函数定义域不同,选项D 的函数解析式不同,只有选项B 正确. 答案:B4.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,log 12x ,x >0,则f (f (2))=( )A .-1B .2C .1D .0解析:本题考查分段函数、复合函数的求值.由已知条件可知,f (2)=log 122=-1,所以f (f (2))=f (-1)=(-1)2+1=2,故选B.答案:B考点一 函数的定义域问题|函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题探究角度有:1.求给定函数解析式的定义域;2.已知f (x )的定义域,求f (g (x ))的定义域; 3.已知定义域确定参数问题.探究一 求给定解析式的定义域 1.(2015·江西重点中学一联)函数f (x )=3xx -2+lg(3-x )的定义域是( ) A .(3,+∞) B .(2,3) C .[2,3)D .(2,+∞)解析:本题考查函数的定义域.由题意得⎩⎪⎨⎪⎧x -2>0,3-x >0,解得2<x <3,故选B.答案:B探究二 已知f (x )的定义域,求f (g (x ))的定义域2.若函数y =f (x )的定义域是[0,3],则函数g (x )=f (3x )x -1的定义域是( )A .[0,1)B .[0,1]C .[0,1)∪(1,9]D .(0,1)解析:依题意得⎩⎪⎨⎪⎧0≤3x ≤3,x -1≠0,即0≤x <1,因此函数g (x )的定义域是[0,1),故选A.答案:A探究三 已知定义域求参数范围问题3.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]函数定义域的三种类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点二 函数解析式的求法|(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式; (3)已知f (x )+2f ⎝⎛⎭⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝⎛⎭⎫1x =x ,∴f ⎝⎛⎭⎫1x +2f (x )=1x. 解方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,得f (x )=23x -x3(x ≠0).函数解析式求法中的一个注意点利用换元法求解析式后易忽视函数的定义域,即换元字母的范围.求下列函数的解析式: (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x ); (2)2f (x )-f (-x )=lg(x +1),求f (x ). 解:(1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)∵2f (x )-f (-x )=lg(x +1), ∴2f (-x )-f (x )=lg(1-x ).解方程组⎩⎪⎨⎪⎧2f (x )-f (-x )=lg (x +1),2f (-x )-f (x )=lg (1-x )得f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).考点三 分段函数|1.(2015·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:因为f (x )=⎩⎪⎨⎪⎧ 2x -1-2,x ≤1,-log 2(x +1),x >1,f (a )=-3,所以⎩⎪⎨⎪⎧a >1,-log 2(a +1)=-3,或⎩⎪⎨⎪⎧a ≤1,2a -1-2=-3, 解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74,选A.答案:A2.(2015·高考全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:由于f (0)=2,f ⎝⎛⎭⎫π4=1+5,f ⎝⎛⎭⎫π2=22<f ⎝⎛⎭⎫π4,故排除选项C 、D ;当点P 在BC 上时,f (x )=BP +AP =tan x +4+tan 2x ⎝⎛⎭⎫0≤x ≤π4,不难发现f (x )的图象是非线性的,排除选项A.故选B.答案:B分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.3.分段函数的定义理解不清致误【典例】 已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] 当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a=2+2a +a ,解得a =-34.[答案] -34[易误点评] 本题易出现的错误主要有两个方面:(1)误以为1-a <1,1+a >1,没有对a 进行讨论直接代入求解. (2)求解过程中忘记检验所求结果是否符合要求而致误.