时间序列完整教程
时间序列分析教材(PPT 64页)
第二节 时间序列的水平分析 描述现象在某一段时间上发展变化的水平
高低及其增长变化的数量多少。 包括:
发展水平 平均发展水平 增长量 平均增长量
9-7
一 发展水平 1、每一项指标数值就是发展水平 2、常用a0、a1、…、an表示 3、通常把a0称为最初水平, 把an称为最末水平
二 平均发展水平
4.定基增长速度与环比增长速度之间的推 算,必须通过定基发展速度和环比发展 速度才能进行。
5.增长1%绝对值 = 基期水平/100 9-39
为了消除季节变动因素的影响,也常常计 算:
同比增长速度
同比增长量 上年同期水平
=同比发展速度
1
9-40
速度的表现形式和文字表述
速度指标的表现形式:一般为 %、倍数,也有 用‰、番数等等。
则:1—6号平均每天的职工人数为:
a a
n
98 100 99 101 108 106 10(2 人) 6
例4-2-3:有某企业职工人数资a1
a2
职工人数(人) 102
105
16日—30日 a3
108
则:1号至30号平均每天的职工人数为:
a
af f
102 8 105 7 108 15 10(6 人) 30
第四章 时间序列分析
本章重点
第一节 时间序列分析概述 第二节 时间序列的水平分析 第三节 时间序列的速度分析 第四节 长期趋势的测定
第一节 时间序列分析概述
时间序列的概念 时间序列的种类 时间序列的编制原则
9-2
表4-1
9-3
一、时间序列的概念
时间序列(time series)— 动态数列, 把同
2.根据下表数据,计算我国居民消费水平的增长量 和平均增长量。
精选时间序列分析时间序列讲解讲义
§1.2 平稳序列
一· 平稳序列
定义 如果时间序列 {X t} {X t : t N满}足
(1) 对任何的
t
N,
EX
2 t
(2) 对任何的 t N , EX t
(3) 对任何的 t, s N , E[( X t )( X s )] ts
就称是 X平t 稳时间序列,简称时间序列。称实数 为 的{自 t协} 方差X函t 数。
a则j 称 是绝对可{a和j}的。
j
对于绝对可和的实数列
,{a{定Xj}{义tX}零t}均值白噪声 的无穷{滑t动} 和
如下 X t a j t j ,t ,Z则 是{X平t}稳序列。下面说明 是
j
{X t}
平稳序列。
由 Schwarz不等式得到
E[ a jt j ] a j E t j a j
j0
k
q
0, k q
{ X t }平稳
第三十七页,共74页。
例:X t t 0.36 * t1 0.85 * t2 , t ~ WN (0,22 )
第三十八页,共74页。
概率极限定理:
定理 (单调收敛定理) 如果非负随机变量序列单调不减: 0 1 2
lim 则当 n ,a时s ,有 E
{St }
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
第五页,共74页。
减去趋势项后,所得数据 {Xt Tˆt}
第六页,共74页。
2、季节项 {Sˆt}
第七页,共74页。
3.随机项的估计 Rˆt xt Tˆt Sˆt ,t 1,2,,24.
