土建专业外文翻译2
土建工程英语(最全版)
Grout leakage 漏浆(挂帘)
Gas-forming admixture发气剂
Graduation 级配
H
Hardening agent 硬化剂
Honeycomb 蜂窝
Horizontal bar 水平筋
Height measurement高程测量
I
Initial setting strength 初凝强度
Shear strength 抗剪强度
Slump 塌落度
Specific weight/gravity 比重
Stability against sliding 抗滑稳定性
Second order triangulation 二等三角测量
Set out 放线,放样
Stake-line 测桩线
State plane coordinate system 国家平面坐标系
Additive 添加剂
Asbestos 石棉
Accelerator 速凝剂
Air-entraining agent 引气剂
Aggregate 骨料
Azimuth 方位角
B
Bending and unbending 反复弯曲
Batching plant 搅拌站
Bar/reinforcement yard 钢筋加工场
Construction joint 施工缝
Curing agent 养护剂
Cold bending test 冷弯试验
D
Distribution bar分布筋
Dowel 插筋
Depression 坑洼
Delivery sheet 运料单
E
Earthworks 土方工程
土建工程 翻译
土建工程翻译土建工程(Civil Engineering)是指涉及土地、地下和地上工程建设的一门工程学科。
它包括土木工程、结构工程、地基工程、道路工程、桥梁工程、隧道工程、水利工程、环境工程等多个专业领域。
土建工程涉及的范围广泛,应用广泛,是现代社会基础设施建设的重要组成部分。
土建工程的主要任务是规划、设计、施工和维护各种土木结构,以满足人们的日常生活和工作需求。
它涉及的工程包括建筑物、公路、桥梁、隧道、水库、港口、码头、排水系统、污水处理设施、环境保护设施等。
土建工程师通常需要具备扎实的数学、物理、地质等基础知识,以及相关的工程技术和管理能力。
以下是一些土建工程中常用的中英文对照例句:1. Civil engineering plays a crucial role in the development of modern society.(土建工程在现代社会的发展中起着至关重要的作用。
)2. The construction of the new highway is a major civil engineering project.(新公路的建设是一个重要的土建工程项目。
)3. The civil engineer is responsible for designing and supervising the construction of the bridge.(土建工程师负责桥梁的设计和施工监督。
)4. The foundation of the building needs to be reinforced to ensure its stability.(建筑物的地基需要加固以保证其稳定性。
)5. The civil engineering team is working on the excavation of the tunnel.(土建工程团队正在进行隧道的挖掘工作。
)6. The water supply system in the city was upgraded by the civil engineering department.(城市的供水系统由土建工程部门进行了升级。
土木工程毕业设计外文翻译原文+翻译
The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficientto design the section; It is simply little and assigning the mistake for reinforcing bar to set up; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strengthreinforcing bar of structure the. In the actual project, stress crack once produced the most common reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in thestructure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a less one light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes therange with the conduct of the average temperature in the moon of January and July. Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component ,prestressing force steel temperature can rise to 350 degrees Centigrade , the concrete component is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layermoisture loss soon, it is slow for inside to lose, produce surface shrink heavy , inside shrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light inaddition, water content big to shrink the larger. 3, Water gray than. The heavier water consumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly .Such as hills area or bridge, district of mountain ridge,, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again,reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。
土木建筑工程英汉词典
土木建筑工程英汉词典Soil Mechanics - 土力学Structural Analysis - 结构分析Concrete - 混凝土Steel - 钢铁Reinforcement - 钢筋Foundation - 基础Geotechnical Engineering - 岩土工程Shoring - 支护Excavation - 挖掘Tunneling - 隧道工程Surveying - 测量Geology - 地质学Hydraulics - 水力学Construction Management - 施工管理Structural Engineering - 结构工程Bridge - 桥梁Highway - 公路Irrigation - 灌溉Water Supply - 供水Foundation Design - 基础设计Soil Testing - 土壤测试Construction Materials - 建筑材料Earthquake Engineering - 地震工程Environmental Impact Assessment - 环境影响评价Safety Management - 安全管理Cost Estimation - 成本估算Project Planning - 项目规划Project Management - 项目管理Building Codes - 建筑规范Risk Assessment - 风险评估Contract Administration - 合同管理Quality Control - 质量控制Concrete Technology - 混凝土技术Steel Structures - 钢结构Engineering Drawing - 工程图纸Construction Equipment - 建筑设备Slope Stability - 边坡稳定性Dams - 水坝Seismic Design - 地震设计Construction Site - 建筑工地Structural Integrity - 结构完整性Water Treatment - 水处理Sustainable Construction - 可持续建筑Architectural Design - 建筑设计Material Testing - 材料测试Quantity Surveying - 工程测量Earthworks - 土方工程Structural Rehabilitation - 结构修复Road Construction - 道路建设Facade Design - 幕墙设计Construction Methodology - 施工方法论Retaining Wall - 挡土墙Heritage Conservation - 文物保护Building Maintenance - 建筑维护Engineering Ethics - 工程伦理Construction Waste Management - 建筑废弃物管理Public Infrastructure - 公共基础设施Landscape Architecture - 景观建筑。
(完整版)土木工程专业英语翻译
(完整版)土木工程专业英语翻译(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
土木工程 专业外语词汇大全中英翻译
土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering1. 综合类反分析法back analysis method1. 综合类基础工程foundation engineering1. 综合类临界状态土力学critical state soil mechanics1. 综合类数值岩土力学numerical geomechanics1. 综合类土soil, earth1. 综合类土动力学soil dynamics1. 综合类土力学soil mechanics1. 综合类岩土工程geotechnical engineering1. 综合类应力路径stress path1. 综合类应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock2. 工程地质及勘察标准冻深standard frost penetration2. 工程地质及勘察冰川沉积glacial deposit2. 工程地质及勘察冰积层(台)glacial deposit2. 工程地质及勘察残积土eluvial soil, residual soil2. 工程地质及勘察层理beding2. 工程地质及勘察长石feldspar2. 工程地质及勘察沉积岩sedimentary rock2. 工程地质及勘察承压水confined water2. 工程地质及勘察次生矿物secondary mineral2. 工程地质及勘察地质年代geological age2. 工程地质及勘察地质图geological map2. 工程地质及勘察地下水groundwater2. 工程地质及勘察断层fault2. 工程地质及勘察断裂构造fracture structure2. 工程地质及勘察工程地质勘察engineering geological exploration 2. 工程地质及勘察海积层(台)marine deposit2. 工程地质及勘察海相沉积marine deposit2. 工程地质及勘察花岗岩granite2. 工程地质及勘察滑坡landslide2. 工程地质及勘察化石fossil2. 工程地质及勘察化学沉积岩chemical sedimentary rock2. 工程地质及勘察阶地terrace2. 工程地质及勘察节理joint2. 工程地质及勘察解理cleavage2. 工程地质及勘察喀斯特karst2. 工程地质及勘察矿物硬度hardness of minerals2. 工程地质及勘察砾岩conglomerate2. 工程地质及勘察流滑flow slide2. 工程地质及勘察陆相沉积continental sedimentation2. 工程地质及勘察泥石流mud flow, debris flow2. 工程地质及勘察年粘土矿物clay minerals2. 工程地质及勘察凝灰岩tuff2. 工程地质及勘察牛轭湖ox-bow lake2. 工程地质及勘察浅成岩hypabyssal rock2. 工程地质及勘察潜水ground water2. 工程地质及勘察侵入岩intrusive rock2. 工程地质及勘察取土器geotome2. 工程地质及勘察砂岩sandstone2. 工程地质及勘察砂嘴spit, sand spit2. 工程地质及勘察山岩压力rock pressure2. 工程地质及勘察深成岩plutionic rock2. 工程地质及勘察石灰岩limestone2. 工程地质及勘察石英quartz2. 工程地质及勘察松散堆积物rickle2. 工程地质及勘察围限地下水(台)confined ground water 2. 工程地质及勘察泻湖lagoon2. 工程地质及勘察岩爆rock burst2. 工程地质及勘察岩层产状attitude of rock2. 工程地质及勘察岩浆岩magmatic rock, igneous rock2. 工程地质及勘察岩脉dike, dgke2. 工程地质及勘察岩石风化程度degree of rock weathering 2. 工程地质及勘察岩石构造structure of rock2. 工程地质及勘察岩石结构texture of rock2. 工程地质及勘察岩体rock mass2. 工程地质及勘察页岩shale2. 工程地质及勘察原生矿物primary mineral2. 工程地质及勘察云母mica2. 工程地质及勘察造岩矿物rock-forming mineral2. 工程地质及勘察褶皱fold, folding2. 工程地质及勘察钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil3. 土的分类超固结土overconsolidated soil3. 土的分类冲填土dredger fill3. 土的分类充重塑土3. 土的分类冻土frozen soil, tjaele3. 土的分类非饱和土unsaturated soil3. 土的分类分散性土dispersive soil3. 土的分类粉土silt, mo3. 土的分类粉质粘土silty clay3. 土的分类高岭石kaolinite3. 土的分类过压密土(台)overconsolidated soil3. 土的分类红粘土red clay, adamic earth3. 土的分类黄土loess, huangtu(China)3. 土的分类蒙脱石montmorillonite3. 土的分类泥炭peat, bog muck3. 土的分类年粘土clay3. 土的分类年粘性土cohesive soil, clayey soil3. 土的分类膨胀土expansive soil, swelling soil3. 土的分类欠固结粘土underconsolidated soil3. 土的分类区域性土zonal soil3. 土的分类人工填土fill, artificial soil3. 土的分类软粘土soft clay, mildclay, mickle3. 土的分类砂土sand3. 土的分类湿陷性黄土collapsible loess, slumping loess3. 土的分类素填土plain fill3. 土的分类塑性图plasticity chart3. 土的分类碎石土stone, break stone, broken stone, channery, chat, crushed stone, deritus 3. 土的分类未压密土(台)underconsolidated clay3. 土的分类无粘性土cohesionless soil, frictional soil, non-cohesive soil3. 土的分类岩石rock3. 土的分类伊利土illite3. 土的分类有机质土organic soil3. 土的分类淤泥muck, gyttja, mire, slush3. 土的分类淤泥质土mucky soil3. 土的分类原状土undisturbed soil3. 土的分类杂填土miscellaneous fill3. 土的分类正常固结土normally consolidated soil3. 土的分类正常压密土(台)normally consolidated soil3. 土的分类自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits4. 土的物理性质饱和度degree of saturation4. 土的物理性质饱和密度saturated density4. 土的物理性质饱和重度saturated unit weight4. 土的物理性质比重specific gravity4. 土的物理性质稠度consistency4. 土的物理性质不均匀系数coefficient of uniformity, uniformity coefficient4. 土的物理性质触变thixotropy4. 土的物理性质单粒结构single-grained structure4. 土的物理性质蜂窝结构honeycomb structure4. 土的物理性质干重度dry unit weight4. 土的物理性质干密度dry density4. 土的物理性质塑性指数plasticity index4. 土的物理性质含水量water content, moisture content4. 土的物理性质活性指数4. 土的物理性质级配gradation, grading4. 土的物理性质结合水bound water, combined water, held water4. 土的物理性质界限含水量Atterberg limits4. 土的物理性质颗粒级配particle size distribution of soils, mechanical composition of soil 4. 土的物理性质可塑性plasticity4. 土的物理性质孔隙比void ratio4. 土的物理性质孔隙率porosity4. 土的物理性质粒度granularity, grainness, grainage4. 土的物理性质粒组fraction, size fraction4. 土的物理性质毛细管水capillary water4. 土的物理性质密度density4. 土的物理性质密实度compactionness4. 土的物理性质年粘性土的灵敏度sensitivity of cohesive soil4. 土的物理性质平均粒径mean diameter, average grain diameter4. 土的物理性质曲率系数coefficient of curvature4. 土的物理性质三相图block diagram, skeletal diagram, three phase diagram4. 土的物理性质三相土tri-phase soil4. 土的物理性质湿陷起始应力initial collapse pressure4. 土的物理性质湿陷系数coefficient of collapsibility4. 土的物理性质缩限shrinkage limit4. 土的物理性质土的构造soil texture4. 土的物理性质土的结构soil structure4. 土的物理性质土粒相对密度specific density of solid particles4. 土的物理性质土中气air in soil4. 土的物理性质土中水water in soil4. 土的物理性质团粒aggregate, cumularpharolith4. 土的物理性质限定粒径constrained diameter4. 土的物理性质相对密度relative density, density index4. 土的物理性质相对压密度relative compaction, compacting factor, percent compaction, coefficient of compaction4. 土的物理性质絮状结构flocculent structure4. 土的物理性质压密系数coefficient of consolidation4. 土的物理性质压缩性compressibility4. 土的物理性质液限liquid limit4. 土的物理性质液性指数liquidity index4. 土的物理性质游离水(台)free water4. 土的物理性质有效粒径effective diameter, effective grain size, effective size4. 土的物理性质有效密度effective density4. 土的物理性质有效重度effective unit weight4. 土的物理性质重力密度unit weight4. 土的物理性质自由水free water, gravitational water, groundwater, phreatic water4. 土的物理性质组构fabric4. 土的物理性质最大干密度maximum dry density4. 土的物理性质最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law5. 渗透性和渗流管涌piping5. 渗透性和渗流浸润线phreatic line5. 渗透性和渗流临界水力梯度critical hydraulic gradient5. 渗透性和渗流流函数flow function5. 渗透性和渗流流土flowing soil5. 渗透性和渗流流网flow net5. 渗透性和渗流砂沸sand boiling5. 渗透性和渗流渗流seepage5. 渗透性和渗流渗流量seepage discharge5. 渗透性和渗流渗流速度seepage velocity5. 渗透性和渗流渗透力seepage force5. 渗透性和渗流渗透破坏seepage failure5. 渗透性和渗流渗透系数coefficient of permeability5. 渗透性和渗流渗透性permeability5. 渗透性和渗流势函数potential function5. 渗透性和渗流水力梯度hydraulic gradient6. 地基应力和变形变形deformation6. 地基应力和变形变形模量modulus of deformation6. 地基应力和变形泊松比Poisson s ratio6. 地基应力和变形布西涅斯克解Boussinnesq s solution6. 地基应力和变形残余变形residual deformation6. 地基应力和变形残余孔隙水压力residual pore water pressure6. 地基应力和变形超静孔隙水压力excess pore water pressure6. 地基应力和变形沉降settlement6. 地基应力和变形沉降比settlement ratio6. 地基应力和变形次固结沉降secondary consolidation settlement6. 地基应力和变形次固结系数coefficient of secondary consolidation6. 地基应力和变形地基沉降的弹性力学公式elastic formula for settlement calculation 6. 地基应力和变形分层总和法layerwise summation method6. 地基应力和变形负孔隙水压力negative pore water pressure6. 地基应力和变形附加应力superimposed stress6. 地基应力和变形割线模量secant modulus6. 地基应力和变形固结沉降consolidation settlement6. 地基应力和变形规范沉降计算法settlement calculation by specification6. 地基应力和变形回弹变形rebound deformation6. 地基应力和变形回弹模量modulus of resilience6. 地基应力和变形回弹系数coefficient of resilience6. 地基应力和变形回弹指数swelling index6. 地基应力和变形建筑物的地基变形允许值allowable settlement of building6. 地基应力和变形剪胀dilatation6. 地基应力和变形角点法corner-points method6. 地基应力和变形孔隙气压力pore air pressure6. 地基应力和变形孔隙水压力pore water pressure6. 地基应力和变形孔隙压力系数Apore pressure parameter A6. 地基应力和变形孔隙压力系数Bpore pressure parameter B6. 地基应力和变形明德林解Mindlin s solution6. 地基应力和变形纽马克感应图Newmark chart6. 地基应力和变形切线模量tangent modulus6. 地基应力和变形蠕变creep6. 地基应力和变形三向变形条件下的固结沉降three-dimensional consolidation settlement 6. 地基应力和变形瞬时沉降immediate settlement6. 地基应力和变形塑性变形plastic deformation6. 地基应力和变形谈弹性变形elastic deformation6. 地基应力和变形谈弹性模量elastic modulus6. 地基应力和变形谈弹性平衡状态state of elastic equilibrium6. 地基应力和变形体积变形模量volumetric deformation modulus6. 地基应力和变形先期固结压力preconsolidation pressure6. 地基应力和变形压缩层6. 地基应力和变形压缩模量modulus of compressibility6. 地基应力和变形压缩系数coefficient of compressibility6. 地基应力和变形压缩性compressibility6. 地基应力和变形压缩指数compression index6. 地基应力和变形有效应力effective stress6. 地基应力和变形自重应力self-weight stress6. 地基应力和变形总应力total stress approach of shear strength6. 地基应力和变形最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory7. 固结比奥固结理论Biot s consolidation theory7. 固结超固结比over-consolidation ratio7. 固结超静孔隙水压力excess pore water pressure7. 固结次固结secondary consolidation7. 固结次压缩(台)secondary consolidatin7. 固结单向度压密(台)one-dimensional consolidation7. 固结多维固结multi-dimensional consolidation7. 固结固结consolidation7. 固结固结度degree of consolidation7. 固结固结理论theory of consolidation7. 固结固结曲线consolidation curve7. 固结固结速率rate of consolidation7. 固结固结系数coefficient of consolidation7. 固结固结压力consolidation pressure7. 固结回弹曲线rebound curve7. 固结井径比drain spacing ratio7. 固结井阻well resistance7. 固结曼代尔-克雷尔效应Mandel-Cryer effect7. 固结潜变(台)creep7. 固结砂井sand drain7. 固结砂井地基平均固结度average degree of consolidation of sand-drained ground7. 固结时间对数拟合法logrithm of time fitting method7. 固结时间因子time factor7. 固结太沙基固结理论Terzaghi s consolidation theory7. 固结太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation7. 固结先期固结压力preconsolidation pressure7. 固结压密(台)consolidation7. 固结压密度(台)degree of consolidation7. 固结压缩曲线cpmpression curve7. 固结一维固结one dimensional consolidation7. 固结有效应力原理principle of effective stress7. 固结预压密压力(台)preconsolidation pressure7. 固结原始压缩曲线virgin compression curve7. 固结再压缩曲线recompression curve7. 固结主固结primary consolidation7. 固结主压密(台)primary consolidation7. 固结准固结压力pseudo-consolidation pressure7. 固结K0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose8. 抗剪强度不排水抗剪强度undrained shear strength8. 抗剪强度残余内摩擦角residual angle of internal friction8. 抗剪强度残余强度residual strength8. 抗剪强度长期强度long-term strength8. 抗剪强度单轴抗拉强度uniaxial tension test8. 抗剪强度动强度dynamic strength of soils8. 抗剪强度峰值强度peak strength8. 抗剪强度伏斯列夫参数Hvorslev parameter8. 抗剪强度剪切应变速率shear strain rate8. 抗剪强度抗剪强度shear strength8. 抗剪强度抗剪强度参数shear strength parameter8. 抗剪强度抗剪强度有效应力法effective stress approach of shear strength 8. 抗剪强度抗剪强度总应力法total stress approach of shear strength8. 抗剪强度库仑方程Coulomb s equation8. 抗剪强度摩尔包线Mohr s envelope8. 抗剪强度摩尔-库仑理论Mohr-Coulomb theory8. 抗剪强度内摩擦角angle of internal friction8. 抗剪强度年粘聚力cohesion8. 抗剪强度破裂角angle of rupture8. 抗剪强度破坏准则failure criterion8. 抗剪强度十字板抗剪强度vane strength8. 抗剪强度无侧限抗压强度unconfined compression strength8. 抗剪强度有效内摩擦角effective angle of internal friction8. 抗剪强度有效粘聚力effective cohesion intercept8. 抗剪强度有效应力破坏包线effective stress failure envelope8. 抗剪强度有效应力强度参数effective stress strength parameter8. 抗剪强度有效应力原理principle of effective stress8. 抗剪强度真内摩擦角true angle internal friction8. 抗剪强度真粘聚力true cohesion8. 抗剪强度总应力破坏包线total stress failure envelope8. 抗剪强度总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model9. 本构模型边界面模型boundary surface model9. 本构模型层向各向同性体模型cross anisotropic model9. 本构模型超弹性模型hyperelastic model9. 本构模型德鲁克-普拉格准则Drucker-Prager criterion9. 本构模型邓肯-张模型Duncan-Chang model9. 本构模型动剪切强度9. 本构模型非线性弹性模量nonlinear elastic model9. 本构模型盖帽模型cap model9. 本构模型刚塑性模型rigid plastic model9. 本构模型割线模量secant modulus9. 本构模型广义冯·米赛斯屈服准则extended von Mises yield criterion 9. 本构模型广义特雷斯卡屈服准则extended tresca yield criterion9. 本构模型加工软化work softening9. 本构模型加工硬化work hardening9. 本构模型加工硬化定律strain harding law9. 本构模型剑桥模型Cambridge model9. 本构模型柯西弹性模型Cauchy elastic model9. 本构模型拉特-邓肯模型Lade-Duncan model9. 本构模型拉特屈服准则Lade yield criterion9. 本构模型理想弹塑性模型ideal elastoplastic model9. 本构模型临界状态弹塑性模型critical state elastoplastic model9. 本构模型流变学模型rheological model9. 本构模型流动规则flow rule9. 本构模型摩尔-库仑屈服准则Mohr-Coulomb yield criterion9. 本构模型内蕴时间塑性模型endochronic plastic model9. 本构模型内蕴时间塑性理论endochronic theory9. 本构模型年粘弹性模型viscoelastic model9. 本构模型切线模量tangent modulus9. 本构模型清华弹塑性模型Tsinghua elastoplastic model9. 本构模型屈服面yield surface9. 本构模型沈珠江三重屈服面模型Shen Zhujiang three yield surface method 9. 本构模型双参数地基模型9. 本构模型双剪应力屈服模型twin shear stress yield criterion9. 本构模型双曲线模型hyperbolic model9. 本构模型松岗元-中井屈服准则Matsuoka-Nakai yield criterion9. 本构模型塑性形变理论9. 本构模型谈弹塑性模量矩阵elastoplastic modulus matrix9. 本构模型谈弹塑性模型elastoplastic modulus9. 本构模型谈弹塑性增量理论incremental elastoplastic theory9. 本构模型谈弹性半空间地基模型elastic half-space foundation model9. 本构模型谈弹性变形elastic deformation9. 本构模型谈弹性模量elastic modulus9. 本构模型谈弹性模型elastic model9. 本构模型魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model9. 本构模型文克尔地基模型Winkler foundation model9. 本构模型修正剑桥模型modified cambridge model9. 本构模型准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure10. 地基承载力次层(台)substratum10. 地基承载力地基subgrade, ground, foundation soil10. 地基承载力地基承载力bearing capacity of foundation soil10. 地基承载力地基极限承载力ultimate bearing capacity of foundation soil10. 地基承载力地基允许承载力allowable bearing capacity of foundation soil10. 地基承载力地基稳定性stability of foundation soil10. 地基承载力汉森地基承载力公式Hansen s ultimate bearing capacity formula10. 地基承载力极限平衡状态state of limit equilibrium10. 地基承载力加州承载比(美国)California Bearing Ratio10. 地基承载力局部剪切破坏local shear failure10. 地基承载力临塑荷载critical edge pressure10. 地基承载力梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 10. 地基承载力普朗特承载力理论Prandel bearing capacity theory10. 地基承载力斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula 10. 地基承载力太沙基承载力理论Terzaghi bearing capacity theory10. 地基承载力魏锡克极限承载力公式V esic s ultimate bearing capacity formula10. 地基承载力整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure11. 土压力被动土压力系数coefficient of passive earth pressure11. 土压力极限平衡状态state of limit equilibrium11. 土压力静止土压力earth pressue at rest11. 土压力静止土压力系数coefficient of earth pressur at rest11. 土压力库仑土压力理论Coulomb s earth pressure theory11. 土压力库尔曼图解法Culmannn construction11. 土压力朗肯土压力理论Rankine s earth pressure theory11. 土压力朗肯状态Rankine state11. 土压力谈弹性平衡状态state of elastic equilibrium11. 土压力土压力earth pressure11. 土压力主动土压力active earth pressure11. 土压力主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose12. 土坡稳定分析毕肖普法Bishop method12. 土坡稳定分析边坡稳定安全系数safety factor of slope12. 土坡稳定分析不平衡推理传递法unbalanced thrust transmission method12. 土坡稳定分析费伦纽斯条分法Fellenius method of slices12. 土坡稳定分析库尔曼法Culmann method12. 土坡稳定分析摩擦圆法friction circle method12. 土坡稳定分析摩根斯坦-普拉斯法Morgenstern-Price method12. 土坡稳定分析铅直边坡的临界高度critical height of vertical slope12. 土坡稳定分析瑞典圆弧滑动法Swedish circle method12. 土坡稳定分析斯宾赛法Spencer method12. 土坡稳定分析泰勒法Taylor method12. 土坡稳定分析条分法slice method12. 土坡稳定分析土坡slope12. 土坡稳定分析土坡稳定分析slope stability analysis12. 土坡稳定分析土坡稳定极限分析法limit analysis method of slope stability 12. 土坡稳定分析土坡稳定极限平衡法limit equilibrium method of slope stability 12. 土坡稳定分析休止角angle of repose12. 土坡稳定分析扬布普遍条分法Janbu general slice method12. 土坡稳定分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity13. 土的动力性质波的弥散特性dispersion of waves13. 土的动力性质波速法wave velocity method13. 土的动力性质材料阻尼material damping13. 土的动力性质初始液化initial liquefaction13. 土的动力性质地基固有周期natural period of soil site13. 土的动力性质动剪切模量dynamic shear modulus of soils13. 土的动力性质动力布西涅斯克解dynamic solution of Boussinesq13. 土的动力性质动力放大因素dynamic magnification factor13. 土的动力性质动力性质dynamic properties of soils13. 土的动力性质动强度dynamic strength of soils13. 土的动力性质骨架波akeleton waves in soils13. 土的动力性质几何阻尼geometric damping13. 土的动力性质抗液化强度liquefaction stress13. 土的动力性质孔隙流体波fluid wave in soil13. 土的动力性质损耗角loss angle13. 土的动力性质往返活动性reciprocating activity13. 土的动力性质无量纲频率dimensionless frequency13. 土的动力性质液化liquefaction13. 土的动力性质液化势评价evaluation of liquefaction potential13. 土的动力性质液化应力比stress ratio of liquefaction13. 