第二讲:字典排列法与树形图(巩固篇)答案

合集下载

第二讲:字典排列法与树形图(巩固篇)

第二讲:字典排列法与树形图(巩固篇)

第二讲:字典排列法与树形图(巩固篇)
1、有5 分、1 角、5 角、1 元的硬币各一枚,一共可以组成多少种不同的币值?
2、三个人互换帽子,要使每个都戴过别人的帽子,共有多少种换法?
3、一次射击比赛中,5 个泥制的靶子排成3 列,一射手按下列规则去击碎靶子:先挑选一列,然后必须击碎这列中尚未被击碎的靶子中最低的一个,若每次都遵循这一原则,击碎五个靶子可以有多少种不同的次序?
4、有1,2,3,4,5 的数字卡片各一张,每次取4 张,计算它们的和,可能有多少种不同的和,他们分别是多少?
5、右图中有多少个三角形,多少条线段?
6、甲、乙两人进行乒乓球比赛,规定谁先胜三场谁胜。

第一场甲胜。

问到决出最后胜负为止,共有几种不同的情形?其中甲胜的情形有几。

树状图和列表法

树状图和列表法

个性化教学辅导教案所有可能出的结果:(S ,S )(S ,J )(S ,B )(J ,S )(J ,J )(J ,B )(B ,S )(B ,J )(B ,B )从上面的树状图可以看出,一次游戏可能出现的结果共有9种,而且每种结果出现的可能性相同.所以,P (出同种手势)=93=31P (甲获胜)=93=31解法二:一次游戏,甲、乙两人随机出手势的所有可能的结果如下表:S J B S (S ,S ) (S ,J ) (S ,B ) J (J ,S ) (J ,J ) (J ,B ) B (B ,S )(B ,J )(B ,B )以下同解法一评注:(1)利用列表法、树状图法求概率必须是等可能事件. (2)对各种可能出现的情况不能遗漏或重复某种可能.例3.有两个可以自由转动的均匀转盘A 、B ,都被分成了3等份,并在每份内均标乙出的手势甲出的手势通过33 4 5 (3,3)(3,4)(3,5)43 4 5(4,3)(4,4)(4,5)53 4 5(5,3)(5,4)(5,5)答案:解:(1)12;(2)所有可能得到的数字之和如下表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 45678910(3)由上表可知,两数之和的情况共有24种,所以,P (数字之和为奇数)121242==, P (数字之和为偶数)121242==.家庭作业1.(2012•恩施州)某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W 1,W 2,W 3表示)、三个化学物实验题(题签分别用代码H 1、H 2、H 3表示),二个生物实验题(题签分别用代码S 1,S 2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签. (1)请你用画树状图的方法,写出他恰好抽到H 2的情况;(2)求小亮抽到的题签代码的下标(例如“W 2”的下标为“2”)之和为7的概率是多少?AB和. 如有侵权请联系告知删除,感谢你们的配合!精品。

第二讲 字典排列法与树形图

第二讲 字典排列法与树形图

第二讲字典排列法与树形图知识点总结1、枚举法:字典排列法、分类枚举、树形图都是枚举法中的一种,使用各种枚举法需要注意有条理、不重复、不遗漏,使人一目了然。

2、字典排列法:从首位开始,按一定的顺序(比如从小到大)枚举第一位,对于每种情况再按从小到大的顺序枚举第二位,依次类推。

3、分类枚举:先有序分类,再有序枚举。

4、树形图:确定起点,按照一定的顺序一一罗列,最后数终点个数。

例题精讲【例1】汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?【分析】三人情况:都有蛀牙说明每个人的蛀牙数目不能为0,每人至少有1颗,一共有8颗蛀牙,所以最多的蛀牙数是6。

题中有三个人的名字,所以三个人是有次序的,我们将汤姆看成是首位,杰瑞看成第二位,德鲁比看成第三位,则可以运用字典排列法枚举。

汤姆: 1 1 1 1 1 1 汤姆: 2 2 2 2 2杰瑞: 1 2 3 4 5 6 杰瑞: 1 2 3 4 5得鲁比:6 5 4 3 2 1 得鲁比: 5 4 3 2 1汤姆: 3 3 3 3 汤姆: 4 4 4杰瑞: 1 2 3 4 杰瑞: 1 2 3得鲁比:4 3 2 1 得鲁比:3 2 1汤姆: 5 5 汤姆: 6杰瑞: 1 2 杰瑞: 1 得鲁比:2 1 得鲁比:1总共有6+5+4+3+2+1=21种情况。

【例2】下午茶的时候,老师给同学们准备了苹果,香蕉和橘子三种水果,每种都有足够多个,昊昊想挑3个水果吃,请问:他一共有多少中选择?【分析】分类枚举:先有序分类,再有序枚举。

一种水果:苹苹苹,香香香,橘橘橘两种水果:苹香香,苹苹香,苹橘橘,苹苹橘,香橘橘,香香橘三种水果:苹香橘一共:3+6+1=10(种)【例3】一个人在三个城市A、B、C中游览。

他今天在这个城市,明天就必须到另一个城市。

这个人从A城出发,4天后还回到A城,那么这个人有几种旅游路线?【分析】列出树形图如下,共有6种路线。

高斯小学奥数含答案三年级(上)第02讲 枚举法中的字典排列

高斯小学奥数含答案三年级(上)第02讲 枚举法中的字典排列

6基础例题:在上一讲中我们学习了简单的枚举法——直接把所有情况一一列举出来.但如果问题较为复杂,直接枚举很有可能产生重复或者遗漏,这时就需要有一些特别的方法来帮助我们枚举出所有情况.本讲就主要介绍两种枚举的方法:字典排列法和树形图法.同学们可以翻一下英汉字典,不难发现字典中单词排列的规律:整本字典按首字母从a 到z 排列,首字母相同的单词都在一起.在首字母相同的单词中,再按照第2个字母从a 到z 的顺序排列,然后是我明天先吃什么呢?先吃汉堡,不不,还是先吃玉米,哎,还是先吃饼干吧!到底先吃什么呢?共有多少种不同的吃法?这里的东西可真好吃,肚子好胀哦!我要带回去一些慢慢吃。

