离散数学课件_6 代数结构

合集下载

《离散数学》第六章 集合代数

《离散数学》第六章 集合代数
例2:某学校有12位教师,已知有8位老师可以教数学,6位 可教物理,5位可教化学.其中有5位教师既教数学又教 物理.4位老师兼教数学和化学,3位老师兼教物理和化 学,3位老师兼教这三门课. 1.求不教任何课的老师有几位? 2.只教一门课的老师有几位? 3.正好教其中两门课的老师有几位?
例3: 4个x ,3个y,2个z的全排列中,求不出现xxxx,yyy ,zz图象的排列。
设x不具有性质P1,P2,…,Pm ,那么x∉Ai,i= 1,2,…m。则它对等式左边计数的贡献为1,对 等式右边的计数的贡献也是1。
根据牛顿二项式定理不难得到上面式子的结果是0.而 由于x具有n个性质,它对等式左边的贡献也为0。
4.3 几个例子
例1:求1-1000之间(包括1和1000)不能被5,也不能被6, 还不能被8整除的整数有多少个?
总体上还是多采用命题逻辑中的等值式,但在叙述
上采用半形式化的方法。
例6.6 证明A-(B∪C)=(A-B)∩(A-C).
证明: 对于∀x
x ∈ A-(B∪C) Ù x ∈ A ∧ x ∉(B∪C) Ù x ∈ A ∧ ⎤ (x∈B ∨ x∈C) Ù x ∈ A ∧ (⎤x∈B ∧ ⎤x∈C) Ù x ∈ A ∧ (x ∉ B ∧ x ∉ C) Ù x∈A∧x∉B∧x∉C Ù (x ∈ A ∧ x ∉ B) ∧ (x ∈ A ∧ x ∉ C) Ù x ∈ A- B ∧ x ∈ A- C Ù x ∈( A- B) ∩(A- C)
全排列的个数为:9!/(4!3!2!)=1260; 所以要求的排列数为
1260-(60+105+280)+(12+20+30)-6 =871.
4.4 三个练习
练习1:求由a,b,c,d构成的n位符号串中,a,b,c,d都至 少出现一次的符号串的数目。

离散数学代数结构部分-PPT

离散数学代数结构部分-PPT
所以乘法运算就是封闭得。 而对于加法运算A上得 二元运算,如果对于任意得x,y∈A,都 有x*y=y*x,则称该二元运算*就是可 交换得。
例5、2 设Q就是有理数集合,*就是Q上得 二元运算,对任意得a,b∈Q,a*b=a+ba· b,问运算*就是否可交换。
例5、3 设A=Z,“+”就是整数中得加法: 则
“+”在Z中适合结合律。 “。”就是整数中得减法:则特取
而 运算“。”不满足结合律
➢定义5、4 设*就是定义在集合A上得 一个二元运算,如果对于任意得x∈A, 都有x*x=x,则称运算*就是等幂得。
例5、4 设P(S)就是集合S得幂集,在P(S) 上定义得两个二元运算,集合得“并”运 算∪和集合得“交”运算∩,验证∪,∩ 就是等幂得。
➢ 定理6、19 设
例6、16 例6、17 设
➢ 定义6、18 设 例6、18 设
➢ 定义6、19 设 例6、19 4元置换
➢ 定义6、20设
➢ 定理6、20
➢ 定义6、21
例6、20 如图 进行旋转,也可以围绕她得对称轴进行翻转,但 经过旋转或翻转后仍要与原来得方格重合(方格 中得数字可以改变)。如果把每种旋转或翻转看 作就是作用在
➢定理5、2 设*就是S上得二元运算,
如果S中既存在关于运算*得左幺元 el ,
又存在关于运算得右幺元 er
则S中必存在关于运算*得幺元e并且
2、 零元 ➢定义5、8 设*就是S上得二元运算,
在自然数集N上普通乘法得零元就是0, 而加法没有零元。
➢ 定理5、3 设 *就是S上得二元运算,如果S 中存在(关于运算*得)零元,则必就是唯一得。 所以零元就是唯一得。
证明: 略。 推论6、1

离散数学课件-6-集合代数

离散数学课件-6-集合代数

第六章集合代数§1 集合的基本概念集合用大写英文字母标记,A,B,C,…特别地,分别用N、Z、Q、R、C标记全体自然数的集合、全体整数的集合、全体有理数的集合、全体实数的集合、全体复数的集合。