[防范措施] (1)对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解. (2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.[跟踪练习] 设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:因为f (-1)=-(-1)=1,所以f (a )=1,当a ≥0时,a =1,所以a =1;当a <0时,-a =1,所以a =-1.故a =±1.答案:DA 组 考点能力演练1.(2015·高考陕西卷)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f [f (-2)]=( )A .-1B.14C.12D.32解析:由f (-2)=2-2=14,∴f [f (-2)]=f ⎝⎛⎭⎫14=1-14=12. 答案:C2.(2015·北京朝阳模拟)函数f (x )=1x -1+x 的定义域为( )A .[0,+∞)B .(1,+∞)C .[0,1)∪(1,+∞)D .[0,1)解析:本题考查函数的定义域.根据函数有意义的条件建立不等式组.要使函数f (x )有意义,则⎩⎪⎨⎪⎧x -1≠0,x ≥0,解得x ≥0且x ≠1,即函数定义域是[0,1)∪(1,+∞),故选C.答案:C3.已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 014)=⎩⎨⎧2sin x ,x ≥0lg (-x ),x <0,那么f ⎝⎛⎭⎫2 014+π4·f (-7 986)=( ) A .2 014 B .4 C.14D.12 014解析:f ⎝⎛⎭⎫2 014+π4=2sin π4=1,f (-7 986) =f (2 014-10 000)=lg 10 000=4, 则f ⎝⎛⎭⎫2 014+π4·f (-7 986)=4. 答案:B4.(2016·岳阳质检)设函数f (x )=lg 3+x 3-x ,则f ⎝⎛⎭⎫x 3+f ⎝⎛⎭⎫3x 的定义域为( ) A .(-9,0)∪(0,9) B .(-9,-1)∪(1,9) C .(-3,-1)∪(1,3)D .(-9,-3)∪(3,9)解析:利用函数f (x )的定义域建立不等式组求解.要使函数f (x )有意义,则3+x3-x>0,解得-3<x <3.所以要使f ⎝⎛⎭⎫x 3+f ⎝⎛⎭⎫3x 有意义,则⎩⎨⎧-3<x3<3,-3<3x<3,解得⎩⎪⎨⎪⎧-9<x <9,x <-1或x >1,所以定义域为(-9,-1)∪(1,9),故选B.答案:B5.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( ) A .(-2,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2]解析:函数的定义域为R 等价于对∀x ∈R ,x 2+ax +1≥0,令f (x )=x 2+ax +1,结合二次函数的图象(图略),只需Δ=a 2-4≤0即可,解得实数a 的取值范围为[-2,2],故选D.答案:D6.(2015·陕西二模)若函数f (x )=⎩⎪⎨⎪⎧lg x ,x >01-x ,x ≤0,则f (f (-99))=________.解析:f (-99)=1+99=100,所以f (f (-99))=f (100)=lg 100=2. 答案:27.函数y =f (x )的定义域为[-2,4],则函数g (x )=f (x )+f (-x )的定义域为________.解析:由题意知⎩⎪⎨⎪⎧-2≤x ≤4,-2≤-x ≤4,解得-2≤x ≤2.答案:[-2,2]8.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒 负”变换的函数.下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +11x =f (x )≠-f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1.故f ⎝⎛⎭⎫1x =-f (x ),满足题意.答案:①③ 9.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.解:(1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3;∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x , x >0,x 2-4x +3, x <0.10.动点P 从单位正方形ABCD 的顶点A 出发,顺次经过B ,C ,D 绕边界一周,当x 表示点P 的行程,y 表示P A 的长时,求y 关于x 的解析式,并求f ⎝⎛⎭⎫52的值.解:当P 点在AB 上运动时,y =x (0≤x ≤1); 当P 点在BC 上运动时,y =12+(x -1)2=x 2-2x +2(1<x ≤2);当P 点在CD 上运动时,y =12+(3-x )2=x 2-6x +10(2<x ≤3); 当P 点在DA 上运动时,y =4-x (3<x ≤4); 综上可知,y =f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤1,x 2-2x +2,1<x ≤2,x 2-6x +10,2<x ≤3,4-x ,3<x ≤4.