如果我把这三个东西都带回去,一天吃1个,还可以再吃3天呢? 第二讲枚举法中的字典排列第3个字母,第4个字母……所谓“字典排列法”,就是指在枚举时,像字典里的单词顺序那样排列出所有答案.例如,用1、2、3各一次可以组成多少个不同的三位数?用字典排列法枚举时,每个位置都按从小到大排列,枚举的顺序是:123,132,213,231,312,321.下面我们用字典排列法来解决几个问题.例题1.卡莉娅、墨莫、小高三个人去游乐园玩,三人在藏宝屋中一共发现了5件宝物,三人找到的宝物数量共有多少种不同的可能?(可能有人没有发现宝物)分析:每个人最少找到几件宝物?最多呢?练习:1.老师准备了6个笔记本奖励萱萱、小高和墨莫三人,每人至少得到1本笔记本,请问:老师有多少种不同的奖励方法?例题2.老师要求每个同学写出3个自然数,并且要求这3个数的和是8.如果两个同学写出的3个自然数相同,只是顺序不一样,则算是同一种写法.试问:同学们最多能得出多少种不同的写法?分析:注意顺序不同算一种写法,也就是三个数分别为(1、2、5)、(2、5、1)和(5、1、2)都算同一种写法.练习:2.三个大于0的整数之和(数与数可以相同)等于10,共有多少组这样的三个数?用字典排序法枚举的时候,判断题目要求到底是“交换顺序后算作两种”还是“交换顺序后仍然是同一种”非常关键.往往题目中要求“交换顺序后仍然是同一种”,那么枚举的每个结果里就没有明确的顺序关系;反之,那么枚举时要注意每个结果中应该都符合一定的顺序关系.在求解计数问题时,审题非常关键.往往一字之差就会有天壤之别.枚举法是解决计数问题的基础,但是对于比较复杂的问题,如果直接枚举很容易出现重复或者遗漏.这时就需要预先把所有情形分成若干小类,针对每一小类进行枚举.例题3如下图所示,有7个按键,上面分别写着:1、2、3、4、5、6、7这七个数字.请问:(1)从中选出2个按键,使它们上面的数字的差等于2,一共有多少种选法?7(2)从中选出2个按键,使它们上面的数字的和大于9,一共有多少种选法?分析:第二问中的和大于9是什么意思?也就是最小等于10,那最大又是多少?和共有几种可能?练习3有一次,著名的探险家大米得到一个宝箱,但是宝箱有密码锁,密码锁下边有一行小字:密码是和大于11的两个数,而且这两个数不能相同.不用考虑数的先后顺序,你知道密码共有多少种可能吗?例题4数一数下图中包含星星的长方形(包括正方形)有多少个?分析:含星星的长方形会由几个小方格组成呢?我们可以依据长方形的种类进行分类.练习4数一数下图中包含星星的正方形有多少个?在分类时,一定注意类与类之间有没有重复的部分,或者还有没有漏掉的情况.只有在分类已经做到“不重不漏”的前提下,才能够进行进一步的枚举.例题5妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限.可能的吃法1 2 3 4 5 6 78一共有多少种?分析:虽然题目对天数没有限制,但要求每天至少吃2个.照此推算,最多能吃几天?例题6午餐的时候,食堂为同学们准备了苹果、桃子和桔子三种水果,每种都有很多.东东想要挑3个水果吃.请问东东有多少种不同的选法?分析:仔细审题,挑的3个水果能不能是同种的水果?若要分类枚举,应该如何分类呢?课堂内外字典是如何排序的?在英语字典中,两个单词的位置是这样决定的:从第一个字母开始比较,如果相同,那么就看下一个字母;如果不同,那么就按照从a到z的顺序进行排列.比如说:book和look这两个单词,第一个字母分别是b和l,b排在l前面,所以book排在look之前.再比如说:book和boat这两个单词,前两个字母都是bo,所以就看第三个字母,o在a之后,所以字典里book出现在boat之后.再来看看中文字典,现在的中文字典主要采用的都是按拼音字母的顺序进行排序,方法与英语字典相同.其实在使用拼音之前我国古代的字典一般都是按照部首以及笔画来排序的,比如著名的《康熙字典》就是这样排序的:先按部首排序,每个部首之中再按剩下的笔画数从少到多进行排序.中文字典除了按拼音、部首等顺序排列之外,还有四角号码、笔顺等多种排序方法.9作业1.有4支完全相同的铅笔要分给3位同学,每位同学至少分1支,共有多少种不同的分法?2.有面值分别为1元、10元和50元的纸币若干,每种面值的纸币张数都大于3.如果从中任取3张,那么能组成的钱数共有多少种?3.老师要求墨莫写4篇作文,题目不限,但是每天至少写1篇.那么墨莫完成这些作文共有多少种不同的可能?4.爷爷要墨莫多吃水果,于是给了他8个苹果,要求每天至少吃2个,吃完为止.那么墨莫一共有多少不同的吃法?5.体育馆里有很多足球和篮球,体育老师要小高从里面拿4个,请问小高有多少种不同的选择?10第二讲枚举法中的字典排列1.例题1答案:21种详解:按照字典排列法,依次枚举卡莉娅、墨莫和小高三人所找到的宝物数量,由于每人最少找到0件宝物,最多找到5件,所以按(卡莉娅、墨莫、小高)的形式枚举出:(0、0、5),(0、1、4),(0、2、3),(0、3、2),(0、4、1),(0、5、0),(1、0、4),(1、1、3),(1、2、2),(1、3、1),(1、4、0),(2、0、3),(2、1、2),(2、2、1),(2、3、0),(3、0、2),(3、1、1),(3、2、0),(4、0、1),(4、1、0),(5、0、0),共有21种不同的可能.2.例题2答案:10种详解:由于题目要求三个数顺序不同算作同一种方法,所以在枚举时只需要考虑从小到大排列的情况.用字典排列法不难得到:=++=++=++=++=++=++=++=++=++=++ 8008017026035044116125134224233,共有10种不同的可能.3.例题3答案:(1)5种;(2)6种详解:(1)7和5,6和4,5和3,4和2,3和1;(2)和为10:7和3,6和4;和为11:7和4,6和5;和为12:7和5;和为13:7和6.4.例题4答案:12个详解:按长方形的大小分类.一格的有1个,两格的有3个,三格的有2个,四格的有3个,+++++=个.六格的有2个,八格的有1个.共有132321125.例题5答案:8种详解:天数最多3天.按天数分类.吃1天的有1种,吃2天的有4种,吃3天的有3种.共++=种.有14386.例题6答案:10种详解:3个水果既可以同种,也可以不同种.因此可按所选水果的种类数量进行分类:(1)只选1种水果:全苹果、全桃子、全桔子,共3种情况;(2)选2种水果:2个苹果1个桃子、2个桃子1个苹果、2个苹果1个桔子、2个桔子1个苹果、2个桔子1个桃子、2个桃子1个桔子,共6种情况;(3)3种水果都选:每种水果各1个,共1种情况.++=种情况.综上所述,共有361107.练习1答案:10种简答:每人至少1本,人与人不同,所以是“有顺序”的问题,枚举可得共有10种不同的奖励方法.8.练习2答案:8种简答:题目要求是3个大于0的数组成一组,也就是“无顺序”,在枚举时要注意前后的大小关系,共8种.9.练习3答案:12种11简答:9和3、4、5、6、7、8;8和4、5、6、7;7和5、6.10.练习4答案:10个简答:按正方形的大小分类.一格的有1个,四格的有4个,九格的有4个,十六格的有1 +++=个.个.共有14411011.作业1答案:3种简答:(2、1、1);(1、2、1);(1、1、2);共3种.12.作业2答案:10种简答:按取出的钱所含的面值种数分类,可能是1种面值,也可能是2种面值,也可能是3种面值.3类情形加起来共有10种可能.13.作业3答案:8种简答:根据天数分类.1天、2天、3天、4天完成分别有:1、3、3、1种情况,共8种可能.14.作业4答案:13种简答:按吃完的天数分类,分为4类:1天、2天、3天、4天.这四类分别有1、5、6、1种情况,共13种不同的情况.15.作业5答案:5种简答:按取出的球的种类数量进行考虑:取出的球可能有1种或2种.分上述2类进行枚举,共有5种不同选择.12。