土的动力性质应力波stress waves in soils13. 土的动力性质振陷dynamic settlement13. 土的动力性质阻尼damping of soil13. 土的动力性质阻尼比damping ratio14. 挡土墙挡土墙retaining wall14. 挡土墙挡土墙排水设施14. 挡土墙挡土墙稳定性stability of retaining wall14. 挡土墙垛式挡土墙14. 挡土墙扶垛式挡土墙counterfort retaining wall14. 挡土墙后垛墙(台)counterfort retaining wall14. 挡土墙基础墙foundation wall14. 挡土墙加筋土挡墙reinforced earth bulkhead14. 挡土墙锚定板挡土墙anchored plate retaining wall14. 挡土墙锚定式板桩墙anchored sheet pile wall14. 挡土墙锚杆式挡土墙anchor rod retaining wall14. 挡土墙悬壁式板桩墙cantilever sheet pile wall14. 挡土墙悬壁式挡土墙cantilever sheet pile wall14. 挡土墙重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile15. 板桩结构物板桩结构sheet pile structure15. 板桩结构物钢板桩steel sheet pile15. 板桩结构物钢筋混凝土板桩reinforced concrete sheet pile15. 板桩结构物钢桩steel pile15. 板桩结构物灌注桩cast-in-place pile15. 板桩结构物拉杆tie rod15. 板桩结构物锚定式板桩墙anchored sheet pile wall15. 板桩结构物锚固技术anchoring15. 板桩结构物锚座Anchorage15. 板桩结构物木板桩wooden sheet pile15. 板桩结构物木桩timber piles15. 板桩结构物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts16. 基坑开挖与降水电渗法electro-osmotic drainage16. 基坑开挖与降水管涌piping16. 基坑开挖与降水基底隆起heave of base16. 基坑开挖与降水基坑降水dewatering16. 基坑开挖与降水基坑失稳instability (failure) of foundation pit16. 基坑开挖与降水基坑围护bracing of foundation pit16. 基坑开挖与降水减压井relief well16. 基坑开挖与降水降低地下水位法dewatering method16. 基坑开挖与降水井点系统well point system16. 基坑开挖与降水喷射井点eductor well point16. 基坑开挖与降水铅直边坡的临界高度critical height of vertical slope 16. 基坑开挖与降水砂沸sand boiling16. 基坑开挖与降水深井点deep well point16. 基坑开挖与降水真空井点vacuum well point16. 基坑开挖与降水支撑围护braced cuts17. 浅基础杯形基础17. 浅基础补偿性基础compensated foundation17. 浅基础持力层bearing stratum17. 浅基础次层(台)substratum17. 浅基础单独基础individual footing17. 浅基础倒梁法inverted beam method17. 浅基础刚性角pressure distribution angle of masonary foundation 17. 浅基础刚性基础rigid foundation17. 浅基础高杯口基础17. 浅基础基础埋置深度embeded depth of foundation17. 浅基础基床系数coefficient of subgrade reaction17. 浅基础基底附加应力net foundation pressure17. 浅基础交叉条形基础cross strip footing17. 浅基础接触压力contact pressure17. 浅基础静定分析法(浅基础)static analysis (shallow foundation)17. 浅基础壳体基础shell foundation17. 浅基础扩展基础spread footing17. 浅基础片筏基础mat foundation17. 浅基础浅基础shallow foundation17. 浅基础墙下条形基础17. 浅基础热摩奇金法Zemochkin s method17. 浅基础柔性基础flexible foundation17. 浅基础上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 17. 浅基础谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation 17. 浅基础条形基础strip footing17. 浅基础下卧层substratum17. 浅基础箱形基础box foundation17. 浅基础柱下条形基础18. 深基础贝诺托灌注桩Benoto cast-in-place pile18. 深基础波动方程分析Wave equation analysis18. 深基础场铸桩(台)cast-in-place pile18. 深基础沉管灌注桩diving casting cast-in-place pile18. 深基础沉井基础open-end caisson foundation18. 深基础沉箱基础box caisson foundation18. 深基础成孔灌注同步桩synchronous pile18. 深基础承台pile caps18. 深基础充盈系数fullness coefficient18. 深基础单桩承载力bearing capacity of single pile18. 深基础单桩横向极限承载力ultimate lateral resistance of single pile18. 深基础单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile18. 深基础单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile18. 深基础单桩竖向抗压极限承载力vertical allowable load capacity of single pile18. 深基础低桩承台low pile cap18. 深基础地下连续墙diaphgram wall18. 深基础点承桩(台)end-bearing pile18. 深基础动力打桩公式dynamic pile driving formula18. 深基础端承桩end-bearing pile18. 深基础法兰基灌注桩Franki pile18. 深基础负摩擦力negative skin friction of pile18. 深基础钢筋混凝土预制桩precast reinforced concrete piles18. 深基础钢桩steel pile18. 深基础高桩承台high-rise pile cap18. 深基础灌注桩cast-in-place pile18. 深基础横向载荷桩laterally loaded vertical piles18. 深基础护壁泥浆slurry coat method18. 深基础回转钻孔灌注桩rotatory boring cast-in-place pile18. 深基础机挖异形灌注桩18. 深基础静力压桩silent piling18. 深基础抗拔桩uplift pile18. 深基础抗滑桩anti-slide pile18. 深基础摩擦桩friction pile18. 深基础木桩timber piles18. 深基础嵌岩灌注桩piles set into rock18. 深基础群桩pile groups18. 深基础群桩效率系数efficiency factor of pile groups18. 深基础群桩效应efficiency of pile groups18. 深基础群桩竖向极限承载力vertical ultimate load capacity of pile groups 18. 深基础深基础deep foundation18. 深基础竖直群桩横向极限承载力18. 深基础无桩靴夯扩灌注桩rammed bulb ile18. 深基础旋转挤压灌注桩18. 深基础桩piles18. 深基础桩基动测技术dynamic pile test18. 深基础钻孔墩基础drilled-pier foundation18. 深基础钻孔扩底灌注桩under-reamed bored pile18. 深基础钻孔压注桩starsol enbesol pile18. 深基础最后贯入度final set19. 地基处理表层压密法surface compaction19. 地基处理超载预压surcharge preloading19. 地基处理袋装砂井sand wick19. 地基处理地工织物geofabric, geotextile19. 地基处理地基处理ground treatment, foundation treatment19. 地基处理电动化学灌浆electrochemical grouting19. 地基处理电渗法electro-osmotic drainage19. 地基处理顶升纠偏法19. 地基处理定喷directional jet grouting19. 地基处理冻土地基处理frozen foundation improvement19. 地基处理短桩处理treatment with short pile19. 地基处理堆载预压法preloading19. 地基处理粉体喷射深层搅拌法powder deep mixing method19. 地基处理复合地基composite foundation19. 地基处理干振成孔灌注桩vibratory bored pile19. 地基处理高压喷射注浆法jet grounting19. 地基处理灌浆材料injection material19. 地基处理灌浆法grouting19. 地基处理硅化法silicification19. 地基处理夯实桩compacting pile19. 地基处理化学灌浆chemical grouting19. 地基处理换填法cushion19. 地基处理灰土桩lime soil pile19. 地基处理基础加压纠偏法19. 地基处理挤密灌浆compaction grouting19. 地基处理挤密桩compaction pile, compacted column19. 地基处理挤淤法displacement method19. 地基处理加筋法reinforcement method19. 地基处理加筋土reinforced earth19. 地基处理碱液法soda solution grouting19. 地基处理浆液深层搅拌法grout deep mixing method19. 地基处理降低地下水位法dewatering method19. 地基处理纠偏技术19. 地基处理坑式托换pit underpinning19. 地基处理冷热处理法freezing and heating19. 地基处理锚固技术anchoring19. 地基处理锚杆静压桩托换anchor pile underpinning19. 地基处理排水固结法consolidation19. 地基处理膨胀土地基处理expansive foundation treatment19. 地基处理劈裂灌浆fracture grouting19. 地基处理浅层处理shallow treatment19. 地基处理强夯法dynamic compaction19. 地基处理人工地基artificial foundation19. 地基处理容许灌浆压力allowable grouting pressure19. 地基处理褥垫pillow19. 地基处理软土地基soft clay ground19. 地基处理砂井sand drain19. 地基处理砂井地基平均固结度average degree of consolidation of sand-drained ground 19. 地基处理砂桩sand column19. 地基处理山区地基处理foundation treatment in mountain area19. 地基处理深层搅拌法deep mixing method19. 地基处理渗入性灌浆seep-in grouting19. 地基处理湿陷性黄土地基处理collapsible loess treatment19. 地基处理石灰系深层搅拌法lime deep mixing method19. 地基处理石灰桩lime column, limepile19. 地基处理树根桩root pile19. 地基处理水泥土水泥掺合比cement mixing ratio19. 地基处理水泥系深层搅拌法cement deep mixing method19. 地基处理水平旋喷horizontal jet grouting19. 地基处理塑料排水带plastic drain19. 地基处理碎石桩gravel pile, stone pillar19. 地基处理掏土纠偏法19. 地基处理天然地基natural foundation19. 地基处理土工聚合物Geopolymer19. 地基处理土工织物geofabric, geotextile19. 地基处理土桩earth pile19. 地基处理托换技术underpinning technique19. 地基处理外掺剂additive19. 地基处理旋喷jet grouting19. 地基处理药液灌浆chemical grouting19. 地基处理预浸水法presoaking19. 地基处理预压法preloading19. 地基处理真空预压vacuum preloading19. 地基处理振冲法vibroflotation method19. 地基处理振冲密实法vibro-compaction19. 地基处理振冲碎石桩vibro replacement stone column19. 地基处理振冲置换法vibro-replacement19. 地基处理振密、挤密法vibro-densification, compacting19. 地基处理置换率(复合地基)replacement ratio19. 地基处理重锤夯实法tamping19. 地基处理桩式托换pile underpinning19. 地基处理桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity20. 动力机器基础等效集总参数法constant strain rate consolidation test20. 动力机器基础地基固有周期natural period of soil site20. 动力机器基础动基床反力法dynamic subgrade reaction method20. 动力机器基础动力放大因素dynamic magnification factor20. 动力机器基础隔振isolation20. 动力机器基础基础振动foundation vibration20. 动力机器基础基础振动半空间理论elastic half-space theory of foundation vibr ation20. 动力机器基础基础振动容许振幅allowable amplitude of foundation vibration 20. 动力机器基础基础自振频率natural frequency of foundation20. 动力机器基础集总参数法lumped parameter method20. 动力机器基础吸收系数absorption coefficient20. 动力机器基础质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site21. 地基基础抗震地震earthquake, seism, temblor21. 地基基础抗震地震持续时间duration of earthquake21. 地基基础抗震地震等效均匀剪应力equivalent even shear stress of earthquake 21. 地基基础抗震地震反应谱earthquake response spectrum21. 地基基础抗震地震烈度earthquake intensity21. 地基基础抗震地震震级earthquake magnitude21. 地基基础抗震地震卓越周期seismic predominant period21. 地基基础抗震地震最大加速度maximum acceleration of earthquake21. 地基基础抗震动力放大因数dynamic magnification factor21. 地基基础抗震对数递减率logrithmic decrement21. 地基基础抗震刚性系数coefficient of rigidity21. 地基基础抗震吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test22. 室内土工试验变水头渗透试验falling head permeability test22. 室内土工试验不固结不排水试验unconsolidated-undrained triaxial test22. 室内土工试验常规固结试验routine consolidation test22. 室内土工试验常水头渗透试验constant head permeability test22. 室内土工试验单剪仪simple shear apparatus22. 室内土工试验单轴拉伸试验uniaxial tensile test22. 室内土工试验等速加荷固结试验constant loading rate consolidatin test22. 室内土工试验等梯度固结试验constant gradient consolidation test22. 室内土工试验等应变速率固结试验equivalent lumped parameter method22. 室内土工试验反复直剪强度试验repeated direct shear test22. 室内土工试验反压饱和法back pressure saturation method22. 室内土工试验高压固结试验high pressure consolidation test22. 室内土工试验各向不等压固结不排水试验consoidated anisotropically undrained test 22. 室内土工试验各向不等压固结排水试验consolidated anisotropically drained test 22. 室内土工试验共振柱试验resonant column test22. 室内土工试验固结不排水试验consolidated undrained triaxial test22. 室内土工试验固结快剪试验consolidated quick direct shear test22. 室内土工试验固结排水试验consolidated drained triaxial test22. 室内土工试验固结试验consolidation test22. 室内土工试验含水量试验water content test22. 室内土工试验环剪试验ring shear test22. 室内土工试验黄土湿陷试验loess collapsibility test22. 室内土工试验击实试验22. 室内土工试验界限含水量试验Atterberg limits test22. 室内土工试验卡萨格兰德法Casagrande s method22. 室内土工试验颗粒分析试验grain size analysis test22. 室内土工试验孔隙水压力消散试验pore pressure dissipation test22. 室内土工试验快剪试验quick direct shear test22. 室内土工试验快速固结试验fast consolidation test22. 室内土工试验离心模型试验centrifugal model test22. 室内土工试验连续加荷固结试验continual loading test22. 室内土工试验慢剪试验consolidated drained direct shear test22. 室内土工试验毛细管上升高度试验capillary rise test22. 室内土工试验密度试验density test22. 室内土工试验扭剪仪torsion shear apparatus22. 室内土工试验膨胀率试验swelling rate test22. 室内土工试验平面应变仪plane strain apparatus22. 室内土工试验三轴伸长试验triaxial extension test22. 室内土工试验三轴压缩试验triaxial compression test22. 室内土工试验砂的相对密实度试验sand relative density test22. 室内土工试验筛分析sieve analysis。
土木工程 专业外语词汇大全中英翻译
土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering反分析法back analysis method基础工程foundation engineering临界状态土力学critical state soil mechanics数值岩土力学numerical geomechanics土soil, earth土动力学soil dynamics土力学soil mechanics岩土工程geotechnical engineering应力路径stress path应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock标准冻深standard frost penetration冰川沉积glacial deposit冰积层(台)glacial deposit残积土eluvial soil, residual soil层理beding长石feldspar沉积岩sedimentary rock承压水confined water次生矿物secondary mineral地质年代geological age地质图geological map地下水groundwater断层fault断裂构造fracture structure工程地质勘察engineering geological exploration海积层(台)marine deposit海相沉积marine deposit花岗岩granite滑坡landslide化石fossil化学沉积岩chemical sedimentary rock阶地terrace节理joint解理cleavage喀斯特karst矿物硬度hardness of minerals砾岩conglomerate流滑flow slide陆相沉积continental sedimentation泥石流mud flow, debris flow年粘土矿物clay minerals凝灰岩tuff牛轭湖ox-bow lake浅成岩hypabyssal rock潜水ground water侵入岩intrusive rock取土器geotome砂岩sandstone砂嘴spit, sand spit山岩压力rock pressure深成岩plutionic rock石灰岩limestone石英quartz松散堆积物rickle围限地下水(台)confined ground water 泻湖lagoon岩爆rock burst岩层产状attitude of rock岩浆岩magmatic rock, igneous rock岩脉dike, dgke岩石风化程度degree of rock weathering 岩石构造structure of rock岩石结构texture of rock岩体rock mass页岩shale原生矿物primary mineral云母mica造岩矿物rock-forming mineral褶皱fold, folding钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil超固结土overconsolidated soil冲填土dredger fill充重塑土冻土frozen soil, tjaele非饱和土unsaturated soil分散性土dispersive soil粉土silt, mo粉质粘土silty clay高岭石kaolinite过压密土(台)overconsolidated soil红粘土red clay, adamic earth黄土loess, huangtu(China)蒙脱石montmorillonite泥炭peat, bog muck年粘土clay年粘性土cohesive soil, clayey soil膨胀土expansive soil, swelling soil欠固结粘土underconsolidated soil区域性土zonal soil人工填土fill, artificial soil软粘土soft clay, mildclay, mickle砂土sand湿陷性黄土collapsible loess, slumping loess素填土plain fill塑性图plasticity chart碎石土stone, break stone, broken stone, channery, chat, crushed sto ne, deritus未压密土(台)underconsolidated clay无粘性土cohesionless soil, frictional soil, non-cohesive soil岩石rock伊利土illite有机质土organic soil淤泥muck, gyttja, mire, slush淤泥质土mucky soil原状土undisturbed soil杂填土miscellaneous fill正常固结土normally consolidated soil正常压密土(台)normally consolidated soil自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits饱和度degree of saturation饱和密度saturated density饱和重度saturated unit weight比重specific gravity稠度consistency不均匀系数coefficient of uniformity, uniformity coefficient触变thixotropy单粒结构single-grained structure蜂窝结构honeycomb structure干重度dry unit weight干密度dry density塑性指数plasticity index含水量water content, moisture content活性指数级配gradation, grading结合水bound water, combined water, held water界限含水量Atterberg limits颗粒级配particle size distribution of soils, mechanical composi tion of soil可塑性plasticity孔隙比void ratio孔隙率porosity粒度granularity, grainness, grainage粒组fraction, size fraction毛细管水capillary water密度density密实度compactionness年粘性土的灵敏度sensitivity of cohesive soil平均粒径mean diameter, average grain diameter曲率系数coefficient of curvature三相图block diagram, skeletal diagram, three phase diagram三相土tri-phase soil湿陷起始应力initial collapse pressure湿陷系数coefficient of collapsibility缩限shrinkage limit土的构造soil texture土的结构soil structure土粒相对密度specific density of solid particles土中气air in soil土中水water in soil团粒aggregate, cumularpharolith限定粒径constrained diameter相对密度relative density, density index相对压密度relative compaction, compacting factor, percent compa ction, coefficient of compaction絮状结构flocculent structure压密系数coefficient of consolidation压缩性compressibility液限liquid limit液性指数liquidity index游离水(台)free water有效粒径effective diameter, effective grain size, effective size有效密度effective density有效重度effective unit weight重力密度unit weight自由水free water, gravitational water, groundwater, phreatic water 组构fabric最大干密度maximum dry density最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law管涌piping浸润线phreatic line临界水力梯度critical hydraulic gradient流函数flow function流土flowing soil流网flow net砂沸sand boiling渗流seepage渗流量seepage discharge渗流速度seepage velocity渗透力seepage force渗透破坏seepage failure渗透系数coefficient of permeability渗透性permeability势函数potential function水力梯度hydraulic gradient6. 地基应力和变形变形deformation变形模量modulus of deformation泊松比Poisson s ratio布西涅斯克解Boussinnesq s solution残余变形residual deformation残余孔隙水压力residual pore water pressure超静孔隙水压力excess pore water pressure沉降settlement沉降比settlement ratio次固结沉降secondary consolidation settlement次固结系数coefficient of secondary consolidation地基沉降的弹性力学公式elastic formula for settlement calculation 分层总和法layerwise summation method负孔隙水压力negative pore water pressure附加应力superimposed stress割线模量secant modulus固结沉降consolidation settlement规范沉降计算法settlement calculation by specification回弹变形rebound deformation回弹模量modulus of resilience回弹系数coefficient of resilience回弹指数swelling index建筑物的地基变形允许值allowable settlement of building剪胀dilatation角点法corner-points method孔隙气压力pore air pressure孔隙水压力pore water pressure孔隙压力系数Apore pressure parameter A孔隙压力系数Bpore pressure parameter B明德林解Mindlin s solution纽马克感应图Newmark chart切线模量tangent modulus蠕变creep三向变形条件下的固结沉降three-dimensional consolidation settl ement瞬时沉降immediate settlement塑性变形plastic deformation谈弹性变形elastic deformation谈弹性模量elastic modulus谈弹性平衡状态state of elastic equilibrium体积变形模量volumetric deformation modulus先期固结压力preconsolidation pressure压缩层压缩模量modulus of compressibility压缩系数coefficient of compressibility压缩性compressibility压缩指数compression index有效应力effective stress自重应力self-weight stress总应力total stress approach of shear strength最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory比奥固结理论Biot s consolidation theory超固结比over-consolidation ratio超静孔隙水压力excess pore water pressure次固结secondary consolidation次压缩(台)secondary consolidatin单向度压密(台)one-dimensional consolidation多维固结multi-dimensional consolidation固结consolidation固结度degree of consolidation固结理论theory of consolidation固结曲线consolidation curve固结速率rate of consolidation固结系数coefficient of consolidation固结压力consolidation pressure回弹曲线rebound curve井径比drain spacing ratio井阻well resistance曼代尔-克雷尔效应Mandel-Cryer effect潜变(台)creep砂井sand drain砂井地基平均固结度average degree of consolidation of sand-drained ground 时间对数拟合法logrithm of time fitting method时间因子time factor太沙基固结理论Terzaghi s consolidation theory太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation先期固结压力preconsolidation pressure压密(台)consolidation压密度(台)degree of consolidation压缩曲线cpmpression curve一维固结one dimensional consolidation有效应力原理principle of effective stress预压密压力(台)preconsolidation pressure原始压缩曲线virgin compression curve再压缩曲线recompression curve主固结primary consolidation主压密(台)primary consolidation准固结压力pseudo-consolidation pressureK0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose不排水抗剪强度undrained shear strength残余内摩擦角residual angle of internal friction残余强度residual strength长期强度long-term strength单轴抗拉强度uniaxial tension test动强度dynamic strength of soils峰值强度peak strength伏斯列夫参数Hvorslev parameter剪切应变速率shear strain rate抗剪强度shear strength抗剪强度参数shear strength parameter抗剪强度有效应力法effective stress approach of shear strength 抗剪强度总应力法total stress approach of shear strength库仑方程Coulomb s equation摩尔包线Mohr s envelope摩尔-库仑理论Mohr-Coulomb theory内摩擦角angle of internal friction年粘聚力cohesion破裂角angle of rupture破坏准则failure criterion十字板抗剪强度vane strength无侧限抗压强度unconfined compression strength有效内摩擦角effective angle of internal friction有效粘聚力effective cohesion intercept有效应力破坏包线effective stress failure envelope有效应力强度参数effective stress strength parameter有效应力原理principle of effective stress真内摩擦角true angle internal friction真粘聚力true cohesion总应力破坏包线total stress failure envelope总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model边界面模型boundary surface model层向各向同性体模型cross anisotropic model超弹性模型hyperelastic model德鲁克-普拉格准则Drucker-Prager criterion邓肯-张模型Duncan-Chang model动剪切强度非线性弹性模量nonlinear elastic model盖帽模型cap model刚塑性模型rigid plastic model割线模量secant modulus广义冯·米赛斯屈服准则extended von Mises yield criterion广义特雷斯卡屈服准则extended tresca yield criterion加工软化work softening加工硬化work hardening加工硬化定律strain harding law剑桥模型Cambridge model柯西弹性模型Cauchy elastic model拉特-邓肯模型Lade-Duncan model拉特屈服准则Lade yield criterion理想弹塑性模型ideal elastoplastic model临界状态弹塑性模型critical state elastoplastic model流变学模型rheological model流动规则flow rule摩尔-库仑屈服准则Mohr-Coulomb yield criterion内蕴时间塑性模型endochronic plastic model内蕴时间塑性理论endochronic theory年粘弹性模型viscoelastic model切线模量tangent modulus清华弹塑性模型Tsinghua elastoplastic model屈服面yield surface沈珠江三重屈服面模型Shen Zhujiang three yield surface method双参数地基模型双剪应力屈服模型twin shear stress yield criterion双曲线模型hyperbolic model松岗元-中井屈服准则Matsuoka-Nakai yield criterion塑性形变理论谈弹塑性模量矩阵elastoplastic modulus matrix谈弹塑性模型elastoplastic modulus谈弹塑性增量理论incremental elastoplastic theory谈弹性半空间地基模型elastic half-space foundation model谈弹性变形elastic deformation谈弹性模量elastic modulus谈弹性模型elastic model魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model文克尔地基模型Winkler foundation model修正剑桥模型modified cambridge model准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure次层(台)substratum地基subgrade, ground, foundation soil地基承载力bearing capacity of foundation soil地基极限承载力ultimate bearing capacity of foundation soil地基允许承载力allowable bearing capacity of foundation soil地基稳定性stability of foundation soil汉森地基承载力公式Hansen s ultimate bearing capacity formula极限平衡状态state of limit equilibrium加州承载比(美国)California Bearing Ratio局部剪切破坏local shear failure临塑荷载critical edge pressure梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 普朗特承载力理论Prandel bearing capacity theory斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula太沙基承载力理论Terzaghi bearing capacity theory魏锡克极限承载力公式Vesic s ultimate bearing capacity formula 整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure被动土压力系数coefficient of passive earth pressure极限平衡状态state of limit equilibrium静止土压力earth pressue at rest静止土压力系数coefficient of earth pressur at rest库仑土压力理论Coulomb s earth pressure theory库尔曼图解法Culmannn construction朗肯土压力理论Rankine s earth pressure theory朗肯状态Rankine state谈弹性平衡状态state of elastic equilibrium土压力earth pressure主动土压力active earth pressure主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose分析毕肖普法Bishop method分析边坡稳定安全系数safety factor of slope分析不平衡推理传递法unbalanced thrust transmission method分析费伦纽斯条分法Fellenius method of slices分析库尔曼法Culmann method分析摩擦圆法friction circle method分析摩根斯坦-普拉斯法Morgenstern-Price method分析铅直边坡的临界高度critical height of vertical slope分析瑞典圆弧滑动法Swedish circle method分析斯宾赛法Spencer method分析泰勒法Taylor method分析条分法slice method分析土坡slope分析土坡稳定分析slope stability analysis分析土坡稳定极限分析法limit analysis method of slope stability分析土坡稳定极限平衡法limit equilibrium method of slope stability 分析休止角angle of repose分析扬布普遍条分法Janbu general slice method分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity波的弥散特性dispersion of waves波速法wave velocity method材料阻尼material damping初始液化initial liquefaction地基固有周期natural period of soil site动剪切模量dynamic shear modulus of soils动力布西涅斯克解dynamic solution of Boussinesq 动力放大因素dynamic magnification factor动力性质dynamic properties of soils动强度dynamic strength of soils骨架波akeleton waves in soils几何阻尼geometric damping抗液化强度liquefaction stress孔隙流体波fluid wave in soil损耗角loss angle往返活动性reciprocating activity无量纲频率dimensionless frequency液化liquefaction液化势评价evaluation of liquefaction potential液化应力比stress ratio of liquefaction应力波stress waves in soils振陷dynamic settlement阻尼damping of soil阻尼比damping ratio14. 