∴f ⎝⎛⎭⎫52=52.B 组 高考题型专练1.(2014·高考山东卷)函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:∵f (x )有意义,∴⎩⎪⎨⎪⎧ log 2x -1>0,x >0.∴x >2,∴f (x )的定义域为(2,+∞).答案:C2.(2015·高考湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]解析:依题意知,⎩⎪⎨⎪⎧ 4-|x |≥0x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧ -4≤x ≤4x >2且x ≠3,即函数的定义域为(2,3)∪(3,4].答案:C3.(2015·高考山东卷)设函数f (x )=⎩⎪⎨⎪⎧ 3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =() A .1 B.78 C.34 D.12解析:f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=f ⎝⎛⎭⎫3×56-b =f ⎝⎛⎭⎫52-b .当52-b <1,即b >32时,3×⎝⎛⎭⎫52-b -b =4,解得b =78(舍).当52-b ≥1,即b ≤32时,252-b =4,解得b =12.故选D.答案:D4.(2015·高考浙江卷)存在函数f (x )满足:对于任意x ∈R 都有( )A .f (sin 2x )=sin xB .f (sin 2x )=x 2+xC .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|解析:本题主要考查函数的概念,即对于任一变量x 有唯一的y 与之相对应.对于A ,当x =π4或5π4时,sin 2x 均为1,而sin x 与x 2+x 此时均有两个值,故A 、B 错误;对于C ,当x =1或-1时,x 2+1=2,而|x +1|有两个值,故C 错误,故选D.答案:D5.(2014·高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12.又∵当x ∈[-1,0)时,f (x )=-4x 2+2,∴f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:1。
高三数学人教版A版数学(理)高考一轮复习教案 定积分与微积分基本定理
![高三数学人教版A版数学(理)高考一轮复习教案 定积分与微积分基本定理](https://img.taocdn.com/s3/m/65b65f36c4da50e2524de518964bcf84b8d52d59.png)
第十三节 定积分与微积分基本定理积分的运算及应用(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.知识点一 定积分 1.定积分的性质(1)⎠⎛a bkf (x )d x =k⎠⎛a bf (x )d x (k 为常数).(2)⎠⎛a b [f (x )±g (x )]d x =⎠⎛a b f (x )d x ±⎠⎛a bg (x )d x .(3)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x (其中a <c <b ). 2.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分⎠⎛a bf (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图(1)中阴影部分).(2)一般情况下,定积分⎠⎛a bf (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a 、x =b 之间的曲边梯形面积的代数和(图(2)中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.易误提醒 (1)若积分式子中有几个不同的参数,则必须先分清谁是被积变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.[自测练习]1.设f (x )=⎩⎪⎨⎪⎧x 2 (x ≥0),2x (x <0),则⎠⎛1-1f (x )d x 的值是( ) A.⎠⎛1-1x 2d x B.⎠⎛1-12xd x C.⎠⎛0-1x 2d x +⎠⎛102x d x D.⎠⎛0-12x d x +⎠⎛10x 2d x解析:由分段函数的定义及积分运算性质,∴⎠⎛1-1f (x )d x =⎠⎛0-12xd x +⎠⎛10x 2d x . 答案:D2.