元素用小写英文字母标记,a,b,c,…x∈A:x是A的元素,称x属于A。

x∉A:x不是A的元素,称x不属于A。

列元素法:{a1, a2, …, a n, …}谓词表示法:{x| F(x)}注①集合中的元素每个只写一次②集合中的元素不计排列次序A⊆B:A是B的子集,称A被B包含A B:A不是B的子集,称A不被B包含A=B ⇔A⊆B∧B⊆A:A与B相等A⊂B ⇔A⊆B∧A≠B:A是B的真子集N⊆Z⊆Q⊆R⊆C空集:是任意集合的子集,记为∅。

有限集,无限集n元集,k元子集n元集有2n个子集集合A的幂集P(A)(或2A)全集:E§2 集合的运算并:A∪B ={x| x∈A∨x∈B}交:A∩B ={x| x∈A∧x∈B}差(B对A的相对补集):A-B ={x| x∈A∧x∉B} 对称差:A⊕B=(A-B)(∪B-A)=(A∪B)-(A∩B)绝对补集(简称A的补集):∼A=A=E-A,文氏图:大矩形表示全集E,内部的圆表示不同集合。

例已知24人中,会英语的有13人,会日语的有5人,会德语的有10人,会法语的有9人。

其中,同时会英语和日语的有2人,同时会英语和德语、同时会英语和法语、同时会德语和法语的各有4人;此外,会日语的人不会德语和法语。

求只会英语、日语、德语、法语中一种语言的人数和同时会三种语言的人数。

解:设同时会三种 语言有x 人,只会只会 英语、法语、德语中一 种语言的人数分别为y 1、y 2、y 3人,则根据文氏图可得1231232(4)2132(4)92(4)103(4)24519y x x y x x y x x y y y x x +−++=⎧⎪+−+=⎪⎨+−+=⎪⎪+++−+=−=⎩解出x =1,y 1=4,y 2=2,y 3=3。

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

《离散数学概述》PPT课件

《离散数学概述》PPT课件

同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律

交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。

离散数学课件第六章(第1讲)

离散数学课件第六章(第1讲)
,则称运算对是可分配的(或称对满足分配律)。
例:代数系统(N,+,×)。其中+,×分别代表数 的加法和乘法。 ×对+ 满足分配律 。
《定义》:设,是定义在集合S上的两个可交换二 元运算,如果对于任意的x,yS,都有:
x (x y)=x; x (xy)=x 则称运算和运算满足吸收律。
《定义》:设*是S上的二元运算,若对任一x S有x x=x, 则称满足等幂律。
讨论定义: 1) S上每一个元素均满足xx=x,才称在S上满足幂等律; 2) 若在S上存在某一元素x ,满足x x=x,则称x为S上的幂
等元素; 3) 若x是幂等元素,则有xn=x成立。
例:(1)在实数集合R中,+,×是可交换,可结合的,×对+是满足 分配律的,“0”对+是等幂元素,而其它不是等幂元素,在实数集 合R中,“-”法是不可交换,不可结合的; (2)在(Z)中, ∩,∪均是可交换,可结合的, ∩对∪, ∪对∩均满足分配律;
《定义》:设Z是一个集合,f是一个函数,f:ZnZ,则称f
为Z中的n元运算,整数n称为运算的阶(元,次)。 若n=1,则称f: ZZ为一元运算; 若n=2,则f: Z2Z为二元运算。
例:(1)在整数I和实数R中,+,-,×均为二元运算,而 对÷而言就不是二元运算 ;
(2)在集合Z的幂集(Z)中,,均为二元运算, 而“~”是一元运算;
∴x 若存在逆元,则x 的逆元一定是唯一的。
《推论》(x-1)-1 =x , e-1= e 例: 在实数集合R中,对“+”运算,对任一xR有 ∵x+(-x)=0,0为加法幺元 所以x-1 =-x , (x-1)-1 =x , 0-1 =0 对“×”运算,乘法幺元为1,∵x× 1x =1, 则对任一x R有x-1 =1x(x0) , (x-1)-1 =x , 1-1 =1

