2016年绥化市中考数学试卷(带答案)

合集下载

绥化中考数学试卷真题

绥化中考数学试卷真题

绥化中考数学试卷真题一、选择题1. 已知函数y=x^2的图象经过点M(1, h),则h的值为多少?A. 2B. 1C. 0D. -12. 若a:b=3:5,b:c=4:7,则a:b:c的比值为多少?A. 12:20:35B. 3:5:7C. 6:10:14D. 9:15:213. 如图所示,正方形ABCD的边长为6cm,E、F、G分别为AD、AB、BC的中点,连接AF、CD,交于点H。

则△AFH的面积为多少?(图略)A. 6cm²B. 9cm²C. 12cm²D. 18cm²4. 若正方形的周长为48cm,圆的周长为48πcm,则这个正方形的面积与圆的面积之比是多少?A. 1:πB. 2:πC. 4:πD. 8:π5. 某数除以37的商是6,余数是5,这个数是多少?A. 227B. 2275C. 2285D. 2295二、填空题1. 化简:(4m^3n^2)(-2mn^3)(-5m^2n)答案:40m^6n^62. 小红10点从家里出发跑步到学校,平均每分钟跑300米,在9点59分她的妈妈发现她忘记带钥匙,便骑自行车去追她。

小红正好到学校门口时她妈妈从起点开始追逐。

如若小红的家距离学校1600米,她妈妈的速度比她快12倍,那么她妈妈多少分钟追上小红?答案:80分钟三、解答题1. 下列四个分式中,哪个分式的值最大?(写出你的计算过程)A. 7/19B. 8/23C. 9/26D. 10/29计算过程:将四个分式的分子和分母用相同的数进行乘除,得到分式的等价分式,比较分子的大小,答案为D. 10/292. 如图,正方形ABCD的边长为8cm,点E、F分别为AD、BC的中点,连接BE、CF,交于点G。

求△BGC的面积。

(图略)解答:由题意可知,△BGC是等腰直角三角形,首先计算△BEC 的面积,即1/2×BE×EC=1/2×4×8=16,然后计算△BGC的面积为16×2=32。

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如下图所示的美丽图案中,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)长度单位1纳米=10-9米,目前发现一种新型禽流感病毒(H7N9)的直径约为101纳米,用科学记数法表示该病毒直径是()A . 10.1×10-8米B . 1.01×10-7米C . 1.01×10-6米D . 0.101×10-6米3. (2分) (2016七上·句容期中) 下列说法中正确的是()A . 如果两个数的绝对值相等,那么这两个数相等B . 有理数分为正数和负数C . 互为相反数的两个数的绝对值相等D . 最小的整数是04. (2分)如果3x+2=5,那么5x+1等于()A . 7B . 8C . 9D . 65. (2分)(2017·孝感模拟) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A . 2B . 8C . 2D . 26. (2分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A 与点D重合,折痕为EF ,则△DEF的周长为()A . 9.5B . 10.5C . 11D . 15.57. (2分)在等边△ABC内部任取一点P,将△ABP绕点A旋转到△ACQ,则△APQ为()A . 不等腰的直角三角形B . 腰和底不等的等腰三角形C . 等腰直角三角形D . 等边三角形8. (2分)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx+c的图象可能为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分) (2017八下·福州期中) 甲、乙、丙三台机床生产直径为60mm的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽取了20个测量其直径,进行数据处理后,发现三组数据的平均数都是60mm,它们的方差依次为,,,根据以上提供的信息,你认为生产螺丝的质量最好的是________机床.10. (1分)规定sin(α﹣β)=sinα•cosβ﹣cosα•sinβ,则sin15°=________11. (1分)七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为________ 元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.012. (1分) (2017八下·东台期中) 如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=________cm.13. (1分) (2018九上·华安期末) 如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为________(结果保留π).14. (1分) (2017七下·盐都开学考) 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、作图题 (共1题;共5分)15. (5分) (2015七下·南山期中) 如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB 于D,E两点,再分别以D,E为圆心,大于 DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.四、解答题 (共9题;共76分)16. (10分)计算:(1)sin45°+cos230°﹣(2)(1﹣x﹣)÷ .17. (5分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.18. (13分)某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=________,B=________,C=________.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?19. (5分)如图,身高1.6米的小明为了测量学校旗杆AB的高度,在平地上C处测得旗杆高度顶端A的仰角为30°,沿CB方向前进3米到达D处,在D处测得旗杆顶端A的仰角为45°,求旗杆AB的高度(,)20. (10分) (2015九上·阿拉善左旗期末) 已知,在同一直角坐标系中,反比例函数y= 与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m、c的值;(2)求二次函数图象的对称轴和顶点坐标.21. (10分)如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.22. (7分)(2018·枣阳模拟) 商场某种商品平均每天可销售30件,每件盈利50元。

【历年真题】黑龙江省绥化市中考数学真题汇总 卷(Ⅱ)(含详解)

【历年真题】黑龙江省绥化市中考数学真题汇总 卷(Ⅱ)(含详解)