已知f (x )是偶函数,且⎠⎛06f (x )d x =8,则⎠⎛6-6f (x )d x =( ) A .0 B .4 C .6D .16解析:因为函数f (x )是偶函数,所以函数f (x )在y 轴两侧的图象对称,所以⎠⎛6-6f (x )d x =⎠⎛0-6f (x )d x +⎠⎛06f (x )d x =2⎠⎛06f (x )d x =16.答案:D知识点二 微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ).那么⎠⎛a bf (x )d x =F (b )-F (a ).这个结论叫作微积分基本定理,又叫作牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )记成F (x )| b a ,即⎠⎛a bf (x )d x =F (x )| b a =F (b )-F (a ).必备方法 运用微积分基本定理求定积分的方法: (1)对被积函数要先化简,再求积分.(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分. (4)注意用“F ′(x )=f (x )”检验积分的对错.[自测练习]3.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a解析:a =⎠⎛01x -13d x =32x 23| 10=32, b =1-⎠⎛01x 12d x =1-23x 32| 10=13, c =⎠⎛01x 3d x =14x 4| 10=14,因此a >b >c ,故选A. 答案:A4.由曲线y =x 2,y =x 3围成的封闭图形的面积为( ) A.112 B.14 C.13D.712解析:由⎩⎪⎨⎪⎧ y =x 2,y =x 3得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.结合图形知(图略)所求封闭图形的面积为⎠⎛01(x 2-x 3)d x =⎝⎛⎭⎫13x 3-14x 4| 10=112,故选A. 答案:A考点一 定积分的计算|1.定积分⎠⎛039-x 2d x 的值为( ) A .9π B .3π C.94π D.92π 解析:由定积分的几何意义知,⎠⎛039-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故⎠⎛039-x 2d x =π·324=9π4,故选C.答案:C2.(2016·临沂模拟)若∫π20(sin x +a cos x )d x =2,则实数a 等于( ) A .-1 B .1 C. 3D .- 3解析:∵(a sin x -cos x )′=sin x +a cos x . ∴∫π20(sin x +a cos x )d x =(a sin x -cos x )⎪⎪π20 =⎝⎛⎭⎫a sin π2-cos π2-(a sin 0-cos 0)=a +1=2. ∴a =1. 答案:B3.(2015·西安模拟)已知A =⎠⎛03|x 2-1|d x ,则A =________.解析:A =⎠⎛03|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛13(x 2-1)d x =⎝⎛⎭⎫x -13x 3| 10+⎝⎛⎭⎫13x 3-x | 31=223. 答案:223定积分计算的三种方法定义法、几何意义法和微积分基本定理法,其中利用微积分基本定理是最常用的方法,若被积函数有明显的几何意义,则考虑用几何意义法,定义法太麻烦,一般不用.考点二 利用定积分求平面图形的面积|设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于( )A .1 B.13 C.23D.43[解析] 由⎩⎪⎨⎪⎧y =x 2,y =1,得x =±1.如图,由对称性可知,S =2()1×1-⎠⎛01x 2d x =2⎝⎛⎭⎫1×1-13x 3| 10=43,选D.[答案] D利用定积分求平面图形面积的三个步骤(1)画图象:在直角坐标系内画出大致图象.(2)确定积分上、下限:借助图象的直观性求出交点坐标,确定积分上限和下限. (3)用牛顿-莱布尼茨公式求面积:将曲边多边形的面积表示成若干定积分的和,计算定积分,写出结果.1.(2015·衡中三模)由曲线y =2-x 2,直线y =x 及x 轴所围成的封闭图形(图中的阴影部分)的面积是________.解析:把阴影部分分成两部分求面积. S =S 1+S 2=⎠⎛0-2(2-x 2)d x +⎠⎛01(2-x 2-x )d x=⎝⎛⎭⎫2x -x 33| 0-2+⎝⎛⎭⎫2x -x 33-x 22| 10 =22-(2)33+2-13-12=423+76. 答案:423+76考点三 定积分物理意义的应用|一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________.[解析] 由图象可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t <3,13t +1,3≤t ≤6,所以12s ~6 s 间的运动路程s =⎠⎜⎛126 v (t )= ⎠⎜⎛1262t d t +⎠⎛132d t +⎠⎛36⎝⎛⎭⎫13t +1d t=36111322149264t t t ⎛⎫+++=⎪⎝⎭. [答案]494利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.2.