第八页,共74页。
方法二:回归直线法
当 0, 2 称1为标准白噪声。
时间序列完整教程(R)
时间序列完整教程(R)简介在商业应用中,时间是最重要的因素,能够提升成功率。
然而绝大多数公司很难跟上时间的脚步。
但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来。
不要担心,本文并不会讨论时间机器,讨论的都是很实用的东西。
本文将要讨论关于预测的方法。
有一种预测是跟时间相关的,而这种处理与时间相关数据的方法叫做时间序列模型。
这个模型能够在与时间相关的数据中,找到一些隐藏的信息来辅助决策。
当我们处理时间序列数据的时候,时间序列模型是非常有用的模型。
大多数公司都是基于时间序列数据来分析第二年的销售量,流量,竞争地位和更多的东西。
然而很多人并不了解时间序列分析这个领域。
所以,如果你不了解时间序列模型。
这篇文章将会向你介绍时间序列模型的处理步骤以及它的相关技术。
本文包含的容如下所示:目录* 1、时间序列模型介绍* 2、使用R语言来探索时间序列数据* 3、介绍ARMA时间序列模型* 4、ARIMA时间序列模型的框架与应用1、时间序列模型介绍本节包括平稳序列,随机游走,Rho系数,Dickey Fuller检验平稳性。
如果这些知识你都不知道,不用担心-接下来这些概念本节都会进行详细的介绍,我敢打赌你很喜欢我的介绍的。
平稳序列判断一个序列是不是平稳序列有三个评判标准:1. 均值,是与时间t 无关的常数。
下图(左)满足平稳序列的条件,下图(右)很明显具有时间依赖。
1.方差,是与时间t 无关的常数。
这个特性叫做方差齐性。
下图显示了什么是方差对齐,什么不是方差对齐。
(注意右图的不同分布。
)2.协方差,只与时期间隔k有关,与时间t 无关的常数。
如下图(右),可以注意到随着时间的增加,曲线变得越来越近。
因此红色序列的协方差并不是恒定的。
我们为什么要关心平稳时间序列呢?除非你的时间序列是平稳的,否则不能建立一个时间序列模型。
在很多案例中时间平稳条件常常是不满足的,所以首先要做的就是让时间序列变得平稳,然后尝试使用随机模型预测这个时间序列。
时间序列分析教材(PPT 171页)
fn
ai fi
i 1 n
fi
i 1
9 - 25
统计学
STA[T例IST]I某CS厂成品仓库库存变动时登记如下
日期
1
6
10
库存量(台) 38(a1) 42(a2) 39(a3)
25 37(a4)
试求该仓库该月的平均库存量
31 41(a5)
x xf a af
f
f
a 38 5 42 4 39 15 37 6 411 5 4 15 6 1
统月计初 学
一
二
三
四
S库TA存TI量ST(IC台S ) 38(a1) 42(a2) 39(a3) 37(a4)
五 41(a5)
38 42 1 42 39 1 39 37 1
a 2
2
2
111
x xf f
(a1 a2 ) (a2 a3 ) (a3 a4 )
2
2
2
3
x
f
时间 库存量 a 间隔 f
1/1—31/1 38—42 1
1 2
a1
a2
a3
1 2
a4
39.5(台)
4 1
1/2—28/2 42—39 1
1/3—31/3 39—37 1
——
3
a
912-a218
a2
a3
1 2
an
n 1
首尾折半法 n指标值个数 n1时间长度
统计学
STA(TIS4TI)CS间隔不等的间断时点资料
一季
二季
统计学
STA3TI、STI作CS用
(1)描述现象的历史状况; (2)揭示现象的发展变化规律;
(3)外推预测。
时间序列建模的完整教程用R语言
如果我们尝试绘制这个图表,它会看起来像这样:
你注意到 MA 和 AR 模型的区别了吗?在 MA 模型中,噪声/冲击随时间迅速消失。AR 模型对冲击具有持久的影响。 AR 模型与 MA 模型的区别 AR 和 MA 模型之间的主要区别是基于~时间序列对象在不同时间点之间的相关性。 X (T) 和 X( T-N)之间的相关性,对于 n 阶的 MA 总是为零。这直接源于 MA 模型中 x( t)和 x
/WOP/RandomWalk.html
想象一下,你坐在另一个房间里,看不到那个女孩。你想预测女孩的位置随着时间的推移。 你会有多精确?当然,随着女孩的位置变化,你会变得越来越不准确。在 T=0,你完全知 道那个女孩在哪里。下一次,她只能移动到 8 个方格,因此你的概率下降到 1/8,而不是 1, 而且它一直在下降。现在让我们来尝试一下这个时间序列。