黑龙江省绥化市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,E 、F 分别是正方形ABCD 的边CD 、BC 上的点,且CE BF =,AF 、BE 相交于点G ,下列结论中正确的是( ) ①AF BE =;②AF BE ⊥;③AG GE =;④ABG CEGF S S =四边形△.A .①②③B .①②④C .①③④D .②③④ 2、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,点E 为对角线BD 上任意一点,连接AE 、CE . 若AB =5,BC =3,则AE 2-CE 2等于( )·线○封○密○外A .7B .9C .16D .253、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒4、有理数,a b 在数轴上对应点的位置如图所示,下列结论中正确是( )A .2a <B .0a b +>C .a b ->D .0b a -<5、下列图像中表示y 是x 的函数的有几个( )A .1个B .2个C .3个D .4个6、如图,点F 在BC 上,BC =EF ,AB =AE ,∠B =∠E ,则下列角中,和2∠C 度数相等的角是( )A .AFB ∠ B .EAF ∠C .EAC ∠D .EFC ∠7、如图,O 是直线AB 上一点,则图中互为补角的角共有( )A .1对B .2对C .3对D .4对 8、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A.B.C .4 D.9、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )·线○封○密○外A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF= 10、下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --= C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.2、如图所示,已知直线m n ∥,且这两条平行线间的距离为5个单位长度,点P 为直线n 上一定点,以P 为圆心、大于5个单位长度为半径画弧,交直线m 于A 、B 两点.再分别以点A 、B 为圆心、大于12AB 长为半径画弧,两弧交于点Q ,作直线PQ ,交直线m 于点O .点H 为射线OB 上一动点,作点O 关于直线PH 的对称点O ',当点O '到直线n 的距离为4个单位时,线段PH 的长度为______.3、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在Rt ABC 中,90BAC ∠=︒,3AC =,4AB =.分别以AB ,AC ,BC 为边向外作正方形ABMN ,正方形ACKL ,正方形BCDE ,并按如图所示作长方形HFPQ ,延长BC 交PQ 于G .则长方形CDPG 的面积为______.4、下列各数①-2.5,②0,③π3,④227,⑤()24-,⑥-0.52522252225…,是无理数的序号是______.5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠1的度数为________º.·线○封○密·○外三、解答题(5小题,每小题10分,共计50分)1、如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,且a 、c 满足()22100a c ++-=.若点A 与点B 之间的距离表示为AB a b ,点B 与点C 之间的距离表示为BC b c =-,点B 在点A 、C 之间,且满足2BC AB =.(1)=a ___________,b = ___________,c =___________.(2)动点M 从B 点位置出发,沿数轴以每秒1个单位的速度向终点C 运动,同时动点N 从A 点出发,沿数轴以每秒2个单位的速度向C 点运动,设运动时间为t 秒.问:当t 为何值时,M 、N 两点之间的距离为3个单位?2、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=.①若OB 平分EOD ∠,求α;②若4AOC BOD ∠=∠,求α.3、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:(1)本次调查共抽取了多少名学生? (2)①请补全条形统计图; ②求出扇形统计图中表示“及格”的扇形的圆心角度数. (3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名? 4、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、DF 、CD . (1)若CD 平分∠ACB ,求证:四边形DECF 为菱形;(2)连接EF 交CD 于点O ,在线段BE 上取一点M ,连接OM 交DE 于点N .已知CE =a ,CF =b ,EM =c ,求EN 的值. 5、解方程 (1)2210x x -+=(2)22730x x -+= -参考答案-一、单选题 ·线○封○密·○外1、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD AD ===,90ABC BCD ∠=∠=︒,在ABF 与BCE 中,AB BC ABC BCD BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴ABF BCE ≅,∴AF BE =,①正确;∵90BAF BFA ∠+∠=︒,BAF EBC ∠=∠,∴90EBC BFA ∠+∠=︒,∴90BGF ∠=︒,∴AF BE ⊥,②正确;∵GF 与BG 的数量关系不清楚,∴无法得AG 与GE 的数量关系,③错误;∵ABF BCE ≅,∴ABF BCE S S =,∴ABF BGF BCE BGF S S S S -=-,即ABG CEGF S S =四边形,④正确; 综上可得:①②④正确, 故选:B . 【点睛】 题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键. 2、C 【解析】 【分析】 连接AC ,与BD 交于点O ,根据题意可得AC BD ⊥,在在Rt AOE 与Rt COE 中,利用勾股定理可得2222AE CE AO CO -=-,在在Rt AOB 与Rt COB 中,继续利用勾股定理可得2222AO CO AB BC -=-,求解即可得. 【详解】 解:如图所示:连接AC ,与BD 交于点O ,∵对角线互相垂直的四边形叫做“垂美”四边形, ∴AC BD ⊥, 在Rt AOE 中,222AE AO OE =+,·线○封○密○外在Rt COE 中,222CE CO OE =+,∴2222AE CE AO CO -=-,在Rt AOB 中,222AO AB OB =-,在Rt COB 中,222CO BC OB =-,∴2222225316AO CO AB BC -=-=-=,∴2216AE CE -=,故选:C .【点睛】题目主要考查勾股定理的应用,理解题意,熟练运用勾股定理是解题关键.3、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.4、C【解析】【分析】利用数轴,得到32a -<<-,01b <<,然后对每个选项进行判断,即可得到答案.【详解】解:根据数轴可知,32a -<<-,01b <<, ∴2a >,故A 错误; 0a b +<,故B 错误; a b ->,故C 正确; 0b a ->,故D 错误; 故选:C 【点睛】 本题考查了数轴,解题的关键是由数轴得出32a -<<-,01b <<,本题属于基础题型. 5、A 【解析】 【分析】 函数就是在一个变化过程中有两个变量x ,y ,当给定一个x 的值时,y 由唯一的值与之对应,则称y 是x 的函数,x 是自变量,注意“y 有唯一性”是判断函数的关键. 【详解】 解:根据函数的定义,每给定自变量x 一个值都有唯一的函数值y 与之相对应, 故第2个图符合题意,其它均不符合, 故选:A . 【点睛】 本题考查函数图象的识别,判断方法:做垂直x 轴的直线在左右平移的过程中,与函数图象只会有一个交点. 6、D·线○封○密·○外【解析】【分析】根据SAS 证明△AEF ≌△ABC ,由全等三角形的性质和等腰三角形的性质即可求解.【详解】解:在△AEF 和△ABC 中,AB AE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△ABC (SAS ),∴AF =AC ,∠AFE =∠C ,∴∠C =∠AFC ,∴∠EFC =∠AFE +∠AFC =2∠C .故选:D .【点睛】本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.7、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC 与∠BOC ,∠AOD 与∠BO D ,共2对,故选:B .【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.8、A【解析】【分析】连接CD ,由等弧所对的圆周角相等逆推可知AC =DC ,∠ACD=90°,再由勾股定理即可求出AC = 【详解】 解:连接CD ∵DAC ABC ∠=∠ ∴AC =DC 又∵AD 为O 的直径 ∴∠ACD =90° ∴222AC DC AD += ∴222AC AD =∴8AC AD ===故答案为:A . 【点睛】 ·线○封○密○外本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.9、B【解析】【分析】根据AD∥BC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴AE AO OEFC CO OF==,故A正确,不符合题意;∵AD∥BC,∴△DOE∽△BOF,∴DE OE DO BF OF BO==,∴AE DE FC BF=,∴AE FCDE BF=,故B错误,符合题意;∵AD∥BC,∴△AOD∽△COB,∴AD AO DO BC CO BO==,∴AD OEBC OF=,故C正确,不符合题意;∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B 【点睛】 本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键. 10、D 【解析】 【分析】 根据等式的性质解答. 