《离散数学》第六章代数结构

《离散数学》第六章代数结构

返回本章首页
5 2020/2/14
第四节 子群
与集合的子集、向量空间的子空间一样. 群也有子群的概念.子群作为群的一部分. 它的结构对群的结构有重要影响.
主要概念有:平凡 元素的周期.
讨论了一个群的非空子集构成子群的条 件;在某个元素生成的子群的基础上定义 循环群,把循环群的结构研究清楚了.
返回本章首页
2 2020/2/14
第二节 置换(1)
群论的研究始于置换群.置换群在群论里 有重要的地位.例如,五次以上方程不能 用根号求解的问题的证明就用到置换群. 置换概念本身在计算机科学中也起作重 要作用.同时置换群的记法简单,运算方 便.
本节的概念有:置换、循环置换、不相交 置换、对换、奇置换、偶置换等;
返回首页
1 2020/2/14
第一节 代数结构概述
我们在前面已经研究过集合,那时没有 过多地考虑一个集合内部元素之间的联 系.现在我们要在一个集合的内部引入运 算,并研究其运算规律,主要内容为:
1.代数系统的定义,然后用例子说明代数 系统的丰富性;
2.代数系统的运算的常用记法和运算表 的概念.
第六章 代数结构
代数结构的主要研究对象是各种各样的代数系 统,即具有一些元运算的集合,本章介绍的群就 是具有一个二元运算的代数系统.
本章以群为例讨论代数结构,它的思想和方 法已经渗透到现代科学的许多分支、它的结果 已应用到计算机的不少方面,因此计算机科学 工作者应初步掌握其基本的理论和方法. 读者通过对群的学习应初步掌握对代数系统研 究的一般方法,从简单到复杂、从具体到一般, 从而发现代数系统的一般规律.本章的内容较为 抽象、难学.可根据具体情况删减一些内容.
返回本章首页
3 2020/2/14

离散数学6(共15张PPT)

离散数学6(共15张PPT)
例2:下图所示的两个格都不是分配格。
1
a
bc
0
∵在左图中,
a∧ (b∨c)=a∧1=a
(a∧b) ∨(a∧c)=0∨0=0 a∧ (b∨c)≠(a∧b) ∨(a∧c) ∴左图不是分配格
1 b
a c∧1=b (b∧a) ∨(b∧c)=0∨c=c
b∧ (a∨c)≠(b∧a) ∨(b∧c) 右图不是分配格
第1页,共15页。
1
注意:按照定义证明某个格是分配格不容易,但要证明一个格 不是分配格,只要找出一组元素不满足某一分配式即可。上例 中的两个五元格可用来判断某格是否是分配格。
定理1:一个格是分配格的充要条件是在该格中没有任何子格与这
两个五元格中的任一个同构。
例3:右图所示的两个格都不是分配格
第2页,共15页。
(1) 设 b≤a且c≤a,∴a∧b = b,a∧c = c ∴ (a∧b)∨(a∧c) = b∨c 又∵ b∨c≤a,∴ a∧(b∨c) = b∨c
∴ a∧(b∨c) = (a∧b)∨(a∧c)
(2) 设 a≤b或a≤c,不论b≤c还是c≤b ,都有a≤b∨c
∴ a ∧( b∨c) = a,(a∧b)∨(a∧c)=a
∴ a∧(b∨c) = (a∧b)∨(a∧c) 由定理1,有a∨ (b∧c) = (a ∨ b) ∧(a∨c)
因此<A, ≤>是分配格。
第4页,共15页。
4
定理4:设<A, ≤>是分配格,则对a,b,cA, 若有 a∧b = a∧c且a∨b = a∨c ,则必有b = c 。
证明:∵a∧b≤b b = b∨(a∧b) = b∨(a∧c) = (b∨a)∧(b∨c) = (a∨c)∧(b∨c)

离散数学课件第六章第4讲

离散数学课件第六章第4讲
乘法幺元,并记为e,如果U中的元素存在乘法逆元,就 用a-1表示。
定理:在一个环中,加法的幺元必是对乘法的零元。
证明:对环<U,+, > ,a,b ,cU,有:
a(b +c)=a b +a c (b +c) a= b a+ c a ∵(U,+)是群,故必存在幺元,θU,使得 a (b+θ)=a b= a b +θ= a b + a θ 由于群满足消去律,故 θ=a θ (b+θ) a = b a =b a+θ= b a+θ a ∴θ=θ a ∴ a θ=θ a=θ 故加法幺元“θ”是乘法的零元,
注:两个代数系统是同构,他们之间的同构映射可以是不唯一的。
例: 设代数系统V1=<I,+>,V2=<2I,+>,其中I是整 数集合,+ 运算是一般的加运算,V1 和 V2 是否同构?
解:作映射 f:I2I,f(x) =2x, 则 f 是双射。 对任何a,bI, f(a+b)=2(a+b)=2a+2b=f(a)+f(b) 因此,V1 和 V2 同构
2、域的定义
对具有两个二元运算的代数系统(A,+,.>,如果 (1)<A, + >是交换群; (2)<A-{θ},.>是交换群;
(3)“ . ”对“+ ”满足分配律
则称<U, + , .>是域。
有理数、实数、复数集合对普通的加法及乘法运算 构成的代数系统是域。
<Q;+, . ><R;+, .>、 <C,+,.>都是域