小学奥数:加法原理之树形图及标数法.专项练习及答案解析

小学奥数:加法原理之树形图及标数法.专项练习及答案解析

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: ① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚知识要点教学目标7-1-3.加法原理之树形图及标数法举的时候要注意顺序,这样才能做到不重不漏.模块一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 1】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种?【考点】加法原理之树形图法【难度】3星【题型】解答【关键词】2005年,小数报【解析】如图,A第一次传给B,到第五次传回A有5种不同方式.同理,A第一次传给C,也有5种不同方式.所以,根据加法原理,不同的传球方式共有5510+=种.CBCCBAABABCCBA【答案】10【巩固】一只青蛙在A,B,C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有多少种不同的跳法?【考点】加法原理之树形图法【难度】3星【题型】解答【解析】6种,如图,第1步跳到B,4步回到A有3种方法;同样第1步到C的也有3种方法.根据加法原理,共有336+=种方法.AAABCABCBA【答案】6【例 2】甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?【考点】加法原理之树形图法【难度】3星【题型】解答【解析】如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况.同理,乙胜第一局也有 7种可能的情况.一例题精讲共有 7+7=14(种)可能的情况. 【答案】14【例 3】 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有 种不同的走法。

二年级奥数题

二年级奥数题

二年级奥数题01 二年级奥数题及答案:做游戏操场上原有16个同学,又来了14个。

这些同学每5个一组做游戏,可以分成多少组?答案:(16+14)/5=6(组),所以可以分成6组02 二年级奥数题及答案:羽毛球拍体育室有60副羽毛球拍。

小明借走了15副,小亮借走了26副,现在还剩多少副?答案:60-15-26=19(副),所以还剩19副03 二年级奥数题及答案:小汽车小汽车每辆能坐4人,大客车能坐25人,有3辆小汽车和1辆大客车,问一共能坐多少人?答案:4*3+25=37(人),所以一共能坐37人04 二年级奥数题及答案:皮球商店里有4盒皮球,每盒6个,卖出20个,还剩多少个?答案:4*6-20=4(个),所以还剩4个05 二年级奥数题及答案:画片小明有6套画片,每套3张,又买来4张,问现在有多少张?答案:6*3+4=22(张),所以现在有22张06 二年级奥数题及答案:有学生多少人二.一班有女生15人,男生比女生多11人,问二.一班有学生多少人?答案:15+11+15=41(人),所以二.一班有学生41人07 二年级奥数题及答案:蜡烛屋里有10支点燃的蜡烛,被风吹灭了4支。

此时屋里还有多少支蜡烛?答案:还有10支蜡烛,因为问题是屋里还有多少蜡烛,所以被吹灭的蜡烛也算在内08 二年级奥数题及答案:用掉多少钱一个玩具熊50元,一辆玩具汽车20元。

小明拿100元钱,买了1个玩具熊和1辆玩具汽车用去多少元?答案:100-50-20=30(元),所以用去30元09 二年级奥数题及答案:绳子一根绳子长97米,先用去了28米,又用去了45米。

(1)这根绳子比原来短了多少米?(2)还剩多少米?答案:(1)97-28-45=24(米),97-24=73(米),(2)97-28-45=24(米),这根绳子比原来短了73米,还剩24米10 二年级奥数题及答案:劳动小组班里有48人,平均分成6个劳动小组,每个小组有多少人?答案:48/6=8(人),每个小组有8人11 二年级奥数题及答案:互赠卡片小明、小华、小丽三人互相赠送了1张卡片。

部编版数学三年级上册第13讲.字典排列法和树形图 教师版

部编版数学三年级上册第13讲.字典排列法和树形图 教师版
那么比赛的进程有多少种可能? [分析] 令常昊为 a,古力为 b,则进行分类枚举有:
如果第一场常昊胜,共有 6 种:
a
【对应学案】【学案 1】
例2
(明心教育 2005 年秋季三年级)婷婷到游乐园游玩,游乐园有一张价目表:
类型
价格 时间
骑木马 1 元 10 分钟
蹦床
2 元 10 分钟
电动车 5 元 10 分钟
碰碰车 8 元 10 分钟 爸爸只让婷婷玩 20 分钟,那么,婷婷共有多少种不同的搭配方式可以玩?请你一一列举出来。 【分析】共有 10 种不同的搭配方.骑木马+骑木马;蹦床+蹦床;电动车+电动车;碰碰车+碰碰 车;
[分析](1)2 种;两间房依次住着艾迪、薇儿或者薇儿、艾迪。 (2)6 种;三间房依次住着①艾迪、薇儿、哈哈,②艾迪、哈哈、薇儿,③薇儿、艾迪、哈 哈,④薇儿、哈哈、艾迪,⑤哈哈、艾迪、薇儿,⑥哈哈、薇儿、艾迪。
【巩固】(第七届“小机灵杯”小学生数学竞赛(决赛)试题)自然数 12、135、1349 这些数有一个共 同的特点,相邻两个数字,左边的数字小于右边的数字,我们取名为“上升数”。用 5、6、7、8 这四个数字,可以组成( )个“上升数”.
而中文字典的排列是什么样的呢?现在绝大多数的中文字典的排列和英文词典是差不多的,每 个汉字是按照它的汉语拼音的字母顺序去排列的 ,同样的拼音再按声调的顺序排列 。而在拼音发明 之前 ,中文字典都是按照部首来排列的 。
按照这样的顺序排出的字典、词典方便易查,比如想在一本英文词典中找到“apple”。我们只要 先找到第一个字母是 a 的单词的位置,再找第二个字母是 p 的字母的位置,以此类推,由于每个字 母的排列都是从 a 到 z 的,我们可以很快找到 apple 的位置。 同学们可以想一想,如果这本词典是 胡乱排列每个单词的,那么我们想找到“apple”就只能靠“撞大运”了,假如真有这样的词典,我们也 不会去买的。