【详解】 解:A . 4332x x -=+变形得:4323x x -=+,故该项不符合题意; B . 方程110.20.5x x --=变形得:1010212x x --=,故该项不符合题意; C . ()()23231x x -=+变形得:6433x x -=+,故该项不符合题意;D . 211332x x -=+变形得:46318x x -=+,故该项符合题意; 故选:D . 【点睛】 此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键. 二、填空题 1、4m +12##12+4m 【解析】 ·线○封○密○外【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m +3)2-m 2=(m +3+m )(m +3-m )=3(2m +3).由长方形的宽为3,可得长方形的长是(2m +3),长方形的周长是2[(2m +3)+3]=4m +12.故答案为:4m +12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.2、3【解析】【分析】根据勾股定理求出PE =3,设OH =x ,可知,DH =(x -3)或(3- x ),勾股定理列出方程,求出x 值即可.【详解】解:如图所示,过点O '作直线n 的垂线,交m 、n 于点D 、E ,连接O H ',由作图可知,PO m ⊥,5PO PO '==,点O '到直线n 的距离为4个单位,即4EO '=,3PE , 则3OD PE ==,1O D DE O E ''=-=,设OH =x ,可知,DH =(3- x ),222(3)1x x -+= 解得,53x =,PH = 如图所示,过点O '作直线n 的垂线,交m 、n 于点D 、E ,连接O H ', 由作图可知,PO m ⊥,5PO PO '==,点O '到直线n 的距离为4个单位,即4EO '=,3PE , 则3OD PE ==,9O D DE O E ''=+=, 设OH =x ,可知,DH =(x -3), 222(3)9x x -+= 解得,15x =,PH故答案为:·线○封○密○外【点睛】本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.3、12【解析】【分析】证明Rt △AIC ≌Rt △CGK ,得到AI =CG ,利用勾股定理结合面积法求得CG =125,进一步计算即可求解.【详解】解:过点A 作AI ⊥BC 于点I ,∵正方形ACKL ,∴∠ACK =90°,AC =CK ,∴∠ACI +∠KCG =90°,∠ACI +∠CAI =90°,∴Rt △AIC ≌Rt △CGK ,∴AI =CG ,∵90BAC ∠=︒,3AC =,4AB =.∴BC =5,∵1122AB AC BC AI ⨯=⨯, ∴AI =125,则CG =125, ∵正方形BCDE , ∴CD =BC =5, ∴长方形CDPG 的面积为512125⨯=. 故答案为:12. . 【点睛】 本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键. 4、③ 【解析】 【分析】 根据无理数的定义逐个判断即可. 【详解】 ·线○封○密·○外解:-2.5,227是分数;-0.52522252225…是无限循环小数,是有理数;0,()24-是整数;无理数有π3,故答案为:③.【点睛】本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.5、70【解析】【分析】如图(见解析),先根据三角形的内角和定理可得270,再根据全等三角形的性质即可得.【详解】解:如图,由三角形的内角和定理得:2180506070∠=︒-︒-︒=︒,图中的两个三角形是全等三角形,在它们中,边长为b和c的两边的夹角分别为2∠和1∠,1270∴∠=∠=︒,故答案为:70.【点睛】本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.三、解答题1、 (1)-2,2,10;(2)1或7【解析】【分析】(1)根据非负性,得到a +2=0,c -10=0,将线段长转化为绝对值即|b -c |=2||a -b ,化简绝对值;(2)先用t 分别表示M ,N 代表的数,根据MN =3,转化为绝对值问题求解.(1) ∵|a +2|+(a −10)2=0, ∴a = -2,c =10, ∵点B 在点A 、C 之间,且满足2BC AB , ∴10-b =2(b +2), 解得b =2, 故答案为:-2,2,10; (2) 设运动时间为t 秒,则点N 表示的数为2t -2;点M 表示的数为t +2, 根据题意,得|t +2-(2t -2)|=3, ∴-t +4=3或-t +4= -3, 解得t =1或t =7, 故t 为1或7时,M 、N 两点之间的距离为3个单位. 【点睛】 本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键. 2、 (1)75°; (2)①15°;②40°.·线○封○密○外【解析】【分析】(1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可;(2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠aaa =12×120°=60°,再根据两角差a =∠aaa −∠aaa =15°即可; ②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠aaa=35°,求出∠aaa =4∠aaa =4×35°=140°,再求补角即可.(1)解:∵45AOB ∠=︒,60COD ∠=︒,∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠aaa =12×120°=60°,∵45AOB ∠=︒,∴a =∠aaa −∠aaa =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠aaa =4∠aaa ,解得:∠aaa =35°,∴∠aaa =4∠aaa =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°.【点睛】本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方程,本题难度不大,是角中计算的典型题. 3、 (1)100名 (2)①见解析;②108︒ (3)1440名 【解析】 【分析】 (1)用不及格的人数除以不及格的人数占比即可得到总人数; (2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案; (3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可. (1) 解:由题意得抽取的学生人数为:1010100÷%=(名); (2) 解:①由题意得:良好的人数为:1004040⨯=%(名), ∴优秀的人数为:10040103020---=(名), ∴补全统计图如下所示: ·线○封○密○外②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=30360108100︒⨯=︒; (3) 解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有402024001440100+⨯=(名).【点睛】 本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.4、 (1)见解析(2)EN =2bc a c+ 【解析】【分析】(1)根据三角形的中位线定理先证明四边形DECF 为平行四边形,再根据角平分线+平行证明一组邻边相等即可;(2)由(1)得//DE AC ,所以要求EN 的长,想到构造一个“A “字型相似图形,进而延长MN 交CA 于点G ,先证明ENO FGO ∆≅∆,得到EN FG =,再证明MEN MCG ∆∆∽,然后根据相似三角形对应边成比例,即可解答.(1)证明:D 、E 、F 分别是ABC ∆各边的中点,DF ∴,DE 是ABC ∆的中位线,//DF BC ∴,//DE AC ,∴四边形DECF 为平行四边形, CD 平分ACB ∠, ACD DCE ∴∠=∠,//DF BC , CDF DCE ∴∠=∠, ACD CDF ∴∠=∠, DF CF ∴=,∴四边形DECF 为菱形; (2) 解:延长MN 交CA 于点G ,//DE AC , MED MCA ∴∠=∠,NEO GFO ∠=∠,ENO FGO ∠=∠, 四边形DECF 为平行四边形, OE OF ∴=, ()ENO FGO AAS ∴∆≅∆, EN FG ∴=, EMN CMG ∠=∠, ·线○封○密○外MEN MCG ∴∆∆∽, ∴EN ME CG MC=, ∴EN c b EN c a=-+, 2bc EN a c ∴=+. 【点睛】本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.5、 (1)x 1=x 2=1(2)x 1=12,x 2=3【解析】【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.(1)解:2210x x -+=,即(x -1)2=0,∴x 1=x 2=1.(2)解:22730x x -+=,因式分解得:(2x -1)(x -3)=0,∴2x -1=0或x -3=0,∴x 1=12,x 2=3. 【点睛】 本题考查了解一元二次方程-配方法及因式分解法,熟练掌握各自的解法是解本题的关键. ·线○封○密·○外。