离散数学 代数结构-代数系统

离散数学 代数结构-代数系统

例:设B={0,a,b,1},S1={a,1} S2={0,1} S3={a,b} 二元运算+和*由表给出,则: 1)<B,*,+,0,1>是代数系统吗? 2)<S1,*,+>是代数系统吗? 是<B,*,+,0,1>的子代数吗? 3)<S2,*,+,0,1>是<B,*,+,0,1>的子代数吗? 4)<S3,*,+>是代数系统吗?
4、子代数系统
定义14 设V= <S,fl,f2,…,fk> 是代数系统, B⊆S, 如果B对fl,f2, …,fk都是封闭的,且B和S含有相同的代数 常数,则称<B,fl,f2,…,fk > 是V的子代数系统,简称子 代数. 有时将子代数系统简记为B. 例 <N,+>是<Z,+> 的子代数,因为N对加法运算+是封闭的. < N,+> 也是<Z,+,0> 的子代数,因为N对加法运算封闭, 且N中含有代数常数0 注:从子代数定义不难看出,子代数和原代数不仅具有相同的构 成成分,是同类型的代数系统,而且对应的二元运算都具有相同 的运算性质。 任何代数系统其子代数一定存在;最大的子代数是其本身。 如果代数常数构成子代数,最小的子代数。 最小和最大的的子代数成为平凡的子代数。 如果B是S的真子集,则B构成的子代数称为V的真子代数。
3 相同代数性质(同种类)的代数系统
引入代数系统的主要目的是研究具有相同代数性质的代数系统,将相同 代数系统归类,并分析该类代数系统的性质。
代数系统 V = < S , * >, 其中 * 是一个可结合的二元 运算, 就代表了一类特殊的代数系统——半群.

离散数学 第六章的课件ppt

离散数学 第六章的课件ppt


A(BC) =(AB)(AC)
-
25
集合算律
3.涉及补运算的算律: 德摩根律,双重否定律
德摩根律 双重否定律
A(BC)=(AB)(AC) A(BC)=(AB)(AC)
(BC) = BC (BC) = BC
A=A
-
26
集合算律
4.涉及全集和空集的算律: 补元律、零律、同一律、否定律
补元律 零律
| ABC|
= 1000(200+166+125)+(33+25+41)8 = 600
-
20
6.3 集合恒等式
下面的恒等式给出了集合运算的主要算律,其中A,B,C代表任意集合。
幂等律
A∪A=A
A∩A=A
结合律
(A∪B)∪C=A∪(B∪C)
交换律
(A∩B)∩C=A∩(B∩C) A∪B=B∪A
分配律
A∩B=B∩A A∪(B∩C)=(A∪B)∩(A∪C)
书本98页 第18题 的 第(1)、(3)两个小题
-
17
有穷集合元素的计数
1. 文氏图法 2. 包含排斥原理 定理6.2 设集合S上定义了n条性质,其中具有第 i 条性质的 元素构成子集Ai, 那么集合中不具有任何性质的元素数为
|A 1A2.. .An||S| |Ai| |AiAj|
1in
1ijn
∩A={a}
∪∪A=a∪b
∩∩A=a
∩∪A=a∩b
∪∩A=a
∩∪A∪(∪∪A-∪∩A)
=(a∩b)∪((a∪b)-a)
=(a∩b)∪(b-a)
=b
所以∪∪A=a∪b,∩∩A=a,∩∪A∪(∪- ∪A-∪∩A)=b。