中考数学每日一练:列表法与树状图法练习题及答案_2020年综合题版

中考数学每日一练:列表法与树状图法练习题及答案_2020年综合题版

中考数学每日一练:列表法与树状图法练习题及答案_2020年综合题版答案答案答案2020年中考数学:统计与概率_概率_列表法与树状图法练习题~~第1题~~(2019常州.中考真卷)将图中的 型(正方形)、型(菱形)、型(等腰直角三角形)纸片分别放在个盒子中,盒子的形状、大小、质地都相同,再将这 个盒子装入一只不透明的袋子中.(1) 搅匀后从中摸出 个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2) 搅匀后先从中摸出个盒子(不放回),再从余下的个盒子中摸出个盒子,把摸出的 个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)考点: 几何概率;列表法与树状图法;~~第2题~~(2020长春.中考模拟) 一个不透明的口袋中装有三个小球,上面分别标有数字3、4、5,这些小球除数字不同外其余均相同.(1) 从口袋中随机摸出一个小球,小球上的数字是偶数的概率是.(2) 从口袋中随机摸出一个小球,记下数字后放回,再随机摸出一个小球,记下数字,请用画树状图(或列表)的方法,求两次摸出的小球上的数字都是奇数的概率.考点: 概率公式;列表法与树状图法;~~第3题~~(2020宁波.中考模拟) 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1) 根据图中信息求出m=,n=;(2) 请你帮助他们将这两个统计图补全;(3) 根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4) 已知A 、B 两位同学都最认可“微信”,C 同学最认可“支付宝”D 同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.考点: 用样本估计总体;扇形统计图;条形统计图;列表法与树状图法;~~第4题~~(2020长葛.中考模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.答案答案(1) 从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2) 小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.考点: 列表法与树状图法;游戏公平性;~~第5题~~(2020温州.中考模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1) 这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2) 将条形统计图补充完整;(3) 该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4) 某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.考点: 用样本估计总体;扇形统计图;条形统计图;概率公式;列表法与树状图法;2020年中考数学:统计与概率_概率_列表法与树状图法练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

25.2画树状图法求概率(第2课时)(作业)(夯实基础+能力提升)(解析版)

25.2画树状图法求概率(第2课时)(作业)(夯实基础+能力提升)(解析版)

25.2画树状图法求概率(第2课时)(作业)(夯实基础+能力提升)【夯实基础】一、单选题1.(2022·云南楚雄·九年级期中)有五张卡片的正面分别写有“喜”“迎”“二”“十”“大”,五张卡片洗匀后将其反面朝上放在桌面上,小明从中任意抽取两张卡片,恰好是“二十”的概率是()A.110B.120C.25D.15根据表格可知共有20种等可能的结果,其中恰好抽到“二”和“十”的结果有2种,∴从中任意抽取两张卡片,恰好是“二十”的概率是21 2010=.故选:A.【点睛】本题考查列表法或画树状图法求概率.正确的列出表格或画出树状图是解题关键.2.(2022·山东·济南市天桥区泺口实验学校九年级阶段练习)连续掷两枚质地均匀的硬币,两枚正面朝上的概率是()A.14B.12C.13D.34【答案】A∴1 ()4P=正,故选:A.【点睛】本题主要考查列举法求概率,分析事件所需结果与可能出现的结果之间的比值乘以百分百就是所需结果的概率,关键是找出事件可能出现的结果的总量.二、填空题3.(2022·重庆一中九年级阶段练习)从一副扑克牌中挑出一张红桃、三张黑桃,把它们背面朝上洗匀放在桌子上,随机从中抽取一张,记下花色后放回,再次洗匀放在桌上并随机再抽取一张,两次抽到的扑克牌花色一样的概率是______.【答案】58##0.625由表知,共有16种等可能结果,其中两次抽到的扑克牌花色一样的有10种结果,所以两次抽到的扑克牌花色一样的概率为105 168=,故答案为:58.【点睛】本题考查的是用列表法求概率,解题关键是熟悉列表法的适用情况,并且掌握概率等于所求情况数与总情况数之比.三、解答题4.(2022·陕西·西安市铁一中学九年级期中)疫情防控期间,学校组织师生进行全员核酸检测.学校共设置了A,B,C三个检测通道,所有师生可随机选择其中的一条通道检测,某天早晨,甲,乙两名同学进行核酸检测.求:(1)甲同学在A通道进行检测的概率是_____________;(2)请用“画树状图”或“列表”的方法,求甲,乙两位同学分别从不同的通道检测的概率.【点睛】此题考查了用树状图或列表的方法求概率,熟练掌握画树状图或列表的方法求概率是解答此题的关键.5.(2022·浙江温州·九年级阶段练习)5张背面相同的卡片,正面分别写有不同1,2,3,4,7中的一个正整数.现将卡片背面朝上.(1)求从中任意抽出一张,正面的数是偶数的概率.(2)连续摸出4张卡片(不放回),已知前2张正面的数分别为1,7.求摸出的4张卡片的数的总和为奇数的概率(要求画树状图或列表).6.(2022·浙江·永康市象珠镇清溪初级中学九年级阶段练习)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.列表或画树状图表示所有取牌的可能性.【答案】见解析【分析】根据题意画出树状图,由树状图可得所有等可能的结果.【详解】解:画树状图如下:∴所有取牌等可能性结果共有9种.【点睛】本题考查了列表法或画树状图法,熟练掌握列表法或画树状图法是解答本题的关键.7.(2022·宁夏·银川北塔中学一模)我区某中学举行了“垃圾分类,绿色环保”知识竞赛活动,根据学生的成绩划分为A,B,C,D四个等级,并绘制了不完整的两种统计图:根据图中提供的信息,回答下列问题:(1)参加知识竞赛的学生共有______人,并把条形统计图补充完整;(2)扇形统计图中,m=______,C等级对应的圆心角为______度;(3)小明是四名获A等级的学生中的一位,学校将从获A等级的学生中任选取2人,参加区举办的知识竞赛,请用列表法或画树状图,求小明被选中参加区知识竞赛的概率.故答案为:40,(2)44010%¸=, 1636040°´故答案为:10, 144;(3)设除小明以外的三个人记作共有12中可能出现的情况,其中小明被选中的有6种,所以小明被选中参加区知识竞赛的概率为61122=.【点睛】题目主要考查条形统计图与扇形统计图综合,用列表法或树状图法求概率等,理解题意,综合运用这些知识点是解题关键.8.(2022·吉林·长春市第一〇八学校二模)在一次购物中,小明和小亮都想从A :微信、B :支付宝、C :银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.(请用树状图或列表等方法说明理由)Q共有9种等可能的结果,其中两人恰好选择同一种支付方式的有\两人恰好选择同一种支付方式的概率为【点睛】此题考查了树状图法与列表法求概率,解题的关键是用到的知识点为:概率9.(2022·江苏镇江·一模)2022年北京冬奥会和冬残奥会吉祥物分别是“冰墩墩”和“雪容融”.在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各两张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同.(1)小明从中随机抽取1张卡片并换取相应的吉祥物,他换得“冰墩墩”的概率是;(2)小红从中一次性抽取2张卡片并换取相应的吉祥物,用列表或树状图的方法求他正好换得“冰墩墩”和“雪容融”各一个的概率.共有12种等可能的结果,其中,换得“冰墩墩”和“雪容融【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.10.(2022·四川·成都西川中学三模)某校开展“科技知识竞赛”,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.组别分数人数A 组7580x <£4B 组8085x <£C 组8590x <£10D 组9095x <£E 组95100x <£14合计根据统计图表提供的信息,解答下列问题:(1)本次共调查了___________名学生;C 组所在扇形的圆心角为___________度;(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?(3)若E 组14名学生中有4人满分,设这4名学生为E 1,E 2,E 3,E 4,从其中抽取2名学生代表学校参加区级比赛,请用列表或画树状图的方法求恰好抽到E1,E2的概率.共有12种可能出现的结果,其中抽到E1,E2的有11.(2022·广东·江门市福泉奥林匹克学校九年级期中)有三张卡片(形状、大小、质地都相同),正面分x+,x,3,将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽别写上整式1取另一张,第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.请用树状图写出抽取两张卡片的所有等可能结果,并求抽取的两张卡片结果能组成分式的概率.一、填空题1.(2022·山东青岛·九年级期中)用图中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则配成紫色的概率是______.列表:红红红红共有12种情况,配成紫色的红蓝有4种,概率为41123 P==【点睛】本题考查等可能事件概率的求法,关键是把第一个图中的蓝色分为三块,使其也成为等概率的情况.二、解答题2.(2022·山东青岛·九年级期中)在四张编号为A B C D、、、的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好,现从中随机抽取一张然后放回,再从四张卡片中随机抽取一张.A1,2,3B2,3,4C5,12,13D3,4,5(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A B C D 、、、表示)(2)我们知道,满足222+=a b c 的三个正整数a ,b ,c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.共有16种等可能的结果;(2)根据题意,满足222+=a b c 的三个正整数a ∵22212539+=¹=,2221323416=¹+=,25+3.(2022·宁夏·吴忠市第三中学一模)近年来,校园安全受到全社会的广泛关注,为了了解学生对安全知识的掌握程度,学校采用随机抽样的调查方式,根据收集到的信息进行统计,绘制了下面两幅不完整的统计图,请你根据统计图所提供的信息解答下列问题:(1)接受问卷调查的学生共有______人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_____.(2)请补全条形统计图.(3)若该中学共有学生3000人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.(4)若从对校园安全知识达到“了解”程度的3名女生和2名男生中随机抽取2人参加校园安全知识竞赛,请用画树状图法或列表法求出恰好抽到1名男生和1名女生的概率.(3)根据题意得:5153000100060+´=(人),则估计该中学学生中对校园安全知识达到“了解(4)画树状图得:由树状图可知,共有20种等可能的结果,恰好抽到1个男生和∴恰好抽到1个男生和1个女生的概率为123 205=.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率4.(2022·江苏·扬州中学教育集团树人学校二模)小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下其中的两个开关,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表加以说明.Q共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有\正好客厅灯和走廊灯同时亮的概率是:【点睛】本题考查的是用列表法或画树状图法求概率,解题的关键是掌握列表法或画树状图法可以不重复5.(2022·山东青岛·九年级期中)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4,随机地一次摸取两张纸牌,请用列表或画树状图的方法解决下列问题.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.∴随机地一次摸取两张纸牌,共有12种情况,其中两次摸取纸牌上数字之和为∴两次摸取纸牌上数字之和为5的概率41 123 ==;6.(2022·四川雅安·九年级专题练习)为了倡导保护资源节约用水,从某小区随机抽取了50户家庭,调查了他们5月的用水量情况,结果如图所示.(1)这50户家庭中5月用水量在20~30t的有多少户?(2)把图中每组用水量的值用该组的中间值(如0~10的中间值为5)来代替,估计该小区平均每户用水量;(3)从该50户用水量在20~40t的家庭中,任抽取2户,用树状图或表格法求至少有1户用水量在30~40t 的概率.∵共有20种等可能结果,其中至少有1户用水量在30~40t的结果有14种,∴P(至少有1户用水量在30~40t)=1420=710.答:从该50户用水量在20~40t的家庭中,任抽取2户,至少有1户用水量在30~40t的概率是7 10.【点睛】此题考查了数据分析和画树状图(或列表)求概率,解题的关键是分析统计图,根据题意画出表格,注意列举出所有的等可能结果.7.(2022·全国·九年级单元测试)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种:方案A,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案B,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件是:顾客购买商品的金额每满100元,可根据方案A抽奖一次:每满足150元,可根据方案B抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案A抽奖三次或方案B 抽奖两次或方案A,B各抽奖一次).已知某顾客在该商场购买商品的金额为250元.(1)若该顾客只选择根据方案A进行抽奖,求其所获奖金为15元的概率;(2)以顾客所获得的奖金的平均值为依据,应采用哪种方式抽奖更合算?并说明理由.。