时间序列建模的完整教程用 R 语言 一,简介 “时间”是确保企业成功的最重要因素。跟上时代的步伐是很困难的。但是,技术已经发 展了一些强大的方法,我们可以提前看到事物。别担心,我不是在谈论时间机器。让我们现 实点吧! 我说的是预测和预测的方法。 其中一种处理基于时间的数据的方法是时间序列建模。 顾名思 义,它涉及基于时间(年,日,小时,分钟)的数据,以获得隐藏的洞察力做出明智的决策。 时间序列模型是非常有用的模型, 当你有连续的相关数据。 大多数企业都在时间序列数据上 分析明年的销售数量、网站流量、竞争地位等等。然而,这也是许多分析家不了解的领域之 一。 因此, 如果你不确定时间序列建模的完整过程, 本指南将向你介绍不同层次的时间序列建模 及其相关技术。 下面的主题包含在本教程中,如下所示: 1,基础——时间序列建模 2,R 语言——时间序列数据的探讨 3,ARMA 时间序列建模简介 4,ARIMA 时间序列建模框架及应用 一,基础-时间序列建模 让我们从基础开始。这包括平稳序列(或者静态序列),随机游走,Rho Coefficient,Dickey Fuller Test 的平稳性。如果这些术语已经吓坏了你,别担心——它们会变得清晰一些,我敢 打赌,你会在我解释的时候开始喜欢这个主题。 (1)stationary series 这里有三个基本标准:一系列被称为平稳序列: ::序列的平均值不应该是时间的函数,而应该是常数。下面的图像具有满足条件 的左手图,而红色中的图具有时间相关平均值。
时间序列分析课程.pptx
(4)计算方法、计算价格和计算单位要一致。
描述性时序分析
• 通过直观的数据比较或绘图观测,寻 找序列中蕴含的发展规律,这种分析 方法就称为描述性时序分析
• 描述性时序分析方法具有操作简单、 直观有效的特点,它通常是人们进行 统计时序分析的第一步。
描述性时序分析案例
• 例1 德国业余天文学家施瓦尔发现太阳黑 子的活动具有11年左右的周期
例2 1964年——1999年中国纱年产量序列
例3 1962年1月——1975年12月平均每头奶 牛月产奶量序列
例4 1949年——1998年北京市每年最高气温序列
二、时间序列的分类
绝对数序列
派生
时期序列 时点序列
反映现象发展水平的指标数值
140 120 100
80 60 40 20
0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
要素一:时间t 要素二:指标数值a
研究意义
1、能够描述社会经济现象的发展状况和结果;
2、能够研究社会经济现象的发展速度、发展趋势 和平均水平,探索社会经济现象发展变化的规律, 并据以对未来进行统计预测;
统计学
STATISTICS
第8 章
时间序列分析
学习内容
8. 1 时间序列的描述性分析 8. 2 时间序列及其构成因素 8. 3 时间序列趋势变动分析 8. 4 季节变动分析 8. 5 循环变动分析(自学)
统计学
STATISTICS
8.1 时间序列的描述性分析
一、时间序列的含义 二、时间序列的分类 三、时间序列的图形描述 四、时间序列的速度分析
时间序列简介讲解课件
降雨量预测
总结词
时间序列分析可以帮助科学家预测未来 的降雨量,为水资源管理和防洪减灾提 供重要参考。
VS
详细描述
除了温度,时间序列分析也可以用来预测 降雨量。通过对历史降雨数据的分析,科 学家可以预测未来的降雨趋势和周期性变 化。这对于水资源管理和防洪减灾等方面 都有着重要的意义。通过预测未来的降雨 量,可以帮助决策者更好地管理水资源, 减少洪涝灾害的发生。
傅立叶分析能够准确地估计时间序列数据的周期性变化,同时 能够识别出不同频率的贡献。
傅立叶分析对于非周期性变化的数据处理可能不够准确,同时 需要进行傅立叶变换和反变换计算。
03时Βιβλιοθήκη 序列预测模型AR模型总结词
自回归模型
公式
AR(p)模型可以表示为 y(t) = ρ1y(t-1) + ρ2y(t2) + ... + ρpy(t-p) + ε(t)
市场趋势分析
行业趋势分析
通过分析时间序列数据,可以了 解行业的发展趋势和市场变化, 从而为企业制定相应的战略和决
策提供参考。
市场竞争分析
通过对市场趋势的分析,可以了解 市场竞争情况和企业市场份额的变 化,从而制定相应的竞争策略。
制定市场拓展计划
通过对市场趋势的分析,可以了解 市场机会和风险,从而制定相应的 市场拓展计划和风险管理措施。
时间序列的特点
时间序列具有时序性、趋势性、 周期性等特点。
时间序列的分类
01
02
03
04
根据数据类型分类
时间序列可以分为定量数据时 间序列和定性数据时间序列。
根据时间长短分类
时间序列可以分为短期时间序 列和长期时间序列。
根据趋势特征分类
时间序列ppt课件
气象领域应用
总结词
时间序列分析在气象领域的应用主要涉及气 候变化研究、气象预报和气象数据管理等。
详细描述
通过对长时间序列的气象数据进行研究,科 学家可以了解气候变化的规律和趋势。此外 ,时间序列分析在气象预报中发挥着重要作 用,通过对实时气象数据的分析,可以预测 未来的天气状况。气象数据管理方面,时间 序列分析有助于组织和管理大量的气象数据 ,提高数据的质量和可用性。
交通领域应用
总结词
时间序列分析在交通领域的应用主要涉及交 通流量预测、交通拥堵分析和交通安全研究 等。
详细描述
通过对历史交通数据的分析,可以了解交通 流量的变化规律和趋势,预测未来的交通流 量。此外,时间序列分析还可以用于交通拥 堵分析,探究拥堵产生的原因和规律,为交 通管理部门提供决策依据。在交通安全研究 方面,时间序列分析有助于了解交通事故的 发生规律和趋势,为制定安全措施提供支持
时间序列ppt课件
目录
CONTENTS