一物体在力F (x )=⎩⎪⎨⎪⎧10,(0≤x ≤2),3x +4,(x >2),(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:力F (x )做功为⎠⎛0210d x +⎠⎛24(3x +4)d x=10x | 20+⎝⎛⎭⎫32x 2+4x | 42 =20+26=46. 答案:B5.混淆图形面积与定积分关系致误【典例】 已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3112012231053x x ⎛⎫+ ⎪⎝⎭=54. [答案] 54[易误点评] (1)本题易写错图形面积与定积分间的关系而导致解题错误.(2)本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.[防范措施] 解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形.(2)准确确定被积函数和积分变量.[跟踪练习] (2015·洛阳期末)函数f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0e x ,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为________.解析:由题意知,所求面积为⎠⎛0-1(x +1)d x +⎠⎛01e x d x =⎝⎛⎭⎫12x 2+x | 0-1+e x | 10=-⎝⎛⎭⎫12-1+(e -1)=e -12.答案:e -12A 组 考点能力演练1.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4D .4解析:由⎠⎛0t(2x -2)d x =8得(x 2-2x )| t0=t 2-2t =8,解得t =4或t =-2(舍去),故选D.答案:D2.(2015·青岛模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0e f (x )d x的值为( )A.43 B.54 C.65D.76解析:⎠⎛0ef (x )d x =⎠⎛01f (x )d x +⎠⎛1ef (x )d x =⎠⎛01x 2d x +⎠⎛1e1x d x =x 33| 10+ln x | e1=13+ln e =43,故选A.答案:A3.(2016·武汉模拟)设a =⎠⎛12(3x 2-2x )d x ,则⎝⎛⎭⎫ax 2-1x 6的展开式中的第4项为( ) A .-1 280x 3 B .-1 280C .240D .-240解析:本题考查定积分的计算与二项式定理.依题意得a =(x 3-x 2)| 21=4,二项式⎝⎛⎭⎫4x 2-1x 6的展开式的第四项是T 4=C 36·(4x 2)3·⎝⎛⎭⎫-1x 3=-1 280x 3,故选A. 答案:A4.如图所示,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x(x >0)图象下方的区域(阴影部分),从D 内随机取一点M ,则点M 取自E 内的概率为( )A.ln 22B.1-ln 22C.1+ln 22D.2-ln 22解析:本题考查定积分的计算与几何概率的意义.依题意,题中的矩形区域的面积是1×2=2,题中的阴影区域的面积等于2×12+eq \a\vs4\al(\i\in(1xd x =1+ln x eq \b\lc\|\rc\(\a\vs4\al\co1(\o\al(1,=1+ln 2,因此所求的概率等于1+ln 22,故选C.答案:C5.已知数列{a n }是等差数列,且a 2 013+a 2 015=⎠⎛024-x 2d x ,则a 2 014(a 2 012+2a 2 014+a 2016)的值为()A .π2B .2πC .πD .4π2解析:⎠⎛024-x 2d x 表示圆x 2+y 2=4在第一象限的面积,即⎠⎛024-x 2d x =π,又数列{a n }是等差数列,所以a 2 013+a 2 015=a 2 012+a 2 016=2a 2 014,所以得a 2 014·(a 2 012+2a 2 014+a 2 016)=π2×2π=π2,故选A.答案:A6.(2015·南昌模拟)直线y =13x 与抛物线y =x -x 2所围图形的面积等于________.解析:由⎩⎪⎨⎪⎧y =13x ,y =x -x 2,解得x =0或23,所以所求面积为∫230⎝⎛⎭⎫x -x 2-13x d x =∫230⎝⎛⎭⎫23x -x 2d x=⎝⎛⎭⎫13x 2-13x 3⎪⎪230=13×⎝⎛⎭⎫232-13×⎝⎛⎭⎫233-0=481. 答案:4817.(2015·长春二模)已知a >0且曲线y =x 、x =a 与y =0所围成的封闭区域的面积为a 2,则a =________.解析:由题意a 2=⎠⎛0ax d x =23x 32| a 0,所以a =49.