小学奥数 加法原理之树形图及标数法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  加法原理之树形图及标数法 精选练习例题 含答案解析(附知识点拨及考点)

1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);知识要点教学目标7-1-3.加法原理之树形图及标数法3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.模块一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 1】 A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种? 【考点】加法原理之树形图法 【难度】3星 【题型】解答 【关键词】2005年,小数报【解析】 如图,A 第一次传给B ,到第五次传回A 有5种不同方式. 同理,A 第一次传给C ,也有5种不同方式.所以,根据加法原理,不同的传球方式共有5510+=种.C B CC B AAB A B CCBA【答案】10【巩固】 一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法? 【考点】加法原理之树形图法 【难度】3星 【题型】解答【解析】 6种,如图,第1步跳到B ,4步回到A 有3种方法;同样第1步到C 的也有3种方法.根据加法原理,共有336+=种方法.AA A BCAB C BA【答案】6【例 2】 甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况? 【考点】加法原理之树形图法 【难度】3星 【题型】解答 【解析】 如下图,我们先考虑甲胜第一局的情况:例题精讲图中打√的为胜者,一共有7种可能的情况.同理,乙胜第一局也有 7种可能的情况.一共有 7+7=14(种)可能的情况.【答案】14【例 3】 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有 种不同的走法。

高斯小学奥数含答案三年级(上)第02讲 枚举法中的字典排列

高斯小学奥数含答案三年级(上)第02讲 枚举法中的字典排列

6基础例题:在上一讲中我们学习了简单的枚举法——直接把所有情况一一列举出来.但如果问题较为复杂,直接枚举很有可能产生重复或者遗漏,这时就需要有一些特别的方法来帮助我们枚举出所有情况.本讲就主要介绍两种枚举的方法:字典排列法和树形图法.同学们可以翻一下英汉字典,不难发现字典中单词排列的规律:整本字典按首字母从a 到z 排列,首字母相同的单词都在一起.在首字母相同的单词中,再按照第2个字母从a 到z 的顺序排列,然后是我明天先吃什么呢?先吃汉堡,不不,还是先吃玉米,哎,还是先吃饼干吧!到底先吃什么呢?共有多少种不同的吃法?这里的东西可真好吃,肚子好胀哦!我要带回去一些慢慢吃。