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷

黑龙江省绥化市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)实数-3的相反数是()A . 3B .C .D . -22. (2分)国家投资某长江大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为A . 93.7×109元B . 9.37×109元C . 9.37×1010元D . 0.937×1010元3. (2分) (2015八上·宜昌期中) 下列图形中,不是轴对称图形的是()A .B .C .D .4. (2分)(2017·广东) 下列运算正确的是()A . a+2a=3a2B . a3•a2=a5C . (a4)2=a6D . a4+a2=a45. (2分)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A . 平均数是15B . 众数是10C . 中位数是17D . 方差是6. (2分)(2019·雁塔模拟) 如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为()A . 1B . 1.5C . 2D . 2.57. (2分)下列根式中属最简二次根式的是()A .B .C .D .8. (2分)(2017·大冶模拟) 五个大小相同的正方体搭成的几何体如图所示,其主视图是()A .B .C .D .9. (2分)某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A . 144(1﹣x)2=100B . 100(1﹣x)2=144C . 144(1+x)2=100D . 100(1+x)2=14410. (2分)不等式组的整数解共有()A . 3个B . 4个C . 5个D . 6个11. (2分)如图,将一张矩形纸片对折后再对折,然后沿着图中的虚线剪下,得到①、②两部分,将②展开后得到的平面图形是()A . 矩形B . 平行四边形C . 梯形D . 菱形12. (2分)点P1(0,y1),P2(2,y2),P3(3,y3)均在二次函数y=﹣(x﹣1)2+c的图象上,则y1 , y2 ,y3的大小关系是()A . y3>y2>y1B . y3>y1=y2C . y1>y2>y3D . y1=y2>y3二、填空题 (共4题;共4分)13. (1分)如果一个正数的两个平方根是a+6和2a-15,则这个数为________ .14. (1分) (2018九下·江阴期中) 分解因式:4x2-16=________15. (1分)(2017·南岗模拟) 在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.16. (1分)观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是________ .三、解答题 (共8题;共81分)17. (5分)(2017·碑林模拟) 先化简,再求值: +(﹣),其中a= ﹣1,b= +1.18. (5分)我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,求证:筝形ABCD的一条对角线BD平分一组对角.19. (16分)(2017·东营模拟) 为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4430≤x<215(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.20. (5分)(2018·安徽模拟) 如图,在一次数学课外实践活动中,要求测教学楼的高度AB、小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.21. (10分)(2016·宁夏) 在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.22. (10分)(2017·东营模拟) 某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?23. (10分)(2017·海陵模拟) 如图,AB是⊙O的直径,BC交⊙O于点D,E是BD弧上的一点,OE⊥BD于点G,连接AE交BC于点F,AC是⊙O的切线.(1)求证:∠ACB=2∠EAB;(2)若cos∠ACB= ,AC=10,求BF的长.24. (20分)(2019·合肥模拟) 已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段 DG上一点,连结AH,若∠ADC=2∠H4AG,AD=3,DC=2,求的值。