离散数学 代数系统 ppt课件

离散数学 代数系统 ppt课件

1
33 0 1 2 8
代数系统举例
设A={1,2,3,4,6,12} A上的运算*定义为:a*b=|a-b| (1)写出二元运算的运算表; (2)<A,*>能构成代数系统吗?
9
解答
由运算表可知*运算在集合A上不封闭
所以: <A,*>不能构成代数系统
* 1 2 3 4 6 12
1 0 1 2 3 5 11
U=<I,+, > 证明:V=< m,+m, m >
满同态
g:I→Nm 对于所有的iI,有:
g(i)=(i)(modm)
32
证明
类型映射f定义为:f(+)=+m,f()=m (1)显然U=<I,+, >和V=< Nm,+m, m >同类型
(2)运算的象=象的运算
对任意的x,yI: g(x+y)=g(x) +m g(y) g(x y)=g(x) m g(y)
12
4、同类型的代数系统
V1=<S1,Ω1>:代数系统 类型映射 V2=<S2,Ω2>:代数系统 同元运算
存在一个双射函数f: Ω1 → Ω2 每一个ω∈Ω1和f(ω) ∈Ω2具有相同的阶 ωf V1和V2是同类型的代数系统
13
同类型的代数系统举例
V1=<Nm,+m , m > 和V2=<R,+, >是 同类型的代数系统吗?其中:
41
满同态举例(续)
(5)对“+”存在e=0,则: 对“+3”存在e=g(0)=0; (6)对“”存在e=1,则: 对“3”存在e=g(1)=1; (7)对“”存在零元=0,则: 对“3”存在零元=g(0)=0;

《离散数学》代数系统--代数系统的基本概念 ppt课件

《离散数学》代数系统--代数系统的基本概念 ppt课件

解:(1) 封闭、可交换、等幂、幺元是b、无零元
b-1=b a-1=c c-1=a
(2) 封闭、不可交换、无等幂性、幺元是a、
无零元,d是左零元、
a-1=a b-1=b c-1=b b-1=c
23
P184
作业
(1)(2)
24
16
定理2:*是A上的二元运算,且在A中有关于*的左零元l和右零元 r,则l = r = ,且A中零元是唯一的。
证明:(1) r = l * r = l = (2) 设’也是A中关于*的零元,则 * ’= ’ 又∵ 是A中关于*的零元, ∴ * ’= ∴ = ’
定理3:设<A,*>是一个代数系统,且 | A |>1,若<A,*>中存在幺元e 和零元,则e ≠ 。 证明: 假设 = e ,则 对于A中任意元素,有x=e*x= *x= =e 即A中所有元素都是 ,也都是e,所有元素都相同, ∴ | A |=1 与已知矛盾,假设错 ∴e≠
例:代数系统<I,+>满足消去律。
11
代数系统的组成
N元运算法则
如+、-
×………
特异元素
如×中的1和0
代数载体
(集合:如实数集、整数集)
代数系统
12
4. 代数常元
幺元
定义3:设*是集合A上的二元运算 若elA,对于xA ,都有el*x=x,则称el为A中 关于运算*的左幺元; 若erA,对于xA ,都有x*er=x,则称er为A中 关于运算*的右幺元; 若eA,对于xA ,都有e*x=x*e=x,则称e为A 中关于运算*的幺元。
15
零元
定义4:设*是集合A上的二元运算 若lA,对于xA ,都有l*x=l ,则称l为A中关于运 算*的左零元; 若rA,对于xA ,都有x*r=r ,则称r为A中关于 运算*的右零元; 若A,对于xA ,都有*x=x*=,则称为A中关于 运算*的零元。

离散数学—代数11.24版.ppt

离散数学—代数11.24版.ppt
证 因为1l和1r是左么元和右么元。
1r = 1l·1r = 1l
证毕。
第六章 代 数 定理 6.1-2 设*是S上的二元运算, 具有左零元0l和右零元0r, 那么0l=0r, 这元素就是零元。 证明类似于定理6.1-1。
推论6.1-2 一个二元运算的么元(零元)是唯一的。
第六章 代 数
6.1.3 逆元
第六章 代 数
*
a
b
c
a
a
a
b
b
a
b
c
c
a
c
c
例6 (a) 代数A=〈{a, b, c}, *〉由上表定义。
b是么元。a的右逆元是c, b的逆元是自身, c的左逆元是a。
第六章 代 数
定理 6.1-3 对于可结合运算, 如果一个元素x有左逆元l和右逆 元r, 那么l=r(即逆元是唯一的)。
证 设1对运算 。是么元, 于是 l 。x = x 。 r = 1
(1) S' S
(2) S′对S上的运算 。和△
(3) k∈S′ 那么A′=〈S′, 。, △, k〉是A的子代数。
如果A′是A的子代数, 那么A′和A有相同的构成成分和服从相 同的公理。A的最大可能的子代数是它自己, 这个子代数是常存 在的。如果A的常数集合在A的运算下是封闭的, 那么它组成A的 最小子代数。这两种子代数称为A的平凡子代数, 其余子代数称 为真子代数。
第六章 代 数 3. 载体的特异元素, 叫做代数常数
有些代数不含常数。这里所谓“不含”只是说我们研究该代 数时并不关注这些特异元素,
代数通常用载体、运算和常数组成的n重组表示。 例 整数、 加法和常数0 (1) 载体是整数集合I={…, -3, -2, -1, 0, 1, 2, 3… (2) 定义在I上的运算是加法(记为+) (3) 常数是0 这个代数可记为〈I, +, 0〉。