答案:498.已知a ∈⎣⎡⎦⎤0,π2,则⎠⎛0a (cos x -sin x )d x 取最大值时,a =________.解析:⎠⎛0a(cos x -sin x )d x =(sin x +cos x )| a 0=sin a +cos a -1=2sin ⎝⎛⎭⎫a +π4-1.∵a ∈⎣⎡⎦⎤0,π2,∴当a =π4时,[]⎠⎛0a(cos x -sin x )d x max =2-1.答案:π49.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解:如图,由⎩⎪⎨⎪⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =⎠⎛01⎝⎛⎭⎫x +13x d x +⎠⎛13⎝⎛⎭⎫2-x +13x d x =⎝⎛⎭⎫23x 32+16x 2| 10+⎝⎛⎭⎫2x -13x 2| 31=23+16+43=136. 10.汽车以54 km /h 的速度行驶,到某处需要减速停车,设汽车以等加速度-3 m/s 2刹车,问从开始刹车到停车,汽车走了多远?解:由题意,得v 0=54 km /h =15 m/s. 所以v (t )=v 0+at =15-3t . 令v (t )=0,得15-3t =0.解得t =5.所以开始刹车5 s 后,汽车停车. 所以汽车由刹车到停车所行驶的路程为 s =⎠⎛05v (t )d t =⎠⎛05(15-3t )d t =⎝⎛⎭⎫15t -32t 2| 50=37.5(m). 故汽车走了37.5 m.B 组 高考题型专练1.(2014·高考陕西卷)定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:⎠⎛01(2x +e x )d x =(x 2+e x )| 10=1+e 1-1=e.答案:C2.(2014·高考江西卷)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:令⎠⎛01f (x )d x =m ,则f (x )=x 2+2m ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝⎛⎭⎫13x 3+2mx | 10=13+2m =m ,解得m =-13,故选B. 答案:B3.(2013·高考湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln113C .4+25ln 5D .4+50ln 2解析:由v (t )=0得t =4.故刹车距离为 s =⎠⎛04v (t )d t =⎠⎛04⎝ ⎛⎭⎪⎫7-3t +251+t d t=⎣⎡⎦⎤-32t 2+7t +25ln (1+t )| 40=4+25ln 5.答案:C4.(2014·高考山东卷)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .4解析:由⎩⎪⎨⎪⎧y =4x ,y =x 3得x =0或x =2或x =-2(舍). ∴S =⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4| 20=4. 答案:D5.(2015·高考天津卷)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 解析:由题意,可得封闭图形的面积为⎠⎛01(x -x 2)d x =⎝⎛⎭⎫12x 2-13x 3| 10=12-13=16. 答案:166.(2015·高考陕西卷)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.解析:建立如图所示的直角坐标系,可设抛物线的方程为x 2=2py (p >0),由图易知(5,2)在抛物线上,可得p =254,抛物线方程为x 2=252y ,所以当前最大流量对应的截面面积为2⎠⎛05⎝⎛⎭⎫2-225x 2d x =403,原始的最大流量对应的截面面积为2×(6+10)2=16,所以原始的最大流量与当前最大流量的比值为16403=1.2. 答案:1.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲集合与简易逻辑(一)
1.1 集合的基本概念
1.2 集合的基本概念考点总结
1.3 命题及充要条件基本概念
1.4 命题及充要条件的考点
第2讲集合与简易逻辑(二)
2.1 逻辑连接词的基本概念
2.2 逻辑连接词的考点
2.3 习题课
第3讲函数基础(一)
3.1 函数的概念及表示法
3.2 函数概念考点总结
3.3 函数的单调性与最值基本概念3.4 函数的单调性与最值考点总结
第4讲函数基础(二)
4.1 函数的奇偶性和单调性
4.2 函数性质的考点总结
4.3 习题课
第5讲初等函数(一)
5.1 二次函数与幂函数基本概念5.2 二次函数与幂函数考点总结5.3 指数与指数函数基本概念
5.4 指数和指数函数考点总结
第6讲初等函数(二)
6.1 对数和对数函数基本概念
6.2 对数和对数函数考点总结
6.3 习题课
第7讲函数的应用(一)