2016年绥化市中考数学试卷带答案

2016年绥化市中考数学试卷带答案

..(解析版)2016年中考数学试卷黑龙江省绥化市30310分)一、选择题(共分,满分小题,每小题1940 )万,这个数用科学记数法表示正确的是(.今年我国参加高考的考生人数约为5667 0.9410 D B94109.4 CA941010×..×..××2①②③④⑤平行四边形中,既是轴对称矩形;.在图形:菱形;线段;等边三角形;)图形又是中心对称图形的个数是(A2B3C4D5....3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么)既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(DA BC....20ky=y=kx4)时,反比例函数的图象大致是(和一次函数 +.当>C B DA....5③①②挖去一个三角形小孔,则展、图对折两次后,再按如图.把一张正方形纸片如图)开后图形是(D B AC....;...6OA处)门前有一条东西走向的公路,经测得有一水塔(图中点.如图,小雅家(图中点60500AB°是(米处,处)在距她家北偏东那么水塔所在的位置到公路的距离方向的)D500C A250 B250 米..米米..米7y=x).函数的取值范围是(自变量xxxA DBx C>≥≤....2cm1cm830cm就可成为一个正,若这个长方形的长减少.一个长方形的周长为,宽增加xcm)方形,设长方形的长为,可列方程为(2 15xx2 Dx1=302 B30xx1=15x2 Cx1=xA1=+﹣))﹣.++﹣(.﹣)﹣(.﹣﹣)(.+﹣(a19))的结果是(.化简﹣( +D BC A .﹣.﹣..AC=4ACBDDEO10ABCDACBDCE,则.如图,矩形,的对角线∥、,若相交于点,∥OCED)四边形的周长为(1210 D4 B8 CA....30103分)二、填空题(共分,满分小题,每小题______11.的相反数的倒数是.﹣D4BC12A个完全相同的小球,随机摸取一个小球然,,.在一个不透明的口袋中,装有,______.后放回,再随机摸取一个小球,两次摸到同一个小球的概率是AFC=15EFAB13CDA=30C=______°°.,若∠∥.如图,∥,∠,则∠;...3﹣1=______4tan4514°.﹣)﹣|+|.计算:(232x4115y=3个单位长度,平移后﹣向右平移)个单位长度,再向下平移.将抛物线+(______.抛物线的解析式是OM=6cmMOABCD16OCD=20cmAB,的弦,,垂足为.如图,⊙是⊙的直径⊥,,若______cmAB.的长为则DAB90BC17AC2°,的扇形内,.如图,在半径以为于点,圆心角为为直径作半圆,交弦______CD.连接,则图中阴影部分的面积是DC60ABC=3018ABCDDCB°°的中,∠后,点,将△.如图,在四边形顺时针旋转绕点BEBC=4BD=______ AACEAB=3)则,若可连接,(提示:,对应点恰好与点得到△重合,21153610119…叫做三角数,它有一定的规律性.若把第,,,.古希腊数学家把数,,,aaaaaaaaan……,第二个三角数记为,,计算,第++,个三角数记为+,一个三角数记为214n21323 =______aa.由此推算+400399ABD=45CDB=90DAB=ABCD20BDEAC°°,、∠对角线∠∠,在四边形.相交于点,如图,中,AE=______ABDDCA=30 AB=°的垂线)作∠,(提示:可过点,则;...608分)三、解答题(共小题,满分211200“”大赛,为了传承优秀传统文化,我市组织了一次初三年级汉字听写名学生参加的.10050分),名学生的成绩(满分为了更好地了解本次大赛的成绩分布情况,随机抽取了整理得到如下的统计图表:成绩363738394041424344454647484950(分)461298336751511821人数频率成绩分组频数38 x350.03 3 <≤41 38x0.12 a <≤44 x410.20 20 <≤47 44x0.35 35 <≤50x47b30≤≤请根据所提供的信息解答下列问题:1______ 分;()样本的中位数是2a=______b=______ ;()频率统计表中,3 )请补全频数分布直方图;(441 分的学生有多少人?()请根据抽样统计结果,估计该次大赛中成绩不低于;...22x2m=0 22xx有两个不相等的实数根..关于+的一元二次方程+1m 的取值范围;()求222=8mxxxx 2x2m=0x2的值.是一元二次方程+的两个根,且+(,求)若,+221123ABA20B15380元;两种商品,若购进种商品种商品.某商场计划购进件和、件需A15B10280 元.件和种商品件需若购进种商品1AB 两种商品的进价分别是多少元?(、)求2AB100900A种商品多少、两种商品共(元,问最多能购进)若购进件,总费用不超过件?24EABCAEBCFABC的外接圆相交的延长线与.如图,点,与△是△相交于点的内心,D于点1BFDABD ;)求证:△∽△(2DE=DB .()求证:25.自主学习,请阅读下列解题过程.2 x05x.>解一元二次不等式:﹣220x=5xy=x05xx5x=0x=0)和,则抛物线轴的交点坐标为(与,解:设﹣﹣,,解得:212x05xx05y=x,或﹣).画出二次函数<(,的大致图象(如图所示),由图象可知:当225x5x0x0x5yx>>,即,所以,一元二次不等式﹣﹣>时函数图象位于轴上方,此时>xx005.的解集为:<,或>通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:;...1____________ .(只填序号)和()上述解题过程中,渗透了下列数学思想中的③②①数形结合思想分类讨论思想转化思想25x0______ 2x.﹣(的解集为)一元二次不等式<22x303x .(﹣)用类似的方法解一元二次不等式:﹣>260.5小时到达甲地,游玩一段时间.周末,小芳骑自行车从家出发到野外郊游,从家出发12010分钟后,妈妈驾车沿相同路线前往乙地,行驶后按原速前往乙地,小芳离家小时ykmxh)的函数()与小芳离家时间分钟时,恰好经过甲地,如图是她们距乙地的路程(图象.1______km/hH______ .(,)小芳骑车的速度为点坐标2 )小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比(预计时间早几分钟到达乙地?CDCQBCPABCDPB27边上,为正方形的边不重合),点上一动点(、与在.如图,QNBQNEBQCBQAPBP=CQBQ,延长,将△所在直线对折得到△交于点且沿,连接、MBA.交的延长线于点APBQ1;)求证:⊥(BP=2PCAB=3QM2的长;,()若,求AMPC=nBP=m3的长.,()当时,求;...20B5bxA1y=ax281020160?),﹣经过点((.(分)(,,绥化)如图,抛物线)和点+ Cy.轴交于点与1)求抛物线的解析式;(yAABC2A轴有怎样的位置关系,并,请判断⊙(相切的⊙)以点为圆心,作与直线与说明理由;PBCPBPCP3BC的面积是否存在、,连接,请问:△()在直线上方的抛物线上任取一点P的坐标;若不存在,请说明理由.最大值?若存在,求出这个值和此时点;...2016年黑龙江省绥化市中考数学试卷参考答案与试题解析30310分)小题,每小题一、选择题(共分,满分1940 )万,这个数用科学记数法表示正确的是(.今年我国参加高考的考生人数约为5667 10DC9.4100.94A941094 B10 ×...××.×—表示较大的数.【考点】科学记数法n1a10na10n的|×<为整数.确定的形式,其中≤|,【分析】科学记数法的表示形式为na时,小数点移动了多少位,当的绝对值与小数点移动的位数相同.值时,要看把原数变成10n1n 是负数.是正数;当原数的绝对值小于原数绝对值大于时,时,6 109.4940,×【解答】解:万,这个数用科学记数法表示正确的是C .故选:n10a的形式,其此题考查了科学记数法的表示方法.科学记数法的表示形式为×【点评】1a10nan 的值.,的值以及中为整数,表示时关键要正确确定≤|<|2①②③④⑤平行四边形中,既是轴对称等边三角形;菱形;.在图形:矩形;线段;)图形又是中心对称图形的个数是(A2B3C4D5....中心对称图形;轴对称图形.【考点】根据轴对称图形与中心对称图形的概念判断即可.【分析】①线段既是轴对称图形又是中心对称图形,解:【解答】②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,3 个.所以既是轴对称图形又是中心对称图形的个数是B .故选;...【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,180度后两部分重中心对称图形的关键是要寻找对称中心,旋转图形两部分折叠后可重合;合.3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么)既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(D C A B....简单几何体的三视图.【考点】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【分析】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可【解答】以堵住圆形空洞,B.故选:从上边看得到的从正面看得到的图形是主视图,【点评】本题考查了简单组合体的三视图,图形是俯视图.y=kx24k0y=)>的图象大致是(时,反比例函数和一次函数 +.当DA B C....反比例函数的图象;一次函数的图象.【考点】2y=kxy=k0经过一二三经过一三象限,一次函数【分析】根据>+,判断出反比例函数象限,结合选项所给图象判断即可.k0,>【解答】解:∵2y=kxy=经过一二三象限.经过一三象限,一次函数∴反比例函数+;...C .故选k0判【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过>断出函数所经过的象限.5①②③挖去一个三角形小孔,则展、图.