离散数学 第六章 代数

离散数学 第六章 代数

设<A,*>为代数系统,*是定义在A上的二 元运算,则运算*的某些性质以及代数常元 可以直接从运算表中得到:
运算*是封闭的,当且仅当运算表中的每个元素 都属于A;
运算*满足交换律,当且仅当运算表关于主对角 线对称;
2018/10/27
yuliang@
29
6.1本节小结
31
6.1习题
习题一
设<A,*>为代数系统,其中A={1,2,3,4},“*”定义 如下表所示: (a)运算*是可交换的吗?为什么? (b)运算*是可结合的吗?为什么?
(c)求A中关于运算*的幺元,
并给出每个元素的逆元。 (d)A中有关于运算*的零元吗?
20
6.1代数结构
【例题8】
设集合S={a,b,c,d}, S上定义的两个二元运算*和★
的运算表如下表所示,试求出其中的左幺元和右
幺元。
* a b c d ★ a b c d
a
b c d
2018/10/27
d
a a a
a
b b b
(a)
b
c c c
c
d c d
a
b c
a
b c
b
a d
d
c a
c
则称*对 是可分配的。
2018/10/27
yuliang@
12
6.1代数结构
代数运算的性质三
【例题6】设集合A={α,β},在A上定义两个二元 运算*和☆,如下表(a)和(b)所示。 * α β
(a)
α β α β β α
☆ α β
α β α α α β
d b
d
d
(b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回本章首页
4 2014-9-23
第三节


本节给出了群 的定义及群 的简单性质. 主要概念有:左(右)单位元、单位元、 左(右)逆元、逆元、可除条件、消去律、 有限群、无限群、交换群; 主要结论有: 1.群的定义中条件(2) 、(3)可分别用左 单位元、左逆元替代,也可分别用右单 位元、右逆元替代,还可以用可除条件 替代; 2.任意群中消去律成立.
8 2014-9-23
第七节

群的同态(1)
同态是两个代数系统间的一种联系,通 过这种联系,可以把一个代数系统的运 算转移到另一个代数系统.使得在一个 代数系统中较难解决的问题转移到另一 个代数系统中成为较易解决的问题.例 如,我们常用的对数,实际上,它就是 正实数的乘法群到实数的加法群的一个 同态.利用对数,我们实现了把较难的 乘法运算转化成较易的加法运算,因此, 同态是代数系统间十分重要的关系
返回本章首页
2 2014-9-23
第二节

置换(1)
群论的研究始于置换群.置换群在群论 里有重要的地位.例如,五次以上方程 不能用根号求解的问题的证明就用到置 换群.置换概念本身在计算机科学中也 起作重要作用.同时置换群的记法简单, 运算方便. 本节的概念有:置换、循环置换、不相 交置换、对换、奇置换、偶置换等;
返回本章首页
7 2014-9-23
第六节

拉格朗日定理
拉格朗日定理反映了有限群的元数与其 子群的元数之间的关系.是群论的最基 本定理之一. 拉格朗日定理是:设G是有限群,H是G的 子群,则有公式|G|=|H|(G:H). 本节给出了拉格朗日定理的两个推论及 几个应用拉格朗日定理的例子.
返回本章首页
返回本章首页
5 2014-9-23
第四节

子群
与集合的子集、向量空间的子空间一样. 群也有子群的概念.子群作为群的一部 分.它的结构对群的结构有重要影响. 主要概念有:平凡子群、非平凡子群、 由某个元素生成的子群、循环群、生成 元、元素的周期. 讨论了一个群的非空子集构成子群的条 件;在某个元素生成的子群的基础上定 义循环群,把循环群的结构研究清楚了.
返回本章首页
10 2014-9-23
第八节