• 时间序列基础 • 时间序列分析方法 • 时间序列预测 • 时间序列在各领域的应用 • 时间序列研究前沿与展望
01 时间序列基础
CHAPTER
时间序列的定义
总结词
时间序列是一种数据结构,它按照时间顺序排列了一系列的 数据点。
详细描述
时间序列数据通常以时间为横轴,以相应的数值或观测值为 纵轴,记录了某一指标在不同时间点的数值。这些数据点通 常具有时间先后顺序,能够反映事物随时间变化的发展过程 。
详细描述
统计特征分析法能够深入挖掘数据的 内在规律和性质,通过计算各种统计 特征,可以了解数据的稳定性、周期 性、趋势性等特点,从而为进一步分 析提供依据。
模型分析法
总结词
利用计算机软件进行时间序列分析的教程
利用计算机软件进行时间序列分析的教程第一章:时间序列分析概述时间序列是按照时间顺序排列的一系列数据点的集合。
时间序列分析则是对这些数据点进行统计和数学建模的过程,以揭示数据背后的模式和趋势。
时间序列分析在经济、金融、气象、销售预测等领域有着广泛的应用。
利用计算机软件进行时间序列分析可以提高分析的效率和准确性。
第二章:常用的时间序列分析软件目前,市面上有许多专业的时间序列分析软件。
其中比较常用的软件包括R、Python、MATLAB等。
这些软件提供了丰富的时间序列分析工具和函数库,可以进行数据导入、数据可视化、分析建模等。
第三章:数据准备与导入在进行时间序列分析之前,需要先准备好相应的数据。
数据可以来自于各类数据库、文本文件或者CSV文件。
在导入数据时,需要注意数据格式和数据质量。
常见的导入数据的函数有read.csv()、read.table()等。
第四章:时间序列的可视化可视化是时间序列分析的重要工具,可以帮助我们观察数据的趋势、季节性、异常值等。
利用计算机软件进行时间序列数据的可视化可以使用各种绘图函数,如plot()、ggplot()等。
常见的可视化方法有线图、散点图、直方图等。
第五章:时间序列模型的选择时间序列模型是对数据进行建模和预测的基础。
常用的时间序列模型包括ARIMA模型、ARCH模型、GARCH模型等。
选择合适的时间序列模型需要结合数据的特点和目标进行综合考虑。
利用计算机软件进行时间序列模型选择可以使用相应的函数,如auto.arima()、arch.test()等。
第六章:时间序列的平稳性检验时间序列的平稳性是进行时间序列分析的前提条件。
平稳性检验可以帮助我们判断时间序列是否具有稳定的均值和方差。
常用的平稳性检验方法包括ADF检验、KPSS检验等。
利用计算机软件进行时间序列的平稳性检验可以使用相应的函数,如adf.test()、kpss.test()等。
第七章:时间序列的建模与拟合时间序列建模是根据数据的特点和目标选择合适的模型,并进行参数估计和拟合的过程。
时间序列分析教材(PPT 109页)
11244 11429 11518 12607 13351 15974
490.83
27.5 17921
545.46
29.2 20749
648.30
29.0 35418
第三章 时间序列分析
三、时间序列的编制原则
(一)总体范围应该一致 (二)统计指标的经济内容应该一致 (三)统计指标的计算方法、计算价格和计量单
表1:某种股票1999年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
作用: 反映社会经济现象发展变化的过程和特点,研
究社会经济现象发展变化的趋势和规律以及对未来 状态进行预测的重要依据
第三章 时间序列分析
表3-2 某市社会劳动者、国内生产总值、社会劳动生产率时间序列
年份
1995 1996 1997 1998 1999
2000
2001
2002
2003
社会劳动者 (万人)
2003 771.62 648.30
第三产业增加 值比重 (%)
社会劳动生产 率(元/人)
21.1 11244
21.5 22.1 23.6 25.1 11429 11518 12607 13351
26.0 15974
27.5 17921
29.2 20749
29.0 35418
第三章 时间序列分析
(三)平均数时间序列
位应该保持前后一致 (四)时间序列的时间跨度应力求一致
第三章 时间序列分析
第二节 时间序列的指标分析法
时间序列的指标分析法包括水平指标分析 法与速度指标分析法。
水平指标主要包括平均发展水平和增长量; 速度指标主要包括平均发展速度与平均增 长速度。
时间序列操作流程
时间序列操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!《时间序列操作流程》一、规划与设计阶段。
在正式开始时间序列操作之前,首要的是进行全面的规划与设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列完整教程(R)
简介
在商业应用中,时间是最重要的因素,能够提升成功率。
然而绝大多数公司很难跟上时间的脚步。
但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来。
不要担心,本文并不会讨论时间机器,讨论的都是很实用的东西。
?