挡土墙挡土墙retaining wall挡土墙排水设施挡土墙稳定性stability of retaining wall垛式挡土墙扶垛式挡土墙counterfort retaining wall后垛墙(台)counterfort retaining wall基础墙foundation wall加筋土挡墙reinforced earth bulkhead锚定板挡土墙anchored plate retaining wall锚定式板桩墙anchored sheet pile wall锚杆式挡土墙anchor rod retaining wall悬壁式板桩墙cantilever sheet pile wall悬壁式挡土墙cantilever sheet pile wall重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile物板桩结构sheet pile structure物钢板桩steel sheet pile物钢筋混凝土板桩reinforced concrete sheet pile物钢桩steel pile物灌注桩cast-in-place pile物拉杆tie rod物锚定式板桩墙anchored sheet pile wall物锚固技术anchoring物锚座Anchorage物木板桩wooden sheet pile物木桩timber piles物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts电渗法electro-osmotic drainage管涌piping基底隆起heave of base基坑降水dewatering基坑失稳instability (failure) of foundation pit基坑围护bracing of foundation pit减压井relief well降低地下水位法dewatering method井点系统well point system喷射井点eductor well point铅直边坡的临界高度critical height of vertical slope砂沸sand boiling深井点deep well point真空井点vacuum well point支撑围护braced cuts17. 浅基础补偿性基础compensated foundation持力层bearing stratum次层(台)substratum单独基础individual footing倒梁法inverted beam method刚性角pressure distribution angle of masonary foundation 刚性基础rigid foundation高杯口基础基础埋置深度embeded depth of foundation基床系数coefficient of subgrade reaction基底附加应力net foundation pressure交叉条形基础cross strip footing接触压力contact pressure静定分析法(浅基础)static analysis (shallow foundation)壳体基础shell foundation扩展基础spread footing片筏基础mat foundation浅基础shallow foundation墙下条形基础热摩奇金法Zemochkin s method柔性基础flexible foundation上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation条形基础strip footing下卧层substratum箱形基础box foundation18. 深基础贝诺托灌注桩Benoto cast-in-place pile波动方程分析Wave equation analysis场铸桩(台)cast-in-place pile沉管灌注桩diving casting cast-in-place pile沉井基础open-end caisson foundation沉箱基础box caisson foundation成孔灌注同步桩synchronous pile承台pile caps充盈系数fullness coefficient单桩承载力bearing capacity of single pile单桩横向极限承载力ultimate lateral resistance of single pile单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile单桩竖向抗压极限承载力vertical allowable load capacity of single pile低桩承台low pile cap地下连续墙diaphgram wall点承桩(台)end-bearing pile动力打桩公式dynamic pile driving formula端承桩end-bearing pile法兰基灌注桩Franki pile负摩擦力negative skin friction of pile钢筋混凝土预制桩precast reinforced concrete piles钢桩steel pile高桩承台high-rise pile cap灌注桩cast-in-place pile横向载荷桩laterally loaded vertical piles护壁泥浆slurry coat method回转钻孔灌注桩rotatory boring cast-in-place pile静力压桩silent piling抗拔桩uplift pile抗滑桩anti-slide pile摩擦桩friction pile木桩timber piles嵌岩灌注桩piles set into rock群桩pile groups群桩效率系数efficiency factor of pile groups群桩效应efficiency of pile groups群桩竖向极限承载力vertical ultimate load capacity of pile groups 深基础deep foundation竖直群桩横向极限承载力无桩靴夯扩灌注桩rammed bulb ile桩piles桩基动测技术dynamic pile test钻孔墩基础drilled-pier foundation钻孔扩底灌注桩under-reamed bored pile钻孔压注桩starsol enbesol pile最后贯入度final set19. 地基处理表层压密法surface compaction超载预压surcharge preloading袋装砂井sand wick地工织物geofabric, geotextile地基处理ground treatment, foundation treatment电动化学灌浆electrochemical grouting电渗法electro-osmotic drainage顶升纠偏法定喷directional jet grouting冻土地基处理frozen foundation improvement短桩处理treatment with short pile堆载预压法preloading粉体喷射深层搅拌法powder deep mixing method复合地基composite foundation干振成孔灌注桩vibratory bored pile高压喷射注浆法jet grounting灌浆材料injection material灌浆法grouting硅化法silicification夯实桩compacting pile化学灌浆chemical grouting换填法cushion灰土桩lime soil pile挤密灌浆compaction grouting挤密桩compaction pile, compacted column挤淤法displacement method加筋法reinforcement method加筋土reinforced earth碱液法soda solution grouting浆液深层搅拌法grout deep mixing method降低地下水位法dewatering method坑式托换pit underpinning冷热处理法freezing and heating锚固技术anchoring锚杆静压桩托换anchor pile underpinning排水固结法consolidation膨胀土地基处理expansive foundation treatment劈裂灌浆fracture grouting浅层处理shallow treatment强夯法dynamic compaction人工地基artificial foundation容许灌浆压力allowable grouting pressure褥垫pillow软土地基soft clay ground砂井sand drain砂井地基平均固结度average degree of consolidation of sand-drained ground 砂桩sand column山区地基处理foundation treatment in mountain area深层搅拌法deep mixing method渗入性灌浆seep-in grouting湿陷性黄土地基处理collapsible loess treatment石灰系深层搅拌法lime deep mixing method石灰桩lime column, limepile树根桩root pile水泥土水泥掺合比cement mixing ratio水泥系深层搅拌法cement deep mixing method水平旋喷horizontal jet grouting塑料排水带plastic drain碎石桩gravel pile, stone pillar天然地基natural foundation土工聚合物Geopolymer土工织物geofabric, geotextile土桩earth pile托换技术underpinning technique外掺剂additive旋喷jet grouting药液灌浆chemical grouting预浸水法presoaking预压法preloading真空预压vacuum preloading振冲法vibroflotation method振冲密实法vibro-compaction振冲碎石桩vibro replacement stone column振冲置换法vibro-replacement振密、挤密法vibro-densification, compacting置换率(复合地基)replacement ratio重锤夯实法tamping桩式托换pile underpinning桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity等效集总参数法constant strain rate consolidation test地基固有周期natural period of soil site动基床反力法dynamic subgrade reaction method动力放大因素dynamic magnification factor隔振isolation基础振动foundation vibration基础振动半空间理论elastic half-space theory of foundation vibration 基础振动容许振幅allowable amplitude of foundation vibration基础自振频率natural frequency of foundation集总参数法lumped parameter method吸收系数absorption coefficient质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site地震earthquake, seism, temblor地震持续时间duration of earthquake地震等效均匀剪应力equivalent even shear stress of earthquake地震反应谱earthquake response spectrum地震烈度earthquake intensity地震震级earthquake magnitude地震卓越周期seismic predominant period地震最大加速度maximum acceleration of earthquake动力放大因数dynamic magnification factor对数递减率logrithmic decrement刚性系数coefficient of rigidity吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test变水头渗透试验falling head permeability test不固结不排水试验unconsolidated-undrained triaxial test常规固结试验routine consolidation test常水头渗透试验constant head permeability test单剪仪simple shear apparatus单轴拉伸试验uniaxial tensile test等速加荷固结试验constant loading rate consolidatin test等梯度固结试验constant gradient consolidation test等应变速率固结试验equivalent lumped parameter method反复直剪强度试验repeated direct shear test反压饱和法back pressure saturation method高压固结试验high pressure consolidation test各向不等压固结不排水试验consoidated anisotropically undrained test 各向不等压固结排水试验consolidated anisotropically drained test共振柱试验resonant column test固结不排水试验consolidated undrained triaxial test固结快剪试验consolidated quick direct shear test固结排水试验consolidated drained triaxial test固结试验consolidation test含水量试验water content test环剪试验ring shear test黄土湿陷试验loess collapsibility test界限含水量试验Atterberg limits test卡萨格兰德法Casagrande s method颗粒分析试验grain size analysis test孔隙水压力消散试验pore pressure dissipation test快剪试验quick direct shear test快速固结试验fast consolidation test离心模型试验centrifugal model test连续加荷固结试验continual loading test慢剪试验consolidated drained direct shear test毛细管上升高度试验capillary rise test密度试验density test扭剪仪torsion shear apparatus膨胀率试验swelling rate test平面应变仪plane strain apparatus三轴伸长试验triaxial extension test三轴压缩试验triaxial compression test砂的相对密实度试验sand relative density test筛分析sieve analysis渗透试验permeability test湿化试验slaking test收缩试验shrinkage test塑限试验plastic limit test缩限试验shrinkage limit test土工模型试验geotechnical model test土工织物试验geotextile test无侧限抗压强度试验unconfined compression strength test无粘性土天然坡角试验angle of repose of cohesionless soils test压密不排水三轴压缩试验consolidated undrained triaxial compression test 压密排水三轴压缩试验consolidated drained triaxial compressure test压密试验consolidation test液塑限联合测定法liquid-plastic limit combined method液限试验liquid limit test应变控制式三轴压缩仪strain control triaxial compression apparatus应力控制式三轴压缩仪stress control triaxial compression apparatus有机质含量试验organic matter content test真三轴仪true triaxial apparatus振动单剪试验dynamic simple shear test直剪仪direct shear apparatus直接剪切试验direct shear test直接单剪试验direct simple shear test自振柱试验free vibration column testK0固结不排水试验K0 consolidated undrained testK0固结排水试验K0 consolidated drained test23. 原位测试标准贯入试验standard penetration test表面波试验surface wave test超声波试验ultrasonic wave test承载比试验Califonia Bearing Ratio Test单桩横向载荷试验lateral load test of pile单桩竖向静载荷试验static load test of pile动力触探试验dynamic penetration test静力触探试验static cone penetration test静力载荷试验plate loading test跨孔试验cross-hole test块体共振试验block resonant test螺旋板载荷试验screw plate test旁压试验pressurementer test轻便触探试验light sounding test深层沉降观测deep settlement measurement十字板剪切试验vane shear test无损检测nondestructive testing下孔法试验down-hole test现场渗透试验field permeability test原位孔隙水压力量测in situ pore water pressure measurement原位试验in-situ soil test最后贯入度final set。
土木工程专业英语词汇(整理版)
土木工程专业英语词汇(整理版)第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics精品文库43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical83 文献literature84 国际标准刊号ISSN International Standard Serial Number精品文库85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基9.viscous damping 粘滞阻尼10.shear modulus 剪切模量精品文库11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会精品文库四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降27.deformation 变形28.casing 套管精品文库29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theory 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics精品文库41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical精品文库83 文献literature84 国际标准刊号ISSN International Standard Serial Number85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基精品文库9.viscous damping 粘滞阻尼10.shear modulus 剪切模量11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度精品文库45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降精品文库27.deformation 变形28.casing 套管29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theo ry 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验。
土建词汇(英汉)
Aa flight of stairs 一段楼梯abaciscus 嵌饰abatis 杩槎abat-vent 固定百叶窗abode 住宅abscissa 横座标absolute construction 独立结构absolute height 绝对高度abut 支柱,柱脚abutting joint 对接接头acceptance 接受,同意,验收acceptance certificate 验收证书acceptance check 验收acceptance of concrete work 混凝土工程的验收acceptance of hidden subsurface work 隐蔽工程的验收acceptance specification 验收规范access 出(入)口,通路access board 便桥access corridor (platform bridge) from power block to office building on the operating floor 运转层上从主厂房到办公楼的交通走廊(天桥)access door 便门,检修门access eye 检查孔access gully 交通沟,窨井,雨水口access hole 检查孔access ramp 入口坡道access road 入口道路accessible duct 通行地沟accessories store 备品库accommodation ladder 舷梯accommodation road 专用道路accompanying diagram 附图accordion door 折叠门accordion partition 折叠式屏风acid brick 耐酸砖acid lining 耐酸衬砌acid resisting alloy 耐酸合金acid resisting cement 耐酸水泥acid resisting concrete 耐酸混凝土acid resisting stoneware 耐酸陶器acid waste 酸性废液acid-proof brick 耐酸砖acid-proof ceramic pipe 耐酸陶瓷管acid-proof mastic 耐酸胶泥acid-proof paint 耐酸油漆acid-proof varnish 耐酸清漆acid-protection coating 耐酸涂层acoustic absorbent 吸音材料acoustic construction 隔声构造acoustic design 声学设计,音质设计acoustic disturbance 声干扰acoustic felt 吸音毡acoustic field 声场acoustic plaster 吸音灰膏acoustic tile 吸音砖acoustic treatment 防声处理acoustic vault 吸声穹窿acoustical board 吸音板acoustical tile ceiling 吸音砖平顶ACP (asbestos cement pipe) 石棉水泥管across bulkhead 横向隔墙across grain 横向木纹acting surface 作用面actinic glass 光化玻璃,闪光玻璃action of gravity 重力作用action of pile group 群桩作用action radius 作用半径activated carbon 活性碳active fault 活动断层active pressure 主动压力active storage 有效容积,有效库容active thrust of earth 主动土压力actual load 实际荷载acute arch 尖拱,锐拱adamant 硬石,金刚石adamic earth 红粘土addendum 附加物,齿顶,附录,补遗addition of clay 掺粘土addition of sand 掺砂additional disturbing force 附加扰力additional load 附加荷载additional pipe 支管,接长管additive alternate 补充比较方案A-derrick 人字起重机,动臂起重机adfreezing force 冻附力adhesion 粘着力,附着力adhesion agent 胶粘剂,粘着剂adhesive 胶合剂,粘合剂adhesive bitumen primer 冷底子沥青adhesive coating 粘附层adhesive film 粘附膜adhesive strength 粘结强度adhesive tape 胶带adhesive water 吸附水,附着水,薄膜水adhesive wax 封蜡,胶粘蜡adit collar 支洞洞口,平洞洞口adit entrance 坑道入口adit opening 坑道入口adjacent accommodation 邻近建筑物,厢房adjacent block (混凝土)相邻浇筑块adjacent country 相邻地区adjacent lifts (混凝土)相邻浇筑层adjacent map 相邻图adjacent plank 踢脚板,门头线,门框边挺adjoining building 邻近房屋adjustable louver 可调百叶窗adjustable prop 可调支柱adjustable shelf 活动架adjustable shore 可调支撑adjustable sieve 可调筛adjustable spanner 可调扳手,活动扳手adjuster for windows 撑窗杆adjusting device 调节装置adjusting key 调整健adjusting link 调节联杆adjusting nut 调整螺母,调节螺母adjusting rod 调整杆,调节杆adjusting screw 调整螺钉,校整螺钉adjusting shuttering 活动模板adjusting wedge 调整锲块administration building 行政办公楼administration office 行政办公室admixture 掺合料adobe 灰质粘土,砖坯,风干砖,砖坯房,土墙adobe construction 土坯建筑adobe wall 土坯墙adretto 阳坡adumbral 遮阳的adumbration 轮廓,草图,速描advance angle 前置角adverse wind 逆风adz 刮刀,扁斧,锛子adz plane 刮刨adz-eye hammer 小铁锤AE (air entraining) 加气,掺气AE (architect engineering) 建筑工程(公司)aeolian 风成的,风积的aeolian material 风积物aeolian soil 风积土aerated concrete 加气混凝土aerated concrete block 加气混凝土砌块aerial 架空的,空气的,架空线,天线aerial cable 架空电缆aerial cableway 架空索道aerial conductor 架空电线,明线aerial conveyer 架空输送机aerial ladder 架空消防梯aerial lighthouse 航空灯塔aerial map 航测图aerial perspective 空中透视aerial railway 高架铁道aerial ropeway 架空索道,空中缆道aerial ropeway conveyer 架空索道输送机aerial survey topographical map 航测地形图aerial tramway 架空电车道,高架电车道aerial view 鸟瞰图aerial wire 天线,架空线aeroconcrete 加气混凝土aerocrete 加气混凝土aeroview 鸟瞰图aesthetic standard 审美标准after contraction 残余收缩after flow 残余塑性变形,蠕变after quake 余震after shock 余震after shrinkage 后期收缩after tack 软化,回粘after treatment 二次处理after-working 后效age dating 年代测定,年龄测定age hardening 时效硬化age of concrete 混凝土龄期age of specimen 试件龄期aged cement 老化水泥ageing crack 自然裂纹,时效裂纹ageing resistance 抗老化性,耐久性agglomerate 聚集,结块,团块,烧结块agglomerate-foam concrete 烧结矿渣泡沫混凝土aggradation 淤积,淤高,填积aggradation plain 沉积平原,淤积平原aggraded flood plain 洪积平原aggregate 骨料aggregate bin 骨料仓aggregate chips 石屑aggregate gradation 骨料级配,骨料分级aggregate grading 选配集料,集料级配aggregate reclaiming plant 骨料场,砾石料场aggregate roofing surface 骨料屋面aggregate size 骨料粒径aggregate-cement ratio 骨料水泥比,骨灰比agitating device 搅拌装置agitating lorry 搅拌车agitating truck 搅拌车agitation 搅拌,搅动,拌和agitation dredging 搅动挖泥agitator 搅拌机agraff 搭钩,搭扣A-horizon 表土层,上土层aiguille 钻头,钻孔器aiming light 标灯aiming line 瞄准线aiming post 标杆air brick 空心砖air bubble 气泡,砂眼air casing 气隔层air cavity 气穴,空穴air cement gun 水泥喷枪air channel 通风道,排气道air chimney 通风道,排气道air chute 通风道,排气道air compressor station 空气压缩机房air flue 气道,风道,烟道air hammer 气锤air painter 喷漆设备air passage 通风道,排气道air pick 风镐air pile hammer 气动打桩机air pit 通风井air pocket 气穴,气孔,麻点air rammer 气动夯锤air receiver 储气罐air stopping 挡风(墙)air tamper 气动夯锤air void 气孔,空隙air void ratio (土的)空隙比air well 通风井air-curing 空气养护air-free concrete 密实混凝土air-inflated structure 充气结构air-intake shaft 通风竖井,进气竖井air-placed concrete 气压浇注混凝土air-tight door 密封门airway 通气孔,风道,航空线aisle 通道,过道,走廊aisle gradient 通道坡度aisle wall 过道墙alameda 林荫散步道albanite 地沥清albertite 黑沥清albronze 铝青铜,铜铝合金alclad 镀铝的,包铝的,衬铝alfalfa gate 金属板滑动门,螺旋式闸门alignment 定线,找平,对齐alignment design 定线设计alkali earth 碱(性)土all-brick building 全砖建筑all-concrete 全混凝土的allen screw 六角固定螺钉alley-stone 矾石all-haydite concrete 全陶粒混凝土alligator-hide crack 龟裂alligatoring 龟裂,表面裂痕all-in aggregate 毛骨料allowable amplitude 容许振幅allowable bearing capacity 容许承载力allowable bearing pressure 容许承载力allowable error 容许误差allowable factor of safety 容许安全系数allowable flexural stress 容许弯曲应力allowable load 容许荷载allowable pile bearing load 单桩容许荷载allowable pressure 容许压力allowable settlement 容许沉降量allowable strength 容许强度allowable stress design (ASD) 许用应力设计allowable value 容许值alloy 合金alpine road 高山道路alpine valley 高山河谷alternate bay 隔仓alternate design 比较设计(方案)alternate joint 错缝,错列接头alternate layout 比较设计(方案),比较布置(方案)alternate load 交变荷载alternate tooth slot 交错齿缝alternating bending 反复弯曲alternating load 交变荷载alternating motion 往复运动alternating stress 交变应力altitude 高程,海拔,高度altitude difference 高度差altitude gage 高度计,测高仪altitude level 测高水准仪alum 明矾,硫酸铝aluminium frame door 铝框门alure 廊道,通道,院廊ambient temperature 环境温度,室温ambulatory 回廊,步道amended plan 修正计划,修正平面图amount of precipitation 降雨量amplitude of vibration 振幅amusement hall 娱乐厅anchor 地锚anchor bar 锚固筋anchor bolt 地脚螺栓anchorage 抛锚,锚固,锚具,锚座anchorage beam 锚梁anchorage bearing 锚座anchorage block 锚墩,锚块anchorage cable 锚索anchorage length 锚固长度anchorage pier 锚墩anchored sheet piling 锚定式板桩ancon 肋托,悬臂托梁angle 角钢angle bar 角铁,角钢angle bead 护角,角条angle bond 角砌合,墙角拉筋,角形弯条angle brace 角撑angle branch 弯管,肋管angle catch 窗插销angle cleat 连接角钢angle fillet 三角焊缝,三角形盖板angle of repose (堆料的)安息角,休止角annex room 前室,辅助小室anodized natural aluminium colour 阳极化处理天然铝色an-seismic 抗震的anta 壁端柱antechamber 前厅,接待室antefix 檐口饰antehall 前厅anteklise 台背斜,陆背斜anteport 外门,外槛anteroom 前厅antesolariun 朝日阳台ante-venna 遮阳板,遮阳棚anti-abrasive 耐磨损的antibreaker 防碎装置anti-checking iron 扒钉,防裂钩anti-corrosion 防腐蚀anticorrosive paint 防腐涂料,防锈油漆anti-dazzle lighting 防眩灯光antidetonation 防爆,抗爆antidetonator 防爆剂,抗爆剂anti-dirt 防尘antidrip 防滴,防漏antifatigue 耐疲劳anti-fluctuator 缓冲器antifrost 防冻的,防霜的antiknock 减振,消振antinoise 防噪声的,抗噪声的anti-overloading 防过载的antioxidant 抗氧化剂,防老化剂antipollution 防污染antiputrefactive 防腐的antiresonance 防共振,防共鸣anti-rolling 防滚动的antirot 防腐的antirust 防锈的antirust coat 防锈涂层antirust composition 防锈混合剂antirust grease 防锈脂antirust oil 防锈油antirust paint 防锈漆,防锈涂料antirust solution 防锈溶液antirust varnish 防锈清漆antiscale 防垢antiseep collar 防渗环antiseepage 防渗漏anti-seismic 防震的,抗震的anti-seismic joint 抗震缝anti-settling agent 抗沉淀剂anti-shrink 抗缩的,耐缩的antiskid 防滑,抗滑anti-slide pile 抗滑桩anti-sludge 抗淤沉,去垢anti-superheating 防止过热(装置)anti-symmetrical load 反对称荷载,不对称荷载antisyphonage pipe 反虹吸管anti-thrust 止推的anti-wind beam 抗风梁anvil 铁砧,砧座,基准面,平台anvil block 砧座apatite 磷灰石aperture 小孔,壁孔,开口,缝隙apex angle 顶角apex of arch 拱顶A-pole A形柱apomecometer 测距仪aposandstone 石英岩appearance of fracture 断口形状,断口外观appentice 厢房,耳房apple coal 沥清煤application of force 施力application of load 施加荷载application program 应用程序applied force 外加力applied load 外加荷载applied moment 外施力矩applied thrust 外施推力approach bank 引堤approach