如果我把这三个东西都带回去,一天吃1个,还可以再吃3天呢? 第二讲枚举法中的字典排列第3个字母,第4个字母……所谓“字典排列法”,就是指在枚举时,像字典里的单词顺序那样排列出所有答案.例如,用1、2、3各一次可以组成多少个不同的三位数?用字典排列法枚举时,每个位置都按从小到大排列,枚举的顺序是:123,132,213,231,312,321.下面我们用字典排列法来解决几个问题.例题1.卡莉娅、墨莫、小高三个人去游乐园玩,三人在藏宝屋中一共发现了5件宝物,三人找到的宝物数量共有多少种不同的可能?(可能有人没有发现宝物)分析:每个人最少找到几件宝物?最多呢?练习:1.老师准备了6个笔记本奖励萱萱、小高和墨莫三人,每人至少得到1本笔记本,请问:老师有多少种不同的奖励方法?例题2.老师要求每个同学写出3个自然数,并且要求这3个数的和是8.如果两个同学写出的3个自然数相同,只是顺序不一样,则算是同一种写法.试问:同学们最多能得出多少种不同的写法?分析:注意顺序不同算一种写法,也就是三个数分别为(1、2、5)、(2、5、1)和(5、1、2)都算同一种写法.练习:2.三个大于0的整数之和(数与数可以相同)等于10,共有多少组这样的三个数?用字典排序法枚举的时候,判断题目要求到底是“交换顺序后算作两种”还是“交换顺序后仍然是同一种”非常关键.往往题目中要求“交换顺序后仍然是同一种”,那么枚举的每个结果里就没有明确的顺序关系;反之,那么枚举时要注意每个结果中应该都符合一定的顺序关系.在求解计数问题时,审题非常关键.往往一字之差就会有天壤之别.枚举法是解决计数问题的基础,但是对于比较复杂的问题,如果直接枚举很容易出现重复或者遗漏.这时就需要预先把所有情形分成若干小类,针对每一小类进行枚举.例题3如下图所示,有7个按键,上面分别写着:1、2、3、4、5、6、7这七个数字.请问:(1)从中选出2个按键,使它们上面的数字的差等于2,一共有多少种选法?7(2)从中选出2个按键,使它们上面的数字的和大于9,一共有多少种选法?分析:第二问中的和大于9是什么意思?也就是最小等于10,那最大又是多少?和共有几种可能?练习3有一次,著名的探险家大米得到一个宝箱,但是宝箱有密码锁,密码锁下边有一行小字:密码是和大于11的两个数,而且这两个数不能相同.不用考虑数的先后顺序,你知道密码共有多少种可能吗?例题4数一数下图中包含星星的长方形(包括正方形)有多少个?分析:含星星的长方形会由几个小方格组成呢?我们可以依据长方形的种类进行分类.练习4数一数下图中包含星星的正方形有多少个?在分类时,一定注意类与类之间有没有重复的部分,或者还有没有漏掉的情况.只有在分类已经做到“不重不漏”的前提下,才能够进行进一步的枚举.例题5妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限.可能的吃法1 2 3 4 5 6 78一共有多少种?分析:虽然题目对天数没有限制,但要求每天至少吃2个.照此推算,最多能吃几天?例题6午餐的时候,食堂为同学们准备了苹果、桃子和桔子三种水果,每种都有很多.东东想要挑3个水果吃.请问东东有多少种不同的选法?分析:仔细审题,挑的3个水果能不能是同种的水果?若要分类枚举,应该如何分类呢?课堂内外字典是如何排序的?在英语字典中,两个单词的位置是这样决定的:从第一个字母开始比较,如果相同,那么就看下一个字母;如果不同,那么就按照从a到z的顺序进行排列.比如说:book和look这两个单词,第一个字母分别是b和l,b排在l前面,所以book排在look之前.再比如说:book和boat这两个单词,前两个字母都是bo,所以就看第三个字母,o在a之后,所以字典里book出现在boat之后.再来看看中文字典,现在的中文字典主要采用的都是按拼音字母的顺序进行排序,方法与英语字典相同.其实在使用拼音之前我国古代的字典一般都是按照部首以及笔画来排序的,比如著名的《康熙字典》就是这样排序的:先按部首排序,每个部首之中再按剩下的笔画数从少到多进行排序.中文字典除了按拼音、部首等顺序排列之外,还有四角号码、笔顺等多种排序方法.9作业1.有4支完全相同的铅笔要分给3位同学,每位同学至少分1支,共有多少种不同的分法?2.有面值分别为1元、10元和50元的纸币若干,每种面值的纸币张数都大于3.如果从中任取3张,那么能组成的钱数共有多少种?3.老师要求墨莫写4篇作文,题目不限,但是每天至少写1篇.那么墨莫完成这些作文共有多少种不同的可能?4.爷爷要墨莫多吃水果,于是给了他8个苹果,要求每天至少吃2个,吃完为止.那么墨莫一共有多少不同的吃法?5.体育馆里有很多足球和篮球,体育老师要小高从里面拿4个,请问小高有多少种不同的选择?10第二讲枚举法中的字典排列1.例题1答案:21种详解:按照字典排列法,依次枚举卡莉娅、墨莫和小高三人所找到的宝物数量,由于每人最少找到0件宝物,最多找到5件,所以按(卡莉娅、墨莫、小高)的形式枚举出:(0、0、5),(0、1、4),(0、2、3),(0、3、2),(0、4、1),(0、5、0),(1、0、4),(1、1、3),(1、2、2),(1、3、1),(1、4、0),(2、0、3),(2、1、2),(2、2、1),(2、3、0),(3、0、2),(3、1、1),(3、2、0),(4、0、1),(4、1、0),(5、0、0),共有21种不同的可能.2.例题2答案:10种详解:由于题目要求三个数顺序不同算作同一种方法,所以在枚举时只需要考虑从小到大排列的情况.用字典排列法不难得到:=++=++=++=++=++=++=++=++=++=++ 8008017026035044116125134224233,共有10种不同的可能.3.例题3答案:(1)5种;(2)6种详解:(1)7和5,6和4,5和3,4和2,3和1;(2)和为10:7和3,6和4;和为11:7和4,6和5;和为12:7和5;和为13:7和6.4.例题4答案:12个详解:按长方形的大小分类.一格的有1个,两格的有3个,三格的有2个,四格的有3个,+++++=个.六格的有2个,八格的有1个.共有132321125.例题5答案:8种详解:天数最多3天.按天数分类.吃1天的有1种,吃2天的有4种,吃3天的有3种.共++=种.有14386.例题6答案:10种详解:3个水果既可以同种,也可以不同种.因此可按所选水果的种类数量进行分类:(1)只选1种水果:全苹果、全桃子、全桔子,共3种情况;(2)选2种水果:2个苹果1个桃子、2个桃子1个苹果、2个苹果1个桔子、2个桔子1个苹果、2个桔子1个桃子、2个桃子1个桔子,共6种情况;(3)3种水果都选:每种水果各1个,共1种情况.++=种情况.综上所述,共有361107.练习1答案:10种简答:每人至少1本,人与人不同,所以是“有顺序”的问题,枚举可得共有10种不同的奖励方法.8.练习2答案:8种简答:题目要求是3个大于0的数组成一组,也就是“无顺序”,在枚举时要注意前后的大小关系,共8种.9.练习3答案:12种11简答:9和3、4、5、6、7、8;8和4、5、6、7;7和5、6.10.练习4答案:10个简答:按正方形的大小分类.一格的有1个,四格的有4个,九格的有4个,十六格的有1 +++=个.个.共有14411011.作业1答案:3种简答:(2、1、1);(1、2、1);(1、1、2);共3种.12.作业2答案:10种简答:按取出的钱所含的面值种数分类,可能是1种面值,也可能是2种面值,也可能是3种面值.3类情形加起来共有10种可能.13.作业3答案:8种简答:根据天数分类.1天、2天、3天、4天完成分别有:1、3、3、1种情况,共8种可能.14.作业4答案:13种简答:按吃完的天数分类,分为4类:1天、2天、3天、4天.这四类分别有1、5、6、1种情况,共13种不同的情况.15.作业5答案:5种简答:按取出的球的种类数量进行考虑:取出的球可能有1种或2种.分上述2类进行枚举,共有5种不同选择.12。