本文将要讨论关于预测的方法。
有一种预测是跟时间相关的,而这种处理与时间相关数据的方法叫做时间序列模型。
这个模型能够在与时间相关的数据中,找到一些隐藏的信息来辅助决策。
?
当我们处理时间序列数据的时候,时间序列模型是非常有用的模型。
大多数公司都是基于时间序列数据来分析第二年的销售量,网站流量,竞争地位和更多的东西。
然而很多人并不了解时间序列分析这个领域。
?
所以,如果你不了解时间序列模型。
这篇文章将会向你介绍时间序列模型的处理步骤以及它的相关技术。
?
本文包含的内容如下所示:?
目录?
* 1、时间序列模型介绍?
* 2、使用R语言来探索时间序列数据?
* 3、介绍ARMA时间序列模型?
* 4、ARIMA时间序列模型的框架与应用
1、时间序列模型介绍
本节包括平稳序列,随机游走,Rho系数,Dickey Fuller检验平稳性。
如果这些知识你都不知道,不用担心-接下来这些概念本节都会进行详细的介绍,我敢打赌你很喜欢我的介绍的。
平稳序列
判断一个序列是不是平稳序列有三个评判标准:?
1. 均值,是与时间t 无关的常数。
下图(左)满足平稳序列的条件,下图(右)很明显具有时间依赖。
?
1. 方差,是与时间t 无关的常数。
这个特性叫做方差齐性。
下图显示了什么是方差对齐,什么不是方差对齐。
(注意右图的不同分布。
)?
2.
3. 协方差,只与时期间隔k有关,与时间t 无关的常数。
如下图(右),可以注意到随着时间的增加,曲线变得越来越近。
因此红色序列的协方差并不是恒定的。
?
4.
于上一个位置。
?
?
现在想象一下,你在一个封闭的房间里,不能看见这个女孩。
但是你想要预测
让我们从一个Rho=0的完全平稳序列开始。
这里是时间序列的图:?
?
将Rho的值增加到,我们将会得到如下图:?
?
你可能会注意到,我们的周期变长了,但基本上似乎没有一个严重违反平稳性的假设。
现在让我们采取更极端的情况下ρ= ?
?
我们仍然看到,在一定的时间间隔后,从极端值返回到零。
这一系列也不违反非平稳性。
现在,让我们用ρ= 1随机游走看看?
?
这显然是违反固定条件。
是什么使rho= 1变得这么特殊的呢?这种情况并不满
重要推论
1. 每年的趋势显示旅客的数量每年都在增加;
2. 七八月的均值和方差比其他月份要高很多;
3. 每个月的平均值并不相同,但是方差差异很小。
因此,可以看出具有很强的周期性,一个周期为12个月或更少。
查看数据,试探数据是建立时间序列模型最重要的一部-如果没有这一步,你将不知道这个序列是不是平稳序列。
就像这个例子一样,我们已经知道了关于这个模型的很多细节。
?
接下来我们会建立一些时间序列模型以及这些模型的特征,也会做一些预测。
3、ARMA时间序列模型
ARMA也叫自回归移动平均混合模型。
ARMA模型经常在时间序列中使用。
在ARMA模型中,AR代表自回归,MA代表移动平均。
如果这些术语听起来很复杂,不用担心-下面将会用几分钟的时间简单介绍这些概念。
?
我们现在就会介绍这些模型的特点。
在开始之前,你首先要记住,AR或者MA 并不是应用在非平稳序列上的。
?