bridge 引桥approach channel 引水渠,引航道,进港航道approach cutting 进洞引道挖方,引桥挖方approach embankment 引道路堤approach fill 引道填方,引桥approach ramp 引道斜坡段,引桥坡道approach road 引路,引道approach segment 临近段,临近部分approach sign 引道标志approach span 引桥跨,岸跨approach trench 交通沟,窨井,雨水口approach trestle 引道栈桥approach viaduct 高架引桥apron 散水apron flashing 遮檐板,披水板apron piece 遮檐板,披水板apron space 码头前沿区apron stone 护脚石apron wall 前护墙apse 半圆室apse-buttress 半圆室支墩apsidal 半圆室的apt (apartment) 一套房间,公寓apteral 无侧柱的aqua storage tank 储水池aqueduct bridge 渠桥,渡槽araeosystyle 对柱式的,对柱式建筑物arc melting 电弧溶化arc welding 电弧焊arc welding set 电弧焊机arcade 有拱廊的走道arcaded 有拱廊的,有拱顶的arch 拱arch abutment 拱座,拱坝坝肩arch bar 拱板arch barrel 拱形筒壳arch block 拱块,拱面石arch bond 拱砌合arch brick 拱形砖arch bridge 拱桥arch buttress 拱形支墩arch camber 拱矢,起拱arch cover 拱板,拱形屋盖arch crown 拱冠,拱顶arch falsework 拱形脚手架arch hinged at ends 双铰拱arch in trellis work 格形拱arch limb 拱翼arch-braced roof 拱支屋顶arch-core 拱心arched 起拱的arched dome 圆顶穹窿arched roof 拱形屋顶arch-flat 平拱arching 架拱,形成拱状,起拱作用archit (architecture) 建筑学architect 建筑师architective 建筑的,关于建筑的architectonic 建筑术的,构造的,结构的architectonics 建筑原理,建筑学,建筑设计,结构设计architectural 建筑上的,建筑学的architectural appearance andelevational treatment 建筑外观和立面处理architectural compatibility 建筑调和性,建筑协调性architectural complex 建筑群,建筑综合体architectural composition 建筑构造architectural design 建筑设计architectural ornament 建筑装饰物architectural style 建筑风格,建筑式样architectural treatment 建筑处理architecture 建筑学,建筑艺术architrave 框缘,(柱的)下楣,嵌线archives 档案,档案馆archway 拱廊,拱道archy 拱形的arciform 拱形的,弓形的arcuated 拱式的,弓形的are 公亩(等于100平方米)area drain 露天排水斗,地面排水沟area grating 阴井格盖area load 面荷载area method 面积法area of building 建筑面积area of pile head 桩头面积area of pumping depression 抽水降水区,抽水漏斗区area of reinforcement 钢筋面积area of section 截面积area of steel 钢筋面积area of structure 构筑物面积area of supply 补给区,补给面积area-moment method 力矩面积法,面积法areaway (建筑物之间的)通道,(地下室前的)空地arenaceous 砂质的,多砂的arenaceous limestone 砂质石灰岩arenaceous quartz 石英砂arenaceous rock 砂质岩arenose 粗砂arenyte 粗屑岩,砂粒岩argil 白土,陶土,矾土argilla 陶土,高龄土,铝氧土argillaceous 泥质的,含陶土的,粘土质的argillaceous rock 泥质岩argillaceous sandstone 泥质砂岩arid 干旱的arm 杆,臂,支架,扶手arm crane 悬臂式起重机arm of balance 平衡臂,秤杆arm of couple 力偶臂arm of force 力臂arm of wheel 轮辐armature 电枢,加强料,钢筋,附件arm-brace 撑脚armchair 扶手椅armor coat 护层armor course 道路护面层armor layer 护面层armor-clad 铠装的armored 包铁皮的armored concrete 钢筋混凝土armored door 装甲门,防火门armored glass 钢化玻璃,防弹玻璃armored wood 包铁木材armrest 扶手,靠手arm-tie 横臂拉条,斜撑,拉板arrangement drawing of the power plant area 电厂厂区布置图arrangement of the underground facilities for the power plant area 电厂厂区地下设施布置arrester 避雷器arris 棱(角),尖脊arris gutter V形檐槽arris of joint 接缝圆角arris of slab 板棱,板肋arris rail 三角轨arris-wise 成对角方向(砌砖)arroyo 干河道,旱谷,小河ARS (asbestos roof shingle) 石棉屋顶瓦art glass 彩色艺术玻璃arterial canal 干渠,总渠arterial drain 排水干沟arterial highway 干线公路arterial railway 干线铁路arterial road 干线道路arterial street 干线街道,主要街道artery 干线,大道,大路,动脉artesian (flowing) well 自流井artesian fountain 自喷喷泉artesian ground water 自流地下水articulated 铰接的articulated construction 装配式结构,活节式结构articulated dumper 铰接式翻斗车articulation 铰,关节,接合(方式)artificial 人工的,人造的artificial ground 人工地基artisan 技工,工匠artistry 艺术形,艺术手法,效果as per ... 按照...asb (asbestos) 石棉asbestic tile 石棉瓦asbeston 防火布asbestonite 石棉绝热材料asbestophalt 石棉沥青as-built drawing 竣工图ascent 爬高,上升,坡度,斜坡,(一段)阶梯as-dug gravel 原状砾石aseismic design 抗震设计aseismic region 无地震区aseismic structure 抗震结构aseptic 无菌的,防腐的,防腐剂ash 灰,粉尘,火山灰,煤渣,槐木ash bed 火山灰层ash bin 出灰桶,垃圾桶ash can 垃圾桶ash cellar 灰坑ash dump 灰堆ash hole 出灰口ash sluicing pump house 冲灰泵房ash water pump house 灰水泵房ashl (ashlar) 琢石,方石,条石,(装饰墙面的)石板ashlar facing 琢石镶面ashlaring 砌方石墙面,贴方石墙面ASL (above sea level) 海拔高度aspect 方向,方位,状况,形状,外观aspect of slope 坡向aspect ratio 长宽比,长径比,形态比asphalite 沥青矿,沥青岩asphalt base oil 沥青冷底子油asphalt board strip 沥青填缝条asphalt built-up roofing 沥青组合屋面asphalt felt 油毛毡asphalt jute cloth 沥青黄麻布assembling jig 装配机架,装配夹具assembling joint 装配接头assembly drawing 装配图,组装图assembly shop 装配车间assessable land 可征土地asymmetric configuration 不对称结构at one pouring 一次浇灌at one’s own cost (expense) 由某人自己出钱at one’s own risk 承担风险,(损失)自己负责ATC (acoustical tile ceiling) 吸声砖吊顶ATF (asphalt tile floor) 沥青砖地面atomizing spraying 雾化喷涂atrium 天井,前厅,门廊attached building 附联建筑物,配套建筑物attached pier 扶垛,支墩attachment link 连接杆attachment screw 连接螺钉,止动螺钉attic 顶楼,阁楼,屋顶室attic story 阁楼,屋顶层attle 废矿渣audience chamber 接见室,会见室audience room 接见室,会见室auditorium 大会堂,音乐厅auger 螺旋钻,麻花钻auger bit 螺旋钻头auger hole 钻孔auger stem 螺旋钻杆auget 雷管austral window 南窗,滑动窗,推拉窗autobahn 高速公路,快车道autocrane 汽车式起重机automatic door 自动门auxiliary stair 便梯auxiliary station 副厂房auxiliary structure 辅助建筑avalanche 崩落,崩塌,雪崩avalanche baffle 塌方防御设施avalanche control works 防崩工程avalanche defence 防塌,崩塌防护avalanche prevention works 防坍工程avenue 林荫道,道路,(南北向)街道average annual precipitation 平均年降水量average annual rainfall 平均年降雨量average annual runoff 平均年泾流量average grading 平均级配average grain diameter 平均粒径avoid any glare on the panels 避免盘上有任何眩光award of contract 签订合同awn (awning) 遮篷,凉篷,雨篷awning type window 篷式窗axed arch 斧斩拱面axial compression 轴向压缩,轴向受压axial elongation 轴向伸长axial force 轴向力axial load 轴向荷载axial strain 轴向应变axial stress 轴向应力axial symmetry 轴对称axial tension 轴向拉伸,轴向受拉axial torque 轴向转矩,轴向扭矩axial translation 轴向位移axis 轴,轴线axisymmetric 轴对称的axonometric projection 三向投影,不等角投影axonometry 轴测法,三向正投法azimuth 方位角,地平经度azimuth mark 方位标azimuth-elevation 方位-高程azimuth-range 方位-距离azure spar 天兰石azure stone 天兰石,青金石BB&S (beam and stringers) 横梁与纵梁back arch 拱背,墙内暗拱back bead 封低焊道,填角焊缝back brace 后部斜撑back coat 底层涂料back cutting 回挖,必要的超挖部分back drain 墙背排水管back elevation 后视图back filling 回填土back flap 里扉,里垂帘back guy 拉揽,牵索back heading 通风巷道back house 后屋back joint 待填槽back leg 背面支柱back lining 背衬,背衬料back nail 平钉back nut 防松螺帽,反向螺帽back of arch 拱背back of levee 堤背back shop 修理厂,修理车间back shore 背撑,顶撑back shutter 里百叶窗back stair 后楼梯back view 后视图,背视图back wall 后墙,胸墙backboard 底板,后板,背靠,背后挡板backbone 骨干,骨架,构架,主干backbone road 干道backer 支持物,衬垫物backer brick 墙心砖,背衬梁backfill 回填土back-filled 回填backfilling tamper 回填夯back-flap hinge 明铰链backform 后模,顶模backhaul cable 后拖缆绳backing 反向,后退,支架,靠背,背衬,里壁backing brick 墙心砖,背衬砖backing of veneer 饰面板里层backing of wall 墙托backing of window 窗托backing plank 衬板backing sand 填充砂backing strip 垫板back-land 腹地,后方backplan 底视图backsetting (砌墙)收进backstay 拉索backstay anchor 拉索锚定backstay cable 拉索backstop 托架,止回器,后障back-to-back angles T形组合角钢,背靠背组合角钢back-up brick 墙心砖,衬里砖back-up plate 垫片backyard 后院,后天井badigeon 油灰badland 荒原,瘠地,崎岖地badly graded sand 级配不良砂baffle board 挡板,折流板,隔音板baffle mixing chamber 隔板式混合池baffle pier 消力墩,分水墩baffle plate 挡板,隔板,遮护板,折流板,门槛baffle reaction chamber 隔板式反应池baffle sill 消力槛,门槛baffle structure 消力设施,消力建筑物baffle wall 消力墙,分水墙baffler 挡板,隔墙,消声器,导流板,消力器baffle-type 挡板式的,百叶窗式的bag dam 土袋埝坝bagged cement 袋装水泥baghouse 集尘室,沉渣室bagwork 砂包,袋装干拌混凝土bail 戽斗,桶,横木,吊环,钩,卡钉bailer 水斗,泥浆泵,抽泥桶bailey bridge 活动便桥bailey span 贝利式(桁架)桥跨bailey truss 贝利式桁架bakelite 酚醛塑料,胶木,电木baking finish 烤漆,烘漆balance cuts and fills 均衡挖填,挖填土方平衡balance of arch 拱脚balanced earthwork 平衡土方工程balanced sash 平衡式窗框,平衡式窗扇balanced step 均衡踏步,平衡阶梯balconied 有阳台的balcony 阳台baling 脚手杆balk 大梁,枕木balk board 隔板,障碍板,防护板balk roofing 重屋面ball bonding 球焊,球形接头,铰节ball flower 圆球饰ball joint 球节,球窝接头ballast 压舱物,压块,道渣,碎石,石渣ballast bed 石渣路基ballast chamber 压块室,平衡重室ballast concrete 石渣混凝土ballast road 石渣路ballasted 铺道渣的ballasted deck 铺道渣(铁路)桥面ballasted floor 铺渣桥面balling-up of cement 水泥(受潮)起球balloon construction 轻型构造,轻型结构balloon frame 轻型骨架balsa wood 轻木,软木Baltimore truss 平行弦再分式桁架baluster 栏杆小柱baluster column 栏杆柱baluster railing 立柱栏杆balustrade 栏杆,扶手bamboo 竹材bamboo concrete 竹筋混凝土bamboo fence 竹篱笆bamboo scaffolding 竹材脚手架band and gudgeon 长铰,大门门铰band iron 扁铁条,(窄)带钢band molding 带状线脚band rope 扁钢丝绳band tape 卷尺bandage 绷带,防潮带,铁箍,纽绳banded architrave 带饰门头线banded column 带饰柱,箍柱banded penstock 加箍压力钢管banded steel pipe 加箍钢管bandlet 细带banister 栏杆小柱banister brush 软毛刷banjo fixing 对接接头bank caving 淘岸,塌岸bank cutting 河岸侵蚀bank erosion 堤岸冲刷bank grading 河岸修坡bank gravel 河卵石,河岸砾石bank measure 填方数量bank paving 护岸bank protection 护岸(工程)bank revetment 护岸bank seat 河岸(加固)桩bank yards 未扰动土石方量(以立方码计)banked 筑有堤的,筑成堤状的,倾斜的banked earth 储存土(填土用)bankette 弃土堆,填土,护坡道bankhead 丁岸,岸首,坑口banking 筑堤,填土,堆积,斜度bank-run 河岸边的banquette 弃土堆,护坡道,凸部,窗口凳,人行道bar 钢筋bar bender 钢筋弯曲工,弯筋工bar chair 钢筋支座bar chart 柱状图,条形图bar cropper 钢筋剪断机bar cutter 钢筋剪断机bar drill 杆钻bar mat 钢筋网bar screen 格栅,格网,铁栅筛bar shape (棒形)型钢bar steel 棒钢bar stock 棒材,条材bar support 钢筋座bar tracery 铁杆窗格bar with hooked end 带钩钢筋barb bolt 刺螺栓,地脚螺栓barbed nail 刺钉barbed wire 刺铁丝bar-bending schedule 钢筋表bare-cut slope 新开挖的边坡bare-faced tenon 裸面榫头bare-faced tongue 裸面榫舌barge board 挡风板,山墙封檐板barge couple 山墙上的橼barge course 山墙沿瓦,山墙沿石板barge stone 山墙凸石,封檐石barn truss 三铰构架式桁架barracks 工棚,临时工房barrage 拦河坝,拦河闸,挡水建筑物,障碍物barred door (gate) (无门板)栅门barrel vault 筒壳barren 荒芜的,贫瘠的,多孔的,不毛之地barricade 路障,栅栏,隔板,挡墙barrier 障碍物,栅栏,隔板barrier layer 阻隔层barycenter 重心,质心basal disc 基盘basalt 玄武岩base 底板,底座base block 柱脚石,门基石base brick 碱性砖base coat 底涂层base course 基层,底层,下垫层base court 里院base failure 基础破坏base flashing 基层泛水base frame 底座,支架base lacquer 底漆base level 基准面base load 基本荷载base map 底图,工作草图base molding 底座线脚base plate 底板,地脚板base rock 基岩base treatment 地基处理base-bar 基线杆baseboard 护壁板,踢脚板basement 底层,地下室basement complex 基底杂岩basementless 无地下室的basic earthquake intensity 基本地震烈度basic load 基本荷载,主要荷载basic wind speed 基本风速basin room 洗餐具室basket 花篮状柱头,篮,吊篮,铲斗basket capital 花篮状柱头basket handle arch 三心拱basswood 椴木bastard pointing 粗嵌缝bastard stucco 粗粒水泥粉刷bastard tuck pointing 粗嵌灰缝bat 板条,挂瓦条batch bin 配料仓batch box 配料量斗batch of concrete 分批(拌和的)混凝土batch of mortar 分批(拌和的)砂浆batch plant 配料装置,拌和厂,拌和楼batched water (混凝土)一次拌和用水batching plant (混凝土)拌和厂,拌和楼bate pits 脱灰,脱斑bateau bridge 浮桥batement-light 跛窗bath closet 浴池更衣室bathroom 浴室bathtub 澡盆,浴缸bathymetric line 等深线batten 板条,挂瓦条,压缝条batten board 板条心胶合板batten door 板条门batten ends 短板条(铺地板用)batten floor 木条地板batten plate 缀合板batten plate column 缀合柱(缀板式)batten sheet piling 打板条桩battened partition 板条隔墙battened strut 钉板条的支柱battened wall 板条墙battening 钉板条batter (墙壁)内倾,倾斜,斜坡batter board 龙门板,定位板batter brace (桁架)斜撑batter leg tower 斜柱塔架batter pier 斜面桥墩batter post 斜柱battered pilaster 斜面壁柱battering wall 倾斜墙battery room 蓄电池室battlement 城墙垛bauxite 铝矾土bay 开间,跨度,柱距bay delta 海湾三角洲bay harbor 港湾bay wall 池墙bay window 凸窗,八角窗bayonet 接合销钉,卡口bayonet fixing 卡口式固定,管脚固定bayou 牛轭湖,河川支流BB (baseboard) 踢脚板be compacted at optimum moisture content 以最优含水量压(夯)实be in harmony with the architectural design of ... 与...的建筑设计相协调be located at (in) ... 位于...,座落在... be responsible for ... 对...负有责任,担负,是(造成)...的(主要)原因beacon 标志(桩),指示标,灯塔,信号塔bead 焊珠,墙角圆bead joint 圆凸勾缝beading fillet 凸圆线脚,半圆饰边beak 柱尖,壳尖beam 梁beam and girder construction 主次梁结构beam and girder floor 主次梁式楼板beam bearing block 梁垫块beam of variable cross-section 变截面梁beam on elastic foundation 弹性地基梁beam pad 梁垫beam with fixed ends 固端梁beam with simply supported ends 简支梁beam-column 梁柱,偏心受力柱beams with one overhanging end 悬臂梁beard 倒钩bearer 载体,支座,托架,承木bearing course 承重层bearing pile 支承桩bearing plate 支承垫板,承重板bearing pressure 承压力bearing wall 承重墙bearing-type high strength bolt 承压型高强度螺栓beautification 美化,装饰beaver board 木纤维板becket 环索,绳环bed course 垫层bed molding 深凹饰bed of brick 砖铺垫层bed piece 垫板,底板,座板bed soil 地基bed timber 垫木,枕木bedding 基底,垫层bedding mortar 垫层砂浆bedding of brick 砖铺垫层bedding slip 层面滑动beech 山毛榉beef wood 硬红木beetling cliff 悬崖beetling wall 峭壁Belfast roof truss 弓形屋顶桁架Belfast truss 弓形桁架bell end 承插端,扩大端belled-out pile 扩底桩,扩孔桩belled-out pit 扩大竖井belled-out section 扩大断面bell-mouthed opening 漏斗口bell-shaped capital 钟形柱头bellying in 向内凸胀bellying out 向外凸胀below ground 地面以下below-norm 限额以下belt 地带,环形铁路belt conveyor floor 运输皮带层belt heading 运输巷道belt highway 环路,带状公路belt line 环形线belt of weathering 分化带belting course 带状层,垫层bench blasting 阶梯式爆破,台阶式爆破bench cut 阶梯式开挖,台阶式开挖bench excavation 阶梯式开挖bench flume 支架式渡槽bench land 台地bench mark 水准点,基准点bench method 台阶式挖土法,分层开挖法bench section 横断面bench slopes 台阶式边坡bench terrace 梯田,台地,阶地bench wall 拱座benched 阶梯式的,台阶式的benched foundation 阶梯式基础benchtop cave 半敞开小室bend in river 河湾,河曲bending 弯曲bending moment 弯矩bending moment envelope 弯矩包络线bent 弯曲,弯头,排架bent frame 排架bentonite 膨润土,斑脱土,斑脱岩bent-up bar 弯起钢筋berm 护坡道,(公路两旁的)路肩berth 停泊处,泊位berthage 泊位,停泊费besel 监视窗,监视孔betterment 改善,改进,改良,修缮和扩建bevel 斜面,斜角,倾斜,斜削beveled edge 斜削边,坡口边,倒斜板边bevelled sleeper 楔形垫木bias torque 偏转力矩bicable ropeway 双揽索道biconcave 双面凹的biconvex 双面凸的bifurcated line 分叉线bifurcation structure 分叉结构,分水结构big-end-down 上小下大的big-end-up 上大下小的bike shed 自行车棚bilection 凸出嵌线bilevel 错落式住宅bilge 弯度,矢高,拱度,鼓胀,突出,舱底bill of quantities 工程量表bimoment 双力矩bin 料仓,料斗,斜坡道bina 坚硬粘土岩bind 结合,粘合,系杆,撑条,胶泥,页岩binder 粘合剂,系梁binding agent 粘结剂binding beam 联接梁binding bolt 连接螺栓binding power 结合力,粘合力binding rivet 结合铆钉,紧固铆钉binding screw 结合螺钉,紧固螺钉biparting doors 双扇门,对开门bipod 双脚架birch 桦木bird’s-eye view 鸟瞰图bitulith (路面用)沥青混凝土bitulithic pavement 沥青混凝土路面bitumen 沥青bituminous felt 石油沥青油毡black and white work 木石构造blackout building 无窗房屋blacksmith shop 锻工车间blading compaction 刮平压实blank arcade 封闭拱廊,假拱廊blank arch 轻拱,假拱,装饰拱blank door 假门,暗门blank wall 无门窗的墙blank window 假窗,暗窗blanket area 覆盖面积blast-furnace cement 高炉矿渣水泥blast-resistant door 防爆门bleeding cement (混凝土)水泥浮浆bleeding of concrete 混凝土泌浆(现象)blind balustrade 实心栏杆blind ditch 暗沟,盲沟,填碎石的排水沟壑blind door 百叶门,暗门,装饰门blind drain (排水)暗沟blind drainage 暗沟排水blind tracery 实心窗格blind wall 无窗墙blind window 百叶窗blinding 堵塞,填塞,盖土,填砂石blinding concrete 盖面混凝土,填充混凝土blinding layer (基础)垫层blinding material 透水填料,暗沟填料blister 气泡,气孔,起皮block 块体,砌块,街区,大楼block and cross bond 丁砖与顺砖交叉砌合block bond 丁砖与顺砖隔层砌合block bridging 横撑block capital 方块式柱头block cast 整铸block caving 大块坍落block construction 大型砌块结构block joint 预留砖孔,预留混凝土块孔(作接头用)block lining 混凝土板块衬砌block mount 组合装配block out 画草图,拟计划block placement (混凝土)分区浇筑block plan 分区平面block up 堵塞,垫高blockage 堵塞,封闭,锁定,障碍物,小方石blocked course 块状砌物blocked fault 块(状)断层blocked finish (混凝土)表面磨光(用金刚砂)blocked joint 分段连结blockglide 块状滑动,地块滑坍blockhouse 木屋,工棚,砌块屋,地堡,水泥掩体block-in-course 嵌入锲块层,成层砌石块体blocking 阻塞,分段,分块,压檐墙blocking level 阻挡层blockyard (混凝土)预制构件厂blue brick 青砖blueprint 蓝图,晒图bluff 悬崖,陡壁,天然陡坡bluff work 边坡整平工作board 木板boarding 隔板,镶板,地板,板条,起纹board-rule 量木尺boasted ashlar 粗凿石板boasting (石料的)粗琢boatswain’s chair 高处工作台(绳系吊板)bob 秤锤,悬锤bobtail truss 截尾桁架body brick 优质烧透砖body case 壳体,外壳body of ballast 道渣层body plan 正面图body stress 自重应力boiler house 锅炉房Bollman truss 包尔曼桁架(多弦三角形桁架)bolster 垫枕,垫块,支撑物,承梁板,托木bolt 螺栓,插销,门闩bolt head 螺栓头bolus 团块,胶块土,陶土bond 粘合,砌合,胶结,粘合剂,粘合力bond beam 结合梁bond between concrete and steel 钢筋与混凝土的结合力bond open 焊缝裂开,焊接断开bond tile 搭接瓦bondability (钢筋与混凝土的)结合力,握裹力bonded roof 砌合屋顶bonded tendon 与混凝土结合的预应力钢筋束bonder 砌墙石,顶砖bonder wire (钢筋)绑扎钢丝bonding 支撑,加固,砖石砌体砌合bonding brick 空心墙连接砖,接合砖bone 骨架bonnet hip tile 屋脊弯瓦boom 吊杆,起重臂,钻架,横木,栏木,横江铁索boom net 栅栏网booth 小房子,小亭,公用电话亭,暗箱,窝棚border 边缘,框,壁,周界,国界,路缘,田埂border dike 围堤bordering 边界标志物,边,缘borderland 交界地区,边缘地bore pit 探井,钻探坑bored cast-in-place pile 钻孔灌注桩,钻孔桩bored pile 钻孔(灌注)桩borehole 钻孔borehole log 钻孔柱状图boring 钻探boring frame 钻探架,钻井架borrow 取土,采料,采料场borrow pit 取土坑,采料场bosom 对接连接角钢,角撑Boston caisson 管柱沉井施工法bottom chord 下弦bottom cut 底槽,下部掏槽bottom die 底模bottom door 排水底孔,清扫孔,底门bottom flange (梁的)底翼缘bottom view 底视图bottom rail (门窗的)下横档bottoming 石块铺底bottomland 盆地,洼地,滩地bottom-up 倒置,颠倒boundary wall 厂区围墙bow girder 弓形大梁bow member 弓形构件bowl 洼地box beam 箱形梁box cut 开挖槽box dam 整体围堰,箱式围堰,箱形坝box foundation 箱形基础box girder 箱形(截面)大梁box steel sheet piling 箱式钢板桩box strut 箱形(截面)支柱box-framed construction 箱形框架结构boxwood 黄杨木brace 支柱,支撑,拉板,系杆,曲柄braced 加支撑的,联接的braced core building 格架式筒体建筑bracing boom 加劲杆,支撑杆bracing in open cut 明挖支撑bracket 牛腿,托架bracket stringer 挑出式楼梯斜梁brad 土钉,角钉,曲头钉,无头钉brail 斜撑杆,斜撑梁brandreth 铁架,三脚架,井栏brash 崩解石块,破碎片,易碎的,脆的brass 黄铜brazed 铜焊的,硬焊的break ground 破土,动工breakdown point 屈服点,击穿点breaking load 破坏荷载breaking-in 插入,嵌入,breakjamb 门框边挺break-off 破坏,断开breakwind 防风墙,挡风罩breast 掌子面,侧面,梁底,窗腰breast molding 窗下墙线脚breast summer 托墙梁,过梁breeze block 水泥砖,煤渣石,(轻质)煤渣混凝土砌块brick 砖brick and reinforced concrete。
外文文献译文(建筑工程)
黄山学院毕 业 设 计系 别:_________________________班 级:_________________________姓 名:_________________________指 导 教 师:_______郭富__________________2010年5月8 日刘星 10土对本(2)班 土木工程系目录1 中文翻译 (1)1.1钢筋混凝土 (1)1.2土方工程 (2)1.3结构的安全度 (3)2 外文翻译 (6)2.1 Reinforced Concrete (6)2.2 Earthwork (7)2.3 Safety of Structures (9)1 中文翻译1.1钢筋混凝土素混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。
将可塑的混凝土拌合物注入到模板内,并将其捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。
其最终制成品具有较高的抗压强度和较低的抗拉强度。
其抗拉强度约为抗压强度的十分之一。
因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度。
由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此,需要对结构设计的基本原理进行修改。
将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置,可以最好的利用这两种材料。
这一要求是可以达到的。
因混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的形状。
如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经久耐用,配置钢筋后,可以作为任何结构体系的主要构件。
浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等。
对于梁、柱、墙等构件,当模板清理干净后应该在其上涂油,钢筋表面的锈及其他有害物质也应该被清除干净。
土木工程专业外文翻译--土木工程