把一张正方形纸片如图对折两次后,再按如图)开后图形是(DBA C....剪纸问题.【考点】分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开【分析】结合空间思维,的形状.在直角三角形中间的位当正方形纸片两次沿对角线对折成为一直角三角形时,【解答】解:且三角形关于对角线对称,三角置上剪三角形,则直角顶点处完好,即原正方形中间无损,CABC.形的边平行于正方形的边.再结合点位置可得答案为C.故选错误的主要原因是空间观念以及【点评】本题主要考查了学生的立体思维能力即操作能力.转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.AO6处)门前有一条东西走向的公路,经测得有一水塔(图中点.如图,小雅家(图中点AB60500 °)在距她家北偏东处)那么水塔所在的位置到公路的距离方向的米处,是(;...500 DB 250 AC 250米...米.米米-方向角问题.解直角三角形的应用【考点】AB=AOB=30AORTAOB°,由此即可解决问题.【分析】在中,由∠△可知=30OA=500AOB=9060°°°,﹣,【解答】解:由题意∠ABOB,∵⊥ABO=90°,∴∠AB=AO=250米.∴A.故选30度角所对的直角边等于斜边的【点评】本题考查解直角三角形,方向角,直角三角形中属于中考利用直角三角形性质解决问题,一半等知识,解题的关键是搞清楚方向角的定义,常考题型.x7y=).函数自变量的取值范围是(Dx Cx BxxA>....≤≥函数自变量的取值范围.【考点】12x102x0﹣≥﹣由分式有意义的性质可得【分析】由二次根式的被开方数大于等于,可得0x的取值范围.,即可求出自变量≠解:【解答】12x00①,可得≥﹣由二次根式的被开方数大于等于12x0②,由分式有意义的性质可得﹣≠;...x ①②,可知>由D .故选①当表达式的分母不含有自变量时,自本题考查了自变量的取值范围,熟练掌握【点评】y=2x13x②当表达式的分母中含有自变量时,自变量取值中的变量取全体实数.例如.+y=x2x1③当函数的表达式是偶次根式时,自变量的取值范围要使分母不为零.例如﹣+.④对于实际问题中的函数关系式,自变量的取值除必须使表达必须使被开方数不小于零.式有意义外,还要保证实际问题有意义.830cm1cm2cm就可成为一个正,若这个长方形的长减少.一个长方形的周长为,宽增加xcm ),可列方程为(方形,设长方形的长为Ax1=30x2 Bx1=15x2 Cx1=30x2 Dx1=15x2 +(+﹣.)﹣﹣.﹣﹣().+﹣(﹣()﹣.)+由实际问题抽象出一元一次方程.【考点】【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.xcm30cm ,,长方形的周长为【解答】解:∵长方形的长为15xcm ,∴长方形的宽为()﹣1cm2cm 就可成为一个正方形,∵这个长方形的长减少,宽增加x1=15x2 ,﹣∴+﹣D .故选本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.【点评】a91)+ )的结果是(.化简﹣(CD A B.﹣..﹣.分式的加减法.【考点】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【分析】=﹣【解答】解:原式;...=,A.故选:本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.【点评】AC=4DEBDACACBDOCE10ABCD,则、,相交于点的对角线∥,,若.如图,矩形∥OCED)四边形的周长为(1210 DB8 C4 A....矩形的性质;菱形的判定与性质.【考点】OD=OCABCD,再利用两对【分析】由四边形为矩形,得到对角线互相平分且相等,得到DECO为平行四边形,利用邻边相等的平行四边边平行的四边形为平行四边形得到四边形OCDECOAC的长,即可确定出其周长.形为菱形得到四边形的长求出为菱形,根据ABCD为矩形,【解答】解:∵四边形AC=BDOA=OCOB=OD,,∴,且OA=OB=OC=OD=2,∴DEACCEBD,∥,∵∥DECO为平行四边形,∴四边形OD=OC,∵DECO为菱形,∴四边形OD=DE=EC=OC=2,∴222=8OCED2,++则四边形+的周长为B故选熟练掌握判定与性质是解本题的以及菱形的判定与性质,此题考查了矩形的性质,【点评】关键.30310分)分,满分二、填空题(共小题,每小题201611..﹣的相反数的倒数是;...倒数;相反数.【考点】2016.【分析】先求出﹣,再求得它的倒数为的相反数是2016.,的相反数是【解答】解:﹣的倒数是2016.故答案为:主要考查相反数,倒数的概念及性质.【点评】00;的相反数是相反数的定义:只有符号不同的两个数互为相反数,1,我们就称这两个数互为倒数.倒数的定义:若两个数的乘积是D412BCA个完全相同的小球,随机摸取一个小球然,.在一个不透明的口袋中,装有,,.后放回,再随机摸取一个小球,两次摸到同一个小球的概率是列表法与树状图法;概率公式.【考点】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【分析】解:画树状图如下:【解答】==P(两次摸到同一个小球)∴故答案为:n种可能,本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有【点评】=AAPA m.的概率种结果,那么事件)而且这些事件的可能性相同,其中事件出现(15C=AFC=15EFAB13CDA=30°°°..如图,∥∥,若∠,∠,则∠平行线的性质.【考点】;...AFEAFE=30CFE=A=°﹣∠【分析】根据平行线的性质得到∠,由角的和差得到∠∠∠AFC=15°,根据平行线的性质即可得到结论.ABCD,解:∵∥【解答】AFE=30A=°,∴∠∠AFC=15CFE=AFE°,∠﹣∠∴∠EFCD,∥∵CFE=15C=°,∴∠∠15°.故答案为:熟记平行线的性质是解题的同位角相等.【点评】本题考查了平行线的性质:两直线平行,关键.3﹣3+2141=4tan45°..计算:()﹣|﹣ +|实数的运算;负整数指数幂;特殊角的三角函数值.【考点】二次根式的直接利用绝对值的性质和特殊角的三角函数值、【分析】负整数指数幂的性质、性质分别化简求出答案.141=8﹣×﹣【解答】解:原式+1 =42﹣+2=3.+2 3+.故答案为:此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.【点评】2341215y=3x个单位长度,平移后)向右平移+.将抛物线个单位长度,再向下平移(﹣2 51y=3x.)抛物线的解析式是﹣(﹣二次函数图象与几何变换.【考点】”“的原则进行解答即可.左加右减、上加下减【分析】根据22 52xy=3412y=3x;(﹣))+【解答】解:﹣向右平移个单位所得抛物线解析式为:+(2 x51y=33.﹣)个单位为:(﹣再向下平移2 15xy=3.)(故答案为:﹣﹣;. ..熟知函数图象平移的法则是解答此题的【点评】本题考查的是二次函数的图象与几何变换,关键.OM=6cmCDMABOABO16CD=20cm,是⊙,垂足为,的弦,.如图,⊙,若的直径⊥cmAB16.则的长为垂径定理.【考点】AMOMAB=2AMOAOA,根据勾股定理求出,已知连接,根据垂径定理求出、【分析】即可.OA,解:连接【解答】OCD=20cm,的直径∵⊙OA=10cm,∴=8cmAM=RtOAM,在中,由勾股定理得:△AB=2AM=16cm.∴由垂径定理得:16.故答案为:本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.【点评】DABBC2AC1790°,为直径作半圆,交弦于点圆心角为如图,.在半径为,以的扇形内,CD1π.连接,则图中阴影部分的面积是﹣;...扇形面积的计算.【考点】ABCDBCCDB=90ABC°,垂直平分为直径,则∠,在等腰直角三角形【分析】已知中,ADCACBCD=DBD的面积,的面积与△为半圆的中点,阴影部分的面积可以看做是扇形之差.=2ACBAB=Rt,中,△【解答】解:在BC是半圆的直径,∵CDB=90°,∴∠CD=BD=CDABRtACB,垂直平分在等腰中,△,D为半圆的中点,∴22 =S=21=SSππ.﹣﹣××(﹣)ADC△ACB扇形阴影部分1π.﹣故答案为掌握面积公式是解题的关【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,键.DDCB18ABCDABC=3060C°°的,将△后,点绕点.如图,在四边形顺时针旋转中,∠BEBD=AB=3A ACEBC=45),则(提示:可连接对应点恰好与点重合,得到△,若,旋转的性质.【考点】AEBD的长即可,由题意可得到三角形的长,根据旋转的性质,只要求出【分析】要求ABEAE的长,本题得以解决.的形状,从而可以求得BE,如右图所示,【解答】解:连接BC=4ACECDCB60AB=3ABC=30°°,,顺时针旋转∵△绕点得到△,,∠;...CB=CEAE=BDBCE=60°,,∴∠,BCE是等边三角形,∴△CBE=60BE=BC=4°,,∴∠60=90ABE=ABCCBE=30°°°,∠++∴∠∠AE=,∴AE=BD,又∵BD=5,∴5.故答案为:本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.【点评】21153610191…叫做三角数,它有一定的规律性.若把第,,,.古希腊数学家把数,,,aanaaaaaaa……,个三角数记为一个三角数记为+,第二个三角数记为,,+第,计算+,21324213n5 160000a=1.610a×.由此推算或+ 400399规律型:数字的变化类.【考点】aaaaaa的值,然后总结规律,根据规律可以得出结论.,+++,【分析】首先计算422133…;;;【解答】解:∵;∴.∴5 101.6160000.