商群
正规子群之所以重要,是因为这种子群 的陪集,对于与原来的群有密切关系的 某种代数运算来说作成群; 主要结论有:设N是群G的正规子群,N的 所有陪集按照以下的乘法 (aN)(bN)=abN 构成一个群(称为G对N的商群,记作G/N), 且商群G/N是群G的同态象.
返回本章首页
11 2014-9-23
第九节
同态定理
设f:G→G’是群同态,于是可以构造
商群G/Kerf,同态定理是: 同态基本定理设:f:G→G’是群同态, 则: பைடு நூலகம்/Kerf≌G’
返回本章首页
12 2014-9-23
第十节

环(1)
前面讨论的都是只有一个代数运算的代 数系统 , 本节我们介绍有两个代数运算 的代数系统——环 .环的两个被称为加 法、乘法的代数运算是我们最为熟悉的 代数运算,由于本课程的限制 ,我们对环 仅作极其初步,简单的介绍. 学习本节时 , 可以把整数、有理数、实 数、复数的加法、乘法运算与环的两个 运算加以对照.
返回首页
1 2014-9-23
第一节

代数结构概述
我们在前面已经研究过集合,那时没有 过多地考虑一个集合内部元素之间的联 系 . 现在我们要在一个集合的内部引入 运算,并研究其运算规律,主要内容为: 1. 代数系统的定义 , 然后用例子说明代 数系统的丰富性; 2.代数系统的运算的常用记法和运算表 的概念.
返回本章首页
6 2014-9-23
第五节 陪集与正规子群

本节利用群 G 的一个子群 H 来作 G 的一个分类, 并由这样的分类来引入正规子群的概念. 1.利用群G的一个子群H,定义了G的一个等价 关系,这个等价关系决定了G的一个分类,每 个类Ha称为右陪集,类似地也定义了左陪集; 2.在左、右陪集的基础上定义了群的正规子 群,并讨论了子群为正规子群的条件,正规子 群是群的一类重要子群,有很好的代数性质, 应很好掌握它.
第六章 代数结构
代数结构的主要研究对象是各种各样的代数系 统,即具有一些元运算的集合,本章介绍的群就 是具有一个二元运算的代数系统. 本章以群为例讨论代数结构,它的思想和 方法已经渗透到现代科学的许多分支、它的结 果已应用到计算机的不少方面,因此计算机科 学工作者应初步掌握其基本的理论和方法. 读者通过对群的学习应初步掌握对代数系统研 究的一般方法,从简单到复杂、从具体到一般, 从而发现代数系统的一般规律.本章的内容较为 抽象、难学.可根据具体情况删减一些内容.
返回本章首页
13 2014-9-23
第十节

环(2)
本节的基本概念有: 环、环的运算表、交换环、有单位元 的环、零因子、左零因子、右零因子、 无零因子环、整环、除环、域、四元数 等; 本节介绍了与环有关的最基本的结论
返回本章首页
14 2014-9-23
本章小结

本章在简单地介绍了代数系统的概念后, 较为详细地讨论置换(它实际上是为讨 论群作准备).然后我们就给出群的定 义,接着我们又讨论子群、陪集、正规 子群、商群、同态、同构等.最后一节 我们还极其简单地介绍了具有两个代数 运算的系统——环.这些内容对于抽象 思维能力和逻辑推理能力的培养很有帮 助.
9 2014-9-23
返回本章首页
第七节

群的同态(2)
主要概念有:同态、单同态、满同态、 同构、零同态、同态象、同态核. 主要结论有: 1.设f是群G到群G’的同态映射,则G的单 位元的象是G’的单位元;且G的子群H在f 下的象f(H)是G’的子群; 2.设f是群G到群G’的同态映射,则同态核 是G的正规子群;
返回本章首页
3 2014-9-23
第二节

置换(2)
本节的结论有: 1.置换的乘法(即合成)满足结合律; 2.两个不相交的循环置换的乘法满足交换 律; 3.任意置换均可惟一地分解成不相交循环 置换的乘积(不考虑因子的次序) ; 4.每个置换都能分解成对换的乘积,且偶 置换只能分解成偶数个对换的乘积,奇置 换只能分解成奇数个对换的乘积; 5.在n个元素的所有置换中,奇偶置换各半.
相关文档
最新文档