7.1 函数的图像的基本概念
7.2 函数的图像考点总结
7.3 函数的零点与方程的基本概念
7.4 函数的零点与方程考点总结第8讲函数的应用(二)
8.1 函数模型的基本概念
8.2 函数模型考点总结
8.3 习题课
第9讲导数的性质
9.1 导数的基本概念
9.2 导数性质的考点总结
9.3 极值与导数
9.4 极值与导数考点总结
第10讲导数的应用
10.1 导数的应用
10.2 导数应用考点总结
10.3 习题课
第11讲导数的计算
11.1 微积分的基本概念(理)11.2 微积分考点总结(理)11.3 例题精讲(一)
11.4 例题精讲(二)
第12讲导数分析
12.1 例题精讲(一)
12.2 例题精讲(二)
12.3 导数大题精讲(一)12.4 导数大题精讲(二)
第13讲导数大题精讲
13.1 导数大题常见题型(一)13.2 导数大题常见题型(二)13.3 导数与不等式
第14讲三角函数
14.1 三角函数基本概念
14.2 同角三角函数基本概念
14.3 同角三角函数考点总结
第15讲三角函数习题精讲
15.1 三角函数的图像性质
15.2 三角函数图像性质考点总结15.3 三角函数例题精讲
第16讲三角函数化简
16.1 三角函数图像及模型的基本概念16.2 三角函数图像及模型考点总结16.3 诱导公式的基本概念
16.4 诱导公式考点总结
第17讲解三角形
17.1 正弦定理和余弦定理的基本概念17.2 正弦定理和余弦定理考点总结17.3 解三角形应用举例
17.4 解三角形考点总结
第18讲解三角形习题课
18.1 解三角形基础练习
18.2 三角函数模拟题(理)18.3 解三角形综讲(理)
第19讲平面向量的概念
19.1 平面向量的概念
19.2 平面向量的考点总结
第20讲平面向量的定理
20.1 平面向量的定理
20.2 平面向量考点总结
第21讲平面向量的应用
21.1 平面向量的数量积
21.2 平面向量数量积考点总结
第22讲复数
22.1 复数的概念
22.2 复数的考点总结
第23讲数列的基本概念
23.1 数列的基本概念和通项公式23.2 数列基本概念的考点总结
第24讲等差数列
24.1 等差数列的性质和求和24.2 等差数列的考点总结
第25讲等比数列
25.1 等比数列的性质和求和25.2 等比数列的考点总结
第26讲数列求和
26.1 数列求和概念
26.2 数列求和的考点总结
第27讲数列的综合运用
27.1 数列的综合运用
第28讲数列的习题课
28.1 等差数列的练习
28.2 等比数列的练习
28.3 数列求和的练习
第29讲数列的判断、通项
29.1 数列的概念和等差数列的概念29.2 等差数列的性质
29.3 等比数列的概念
第30讲数列的大题(一)(理科)30.1 数列的大题(一)
30.2 数列的大题(二)
30.3 数列的大题(三)
第31讲数列的大题(二)(理科)
31.1 数列的大题(四)
31.2 数列的大题(五)
31.3 数列的大题(六)
31.4 数列的大题(七)
第32讲数列的小题和大题(文科)
32.1 数列的小题
32.2 数列的大题(一)
32.3 数列的大题(二)
32.4 数列的大题(三)
第33讲不等式
33.1 实数的大小比较和不等式的性质33.2 比较两个数的大小
33.3 不等式性质的简单应用
33.4 利用不等式求范围
第34讲一元二次不等式
34.1 一元二次不等式的解法
34.2 含参数的一元二次不等式的解法
34.3 一元二次不等式恒成立问题
34.4 一元二次不等式的实际应用
第35讲二元一次不等式和线性规划
35.1 线性规划(一)
35.2 线性规划(二)
35.3 二元一次不等式表示的平面区域(一)35.4 二元一次不等式表示的平面区域(二)
第36讲均值不等式和不等式的练习
36.1 均值不等式(一)
36.2 均值不等式(二)
36.3 不等式的习题课(一)
36.4 不等式的习题课(二)
36.5 不等式的习题课(三)36.6 不等式的习题课(四)
第37讲推理与证明
37.1 推理(一)
37.2 推理(二)
37.3 推理(三)
37.4 证明(一)
37.5 证明(二)
37.6 证明(三)
第38讲数学归纳法
38.1 数学归纳法(一)38.2 数学归纳法(二)38.3 数学归纳法(三)38.4 习题课(一)
38.5 习题课(二)
38.6 习题课(三)
第39讲直线专题
39.1 直线的基础知识(一)
39.2 直线的基础知识(二)
39.3 直线的基础知识(三)
39.4 直线和直线的位置关系(一)39.5 直线和直线的位置关系(二)39.6 直线和直线的位置关系(三)
第40讲圆的专题
40.1 圆的基础知识(一)
40.2 圆的基础知识(二)
40.3 直线与圆的位置关系(一)40.4 直线与圆的位置关系(二)40.5 习题课(一)
40.6 习题课(二)
第41讲直线和圆的习题专题
41.1 直线和圆的高考题(一)41.2 直线和圆的高考题(二)41.3 直线和圆的高考题(三)
41.4 直线和圆的高考题(四)41.5 直线和圆的总结练习课(一)41.6 直线和圆的总结练习课(二)
第42讲圆锥曲线的专题
42.1 椭圆
42.2 双曲线
42.3 抛物线。