故答案为:×或aaaaaa的值可以发现规律为,本题考查的是规律发现,根据计算【点评】++,+432321,发现规律是解决本题的关键.ABD=45ABCDBD20EDAB=ACCDB=90°°,∠,∠在四边形.相交于点,如图,中,对角线、∠AE=AB=2DCA=30ABD °的垂线)∠,作(提示:可过点,则;...30 度角的直角三角形;等腰直角三角形.【考点】勾股定理;含AAFBDBDFABD为等腰直角三角形,利用三线合,交【分析】过,由三角形作于点⊥AFAF的长,在直角三为中线,利用直角三角形斜边上的中线等于斜边的一半求出一得到AEF30AE 的长即可.中,利用度角所对的直角边等于斜边的一半求出角形AAFBDBDF ,作,交解:过⊥于点【解答】AD=ABDAB=90 °,,∠∵AFBD 边上的中线,为∴BDAF=,∴AB=AD=,∵BD==2 ∴根据勾股定理得:,AF=,∴DCA=30AEFRtEAF=°,中,∠∠在△AEEF=,∴AE=2xEF=x,设,则有22 x3=4x,根据勾股定理得:+ x=1,解得:AE=2.则2 故答案为:30度直角三角形的性质,以及等腰三角形的性质,熟练【点评】此题考查了勾股定理,含掌握勾股定理是解本题的关键.;...608分)三、解答题(共小题,满分120021”“大赛,.为了传承优秀传统文化,我市组织了一次初三年级汉字听写名学生参加的50100分),名学生的成绩(满分为了更好地了解本次大赛的成绩分布情况,随机抽取了整理得到如下的统计图表:成绩504947484243444536463738394041(分)415911128683123675人数频率成绩分组频数38 x350.03 3 <≤41 38x0.12 a <≤44 x410.20 20 <≤47 44x0.35 35 <≤5047xb30≤≤请根据所提供的信息解答下列问题:144.5分;)样本的中位数是(0.30b=2a=12;)频率统计表中,(3)请补全频数分布直方图;(414分的学生有多少人?()请根据抽样统计结果,估计该次大赛中成绩不低于频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【考点】51501个数的平均数,本题得以解决;)根据题意可知中位数是第【分析】(个数和ab1002的值,本题得以解决;、)根据表格和随机抽取了名学生的成绩,可以求得(a23的值,可以将频数分布直方图补充完整;)根据(()中;...441 分的学生人数.)根据表格中的数据可以求得该次大赛中成绩不低于(1100 名学生的成绩,)∵随机抽取了【解答】解:(1233675815=5050959 ,+++,由表格可得,+++++++=44.5 ,∴中位数为:44.5;故答案为:a=1000.12=122,)由表格可得,×(b=30100=0.30,÷120.30;故答案为:,3)补全的频数分布直方图如右图所示,(4)由题意可得,(0.3012000.200.35=1020(人),+×()+ 411020人.即该次大赛中成绩不低于分的学生有本题考查频数分布直方图、用样本估计总体、频数分布表、中位数,解题的关键是【点评】明确题意,找出所求问题需要的条件.2 2x22xx2m=0有两个不相等的实数根..关于的一元二次方程++ m1的取值范围;)求(222m=8xxx2x2x2m=0x的值.+,求的两个根,且是一元二次方程()若,++2112根与系数的关系;根的判别式.【考点】m1的一元一次不等式,解不(【分析】)根据方程根的个数结合根的判别式,可得出关于等式即可得出结论;;...2xx=2xx=2m?,再结合完全平方()根据方程的解析式结合根与系数的关系找出,+﹣211222=2xxxmx?的一元一次方程,﹣+,公式可得出代入数据即可得出关于关于2211mm=1 符合题意,此题得解.的值,经验值解方程即可求出﹣22x2m=0 1x有两个不相等的实数根,+【解答】解:(+)∵一元二次方程2412m=4=28m0 ,﹣﹣∴△×>×m.解得:<mm.的取值范围为<∴2 2m=0xx2x2x的两个根,是一元二次方程+,(+)∵21 =2m2xxxx=?,,∴﹣+212122 4m=82xx=4x=x?,+﹣﹣∴2121 m=1.﹣解得:0m=1=48m=12.当﹣﹣>时,△m1.∴的值为﹣解一元一次不等式以及解一元一次方程,【点评】本题考查了根的判别式、根与系数的关系、4m=8402418m.本题属于基;()结合题意得出﹣>﹣解题的关键是:()结合题意得出根据方程根的个数结合根的判别式得出不等式是关键.难度不大,解决该题型题目时,础题,380B23AA20B15元;.某商场计划购进件和、两种商品,若购进件需种商品种商品B1510280A 元.种商品件需种商品件和若购进AB1两种商品的进价分别是多少元?(、)求A2AB100900种商品多少)若购进、元,问最多能购进(两种商品共件,总费用不超过件?一元一次不等式的应用;二元一次方程组的应用.【考点】b1AaB元,根据题意列方程两种商品的进价是元,【分析】解()设两种商品的进价是组即可得到结论xxA2B100)件,根据题意了不等式即可得到结﹣()设购进种商品件,则购进种商品(论.BabA1元,【解答】商品的进价是)设解:(元,商品的进价是;...,根据题意得:,解得:4A16B元;商品的进价是商品的进价是答:元,xxB1002A)件,件,则购进种商品(种商品()设购进﹣900100x16x4,﹣(根据题意得:)≤+xx41为整数,≤解得:,∵41x,∴的最大整数解为A41件种商∴最多能购进正确的理解题意是解本题考查了二元一次方程组的应用,一元一次不等式的应用,【点评】题的关键.ABCBCF24EABCAE的外接圆相交是△相交于点.如图,点的内心,,与△的延长线与D于点ABD1BFD;∽△()求证:△DE=DB2.)求证:(相似三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心.【考点】CBDCAD=BAD=CAD1,∠∠,【分析】(再由圆周角定理得出∠)先根据内心的性质得出∠BAD=CBD,进而可得出结论;故可得出∠∠BADCBD=ABE=EABCCBEBE2可得出∠是△由∠的内心得出∠∠∠(连接).,根据点CBDABE=CBEBAD,进而可得出结论.∠∠∠++ ABCE1的内心,)证明:∵点【解答】(是△CADBAD=.∴∠∠CBDCAD=,∵∠∠CBDBAD=.∴∠∠;...BDF=ADB,∵∠∠BFDABD;∴△∽△2BE,()证明:连接EABC的内心,∵点是△ABE=CBE.∴∠∠CBD=BAD,又∵∠∠CBDBADABE=CBE.+∠+∠∠∴∠BEDCBD=DBEDBE=BADABE=BEDCBE,∠∵∠∠+∠∠∠,∠,即∠+ DE=DB.∴利用三角形内心的根据题意作出辅助线,【点评】本题考查的是相似三角形的判定与性质,性质求解是解答此题的关键.25.自主学习,请阅读下列解题过程.2 05xx.﹣>解一元二次不等式:220x=5y=x05xx=05x=0xx)和,则抛物线轴的交点坐标为(解:设,与﹣﹣,解得:,212xxy=x05x50,或的大致图象(如图所示),由图象可知:当,﹣).画出二次函数(<225x5x05xy0xx>时函数图象位于>轴上方,此时﹣>>,即,所以,一元二次不等式﹣50x0x.,或<>的解集为:通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1③①.(只填序号)和()上述解题过程中,渗透了下列数学思想中的③②①数形结合思想分类讨论思想转化思想2 505x0x2x.<的解集为<<()一元二次不等式﹣2 032xx3.﹣()用类似的方法解一元二次不等式:﹣>;...x 轴的交点.二次函数与不等式(组);二次函数的图象;抛物线与【考点】1 )根据题意容易得出结论;(【分析】25xx05xy020x,即可时函数图象位于<轴下方,此时(<)由图象可知:当﹣<,即<得出结果;222x3x2x3=03xy=x轴的交点坐标,画出二次函数﹣﹣,解方程得出抛物线(与)设﹣﹣22x3x1xy=x5x轴上方,的大致图象,由图象可知:当><﹣时函数图象位于﹣,,或﹣25=2x3x0 y0,即可得出结果.﹣,即此时﹣>>1 ③①;【解答】解:(和)上述解题过程中,渗透了下列数学思想中的③①;,故答案为:20x5x 轴下方,<时函数图象位于<()由图象可知:当25x0 xy0,﹣此时,即<<25x00xx5 ;<﹣∴一元二次不等式的解集为:<<0x5 .<<故答案为:22x3=03x ,()设﹣﹣x=3x=1 ,﹣解得:,2122x3x3y=x010 ).﹣)和(﹣﹣∴抛物线,与,轴的交点坐标为(22x3 y=x的大致图象(如图所示),﹣画出二次函数﹣x1x3x 轴上方,<﹣时函数图象位于由图象可知:当,或>22x300yx ,此时>﹣,即>﹣22x30x1x3 x.,或的解集为:﹣∴一元二次不等式﹣><﹣>;...x轴的交点坐抛物线与【点评】本题考查了二次函数与不等式组的关系、二次函数的图象、标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.0.526小时到达甲地,游玩一段时间.周末,小芳骑自行车从家出发到野外郊游,从家出发10201分钟后,妈妈驾车沿相同路线前往乙地,行驶小时后按原速前往乙地,小芳离家hxykm)的函数分钟时,恰好经过甲地,如图是她们距乙地的路程(()与小芳离家时间图象.Hkm/h20110.(,)小芳骑车的速度为),点坐标(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比(预计时间早几分钟到达乙地?一次函数的应用.【考点】1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的【分析】(速度;CDABCDAB2的解析式,再求出直∥的解析式,再根据直线(,求出直线)先求出直线DEFCDEF的坐标即可;的解析式,联立直线和直线线的解析式,求出交点y=0EFy=03CD时候的横坐标,()将,分别代入直线和直线的解析式,分别求出求出当再求出两横坐标的差值即可.;...110km0.5h,【解答】解:(,花费时间为)由函数图可以得出,小芳家距离甲地的路程为100.5=20km/h ),÷(故小芳骑车的速度为:20=H,,横坐标为:由题意可得出,点 +的纵坐标为。