逐渐降到一个很小的数。
下图解释了AR序列的惯性:?
• 1
尝试把这个图画出来,就是这个样子的:?
?
注意到MA和AR模型的不同了没?在MA模型中,噪声/冲击迅速消失。
在A R模型中会受到长时间的影响。
AR模型与MA模型的不同
AR与MA模型的主要不同在于时间序列对象在不同时间点的相关性。
?
MA模型用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。
当n>某一个值时,x(t)与x(t-n)的相关性总为模型仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,步骤模型变量相对独立的假设条件约束,所构成的模型可以消除普通回退预测方法中由于自变量选择、多重共线性等造成的困难。
即AM模型中x(t)与x(t-1)的相关性随着时间的推移变得越来越小。
这个差别要好好利用起来。
利用ACF和PACF绘图
一旦我们得到一个平稳的时间序列。
我们必须要回答两个最重要的问题;?
Q1:这个是AR或者MA过程??
Q2:我们需要利用的AR或者MA过程的顺序是什么?
解决这两个问题我们要借助两个系数:?
时间序列x(t)滞后k阶的样本自相关系数(ACF)和滞后k期的情况下样本偏自相关系数(PACF),公式省略。
?
AR模型的ACF和PACF:?
通过计算证明可知:?
- AR的ACF为拖尾序列,即无论滞后期k取多大,ACF的计算值均与其1到p阶滞后的自相关函数有关。
?
- AR的PACF为截尾序列,即当滞后期k>p时PACF=0的现象。
?
?
上图蓝线显示值与0具有显着的差异。
很显然上面PACF图显示截尾于第二个滞后,这意味这是一个AR(2)过程。
?
MA模型的ACF和PACF:?
- MA的ACF为截尾序列,即当滞后期k>p时PACF=0的现象。
?
- MR的PACF为拖尾序列,即无论滞后期k取多大,ACF的计算值均与其1到p阶滞后的自相关函数有关。
?
?
很显然,上面ACF图截尾于第二个滞后,这应该是一个MA(2)过程。
?
目前,本文已经介绍了关于使用ACF&PACF图识别平稳序列的类型,现在,我将介绍一个时间序列模型的整体框架。
此外,还将讨论时间序列模型的实际应用。
4、ARIMA时间序列模型的框架与应用到此,本文快速介绍了时间序列模型的基础概念、使用R探索时间序列和AR MA模型。
现在我们将这些零散的东西组织起来,做一件很有趣的事情。
框架
下图的框架展示了如何一步一步地“做一个时间序列分析”?
?
前三步我们在前文已经讨论了。
尽管如此,这里还是需要简单说明一下:
3?季节性:季节性直接被纳入ARIMA模型中,下面的应用部分我们再讨论这个。
第三步:找到最优参数
参数p,q可以使用ACF和PACF图发现。
除了这种方法,如果相关系数ACF 和偏相关系数PACF逐渐减小,这表明我们需要进行时间序列平稳并引入d参数。
第四步:建立ARIMA模型
找到了这些参数,我们现在就可以尝试建立ARIMA模型了。
从上一步找到的值可能只是一个近似估计的值,我们需要探索更多(p,d,q)的组合。
最小的BIC 和AIC的模型参数才是我们需要的。
我们也可以尝试一些季节性成分。
在这里,在ACF/PACF图中我们会注意到一些季节性的东西。
第五步:预测
到这步,我们就有了ARIMA模型,我们现在就可以做预测了。
我们也可以将这种趋势可视化,进行交叉验证。
时间序列模型的应用
这里我们用前面的例子,使用这个时间序列做预测。
我们建议你在进行下一步之前,先观察这个数据。
我们从哪里开始呢?
下图是这些年的乘客数的图。
在往下看之前,观察这个图。
?
? 这里是我的观察:?
1. 乘客有着逐年增加的趋势。
?
2. 这看起来有季节性,每一个周期不超过12个月。
?
3. 数据的方差逐年增加。
?
在我们进行平稳性测试之前我们需要解决两个问题。
第一,我们需要消除方差不齐。
这里我们对这个序列取对数。
第二我们需要解决序列的趋势性。
我们通过对时序序列做差分。
现在,我们来检验最终序列的平稳性。
(diff(log(AirPassengers)), alternative="stationary", k=0)
? 显然ACF截止于第一个滞后,因此我们知道p的值应该是0.而q的值应该是1。