外文原文:Civil EngineeringCivil engineering is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket launching facilities.Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airport, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to self-contained communities.The word civil derives from the Latin for citizen. In 1782, Englishman John Seaton used the term to differentiate his nonmilitary engineering work from that of the military engineers who predominated at the time. Since then, the term civil engineer has often been used to refer to engineers who build public facilities, although the field is much broader.Scope Because it is so broad, civil engineering is subdivided into a number of technical specialties. Depending on the type of project, the skills pf many kinds of civil engineer specialties may be needed. When a project begins, the site is surveyed and mapped by civil engineers who experiment to determine if the earth can bear the weight of project. Environmental specialists study the project’s impact on the local area, the potential for air and groundwater pollution, the project’s impact on local animal and plant life, and how the project can be designed to meet government requirements aimed at protecting the environment. Transportation specialists determine what kind of facilities are needed to ease the burden on local roads and other transportation networks that will result from the completed project. Meanwhile, structural specialists raise preliminary data to make detailed designs, plans, and specifications for the project. Supervising and coordinating the work of these civil engineer specialists, from beginning to end of the project, are the construction management specialists. Based on information supplied by the other specialists, construction management civil engineers estimate quantitiesand costs of materials and subcontractors, and perform other supervisory work to ensure the project is completed on time and as specified.Many civil engineers, among them the top people in the field, work in design. As we have seen, civil engineers work on many different kinds of structures, so it is normal practice for an engineer to specialize in just one kind. In designing buildings, engineers often work as consultants to architectural or construction firms. Dams, bridges, water supply systems, and other large projects ordinarily employ several engineers whose work is coordinated by a system engineer who is in charge of the entire project. In many cases, engineers from other disciplines are involved. In a dam project, for example, electrical and mechanical engineers work on the design of the powerhouse and its equipment. In other cases, civil engineers are assigned to work on a project in another field; in the space program, for instance, civil engineers were necessary in the design and construction of such structures as launching pads and rocket storage facilities.Throughout any given project, civil engineers make extensive use of computers. Computes are used to design the project’s various elements (computer-aided design, or CAD) and to manger it. Computers are a necessity for the modern civil engineer because they permit the engineer to efficiently handle the large quantities of data needed in determining the best way to construct a project.Structural engineering In this specialty, civil engineers plan and design structures of all types, including bridges dams, power plants, supports for equipment, special structures for offshore projects, the United States space program, transmission towers, giant astronomical and radio telescopes, and many other kinds of projects.Using computers, structural engineers determine the forces a structure must resist, its own weight, wind and hurricane forces temperature changes that expand or contract construction materials, and earthquakes. They also determine the combination of appropriate materials: steel, concrete, plastic, stone, asphalt, brick, aluminum, or other construction materials.Water resources engineering Civil engineers in this specialty deal with all aspects of the physical control of water. Their projects help prevent floods, supply water for cities and for irrigation, manage and control rivers and water runoff, and maintain beaches and other waterfront facilities. In addition, they design and maintain harbors, canals, and locks, build huge hydroelectric dams and smaller dams and water impoundments of all kinds, help design offshorestructures, and determine the location of structures affecting navigation.Geotechnical engineering Civil engineers who specialize in this filed analyze the properties of soils and rocks that support structures and affect structural behavior. They evaluate and work to minimize the potential settlement of buildings and other structures that stems from the pressure of their weight on the earth. These engineers also evaluate and determine how to strengthen the stability of slopes and how to protect structures against earthquakes and the effects of groundwater.Environmental engineering In this branch of engineering, civil engineers design, build, and supervise systems to provide safe drinking water and to prevent and control pollution of water supplies, both on the surface and underground. They also design, build, and supervise projects to control or eliminate pollution of the land and air. These engineers build water and wastewaters treatment plants, and design air scrubbers and other devices to minimize or eliminate air pollution caused by industrial processes, incineration, or other smoke-producing activities. They also work to control toxic and hazardous wastes through the construction of special dump sites or the neutralizing of toxic and hazardous substances. In addition the engineers design and manage sanitary landfills to prevent pollution of surrounding land.Transportation engineering Civil engineers working in this specialty build facilities to ensure safe and efficient movement of both people and goods. They specialize in designing and maintaining all types of transportation facilities, highways and streets, mass transit systems, railroads and airfields ports and harbors. Transportation engineers apply technological knowledge as well as consideration of the economic, political, and social factors in designing each project. They work closely with urban planners since the quality of the community is directly related to the quality of the transportation system.Pipeline engineering In this branch of civil engineering, engineers build pipelines and related facilities, which transport liquids, gases, or solids ranging from coal slurries (mixed coal and water) and semi liquids wastes, to water, oil and various types pf highly combustible and noncombustible gases. The engineers determine pipeline design, the economic and environmental impact of a project on regions it must traverse, the type pf materials to be used-steel, concrete, plastic, or combinations of various materials, installation techniques, methods for testing pipeline strength, and controls for maintaining proper pressure and rate of flow of materials being transported. When hazardous materials are being carried, safety is a major consideration as well.Construction engineering Civil engineers in this field oversee the construction of a project from beginning to end. Sometimes called project engineers, they apply both technical and managerial skills, including knowledge of construction methods, planning, organizing, financing, and operating construction projects. They coordinate the activities of virtually everyone engaged in the work: the surveyors, workers who lay out and construct the temporary roads and ramps, excavate for the foundation, build the forms and pour the concrete; and workers who build the steel frame-work. These engineers also make regular progress reports to the owners of the structure.Construction is a complicated process on almost all engineering projects. It involves scheduling the work and utilizing the equipment and the materials so that coats are kept as low as possible. Safety factor must also be taken into account, since construction can be very dangerous. Many civil engineers therefore specialize in the construction phase.Community and urban planning Those engaged in this area of civil engineering may plan and develop communities within a city, or entire cities. Such planning involves far more than engineering considerations; environmental, social, and economic factors in the use and development of land and natural resources are also key elements. They evaluate the kinds of facilities needed, including streets and highways, public transportation systems, airports, and recreational and other facilities to ensure social and economic as well as environmental well-being.Photogrammetry, surveying, and mapping The civil engineers in this specialty precisely measure the Earth’s surface to obtain reliable information for locating and designing engineering projects. This practice often involves high-technology methods such as satellite and aerial surveying, and computer processing of photographic imagery. Radio signals from satellites, scanned by laser and sonic beams, are converted to maps to provide very accurate measurements for boring tunnels, building highways and dams, plotting flood control and irrigation projects, locating subsurface geologic formations that may affect a construction project and a host of other building uses.Other specialties Three additional civil engineering specialties that are not entirely within the scope of civil engineering teaching.Engineering research Research is one of the most important aspects of scientific and engineering practice. A researcher usually works as a member of a team with other scientists and engineers. He or she is often employed in alaboratory that financed by government or industry. Areas of research connected with civil engineering include soil mechanics and soil stabilization techniques, and also the development and testing of new structural materials.Engineering management Many civil engineers choose careers that eventually lead to management. Others are also to start their careers in management positions. The civil engineer manager combines technical knowledge with an ability to organize and coordinate worker power, materials, machinery, and money. These engineers may work in government municipal, county, state, or federal; in the U.S.Army Corps of Engineers as military or civilian management engineers; or in semiautonomous regional or city authorities or similar organization. They may also manage private engineering firms ranging in size from a few employees to hundreds.Engineering teaching The civil engineer who chooses a teaching career usually teaches both graduate and undergraduate students in technical specialties. Many teaching civil engineers engage in basic research that eventually leads to technical innovations in construction materials and methods. Many also serve as consultants on engineering projects, or on technical boards and commissions associated with major projects.中文译文:土木工程土木工程是指对建成环境的规划、设计、建造、管理等一系列活动。
土木工程专业常用英语词汇
土木工程专业常用英语词汇第一节普通术语3. 房屋建造工程building engineering4. 土木工程civil engineering除房屋建造外,为新建、改建或扩建各类工程的建造物、构筑物和相关配套设施等所举行的勘察、计划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
5. 马路工程highway engineering10. 建造物(构筑物)construction works房屋建造或土木工程中的单项工程实体。
11. 结构structure12. 基础foundation13. 地基foundation soil; subgrade; subbase; ground14. 木结构timber structure16. 钢结构steel structure17. 混凝土(砼)结构concrete structure18. 特种工程结构special engineering structure22. 马路highway24. 高速马路freeway27. 铁路(铁道)railway; railroad28. 标准轨距铁路standard gauge railway29. 宽轨距铁路broad gauge railway第四节桥、涵洞和隧道术语1. 桥bridge2. 简支梁桥simple supported girder bridge3. 延续梁桥continuous girder bridge5. 斜拉(斜张)桥cable stayed bridge6. 悬索(吊)桥suspension bridge7. 桁架桥trussed bridge9.刚构(刚架)桥rigid frame bridge10.拱桥arch bridge13.正交桥right bridge14.斜交桥skew bridge16.高架桥viaduct17.正(主)桥main span18.引桥approach span19.弯桥curved bridge21.马路铁路两用桥combined bridge; highway and railway transit bridge 25.桥跨结构(上部结构)bridge superstructure26.桥面系bridge floor system27.桥支座bridge bearing; bridge support28.桥下部结构bridge substructure29.索塔(桥塔)bridge tower30.桥台abutment31.桥墩pier32.涵洞culvert第六节结构构件和部件术语1.构件member2.部件component; assembly parts3.截面section4.梁beam; girder5.拱arch6.板slab; plate8.柱column10.桁架truss11.框架frame12.排架bent frame13.刚架(刚构)rigid frame14.简支梁simply supported beam15.悬臂梁cantilever beam16.两端固定梁beam fixed at both ends17.延续梁continuous beam19.桩pile20.板桩sheet pile34. 钢轨rail第七节地基和基础术语1. 扩展(扩大)基础spread foundation2. 刚性基础rigid foundation3. 自立基础single footing4. 联合基础combined footing5. 条形基础strip foundation6. 壳体基础shell foundation7. 箱形基础box foundation8. 筏形基础raft foundation9. 桩基础pile foundation10. 沉井基础open caisson foundation11. 管柱基础cylinder pile foundation ; cylinder caisson foundation12. 沉箱基础caisson foundation1. 可靠性reliability2. 安全性safety3. 适用性serviceability4. 耐久性durability5. 基本变量basic variable6. 设计基准期design reference period7. 可靠概率probability of survival8. 失效概率probability of failure9. 可靠指标reliability index12. 概率设计法probabilistic method13. 容许应力设计法permissible (allowable) stresses method14. 破坏强度设计法ultimate strength method15. 极限状态设计法limit states method16. 极限状态limit states17. 极限状态方程limit state equation18. 承载能力极限状态ultimate limit states19. 正常使用极限状态serviceability limit states20. 分项系数partial safety factor21. 设计情况design situation22. 持久情况persistent situation23. 短暂情况transient situation24. 偶尔情况accidental situation1. 作用action2. 荷载load3. 线分布力force per unit length4. 面分布力force per unit area5. 体分布力force per unit volume6. 力矩moment of force7. 永远作用permanent action8. 可变作用variable action9. 偶尔作用accidental action10.固定作用fixed adtion11.自由(可动)作用. Free action12. 静态作用static action13. 动态作用dynamic action14. 多次重复作用repeated action; cyclic action16. 自重self weight17. 施工荷载site load18. 土压力earth pressure19. 温度作用temperature action20. 地震作用earthquake action22.风荷载wind load23.风振wind vibration24. 雪荷载snow load27.桥(桥梁)荷载load on bridge28.桥(桥梁)恒荷载dead load on bridge29.桥(桥梁)活荷载live load on bridge30.马路车辆荷载标准Standard highway vehicle load31.中国铁路标准活载Standard Railway Live Load Specified by the People’sRepublic of China44.作用代表值representative value of an action45.作用标准值characteristic value of an action46.作用准永远值quasi-permanent value of an action47.作用组合值combination value of actions48.作用分项系数partial safety factor for action49.作用设计值design value of an action50.作用组合值系数coeffcient for combination value of actions 51.作用效应effects of actions52.作用效应系数coefficient of effects of actions53.轴向力normal force\axial force54.剪力shear force55.弯矩bending moment57.扭矩torque58.应力stress59.正应力normal stress60.剪应力shear stress; tangential stress61.主应力principal stress62.预应力prestress63.位移displacement64.挠度deflection65.变形deformation66.弹性变形elastic deformation67.塑性变形plastic deformation70.应变strain71.线应变linear strain72.剪应变shear strain; tangential strain73.主应变principal strain74.作用效应组合combination for action effects75.作用效应基本组合fundamental combination for action effects 77.短期效应组合combination for short-term action effects 78.持久效应组合combination for long-term action effects 79.设计限值limiting design value1.抗力resistance2.强度strength3.抗压强度compressive strength4.抗拉强度tensile strength5.抗剪强度shear strength6.抗弯强度flexural strength7.屈服强度yield strength8.疲劳强度fatigue strength9.极限应变ultimate strain10.弹性模量modulus of elasticity11.剪变模量shear modulus12.变形模量modulus of deformation13.泊松比Poisson ratio14.承载能力bearing capacity15.受压承载能力compressive capacity16.受拉承载能力tensile capacity17.受剪承载能力shear capacity18.受弯承载能力flexural capacity19.受扭承载能力torsional capacity20.疲劳承载能力fatigue capacity21.刚度stiffness; rigidity22.抗裂度crack resistance23.极限变形ultimate deformation24.稳定性stability26.脆性破坏brittle failure27.延性破坏ductile failure30.材料性能分项系数partial safety factor for property of material。
土木工程专业毕业设计外文文献翻译2篇
土木工程专业毕业设计外文文献翻译2篇XXXXXXXXX学院学士学位毕业设计(论文)英语翻译课题名称英语翻译学号学生专业、年级所在院系指导教师选题时间Fundamental Assumptions for Reinforced ConcreteBehaviorThe chief task of the structural engineer is the design of structures. Design is the determination of the general shape and all specific dimensions of a particular structure so that it will perform the function for which it is created and will safely withstand the influences that will act on it throughout useful life. These influences are primarily the loads and other forces to which it will be subjected, as well as other detrimental agents, such as temperature fluctuations, foundation settlements, and corrosive influences, Structural mechanics is one of the main tools in this process of design. As here understood, it is the body of scientific knowledge that permits one to predict with a good degree of certainly how a structure of give shape and dimensions will behave when acted upon by known forces or other mechanical influences. The chief items of behavior that are of practical interest are (1) the strength of the structure, i. e. , that magnitude of loads of a give distribution which will cause the structure to fail, and (2) the deformations, such as deflections and extent of cracking, that the structure will undergo when loaded underservice condition.The fundamental propositions on which the mechanics of reinforced concrete is based are as follows:1.The internal forces, such as bending moments, shear forces, and normal andshear stresses, at any section of a member are in equilibrium with the effect of the external loads at that section. This proposition is not an assumption but a fact, because any body or any portion thereof can be at rest only if all forces acting on it are in equilibrium.2.The strain in an embedded reinforcing bar is the same as that of thesurrounding concrete. Expressed differently, it is assumed that perfect bonding exists between concrete and steel at the interface, so that no slip can occur between the two materials. Hence, as the one deforms, so must the other. With modern deformed bars, a high degree of mechanical interlocking is provided in addition to the natural surface adhesion, so this assumption is very close to correct.3.Cross sections that were plane prior to loading continue to be plan in themember under load. Accurate measurements have shown that when a reinforced concrete member is loaded close to failure, this assumption is not absolutely accurate. However, the deviations are usually minor.4.In view of the fact the tensile strength of concrete is only a small fraction ofits compressive strength; the concrete in that part of a member which is in tension is usually cracked. While these cracks, in well-designed members, are generally so sorrow as to behardly visible, they evidently render the cracked concrete incapable of resisting tension stress whatever. This assumption is evidently a simplification of the actual situation because, in fact, concrete prior to cracking, as well as the concrete located between cracks, does resist tension stresses of small magnitude. Later in discussions of the resistance of reinforced concrete beams to shear, it will become apparent that under certain conditions this particular assumption is dispensed with and advantage is taken of the modest tensile strength that concrete can develop.5.The theory is based on the actual stress-strain relation ships and strengthproperties of the two constituent materials or some reasonable equivalent simplifications thereof. The fact that novelistic behavior is reflected in modern theory, that concrete is assumed to be ineffective in tension, and that the joint action of the two materials is taken into consideration results in analytical methods which are considerably more complex and also more challenging, than those that are adequate for members made of a single, substantially elastic material.These five assumptions permit one to predict by calculation the performance of reinforced concrete members only for some simple situations. Actually, the joint action of two materials as dissimilar and complicated as concrete and steel is so complex that it has not yet lent itself to purely analytical treatment. For this reason, methods of design and analysis, while using these assumptions, are very largely based on the results of extensive and continuing experimental research. They are modified and improved as additional test evidence becomes available.钢筋混凝土的基本假设作为结构工程师的主要任务是结构设计。
国外土建工作必备英语词汇总结
国外土建工作必备英语词汇总结在国外进行土建工作时,了解并掌握相关的英语词汇是非常重要的。