2020-2021学年新教材数学人教B版选择性必修第二册课件:3.1.2 排列与排列数

2020-2021学年新教材数学人教B版选择性必修第二册课件:3.1.2 排列与排列数
3.1.2 排列(páiliè)与排列(páiliè)数
第一页,共34页。
-1-1
课标阐释
思维脉络
1.正确理解排列的意义,掌
握写出所有排列的方法,加
深对分类讨论方法的理解,
发展学生的抽象能力和逻
辑思维能力.
2.掌握有关排列综合题的
基本解法,提高分析问题和
解决问题的能力,学会用分
类讨论思想解决问题.
第十七页,共34页。
课堂篇探究学习
探究(tànjiū)

探究(tànjiū)

探究(tànjiū)

素养形成
当堂检测
(4)插空法:先排好男生,然后将女生插入排男生时产生的四个空位,
共有A33 A44 =144 种.
(5)定序排列用除法:第一步,设固定甲、乙、丙从左至右顺序的排列
总数为 N;第二步,对甲、乙、丙进行全排列,则为 7 个人的全排列,
置分析法或元素分析法进行排列.应记住相邻、相间、定序、分排等常见
问题的解法.
2.元素相邻和不相邻问题的解题策略
限制条件
元素相邻
元素不相邻
解题策略
通常采用“捆绑”法,即把相邻元素看作一个
整体参与其他元素的排列
通常采用“插空”法,即先考虑不受限制的元
素的排列,再将不相邻元素插在前面元素排
列的空中
第十九页,共34页。
当堂检测
排列数公式的应用
2A 58 +7A 48
例 1(1)计算:
A 88 -A 59
;
(2)用排列数表示(55-n)(56-n)…(69-n)(n∈N+,且n<55).
2A 58 +7A 48

高斯小学奥数含答案三年级(上)第14讲 树形图

高斯小学奥数含答案三年级(上)第14讲 树形图

6我们已经学过了枚举法,有时还需要先分类再按一定顺序进行枚举.接下来我们将要学习如果对某件事情的过程进行枚举,一般会使用另一种方法:树形图法.所谓树形图法就是用像树一样的、不断分叉的图来表示出所有情况的方法.画出树形图与一棵树的生长过程类似,先从“树根”开始,然后不断长出新的“树枝”,每次长出新的“树枝”时都有可能产生分叉,最后长满了“果实”.这样一直下去把所有情况都画完,最后数一下“果实”的数目即可.例题1乌龟、兔子、米老鼠站成一排,如果乌龟不站在第1个,兔子不站在第2个,米老鼠不站在第3个,请问它们共有多少种不同的站法?分析:第1个位置可以站哪些小动物?第2个位置呢?以第一动物位置站的人作为“树根”,用树形图表示出所有的站法.甲、乙、丙、丁4个人站队,站成一条直线.如果甲不站第1、2个,乙不站第2、3个,丙不站第3、4个,丁不站第4、1个,那么一共有多少种站队的方法?第十四讲 树形图练习17例题2小高、墨莫和萱萱玩传球游戏,每次持球人都可以把球传给另外两人中的任何一人.先由小高拿球,第1次传球可以传给其他两人中的任何一人,经过4次传球之后,球又回到了小高手里.请问一共有多少种不同的传球过程?分析:第1次有多少种传法?试着用树形图画出每次传球后给谁.注意:只有第4次传球后回到小高手里上才是符合题意的传法.有A 、B 、C 三片荷叶,青蛙“呱呱”在荷叶A 上,每次它都会从一片荷叶跳到另一片荷叶上,结果它跳了3次之后,不在荷叶A 上.请问:它一共有多少种不同的跳法?例题3一个四位数,每一位上的数字都是0、1、2中的一个,并且相邻的两个数字不同,一共有多少个满足条件的四位数?分析:四位数的千位数字和个位数字分别有几种情况?应该选择哪个数位的数字作为“树根”来画树形图?一个三位数,每一位上的数字都是5、6、7中的某一个,并且相邻的两个数字不相同,一共有多少个满足条件的三位数?例题4王老师有一个带密码锁的公文包,但是他忘记了密码.只记得密码是一个三位数.这个三位数的个位数字比十位数字大,十位数字比百位数字大,并且没有比5大的数字.试问:王老师最多需要试多少次就肯定能打开这个公文包?分析:百位数字最小,有几种情况?把这些情况分别作为“树根”,画出树形图.练习 2练习38一个三位数,百位比十位大,十位比个位大,个位不小于5,那么这样的三位数一共有几个?例题5常昊与古力两人进行围棋赛,谁先胜三局就赢得比赛.如果最后常昊获胜了,那么比赛的进程有多少种可能?分析:试着把每场比赛的结果用树形图表示出来.注意:不会有这样的过程出现,因为在这种情况下,赛完第4场后古力已经获胜,不符合题意.例题65块六边形的地毯拼成了如下图的形状,每块地毯上都有一个编号,现在小高站在1号地毯上,他想要走到5号地毯上.如果小高每次都只能走到和他相邻的地毯上(两个六边形如果有公共边就成为相邻),并且只能向右边走,例如1→2→3→5就是一种可能的走法.请问:小高一共有多少种不同的走法?分析:注意开始是从1号毯开始,结束在5号地毯才能符合题意.2 3145古常古古常常练习4课堂内外汽车品牌家族树形图9作业1.一个三位数,个位、十位和百位的3个数字分别是2、3、4中的1个,如果百位不是2,十位不是3,个位不是4,请问符合要求的三位数有多少种?(填出所有的可能)2.甲、乙、丙三个人传球,从甲开始传球,每次拿球的人都把球传给剩下两个人中的一人,传了3次后球在丙的手上,那么一共有多少种可能的传球过程?3.粗心的卡莉娅忘记了日记本的三位密码,只记得密码是由1、2、7三个数字中的某些数字构成的,且相邻的两个数字不一样,那么卡莉娅最多试多少次就一定能打开日记本?4.甲、乙比赛乒乓球,五局三胜.已知甲胜了第1局,并最终获胜.请问一共有多少种不同的比赛过程?5.满足下面性质的数称为阶梯数:它的百位数字比十位数字小,十位数字比个位数字小,并且相邻两位数字的差不超过2.例如:135、234为阶梯数,156就不是阶梯数,那么共有多少个三位数是阶梯数?1011第十四讲 树形图1. 例题1答案:2种详解:可以画成树形图,如下图,共2种.2. 例题2答案:6种详解:可以画成树形图,第1次可以给萱萱,也可以给墨莫,如下图,共6种. 3. 例题3答案:16种详解:可以画成树形图,如下图,树根有1、2,树根有1的共有8种,2的也有8种,共16种.4. 例题4答案:10次详解:分别用1、2、3三个数作为树根,可以画出三幅树形图:121221 2112212121 211 02 0123 小墨萱墨4 小 小 小萱 墨小小 123 小萱墨萱4 小 小 小萱 墨小 小 12 3 龟兔鼠鼠龟 龟鼠兔兔鼠12 312所以,王老师最多试10次就肯定能打开包了. 5. 例题5答案:10种详解:第一场可能常昊胜也有可能古力胜:数一下最后的果实数目,总共有10种可能性. 6. 例题6答案:5种详解:可以画成树形图,共有5种.常常古常常常古常常 古古 常 常 常 古常 古 常古古古常常常常常常 常5 43553424555 134324 4137. 练习1答案:2种简答:可以画成树形图,如下图,共2种.8. 练习2答案:6种简答:可以画成树形图,第1次可跳在B 、C 荷叶上,跳了3次后不在A 荷叶上,如下图,共6种.9. 练习3答案:12种简答:可以画成树形图,如下图,树根有5、6、7,树根是5的共有4种,6的也有4种,7的也有4种,共12种.123 BCBACAABCBC A CB123 12 3 甲乙丙 丁 4 丁甲 甲 丙丁 甲 丙12 3甲 丙 4丁甲 乙乙乙 5133244 5 5 5451410. 练习4答案:10种简答:可以画成树形图,从个位开始枚举,如下图,共10种.11. 作业1答案:342;423 简答:可以画成树形图:12. 作业2答案:3简答:可以画成树形图:百 3、4 十 2、4 个2、33 42 4 22 3 6 579 8 8 7 百 十 个> >8 999 67 98 百 十 个> >8 9978 99百 十 个>>65765 75567 65 76 576 75 7 61513. 作业3答案:12简答:如下图.首位是2或7开头的密码也有4个,所以符合条件的有12个,最多要试12次.14. 作业4答案:6简答:可以画成树形图:15. 作业5答案:24个简答:如下图,可分别画出百位是1、2、3、4、5、6、7的树形图,百位为1的有4种,百位为2的有4种,百位为3的有4种,百位为4的有4种,百位为5的有4种,百位为6的有3种,百位为7的有1种,共有24个阶梯三位数.甲甲乙甲乙甲 乙 甲甲 甲乙 甲 乙甲甲百十 个 127 1 71 2……甲乙丙甲丙甲乙丙丙丙百十个123 34 4 5……16。

小学奥数加法原理之树形图及标数法精选练习例题含答案解析附知识点拨及考点

小学奥数加法原理之树形图及标数法精选练习例题含答案解析附知识点拨及考点

且]IM1隹教学目标1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致. 目W1叵知识要点一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k类方法,第一类方法中有明种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有m k种不同做法,则完成这件事共有N=m i+m2++m k种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:加法分类,类类独立分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事)3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.目W诈例题精讲模块一、树形图法树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例1】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种?【考点】加法原理之树形图法【关键词】2005年,小数报【难度】3星【题型】解答如图,同理,所以,A第一次传给B,到第五次传回A有5种不同方式. A第一次传给根据加法原理,C,也有5种不同方式.不同的传球方式共有5+5=10种.A——B10一只青蛙在A,B,多少种不同的跳法?加法原理之树形图法C三点之间跳动,若青蛙从A点跳起,跳4次仍回到A点,则这只青蛙一共有【难度】3星【题型】解答6种,如图,第1步跳到B,4步回到A有3种方法;同样第1步到C的也有3种方法.根据加法原理,共有3+3=6种方法.[例2]甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?【考点】加法原理之树形图法【难度】3星【题型】解答【解析】如下图,我们先考虑甲胜第一局的情况:『甲J甲d/乙(甲.、/甲乙#、了/、甲J、乙/图中打量!为胜者,一共有7种可能的情况.同理,乙胜第一局也有7种可能的情况.一共有7+7=14(种)可能的情况.【答案】14[例3]如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有的走法。

高中数学苏教版选择性必修第二册§7.2第1课时排列

高中数学苏教版选择性必修第二册§7.2第1课时排列
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.将玫瑰花、月季花、莲花各一束分别送给甲、乙、丙三人,每人一 束,共有多少种不同的分法?请将它们列出来.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解 按分步计数原理的步骤: 第一步,分给甲,有3种分法; 第二步,分给乙,有2种分法; 第三步,分给丙,有1种分法. 故共有3×2×1=6(种)不同的分法. 列出这6种分法,如右:
随堂演练
1.(多选)从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分
别计算它们的结果,在这些问题中,可以看作排列问题的有
A.加法
√B.减法
ห้องสมุดไป่ตู้
C.乘法
√D.除法
解析 因为加法和乘法满足交换律,所以选出两个数做加法和乘法时, 结果与两数字位置无关,故不是排列问题,而减法、除法与两数字的 位置有关,故是排列问题.
解 (1)不是; (2)是; (3)第一问不是,第二问是. 理由:由于加法运算满足交换律,所以选出的两个元素做加法求结果 时,与两个元素的位置无关,但列除法算式时,两个元素谁作除数, 谁作被除数不一样,此时与位置有关.选出3个座位与顺序无关,“入座” 问题同“排队”,与顺序有关,故选3个座位安排3位客人入座是排列 问题.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.现从8名学生干部中选出3名同学分别参加全校“资源”“生态”和 “环保”三个夏令营活动,则不同的选派方案的种数是_3_3_6___. 解析 从8名学生干部中选出3名同学排列的种数为8×7×6=336,故共 有336种不同的选派方案.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲:字典排列法与树形图(巩固篇)答案
第十三讲:字典排列法与树形图(巩固篇答案)
1、【解析】取一枚的,有4 种方法;取两枚的,有6 种方法;取三枚的有4 种方法;取四枚的,有1 种方法。

每种取法币值都不同,故有4+6+4+1=15(种)不同币值。

2、【解析】共有2 种换法
设3 人为A、B、C,他们的帽子为a,b,c,则有如下二种换法:
A、B、C
b,c,a
c,a,b
3、一次射击比赛中,5 个泥制的靶子排成3 列,一射手按下列规则去击碎靶子:先挑选一列,然后必须击碎这列中尚未被击碎的靶子中最低的一个,若每次都遵循这一原则,击碎五个靶子可以有多少种不同的次序?
4、【解析】
一共有5 种不同的和,分别是10,11,12,13,14。

1+2+3+4=10,1+2+3+5=11,1+2+4+5=12,1+3+4+5=13,2+3+4+5=14。

5、右图中有多少个三角形,多少条线段?
【解析】有6 个三角形,10 条线段。

相关文档
最新文档