以下是一些必备的土建工作英语词汇总结:1. 基础 Foundation2. 桩 Pile3. 混凝土 Concrete4. 钢筋 Reinforcement Steel5. 模板 Formwork6. 土方开挖 Earthwork Excavation7. 回填 Backfill8. 混凝土浇筑 Concrete Pouring9. 钢筋加工 Reinforcement Steel Fabrication10. 混凝土养护 Concrete Curing11. 混凝土试块 Concrete Sample Block12. 混凝土强度 Concrete Strength13. 钢筋连接 Steel Connection14. 混凝土表面处理 Concrete Surface Treatment15. 排水系统 Drainage System16. 砌筑 Masonry17. 抹灰 Plastering18. 石膏石膏 Plaster of Paris19. 瓷砖 Tile20. 油漆 Paint21. 木工 Carpentry22. 水电安装 Plumbing and Electrical Installation23. 通风系统 Ventilation System24. 消防系统 Fire Protection System25. 安全设施 Safety Facilities26. 验收 Acceptance Check27. 保修 Warranty28. 工程记录 Project Records29. 施工计划 Construction Plan30. 工程量清单 Bill of Quantities31. 工程预算 Project Budget32. 工程结算 Project Settlement33. 工程变更 Engineering Change Order (ECO)34. 工程延期 Extension of Time (EOT)35. 索赔 Claims36. 分包 Subcontracting37. 材料 Material38. 供应商 Supplier39. 施工机械 Construction Equipment40. 工作许可证 Work Permit41. 环境影响评估 Environmental Impact Assessment (EIA)42. 安全培训 Safety Training43. 安全演习 Safety Drill44. 施工图纸 Construction Drawings45. 技术规格 Technical Specifications (TS)46. 工程管理 Project Management (PM)47. 项目管理软件 Project Management Software (PMS)48. 工程进度监控 Project Progress Monitoring (PPM)49. 工程质量管理 Project Quality Management (PQM)50. 工程安全管理 Project Safety Management (PSM)51. 合同管理 Contract Administration (CA)52. 成本估算 Cost Estimation (CE)53. 工程变更指令 Engineering Change Directive (ECD)54. 工期延误索赔 Extension of Time Claim (ETC)55. 工程保险 Project Insurance (PI)56. 验收测试和演示 Acceptance Test and Demonstration (ATD)57. 项目后评估 Post-project Evaluation (PPE)58. 项目总结 Project Summary (PS)59. 项目移交 Project Handover (PH)60. 项目审计 Project Audit (PA)61. 项目团队 Project Team (PT)62. 项目经理 Project Manager (PM)63. 工料测量师 Quantity Surveyor (QS)64. 总承包商 General Contractor (GC)65. 分包商 Subcontractor (SC)66. 设计顾问 Design Consultant (DC)67. 承包商 Contractor (C)68. 发包人 Employer (E)69. 工料合同 Labour and Materials Contract (L&M)。
土建英语词汇
1土建英语词汇C i v i l E n g l i s h G l o s s a r y一、设计专业工艺(专业):process design/engineering系统(专业):systems engineering设备(专业):equipment engineering布置(专业):plant layout engineering管道设计(专业):piping design管道机械(专业):piping mechanical engineering仪表(专业):instruments engineering电气(专业):electrical engineering建筑(专业):architectural土建(专业):civil engineering设计阶段:engineering phase基础工程设计阶段:basic engineering phase详细工程设计阶段:detailed engineering phase二、图纸扬子石化—巴斯夫有限责任公司BASF-YPC Company Limited一体化石化项目—中国,南京IPS PROJECT—NANJING,CHINA中国石化洛阳石油化工工程公司:SINOPEC LUOY ANG PETROCHEMICAL ENGINEERING CORP.中海壳牌南海石化项目:CSPC NANHAI PETROCHEMICALS PROJECT丽东芳烃项目:LIDONG AROMATICS COMPLEX PROJECT 冷却塔(南区):COOLING TOWERS (SOUTH)施工图纸:working drawing,construction drawing工艺装置:process unit工艺流程图:process flow diagram [PED]装置布置图:plot plan会签:inter discipline check图号:DWG NO.资质等级grade of qualification设计:designed by校对:checked by审核:supervisor附注:notes图例:legend剖面:section 平面图:layout plan立面图:elevation结构布置图:structure plan配筋图:reinforcing plan模板图:form plan三、结构基础:foundation基础梁:foundation beam桩基础:pile foundation桩承台:pile capping打桩机:pile driver振动打桩机:vibratory driver打桩:pile drivingZ2101泵吸水池详图:pump basin detail forZ2101冷却塔水池:Cooling tower basin池壁:wall伸缩缝:expansion and contraction joint底板:bottom slab水池顶板:basin top slab风机基础详图:fan foundation detail现浇墙板:cast-in-place wall panel预制墙板:pre-cast wall panel钢筋混凝土框架:reinforced concrete frame钢筋混凝土柱:reinforced concrete column牛腿:bracket钢筋混凝土现浇板:cast-in-placereinforced concrete slab地下管道:underground trench斜梁:stringer平台梁:beams of platform悬臂梁:cantilever beam女儿墙:parapet人孔盖板:manhole cover集水坑;catchment pit溢流槽:flood relief channel爬梯:ladderpretensioned spun concrete piles先张法预应力混凝土管桩四、材料预埋件embedded plate钢板steel plate钢圆环:steel ring plate雨水篦子板:rain water grating钢筋reinforcing bar热轧光圆钢筋:hot rolled plain steel bars 热轧带肋钢筋:hot rolled ribbed steel bars I 级:grade I插筋:anchor rebar钢筋锚固长度:bond length of rebars钢筋搭接:bar splicing箍筋:stirrup纵向钢筋:longitudinal bar弯起钢筋,元宝筋:bend bar钢筋间距:rod spacing搭接长度:overlapping length不锈钢栏杆:stainless steel handrail支架:support电缆槽盒支架:cable trench support仪表槽盒支架:instrument trench support 螺母:nut锚栓:anchor boltM30六角螺帽:M30 six angle screw cap外露100,丝扣80:outcrop 100, thread 80 地脚螺栓,基础螺栓:foundation bolt垫片:washer间隔布置:interval set早强剂:early-strength admixture防冻附加剂:antifreeze admixture混凝土:C40 concrete: class:40细石混凝土:fine aggregate concrete配合比:mixture ratio抗渗等级:P8 seepage class::P8抗压强度:compression strength混凝土保护层厚度:minimum concrete cover 砂:sand卵石:pebble碎石:crushed stone砾石:gravel骨料:aggregate水泥:cement普通硅酸盐水泥:ordinary portland cement粘土砖:clay brick垫层:cushion装饰工程(抹灰、涂料、刷浆)1:2水泥砂浆20厚:1:2 cenment mortar thickness 20mm 找平层:leveling blacket抹灰:plastering抹平,找平:screeding抹光,压光:trowel finish抹子:trowel抹灰底层:rendering coat抹灰罩面层:setting coat灌缝:grout填料:filling收水器:drift eliminator工艺管道:process pipe套管:pipe sleeve壁厚:wall thickness翼环:plate ring石棉水泥:asbestos cement油麻:oil-- hemp橡胶止水带:rubber water stop密封胶:joint sealant填缝板:joint filler沥青涂层:asphalt coating镀锌铁皮:galvanized iron sheet五、测量轴线:axes坐标:coordinate标高:elevation; datum mark中心标高:center elevation相对标高:relative elevation绝对标高:absolute elevation平面控制:plane control高程控制:elevation control经纬仪:transit水准仪:surveyor’s level水准点:bench mark基准点,标高:datum mark坐标控制点:the coordinate control points 测杆:surveying rod钢卷尺:steel tape六、项目管理项目经理:Project Manager设计经理:Engineering Manager施工经理:Construction ManagerQA/QC经理:QA/QC ManagerHSE经理:HSE Manager采购经理:Procurement Manager控制经理:Control Manager承包商: contractor分包商: Subcontractor分包合同:subcontract项目计划:project plan(项目)设计计划:(project) engineering plan (项目)采购计划:(project) procurement plan (项目)施工计划:(project) construction plan (项目)开车计划:(project) start-up plan项目主进度计划:project master schedule详细进度计划:detailed schedule进度控制:schedule control; progress control进度提前:ahead of schedule进度拖延:schedule delay开车:start-up试车:commissioning投料试车:start-up; test run; initial operations 用户验收,装置验收:client acceptance; plant acceptance七、招标、投标、合同投标书: Form of Bid签署人:Signed by投标文件:The Bid Documents商务标:confidential commercial bid技术标:Technical Bid报价表:Cost Breakdown Sheet投标确认书:Form of acknowlegement投标邀请函(招标文件):ITB Documents投标邀请函:invitation to bid第一部分(节) : sectionⅠ.给投标人的指令:instruction to bidder section Ⅱ.合同协议书(草案):contract agreement(draft)section Ⅲ.合同条件:conditions of contractsection Ⅳ.合同附件:Appendix for the contract投标保函:bid bond履约保函:performance bind履约担保书:performance bank guarantee授权委托书:power of attorney委托代理人(被授权人):Signature of Attorney 法定代表人(授权人):Signature of legal representative合同生效日期:effective date of the contract合同终止:termination of contract合同失效:frustration of contract总价合同:lump-sum contract【L-S】(固定)单价合同:(fixed) unit price contract 偿付合同,成本加酬金合同:(cost) reimbursable contract; cost-plus(fee) contract 【C-P】预付款:advance payment; down payment保留金:retentin money最终付款:final payment未可预见费:contingency八、施工开工会议:kick-off meeting施工组织设计:construction execution plan施工技术方案:technical proposal工期:construction period施工阶段:construction stage (phase)施工进度:construction progress工程进度款:progress payment工程量:quantities工程造价:construction cost工程预算:construction budget工日:man-day工时:man-hour工地, 施工现场:building site, construction site安装工程:installation work安装费:installation expenses施工单位:construction unit安全帽:protective cap,safety helmet安全带:protecting band, safety belt久、施工机械设备挖掘:excavate挖土机:excavator履带式推土机:crawler dozer履带式起重机:crawler crane反铲挖土机:back digger挖沟机:trench digger铲运机:scraper压路机:road roller翻斗车:tipping skip自卸卡车:dumping truck洒水车:sprinkler土方工程:earth work回填:back fill蛙式打夯机:frog rammer基坑:foundation pit钢筋切断机:bar cutter钢筋弯曲机:angle--bender调直机:straightener十、地基处理地基处理:ground treatment复合地基:地基承载力特征值:换填垫层法:强夯:dynamic compaction振冲碎石桩:VCS. Piles (vibroflotation crushed stone piles)十一、砼工程脚手架:scaffold单排竖管脚手架:putlog scaffold双排竖管脚手架:independent scaffold管子脚手架:pipe scaffold 满堂脚手架:full framing立杆:the standing pole扫地杆:ground bars横杆:ledger防护栏:protective barrier,guard rail脚手板:scaffold board扣件:coupler十字扣件:double coupler旋转扣件:swivel coupler套筒扣件:sleeve coupler隔离剂:isolating agent钢筋加工:rebar fabrication钢筋连接:stell rebar connection 铁丝:iron wire绑扎lashing搭接:lap搭接接头:lap joint焊接:welding焊接接头:welded joint搭接焊:lap welding砂浆垫块mortar block制模,模板工程formwork模板:form组合钢模板:combined steel formwork模板配板:formplate configuration模板支设:formplate erection模板接缝:the formplate joint安装偏差:installation deviation起拱:arch camber模板拆除:formwork removel浇灌混凝土:cast concrete, placing concrete, depositing concrete,concrete pouring泵送混凝土:pumping of concrete混凝土中心搅拌站:centralized concretemixing plant混凝土搅拌汽车;concrete mixer truck混凝土搅拌: concrete agitation振捣混凝土:vibrated concrete插入式振捣器:insertion type vibrator平板振动器:plate vibrator抹子,泥刀:trowel 抹灰,抹光:troweling坍落度:slump两组试块:two sets of testing blocks混凝土见证取样:witness sampling of concrete 混凝土施工缝处理:treatment of concrete construction joint初凝:initial set初凝时间:initial setting time终凝:final set终凝时间:final setting time拆除模板:form removel, form stripping混凝土养护concrete curing草垫:straw mattress加热器:heater温度计:thermometer回填back fill回填夯实backfill consolidation十二、钢结构钢结构:steel structure涂层:coating油漆,涂料:paint底漆:paint primer中间漆:intermediate painting面漆:fanish coat透底:disclosure流坠:hanging皱皮:wrinkle漏涂:miss painting返锈:rust again漆膜厚度:film thickness结构构件:structural member 桁架:russt垂直支撑:vertical bracing小立柱:postWA325钢格板:W A325 grating 斜梁:stringer踏步板:treads踏步钢格板:grating for stair tread 钢梯:steel stairway斜梯栏杆:guard rails不锈钢栏杆:stainless steel handrail 平台栏杆:GR of platform胀锚螺栓:expansion bolts预制场地:prefabrication area原材料:raw material半成品:semi-finished goods切割:cutting打磨坡口:grinding除锈:remove rust, cleaning喷砂:sand blasting型钢:section steel热轧工字钢:hot-rolled I-beam steel热轧槽钢:hot-rolled channel steel热轧H型钢:hot-rolled H steel热轧钢板:hot-rolled plates热轧等边角钢:hot-rolled equal-leg angle steel 热轧不等边角钢:hot-rolled unequal-leg anglesteel无缝钢管:seamless steel pipes不锈钢板:stainless steel plate扁钢:strap steel垂直度:verticality分片组装:be assembled by sections现场成框:framed at site焊缝:weld seam焊缝高度:weld height焊缝长度:weld lengthV型和U型坡口:V-type and U-type bevel焊枪:welding gun焊机:welding machine焊炬:welding torch气焊:gas welding电焊:electric welding手工焊:hand welding自动和半自动电弧焊:automatic and semi-automatic welding对焊:butt welding角焊缝:fillet 焊条:weld rod, electrode断续焊接:gap welding针孔:pinhole裂纹:crack夹渣:slag烧穿:burning out咬边:undercut漏焊:losing welding未焊透:lack of fusion弧坑:concavity [ ]磨光机:grinding machine打磨:grind半自动切割机:semi-automatic welding machine火焰切割:torchcutting机械钻孔:drill by machine焊条保温筒:rod oven喷砂除锈:the sand blasting高强度大六角头螺栓连接副:set of big hexagonal high-strength bolt抗滑移系数:slide coefficient of fayingsurface扭矩系数:torsional moment coefficient扭矩扳手:torsional moment wrench电子轴力计:electronics ergometer万能材料试验机:testing machine终拧扭矩:final torsional moment (N.m)预拉力:prestressed十三、蓄水试验蓄水试验water filling test水深:water depth允许渗水量(L/m2· d):bleed-off allowance水面面积:water level area湿润面积:wet area测读时间:reading time初读;start reading末读:end reading水位测针读数:water level meter reading 蒸发水箱水位测针读数:water level meter readingin the evaporation water box大气温度:atmosphere temperature 水温:water temperature实际渗水量(L/m2· d):actual water bleed-off十四、地基检测青岛芳烃工程岩土工程勘察报告(2004堪-02):the geotechnical investigation report in Qingdao aromatics complex project(2004kan-02) 桩基低应变动力检测报告:inspection report of low stain dynamic testing of pile基桩高应变动力检测high strain dynamic testing of piles单桩静载试验static test of single pile单桩竖向抗压静载试验vertical compression bearing capacity static test for single pile 单桩水平静载试验:lateral bearing capacity static test for single pile单桩竖向抗拔静载试验:vertical up-lifting bearing capacity static test for single pile单桩竖向抗压极限承载力:vertical ultimate compress bearing capacity for a single pile 桩侧摩阻力:skin friction resistance桩端阻力:end bearing resistance单桩水平极限承载力:ultimate lateral bearing capacity for a single pile桩顶水平位移:lateral displacement单桩竖向抗拔极限承载力:ultimate vertical up-lifting bearing capacity for a single pile 工程地质概况:engineering conditions of soils素填土:Plain Fill粉质粘土:Silty Clay粉土:Silt淤泥质粉质粘土:Sludgy Silty Clay粉砂:Silty Sand中粗砂medium sand中细砂fine sand高压缩性:high compressibility中等压缩性:medium compressibility 低压缩性:low compressibility可塑~硬塑状态:plastic-hard plastic 流塑状态:flow plastic局部软塑状态:partly soft plastic饱和saturated松散incompact泥质粉砂岩:Muddy Silty stone粉砂质泥岩:Silty mudstone泥岩:Mudstone强风化:high weathered中等风化:medium weathered 反射波法:method of reflection wave波形曲线变化特征:change characteristics of wave curve轻微裂缝:slight defective pile桩身完整:pile of body integrity缺陷:defect断桩:breakage of pile扩颈:enlargement of pile diameter缩颈:pile diameter reduction夹泥:slurry mixture离析:concrete segregation十五、质量检查验收质量控制点:quality control point地基验槽:ground inspection平面放线:plane setting out钢筋验收:steel rebar acceptance inspection模板验收:formplate acceptance inspection 混凝土见证取样:witness sampling of concrete 混凝土结构分部工程验收:acceptance inspection of divisionalwork for concrete structure十六、交工技术文件交工技术文件technical document for construction completion工程材料:construction material出厂合格证:Ex-work quality certificate钢材性能检测报告:steel material performancetesting report钢材试验报告:steel testing reportinspection 十七、办公用品订书机stapler订书钉staple复印机copier,copy machine, photocopier 复印纸copying paper打印机printer土建专业常用规范:◆《先张法预应力混凝土管桩》(GB13476-1999)Pretensioned spun concrete piles(GB13476-1999)◆《预应力混凝土管桩》(03SG409)Prestressed spun concrete piles (03SG409)◆《建筑桩基技术规范》(JGJ94-94)Technical code for building pile foundation (JGJ94-94)◆《混凝土质量控制标准》(GB50164-1992)Standard of Concrete Quality Control (GB50164-1992)◆《建筑地基基础设计规范》(GB 50007-2002)Code for design of building foundation (GB50007-2002)◆《建筑地基基础工程施工质量验收规范》(GB 50202-2002)Code for acceptance of construction quality of foundation engineering (GB 50202-2002) ◆《建筑地基处理技术规范》(JGJ79-2002 J220-2002)Technical code for ground treatment of buildings◆《建筑基桩检测技术规范》 Technical code for testing of building foundation piles (JGJ106-2003 J256-2003)◆《基桩低应变动力检测规程》(JGJ/T 93-95)Specification for low strain dynamic testing of piles (JGJ/T 93-95)◆《混凝土结构工程施工质量验收规范》(GB 50204-2002)Code for acceptance of construction quality of concrete structures (GB 50204-2002) ◆《建筑防腐蚀工程施工及验收规范》(GB 50212-2002) Code for construction and acceptance of building corrosion prevention works (GB-50212-2002)◆《建筑工程施工质量验收统一标准》(GB50300-2001)Unified standard for constructional quality acceptance of building engineering◆《钢结构工程施工质量验收规范》(GB 50205-2001)Code for acceptance of construction quality of steel structures◆《建筑钢结构焊接技术规程》(JGJ81-2002)Technical specification for Welding of steel structure of building十八、现场1.That construction site is very dangerous.Keep away from it. 建筑工地很危险,不要靠近。
[中英]土木工程专业英语词汇
土木工程专业英语词汇第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。
2. 工程结构设计design of building and civil engineering structures在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求。
3. 房屋建筑工程building engineering一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
4. 土木工程civil engineering除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
5. 公路工程highway engineering为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
6. 铁路工程railway engineering为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
7. 港口与航道工程port ( harbour ) and waterway engineering为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
8. 水利工程hydraulic engineering为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
9. 水利发电工程(水电工程)hydraulic and hydroelectric engineering以利用水能发电为主要任务的水利工程。
土木工程外文翻译
3Building Engineering Ⅱ: Building Structures and SeismicResistanceTextPassageEarthquake Resistant Structural Systems1Rigid Frame StructuresRigid frame structures typically comprise floor diaphragms supported on beams which link to continuous columns (Figure 3-1). The joints between beam and columns are usually considered to be “rigid”. The frames are expected to carry the gravity loads throug h the flexural action of the beams and the prop ping action of the columns. Negative moments are induced in the beam adjacent to the columns causing the mid-span positive moment to be significantly less than in a simply supported span. In structures in which gravity loads dictate the design, economies in member size that arise from this effect tend to be offset by the higher cost of the rigid joints.Figure 3-1 Rigid frame structureLateral loads, imposed within the plane of the frame, are resisted through the development of bending moments in the beams and columns. Framed buildings often employ moment resistant frames in two orthogonal directions, in which case the column elements are common to both frames.Rigid frame structures are well suited to accommodate high levels of inelastic deformation. When a capacity design approach is employed, it is usual to assign the end zones of the flexural beams to accept the post-elastic deformation expected, and to design the column members such that their dependable strength is in excess of the over-strength capacity of the beam hinges, thereby ensuring they remain within their elastic response range regardless of the intensity of ground shaking. Rigid frame structures are, however, often quite flexible. When they are designed to be fully ductile, special provisions are often needed to prevent the premature onset of damage to non-structural components.Rigid frame construction is ideally suited for reinforced concrete building because of the inherent rigidity of reinforced concrete joints. The rigid frame form is also used for steel framebuildings. But moment resistant connections in steel tend to be costly. The sizes of the columns and girders at any level of a rigid-frame are directly influenced by the magnitude of the external shear at that level, and they therefore increase toward the base. Consequently, the design of the floor framing can not be repetitive as it is in some braced frames. A further result is that sometimes it is not possible in the lowest storeys to accommodate the required depth of girder within the normal ceiling space.While rigid frames of a typical scale that serve alone to resist lateral loading have an economic height limit of about 25 storeys, smaller scale rigid frames in the form of a perimeter tube, or typically scaled rigid frames in combination with shear walls or braced bents, can be economic up to much greater heights.2Infilled Frame StructuresInfilled frames (Figure 3-2) are the most usual form of construction for tall buildings of up to 30 storeys in height. Column and girder framing of reinforced concrete, or sometimes steel, is infilled by panels of brickwork, or cast-in-place concrete.Figure 3-2 Infilled frameWhen an infilled frame is subjected to lateral loading, the infill behaves effectively as a strut along its compression diagonal to brace the frame. Because the infills serve also as external walls or internal partitions, the system is an economical way of stiffening and strengthening the structure.The complex interactive behavior of the infill in the frame, and the rather random quality of masonry, had made it difficult to predicate with accuracy the stiffness and strength of an infilled frame. For these reasons, the use of the infills for bracing buildings has mainly been supplementary to the rigid frame action of concrete frames.3Shear WallsA shear wall is a vertical structural element that resists lateral forces in the plane of the wall through shear and bending. The high in plan stiffness and strength of concrete and masonry walls make them ideally suitable for bracing building as shear walls.A shear wall acts as a beam cantilevered out of the ground or foundation9 and, just as with a beam, part of its strength derives from its depth. Figure 3-3 shows two examples of a shear wall, one in a simple one-storey building and another in a multistorey building. In Figure 3-3a, the shear walls are oriented in one direction, so only lateral forces in this direction can be resisted. The roof serves as the horizontal diaphragm and must also be designed to resist the lateral loads and transfer them to the shear walls.a) End shear walls and interior shear wall b) Interior shear walls for bracing in two directionFigure 3-3 Shear wallFigure 3-3a also shows an important aspect of shear walls in particular and vertical elements in general. This is the aspect of symmetry that has a bearing on whether torsional effects will be produced. The shear walls in Figure 3-3a show the shear walls symmetrical in the plane of loading.Figure 3-3b illustrates a common use of shear walls at the interior of a multi-storey building. Because walls enclosing stairways, elevator shafts, and mechanical chases are mostly solid and run the entire height of the building, they are often used for shear walls. Although not as efficient from a strictly structural point of view, interior shear walls do leave the exterior of the building open for windows.Notice that in Figure 3-3b there are shear walls in both directions, which is a more realistic situation because both wind and earthquake forces need to be resisted in both directions. In this diagram, the two shear walls are symmetrical in one direction, but the single shear wall produces a nonsymmetric condition in the other since it is off center. Shear walls do not need to be symmetrical in a building, but symmetry is preferred to avoid torsional effects.If, in low-to medium-rise building, shear walls are combined with frames, it is reasonable to assume that the shear wall attract all the lateral loading so that the frame may be designed for only gravity loading. It is essentially important in shear wall structures to try to plan the wall layout so that the lateral load tensile stresses are suppressed by the gravity load stresses. This allows them to be designed to have only the minimum reinforcement.Since shear walls are generally both stiff and can be inherently robust, it is practical to design them to remain nominally elastic under design intensity loadings, particularly in regions of low or moderate seismicity. Under increased loading intensities, post-elastic deformations will develop within the lower portion of the wall (generally considered to extend over a height of twice the wall length above the foundation support system). Good post-elastic response can be readily achieved within this region of reinforced concrete or masonry shear walls through the provision of adequate confinement of the principal reinforcing steel and the prohibition of lap splices of reinforcing bars.Shear wall structures are generally quite stiff and, as such interstorey drift problems are rare and generally easily contained. The shear wall tends to act as a rigid body rotating about a plastic hinge which forms at the base of the wall. Overall structural deformation is thus a function of the wall rotation. Inter-storey drift problems which do occur are limited to the lower few floors.A major shortcoming with shear walls within buildings is that their size provides internal (or external) access barriers which may contravene the architectural requirements. This problem canbe alleviated by coupling adjacent more slender shear walls so a coupled shear wall structure is formed. The coupling beams then become shear links between the two walls and with careful detailing can provide a very effective, ductile control mechanism (Figure 3-4).Figure 3-4 Coupled shear wall structure4Braced FramesA braced frame is a truss system of the concentric or eccentric type in which the lateral forces are resisted through axial stresses in the members. Just as with a truss, the braced frame depends on diagonal members to provide a load path for lateral forces from each building element to the foundation. Figure 3-5 shows a simple one-storey braced frame. At one end of the building two bays are braced and at the other end only one bay is braced. This building is only braced in one direction and the diagonal member may be either in tension or compression, depending on which way the force is applied.a)Single story braced building b) Multistory braced buildingFigure 3-5 Braced frameFigure 3-5b shows two methods of bracing a multistorey building. A single diagonal compression member in one bay can be used to brace against lateral loads coming from either direction. Alternately, tension diagonals can be used to accomplish the same result, but they must be run both ways to account for the load coming from either direction.Braced framing can be placed on the exterior or interior of a building, and may be placed in one structural bay or several. Obviously, a braced frame can present design problems for windows and doorways, but it is a very efficient and rigid lateral force resisting s ystem.Two major shortcomings of braced systems are that their inclined diagonal orientation oftenconflicts with conventional occupancy use patterns; and secondly they often require careful detailing to avoid large local torsional eccentricities being introduced at the connections with the diagonal brace being offset from the frame node.5Wall-frame StructuresWhen shear walls are combined with rigid frames (Figure 3-6), the walls, which tend to deflect in a flexural configuration, and the frames, which tend to deflect in a shear mode, are constrained to adopt a common shape by the horizontal rigidity of the girders and slabs. As a consequence, the walls and frames interact horizontally, especially at the top, to produce a stiffer and stronger structure. The interacting wall-frame combination is appropriate for buildings in the 40-to-60-storey range, well beyond of rigid frame or shear wall alone.Figure 3-6 Wall-frame structureIn addition, less well-known feature of the wall- frame structure is that, in a carefully “tuned” structure, the shear in the frame can be made approximately uniform over the height, allowing the floor framing to be repetitive.Although the wall-frame structure is usually perceived as a concrete structural form, with shear walls and concrete frames, a steel counterpart using braced frames and steel rigid frames offers similar benefit of horizontal interaction. The braced frames behave with an overall flexural tendency to interact with the shear mode of the rigid frames.6Framed-Tube StructuresThe lateral resistance of framed-tube structures is provided by very stiff moment resisting frames that form a “tube” around the perimeter of the building. The frames c onsist of closely spaced column, 2~4m between centers, joined by deep spandrel girders (Figure 3-7). Although the tube carries all the lateral loading, the gravity load is shared between the tube and interior columns or walls. When lateral loading acts, the perimeter frames aligned in the direction of loading act as the “web” of the massive tube cantilever, and those normal to the direction of the loading act as the “flanges”.Figure 3-7 Frame-tube structureThe close spacing of the columns throughout the height of the structures is usually unacceptable at the entrance level. The columns are therefore merged, or terminated on a transfer beam, a few storeys above the base so that only a few, larger, more widely spaced columns continue to the base. The tube form was developed originally for buildings of rectangular plan; however, for other plan shapes, and has occasionally been used in circular and triangular configurations.The tube is suitable for both steel and reinforced construction and has been used for buildings ranging from 40 to more storeys. The highly repetitive pattern of the frames lends itself to prefabrication in steel, and to the use of rapidly gang forms in concrete, which make for rapid construction.The framed tube has been one of the most significant modern developments in high-rise structural form. It offers a relatively efficiently, easily constructed structure, appropriate for use up to the greatest of heights. Aesthetically, the tube’s externally evident form is regarded with mixed enthusiasm: some praise the logical clearly expressed structure while others criticize the girder-like façade as small-windowed and uninteresting repetitious.The tube structure’s structural efficiency, although hi gh, still leaves scope for improvement because the “flange” frames tend to suffer from “shear lag”; this result in mid-face “flange” columns being less stresses than the corner columns and, therefore, not contributing as fully as they could to the flange action.7Tube-in-Tube or Hull-Core StructuresThis variation of the framed tube consists of an outer framed tube, the “hull” together with an internal elevator and service core (Figure 3-8). The hull and the inner core act jointly in resisting both gravity and lateral loading. In a steel structure the core may consist of braced frames, whereas in a concrete structure it would consist of an assembly of shear walls.Figure 3-8 Tube-in-tubeTo some extent, the outer framed tube and the inner core interact horizontally as the shear and flexural components of a wall-frame structure, with the benefit of increase lateral stiffness. However, the structural tube usually adopts a highly dominant role because of its much greater structural depth.8Braced-Tube StructuresAnother way of improving the efficiency of the framed tube, thereby increasing its potential for greater heights as well as allowing greater spacing between the columns, is to add diagonal bracing to the faces of the tube. This arrangement was first used in a steel structure in 1969, in Chicago’s John Hancock Building (Figure 3-9). Because the diagonal of a braced tube are connected to the columns at each intersection, they virtually eliminate the effects of shear lag in both the flange and web frames. As a result, the structure behaves under lateral loading more like a braced frame, with greatly diminished bending in the members of the frames. Consequently, the spacing of the columns can be larger and the depth of the spandrels less, thereby allowing larger size windows than in the conventional tube structure.Figure 3-9 Braced-Tube StructuresIn the braced-tube structure the bracing contributes also to the improved performance of the tube in carrying gravity loading: differences between gravity load stresses in the columns are evened out by the braces transferring loading from the more highly to the less highly stressed columns.9Bundled-Tube StructuresThis structural form has been used for the Sears Tower in Chicago. The Sears Tower consists of four parallel rigid steel frames in each orthogonal direction, interconnected to form nine “bundled” tubes. As in the single-tube structure, the frames in the direction of lateral loading serves as “webs” of the vertical cantilever, with the normal f rame acting as “flanges”.The introduction of internal webs greatly reduces the shear lag in the flanges; consequently their columns are more evenly stressed than in the single-tube structure, and their contribution to the lateral stiffness is great. This allows columns of the frames to be spaced further apart and to be less obtrusive. In the Sears Tower, advantage was taken of the bundled form to discontinue some of the tubes, and so reduce the plan of the building at stages up to the height.New Words and Expressionsbraced frame 支撑框架braced-tube 桁架筒bundled-tube 束筒coupling beam 连梁coupled shear wall 联肢墙framed tube 框筒inter-storey drift 层间位移propping [ 'prɔpiŋ ] n. 支撑rigid frame 框架shear lag 剪力滞后spandrel [ 'spændrəl ] n. 上下层窗间墙stairway [ 'stεəwei ] n. 楼梯transfer beam 转换粱tube-in-tube / hull-core 筒中筒wall-frame structure 框架-剪力墙结构Exercises1Please name the types of earthquake resistant structural systems.2How does a rigid frame structure resist the gravity load and lateral load?3 Why are shear walls in both directions preferred?4 How are the loads shared between frame and tube in a framed-tube structure?Reading MaterialsPassage OneReinforced Concrete StructuresConcrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from thewide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.1Mechanics of Reinforced ConcreteConcrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage or temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In the plain concrete beam, the moments due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.The construction of a reinforced concrete member involves building a form or mold in the shape of the member being built. The form must be strong enough to support the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies, wind, and so on. The reinforcement is placed in this form and held in place during the concreting operation. After the concrete has h ardened, the forms are removed.2Factors Affecting Choice of Concrete for a StructureThe choice of whether a structure should be built of concrete, steel, masonry, or timber depends on the availability of materials and on a number of value decisions.(1)EconomyFrequently, the foremost consideration is the overall cost of the structure. This is, of course, a function of the costs of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time since the contractor and owner must allocate money to carry out the construction and will not receive a return on this investment until the building is ready for occupancy. As a result, financial savings due to rapid construction may more than offset increased material costs. Any measures the designer can take to standardize the design and forming will generally pay off in reduced overall costs.In many cases the long-term economy of the structure may be more important than the first cost. As a result, maintenance and durability are important c onsiderations.(2)Suitability of Material for Architectural and Structural F unctionA reinforced concrete system frequently allows the designer to combine the architectural and structural functions. Concrete has the advantage that it is placed in a plastic condition and is given the desired shape and texture by means of the forms and the finishing techniques. This allows such elements as flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and ceiling surfaces. Similarly, reinforced concrete wails can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size or shape is governed by the designer and not by the availability of standard manufactured members.(3)Fire ResistanceThe structure in a building must withstand the effects of a fire and remain standing while the building is evacuated and the fire is extinguished. A concrete building inherently has a 1- to 3-hour fire rating without special fireproofing or other details. Structural steel or timber buildings must befireproofed to attain similar fire ratings.(4)RigidityThe occupants of a building may be disturbed if their building oscillates in the wind or the floors vibrate as people walk by. Due to the greater stiffness and mass of a concrete structure, vibrations are seldom a problem.(5)Low MaintenanceConcrete members inherently require less maintenance than do structural steel or timber members. This is particularly true if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in the design to provide adequate drainage off and away from the structure.(6)Availability of MaterialsSand, gravel, cement, and concrete mixing facilities are very widely available, and reinforcing steel can be transported to most job sites more easily than can structural steel. As a result, reinforced concrete is frequently used in remote areas.On the other hand, there are a number of factors that may cause one to select a material other than reinforced concrete. These include:(1)Low Tensile StrengthAs stated earlier, the tensile strength of concrete is much lower than its compressive strength (about 1/10), and hence concrete is subject to cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly or may allow penetration of water.(2)Forms and ShoringThe construction of a cast-in-place structure involves three steps not encountered in the construction of steel or timber structures. These are the construction of the forms, the removal of these forms, and propping or shoring the new concrete to support its weight until its strength is adequate. Each of these steps involves labor and/or materials which are not necessary with other forms of construction.(3)Relatively Low Strength per Unit of Weight or VolumeThe compressive strength of concrete is roughly 5% to 10% that of steel, while its unit density is roughly 30% that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable steel structure. As a result, long-span structures are often built from steel.(4)Time-dependent Volume ChangesBoth concrete and steel undergo approximately the same amount of thermal expansion and contraction. Because there is less mass of Steel to be heated or cooled, and because steel is a better conductor than concrete, a steel structure is generally affected by temperature changes to a greater extent than is a concrete structure. On the other hand, concrete undergoes drying shrinkage, which, if restrained, may cause deflections or cracking. Furthermore, deflections will tend to increase with time, possibly doubling, due to creep of the concrete under sustained loads.3Building CodesThe first set of building regulations for reinforced concrete were drafted under the leadership of Professor Morsch of the University of Stuttgart and were issued in Prussia in 1904. Design regulations were issued in Britain, France, Austria, and Switzerland between 1907 and 1909.The American Railway Engineering Association appointed a Committee on Masonry in 1890. In 1903 this committee presented specifications for Portland cement concrete. Between 1908 and 1910 a series of committee reports led to the Standard Building Regulations for the Use of Reinforced Concrete published in 1910 by the National Association of Cement Users which subsequently became the American Concrete Institute.A Joint Committee on Concrete and Reinforced Concrete was established in 1904 by the American Society of Civil Engineers, American Society for Testing and Materials, the American Railway Engineering Association, and the Association of American Portland Cement Manufactures. This group was later joined by the American Concrete Institute. Between 1904 and 1910 the Joint Committee carried out research. A preliminary report issued in 1913 lists the more important papers and books on reinforced concrete published between 1898 and 1911. The final report of this committee was published in 1916. The history of reinforced concrete building codes in the United States was reviewed in 1954 by Kerekes and Reid.The design and construction of buildings is regulated by municipal bylaws called building codes. These exist to protect the public health and safety. Each city and town is free to write or adopt its own building code, and in that city or town, only that particular code has legal status. Because of the complexity of building code writing, cities in the United States generally base their building codes on one of three model codes: the Uniform Building Code, the Standard Building Code, or the Basic Building Code. These codes cover such things as use and occupancy requirements, fire requirements, heating and ventilating requirements, and structural design.The definitive design specification for reinforced concrete buildings in North America is the Building Code Requirements for Reinforced Concrete (ACI-318-95), which is explained in a Commentary.This code, generally referred to as the ACI Code, has been incorporated in most building codes in the United States and serves as the basis for comparable codes in Canada, New Zealand, Australia, and parts of Latin America. The ACI Code has legal status only if adopted in a local building code.Each nation or group of nations in Europe has its own building code for reinforced concrete. The CEB-FIP Model Code for Concrete Structures is intended to serve as the basis for future attempts to unify European codes. This code and the ACI Code are similar in many ways.Passage TwoEarthquake Induced Vibration of Structures1Seismicity and Ground MotionsThe most common cause of earthquakes is thought to be the violent slipping of rock masses along major geological fault lines in the Earth’s crust, or lithosphere. These fault lines divide the global crust into about 12 major tectonic plates, which are rigid, relatively cool slabs about 100km thick. Tectonic plates float on the molten mantle of the Earth and move relative to one another at the rate of 10 to 100mm/year.The basic mechanism causing earthquakes in the plate boundary regions appears to be that the continuing deformation of the crustal structure eventually leads to stresses which exceed the material strength. A rupture will then initiate at some critical point along the fault line and willpropagate rapidly through the highly stressed material at the plate boundary. In some cases, the plate margins are moving away from one another. In those cases, molten rock appears from deep in the Earth to fill the gap, often manifesting itself as volcanoes. If the plates are pushing together, one plate tends to dive under the other and, depending on the density of the material, it may resurface in the form of mountains and valleys. In both these scenarios, there may be volcanoes and earthquakes at the plate boundaries, both being caused by the same mechanism of movement in the Earth's crust. Another possibility is that the plate boundaries will slide sideways past each other, essentially retaining the local surface area of the plate. It is believed that about three quarters of the world's earthquakes are accounted for by this rubbing-striking-slipping mechanism, with ruptures occurring on faults on boundaries between tectonic plates. Earthquake occurrence maps tend to outline the plate boundaries. Such earthquakes are referred to as interplate earthquakes.Earthquakes also occur at locations away from the plate boundaries. Such events are known as intraplate earthquakes and they are much less frequent than interplate earthquakes. Because tectonic plates are not homogeneous or isotropic, areas of local high stress are developed as the plate attempts to move as a rigid body. Accordingly, rupture within the plate, and the consequent release of energy, are believed to give rise to these intraplate events.The po int in the Earth’s crustal system where an earthquake is initiated (the point of rupture) is called the hypocenter or focus of the earthquake. The point on the Earth’s surface directly above the focus is called the epicenter and the depth of the focus is the focal depth. Earthquake occurrence maps usually indicate the location of various epicenters of past earthquakes and these epicenters are located by seismological analysis of the effect of earthquake waves on strategically located receiving instruments called seismometers.When an earthquake occurs, several types of seismic wave are radiated from the rupture. The most important of these are the body waves (primary P and secondary S waves). P waves are essentially sound waves traveling through the Earth, causing particles to move in the direction of wave propagation with alternate expansions and compressions. They tend to travel through the Earth with velocities of up to 8000m/sec (up to 30 times faster than sound waves through air). S waves are shear waves with particle motion transverse to the direction of propagation. S waves tend to travel at about 60% of the velocity of P waves, so they always arrive at seismometers after the P waves. The-time lag between arrivals often provides seismologists with useful information about the distance of the epicenter from the recorder.2Measurement of EarthquakesEarthquakes are complex multi-dimensional phenomena, the scientific analysis of which requires measurement. Prior to the invention of modern scientific instruments, earthquakes were qualitatively measured by intensity, which differed from point-to-point. With the deployment of seismometers, an instrumental quantification of the entire earthquake event-the unique magnitude of the event-became possible.(1)MagnitudeThe total strain energy released during an earthquake is known as the magnitude of the earthquake and it is measured on the Richter scale. It is defined quite simply as the amplitude of the recorded vibrations on a particular kind of seismometer located at a particular distance from the epicenterM L = log A –log A o (3-1)。
土木工程专业外文翻译--高层建筑可编辑
土木工程专业外文翻译--高层建筑外文原文Tall Buildings Although there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limitExcessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do notrequire additional stiffening to limit the sway In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig. 1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame; Structural engineers have developed structural systems with a view to eliminating this premium Systems in steelTall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings Frames with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building 1974 in Milwaukee Framed tube. The imum efficiency of the total structure of a tall building, for both strength and stiffness, to resist wind load can be achieved only if all column elements can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut ApartmentBuilding in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with. Diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Center in Chicago, using as much steel as is normally needed for a traditional story buildingFig. 1. Graphical relationship between design quantities of steel and building heights for a typical building frameCurves A and B correspond to the boundary conditions indicated in the two building diagrams. 1 psf 0. 048kPaBundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The i10-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at tile base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft 442 m, is the world's tallest buildingStressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces wind or earthquake and the control of driftlateral building movement in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor areaBecause of the contribution of the stressed-skin facade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes, minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittsburgh Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building, exterior columns were spaced at 5.5-ft 1.68-m centers, and interior columns were used as needed to support the 8-in.-thick 20-cm flat-plate concrete slabs Tube in tube. Anothersystem in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system Fig.2, known as the tube-in-tube system, made it possible to design the world's present tallest 714 ft or 218m lightweight concrete Building in Houstonfor structure of only 35 s oriel building the unit 52?story One Shell Plaza of a traditional shear wall Systems compiling both concrete and steel have also been developed,an example of which is the composite system developed by Skidmore,Owings & Merrill in which an exterior closely spaced framed tube in concrete envelops an interior steel framing,thereby combining the advantages of both reinforced concrete and structuralsteel systems.The 52?story One Shell Square Building in New Orleans is based on this system.NEW WORDS AND PHRASES1.spectacular 壮观的,惊人的,引人注意的2.sway 摇动,摇摆,歪,使倾斜3.residential 居住的,住宅的,作住家用的4mercial 商业的,商业上的,商务的5.innovation 革新,创新,新方法,新事物6.boundary 分界线,边界7.eliminate 排除,消除,除去8.apartment 公寓住宅,单元住宅9.column 柱,支柱,圆柱,柱状物10.demonstrate 示范,证明,演示,11.project 凸出,投射,计划,工程12.stress 应力,压力13.truss 构架,桁架14.bundle 捆,束,包15.terminate 使终止,使结尾,结束16.facade 房屋的/E面,立面,表面17.perimeter 周,周围,周界,周长18.encroach 侵犯,侵占,蚕食19.high?rise building 高层建筑20.reinforced concrete 钢筋混凝土21.spandrel beam 窗下墙的墙托梁22.shear wall 剪力墙中文译文高层建筑大体上建筑施工工艺学方面已经有许多进步, 在超高层的设计和施工上已经取得了惊人的成就。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录1翻译适当有效的建筑材料是限制富有经验的结构工程师成就的主要原因之一。
早期的建筑者几乎都只使用木材,石头,砖块和混凝土。
尽管铸铁在修建埃及的金字塔中已被人们使用, 但是把它作为建筑材料却由于大量熔炼它比较困难而被限制。
藉由产业革命,然而,受到把铸铁作为建筑材料和在大量融炼它的能力的两者对其双重需要的影响。
John Smeaton,一个英国土木工程师, 在十八的世纪中时,是第一广泛地使用铸铁作为建筑材料的。
在1841之后,可锻金属被发展成更可靠的材料并且广泛地被应用。
尽管可锻金属优于铸铁,但仍有很多结构破坏从而需要有更可靠的材料。
钢便是这一需要的答案。
1856年的贝色麦转转炉炼钢法和后来发展的马丁平炉炼钢法的发明使以竞争的价格形成了生产建筑用钢并且兴起了建筑用钢在下个百年的快速发展。
钢的最严重缺点是它容易被氧化而需要被油漆或一些其他的适当涂料保护。
当钢被用于可能发生火灾环境时, 钢应该包围在一些耐火的材料中, 例如石料或混凝土。
通常,钢的组合结构不易被压碎除非是在冶金成分不好,低温的不利组合, 或空间压力存在的情况下。
建筑用铝仍然不广泛被在土木工程结构中用,虽然它的使用正在稳定地增加。
藉着铝合金作为一个适当的选择和对其进行热处理,可获得各式各样的强度特性。
一些合金所展现的抗压强度特性相似于钢, 除线形弹性模量大约是7,000,000 牛/平方厘米,相当于刚的三分之一。
质量轻和耐氧化是铝的两个主要优点。
因为它的特性对热处理是非常敏感的,当铆接或焊接铝的时候,一定要小心仔细。
一些技术已为制造预制铝组合配件及形成若干的美丽的设计良好的外型结构的铝制结构而发展起来。
组合房屋配件制造的一般程序藉由螺栓连接,这似乎是利用建筑用铝的最有前途的方法。
加强和预应力混凝土是主要的建筑材料。
天然的水泥混凝土已经被使用长达数世纪之久。
现代的混凝土建筑兴起于十九世纪中叶,尽管人造水泥被Aspidin ,一个英国人于1825年申请了专利. 虽然一些建筑者和工程师在十九世纪后期用钢筋混凝土作实验, 但作为一种建筑材料它占统治地位是在二十世纪初期。
后五十年钢筋混凝土结构设计和建筑得到迅速发展, 早期在法国的Freyssinet 和比利时的 Magnel被大量使用。
素混凝土作为建筑材料有一个非常严重的缺点:就是它的抗拉强度非常有限, 只是它的抗压强度的十分之一。
素混凝土不仅受拉破坏是脆性破坏,而且受压破坏也是在没有多大变形预兆的情况下发生的准脆性破坏。
(当然,在钢筋混凝土建筑中,可以得到适当的延性)。
只有进行适当的养护和合理的选择并且掺加适当的混合天加剂,否则霜冻破坏能严重的损害混凝土。
在长期荷载作用下混凝土在选择设计受压情况方面要仔细考虑。
在硬化的时候和它的早期养护下,混凝土收缩占主要地位, 因此需要添加适当地比例的添加剂而且用适当的建筑技术来控制。
藉由所有的这些可能的严重缺点,工程师已经试着为各种实际结构设计建立美丽的,持久的,和经济的钢筋混凝土结构。
这是藉着设计尺寸和钢筋排列安排的谨慎选择,和适当的水泥的发展已经趋于同步, 适当添加剂混合比例, 混合配置, 而且养护技术和建筑方法,仪器的快速发展。
混凝土具有多种用途,其组成材料广泛可取,并且能非常方便地浇制成满足强度及功能要求的形状,同时,随着新型预应力混凝土、预制混凝土以及普通混凝土施工方法令人兴奋的进一步改善和发展的潜力,这些因素综合起来使得混凝土在绝大多数结构中有着比其他材料更大的竞争力。
在现代,藉由钢和加强钢筋的使用量在建筑结构中的增加,木材在建筑期间主要地已经被撤离到附属的、暂时的和次要的结构中使用,成为建筑材料的次要成员。
然而, 现代的技术在最后六十年中已经有使木材作为建筑材料恢复生气的迹象,藉由大量的改良了木材的加工方法,各种不同的处理方法增加了木材的耐久性, 而且叠片木材连同使用黏结技术的革命使得木材的性能有了更好的保证。
各向同性的胶合板是最广泛使用的压层胶合板,随着技术的发展,压层胶合板已经发展成为特定的结构材料并对混凝土和钢造成了强大的竞争力。
将来可能发展的材料是工程塑料和稀有金属及他们的合金,如铍,钨,钽,钛,钼,铬,钒和铌。
有许多不同的塑料可以用,而且这些材料所展现的力学性能在很大的范围内改变。
在如此许多的特性中我比较设计方案选择适当的可能的塑料材料是可能的。
对塑料的使用受经验的限制。
一般而言,塑料一定要与空气隔离。
设计的这一个方面要求主要是对塑料结构元素在使用中的考虑。
塑料被应用的最有希望的潜能之一是嵌板和贝壳型结构。
叠片或夹心嵌板已经被用于此种结构以鼓励未来建筑大量应用这一个类型材料。
另一种引起注意的材料由纤维或像粒子的胶结加筋的微粒组成的合成物材料正在开发。
虽然一种由玻璃或塑料胶结材料组成的玻璃纤维加筋合成物已经被用长达数年之久, 但是他们很可能退落为次要的结构材料。
加筋混凝土是另一个积极地被学习而且发展的混合料。
一些实验正在工作情况下进行。
实验主要内容为钢和玻璃纤维,但是大部份的使用经验在钢纤维方面比较先进。
附录 2英文文献原文The availability of suitable structural materials is one of the principal limitations on the accomplishment of an experienced structural engineer. Early builders depended almost exclusively on wood, stone, brick, and concrete. Although iron had been used by humans at least since the building of the Egyptian pyramids, use of it as a structural material was limited because of the difficulties of smelting it in large quantities. With the industrial revolution, however, came both the need for iron as a structural material and the capability of smelting it in quantity.John Smeaton, an English civil engineer, was the first to use cast iron extensively as a structural material in the mid-eighteenth century. After 1841, malleable iron was developed as a more reliable material and was widely used. Whereas malleable iron was superior to cast iron, there were still too many structural failures and there was a need for a more reliable material. Steel was the answer to this demand. The invention of the Bessemer converter in 1856 and the subsequent development of the Siemens-Martin open-hearth process for making steel made it possible to produce structural steel at competitive prices and triggered the tremendous developments and accomplishments in the use of structural steel over the next hundred years.The most serious disadvantage of steel is that it oxidizes easily and must be protected by paint or some other suitable coating. When steel is used in an enclosure where a fire could occur, the steel members must be encased in a suitable fire-resistant enclosure such as masonry, concrete. Normally, steel members will not fail in a brittle manner unless an unfortunate combination of metallurgical composition, low temperature, and bi-or triaxial stress exists.Structural aluminum is still not widely used in civil engineering structures, though its use is steadily increasing. By a proper selection of the aluminum alloy and its heat treatment, a wide variety of strength characteristics may be obtained. Some of the alloys exhibit stress-strain characteristics similar those of structuralsteel, except that the modulus of elasticity for the initial linearly elastic portion is about 10,000,000 psi (700,000 kgf/cm*cm) or about one-third that of steel. Lightness and resistance to oxidation are, of course, two of the major advantages of aluminum. Because its properties are very sensitive to its heat treatment, care must be used when riveting or welding aluminum. Several techniques have been developed for prefabricating aluminum subassemblies that can be readily erected and bolted together in the field to form a number of beautiful and well-designed shell structures. This general procedure of prefabrication and held assembly by bolting seems to be the most promising way of utilizing structural aluminum.Reinforced and prestesses concrete share with structural material. Natural cement concretes have been used for centuries. Modern concrete construction dates from the middle of the nineteenth century, though artificial Portland cement was patented by Aspidin, an Englishman, about 1825. Although several builders and engineers experimented with the use of steel-reinforced concrete in the last half of the nineteenth century, its dominant use as a building material dates from the early decades of the twentieth century. The last fifty years have seen the rapid and vigorous development of prestressed concrete design and construction, founded largely on early work by Freyssinet in France and Magnel in Belgium.Plain (unreinforced) concrete not only is a heterogeneous material but also has one very serious defect as a structural material, namely, its very limited tensile strength, which is only of the order of one-tenth its compressive strength. Not only is tensile failure in concrete of a brittle type, but likewise compression failure occurs in a relatively brittle fashion without being preceded by the forewarning of large deformations. (Of course, in reinforced-concrete construction, ductile behavior can be obtained by proper selection and arrangement of the reinforcement.) Unless proper care is used in the selection of aggregates and in the mixing and placing of concrete, frost action can cause serious damage to concrete masonry. Concrete creeps under long-term loading to a degree that must be considered carefully in selecting the design stress conditions. During the curing process and its early life, concrete shrinks a significant amount, which to a degree can be controlled by properly proportioning the mix and utilizing suitable construction techniques.With all these potentially serious disadvantages, engineers have learned to design and build beautiful, durable, and economical reinforced-concrete structuresfor practically all kinds of structural requirements. This has been accomplished by careful selection of the design dimensions and the arrangement of the steel reinforcement, development of proper cements, selection of proper aggregates and mix proportions, careful control of mixing, placing, and curing techniques and imaginative development of construction methods, equipment and procedures.The versatility of concrete, the wide availability of its component materials, the unique ease of shaping its form to meet strength and functional requirements, together with the exciting potential of further improvements and development of not only the newer prestressed and precast concrete construction but also the conventional reinforced concrete construction, combine to make concrete a strong competitor of other materials in a very large fraction of structures.In modern times, with the increased use of steel and reinforced-concrete construction, wood has been relegated largely to accessory use during construction, to use in temporary and secondary structures, and to use for secondary members of permanent construction. Modern technology in the last sixty years has revitalized wood as a structural material, however, by developing vastly improved timber connectors, various treatments to increase the durability of wood, and laminated wood made of thin layers bonded together with synthetic glues using revolutionary gluing techniques. Plywood with essentially nondirectional strength properties is the most widely used laminated wood, but techniques have also been developed for building large laminated wood members that for certain structures are competitive with concrete and steel.Materials with future possibilities are the engineering plastics and the exotic metals and their alloys, such as beryllium, tungsten, tantalum, titanium, molybdenum, chromium, vanadium, and niobium. There are many different plastics available, and the mechanical properties exhibited by this group of materials vary over a wide range that encompasses the range of properties available among the more commonly used structural materials. Thus in many specific design applications it is possible to select a suitable plastic material for an alternative design. Experience with the use of plastics outdoors is limited. Generally speaking, however, plastics must be protected from the weather. This aspect of design is therefore a major consideration in the use of plastics for primary structural elements. One of the most promising potential used of plastics is for panel andshell-type structures. Laminated or sandwich panels have been used in such structures with encouraging results that indicate an increased use in this type of construction in the future.Another materials development with interesting possibilities is that of composites consisting of a matrix reinforced by fibers or fiber like particles. Although glass-fiber-reinforced composites with a glass or plastic matrix have been used for years, they appear to have much broader possibilities for a large variety of secondary structural components. Fiber-reinforced concrete is another composite being actively studied and developed. Several experimental applications are being observed under service conditions. Experiments have been conducted with both steel and glass fibers, but most of the service experience has been with steel fibers.。