【中考专题】黑龙江省绥化市中考数学历年真题练习 (B)卷(含详解)

【中考专题】黑龙江省绥化市中考数学历年真题练习 (B)卷(含详解)

黑龙江省绥化市中考数学历年真题练习 (B )卷 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB 与CD 相交于点O ,若1280∠+∠=︒,则1∠等于( )A .40°B .60°C .70°D .80° 2、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b >3、用符号()f x 表示关于自然数x 的代数式,我们规定:当x 为偶数时,()2f x x =;当x 为奇数时,()31f x x =+.例如:()3114f x =⨯+=,()8842f ==.设18x =,()21x f x =,()32x f x =,…,()1n n x f x -=.以此规律,得到一列数1x ,2x ,3x ,…,2022x ,则这2022个数之和·线○封○密○外12320212022x x x x x +++⋅⋅⋅++等于( )A .3631B .4719C .4723D .47254、下列结论正确的是( )AB 1C .不等式(2x >1的解集是x >﹣(D5、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变6、若分式1x x-有意义,则x 的值为( ) A .1x =B .1x ≠C .0x =D .0x ≠ 7、如图,AD ,BE ,CF 是△ABC 的三条中线,则下列结论正确的是( )A .2BC AD =B .2AB AF =C .AD CD = D .BE CF = 8、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( ) A .两人前行过程中的速度为180米/分 B .m 的值是15,n 的值是2700 C .爸爸返回时的速度为90米/分 D .运动18分钟或31分钟时,两人相距810米 9、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG 10、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( ) A .BF CE = B .A D ∠=∠ C .AC DF ∥ D .AC DF = ·线○封○密○外第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.2、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知AC PC),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到山坡PA的坡度为1:2(即:洞口A正上方时离洞口A的距离AE为______米.3、二次函数y=(m﹣1)x2+x+m2﹣1的图象经过原点,则m的值为_____.4、已知2m a=,2n b=,m,n为正整数,则2m n+=______.5、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.三、解答题(5小题,每小题10分,共计50分)1、已知x y +的负的平方根是3-,x y -的立方根是3,求25x y -的四次方根.2、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题: (1)本次调查共抽取了多少名学生? (2)①请补全条形统计图; ②求出扇形统计图中表示“及格”的扇形的圆心角度数. (3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?3、如图,点D 是等边△ABC 的边AB 上一点,过点D 作BC 的平行线交AC 于点E .·线○封○密○外(1)依题意补全图形;(2)判断△ADE 的形状,并证明.4、如图1,在平面直角坐标系中,已知(2,0)A 、(0,4)B -、(6,6)C -、(6,6)D ,以CD 为边在CD 下方作正方形CDEF .(1)求直线AB 的解析式;(2)点N 为正方形边上一点,若8ABN S =△,求N 的坐标;(3)点N 为正方形边上一点,(0,)M m 为y 轴上一点,若点N 绕点M 按顺时针方向旋转90︒后落在线段AB 上,请直接写出m 的取值范围.5、如图,AB ∥CD ,55B ∠=︒,125D ∠=︒,试说明:BC ∥DE .请补充说明过程,并在括号内填上相应的理由.解:∵AB ∥CD (已知),(C B ∴∠=∠ ),又55B ∠=︒(已知),C ∴∠= (︒ ),125D ∠=︒( ),∴ ,∴BC ∥DE ( ).-参考答案-一、单选题1、A【解析】【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A . 【点睛】 本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键. 2、D 【解析】 【分析】 先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得. 【详解】 ·线○封○密·○外解:由数轴的性质得:101a b <-<<<.A 、0a <,则此项错误;B 、1b <,则此项错误;C 、0a b -<,则此项错误;D 、1a b >>,则此项正确;故选:D .【点睛】本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.3、D【解析】【分析】根据题意分别求出x 2=4,x 3=2,x 4=1,x 5=4,…,由此可得从x 2开始,每三个数循环一次,进而继续求解即可.【详解】解:∵x 1=8,∴x 2=f (8)=4,x 3=f (4)=2,x 4=f (2)=1,x 5=f (1)=4,…,从x 2开始,每三个数循环一次,∴(2022-1)÷3=6732,∵x 2+x 3+x 4=7,∴12320212022x x x x x +++⋅⋅⋅++=8+673×7+4+2=4725. 故选:D . 【点睛】 本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键. 4、D 【解析】 【分析】 根据分母有理化,最简二次根式的定义,不等式的解法以及二次根式的性质即可求出答案. 【详解】 解:AA 不符合题意.B 、原式=|1﹣1,故B 不符合题意. C 、∵(2x >1, ∴x∴x <﹣2C 不符合题意. DD 符合题意. 故选:D . 【点睛】 本题考查了分母有理化,解一元一次不等式以及最简二次根式,本题属于基础题型. 5、D ·线○封○密○外【解析】【分析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S=矩形,故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.6、D【解析】【分析】 根据分式有意义,分母不为0列出不等式,解不等式即可.【详解】解:由题意得:0x ≠故答案为:D【点睛】本题考查的是分式有意义的条件,即分式的分母不为零.7、B【解析】【分析】根据三角形的中线的定义判断即可.【详解】 解:∵AD 、BE 、CF 是△ABC 的三条中线, ∴AE =EC =12AC ,AB =2BF =2AF ,BC =2BD =2DC , 故A 、C 、D 都不一定正确;B 正确. 故选:B . 【点睛】 本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 8、D 【解析】 【分析】 两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案. 【详解】 解:∵3600÷20=180米/分, ∴两人同行过程中的速度为180米/分,故A 选项不符合题意; ∵东东在爸爸返回5分钟后返回即第20分钟返回 ∴m =20-5=15,·线○封○密·○外∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.9、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.10、D【解析】【分析】结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求; 【详解】 解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角; A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求; B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求; C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求; D 中无法判定,符合要求; 故选D . 【点睛】 本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件. 二、填空题 1、一 【解析】 【分析】 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【详解】 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“!”与“一”是相对面, ·线○封○密·○外故答案是:一.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2、143##243【解析】【分析】分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.【详解】解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,可知:顶点B(9,12),抛物线经过原点,设抛物线的解析式为y=a(x-9)2+12,将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−427,故抛物线的解析式为:y=-427(x−9)²+12,∵PC=12,:AC PC=1:2,∴点C的坐标为(12,0),AC=6,即可得点A 的坐标为(12,6),当x =12时,y =−427(12−9)²+12=323=CE , ∵E 在A 的正上方, ∴AE =CE -AC =323-6=143, 故答案为:143. 【点睛】 本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般. 3、-1 【解析】 【分析】 将原点坐标(0,0)代入二次函数解析式,列方程求m 即可. 【详解】 解:∵点(0,0)在抛物线y =(m ﹣1)x 2+x +m 2﹣1上, ∴m 2﹣1=0, 解得m 1=1或m 2=﹣1, ∵m =1不合题意, ∴m =1, 故答案为:﹣1. 【点睛】 本题考查利用待定系数法求解二次函数解析式,能够熟练掌握待定系数法是解决本题的关键. ·线○封○密·○外【解析】【分析】根据同底数幂相乘的逆运算解答.【详解】解:∵2m a =,2n b =,∴2m n +=22m n ab ⨯=,故答案为:ab .【点睛】此题考查了同底数幂相乘的逆运算,熟记公式是解题的关键.5、140【解析】【分析】先根据图形得出∠AOB =40°,再根据和为180度的两个角互为补角即可求解.【详解】解:由题意,可得∠AOB =40°,则∠AOB 的补角的大小为:180°−∠AOB =140°.故答案为:140.【点睛】本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键. 三、解答题 1、3±·线【分析】根据x y +的负的平方根是3-,x y -的立方根是3,可以求得x 、y 的值,从而可以求得所求式子的四次方根.【详解】解:x y +的负的平方根是3-,x y -的立方根是3,∴23(3)3x y x y ⎧+=-⎨-=⎩, 解得,189x y =⎧⎨=-⎩,,25x y ∴-的四次方根是3=±,即25x y -的四次方根是3±.【点睛】本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出x 、y 的值.2、 (1)100名(2)①见解析;②108︒(3)1440名【解析】【分析】(1)用不及格的人数除以不及格的人数占比即可得到总人数;(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.(1)解:由题意得抽取的学生人数为:1010100÷%=(名);(2)解:①由题意得:良好的人数为:1004040⨯=%(名),∴优秀的人数为:10040103020---=(名),∴补全统计图如下所示:②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=30360108100︒⨯=︒; (3) 解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有402024001440100+⨯=(名).【点睛】 本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.3、 (1)见详解; (2)△ADE 为等边三角形,证明见详解. 【解析】·线【分析】(1)利用作∠ADE=∠B,作出∠ADE的边DE,利用同位角相等两直线平行得出DE∥BC;(2)根据等边三角形性质∠A=∠B=∠C=60°,根据平行线性质得出∠ADE=∠B=60°,∠AED=∠C=60°,得出∠DAE=∠ADE=∠AED=60°即可(1)解:过点D作∠ADE=∠B,∵∠ADE=∠B,∴DE∥BC,(2)解:△ADE为等边三角形,∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°,∴∠DAE=∠ADE=∠AED=60°,∴△ADE为等边三角形【点睛】本题考查作平行线,作一个角等于已知角,等边三角形性质与判定,平行线性质,掌握作平行线方法,作一个角等于已知角基本作图,等边三角形性质与判定,平行线性质是解题关键.4、 (1)24y x =-(2)(1,6)N ,(5,6)N --,(6,0)N ,(3,6).N - (3)2143m ≤≤或2263m -≤≤- 【解析】【分析】(1)待定系数法求直线解析式,代入坐标(2,0)A 、(0,4)B -得出402b k b -=⎧⎨=+⎩,解方程组即可; (1)根据OA =2,OB =4,设点P 在y 轴上,点P 坐标为(0,m ),根据S △ABP =8,求出点P (0,4)或(0,-12),过P (0,4)作AB 的平行线交正方形CDEF 边两点N 1和N 2,利用平行线性质求出与AB 平行过点P 的解析式24y x =+,与CD ,FE 的交点,过点P (0,-12)作AB 的平行线交正方形CDEF 边两点N 3和N 4,利用平行线性质求出与AB 平行过点P 的解析式212y x =-,求出与DE ,EF 的交点即可;(3):根据点N 在正方形边上,分四种情况①N 在DE 上,过N′作GN′⊥y 轴于G ,正方形边CD 与y 轴交于H ,(0,)M m 在y 轴正半轴上,先证△HNM 1≌△GM 1N ′(AAS ),求出点N ′(6-m ,m -6)在线段AB 上,代入解析式直线AB 的解析式24y x =-得出()6264m m -=--,当点N 旋转与点B 重合,可得M 2N ′=NM 2-OB =6-4=2②N 在CD 上,当点N 绕点M 3旋转与点A 重合,先证△HNM 3≌△GM 3N ′(AAS ),DH =M 3G =6-2=4,HM 3=GN ′=2,③N 在CF 上,当点N 与点F 重合绕点M 4旋转到AB 上N ′先证△M 5NM 3≌△GM 3N ′(AAS ),得出点N ′(-6-m ,m +6),点N′在线段AB 上,直线AB 的解析式24y x =-,得出方程,()6264m m +=---,当点N 绕点M 5旋转点N ′与点A 重合,证明△FM 3N ≌△OM 5N ′(AAS ),可得FM 5=M 5O =6,FN =ON ′=2,④N 在FE 上,点N 绕点M 6旋转点N ′与点B 重合,MN =MB =2即可.(1) 解:设:AB y kx b =+,代入坐标(2,0)A 、(0,4)B -得:402b k b -=⎧⎨=+⎩, ·线24k b =⎧⎨=-⎩, ∴直线AB 的解析式24y x =-;(2)解:∵(2,0)A 、(0,4)B -、OA =2,OB =4,设点P 在y 轴上,点P 坐标为(0,m )∵S △ABP =8, ∴14282m +⨯=, ∴48m +=±,解得12412m m ==-,,∴点P (0,4)或(0,-12),过P (0,4)作AB 的平行线交正方形CDEF 边两点N 1和N 2,设解析式为y mx n =+,m =2,n =4,∴24y x =+,当y=6时,246x +=,解得61y x =⎧⎨=⎩, 当y=-6时,246x +=-,解得65y x =-⎧⎨=-⎩, 1(1,6)N ∴,2(5,6)N --,过点P (0,-12)作AB 的平行线交正方形CDEF 边两点N 3和N 4,设解析式为,2,12y px q p q =+==-,212y x =-,当y =-6, 2126x -=-,解得:63y x =-⎧⎨=⎩, 当x =6, 26120y =⨯-=,解得60x y =⎧⎨=⎩, 3(3,6).N -4(6,0)N ,∴8ABN S =△,N 的坐标为(1,6)或(5,6)--或(3,6)-或(6,0),(3)解:①N 在DE 上,过N′作GN′⊥y 轴于G ,正方形边CD 与y 轴交于H ,(0,)M m 在y 轴正半轴上, ∵M 1N =M 1N ′,∠NM 1N ′=90°, ∴∠HNM 1+∠HM 1N =90°,∠HM 1N +∠GM 1N′=90°,·线∴∠HNM 1=∠GM 1N′,在△HNM 1和△GM 1N ′中,111111HDM GM N DHM M GN M N N M ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴△HNM 1≌△GM 1N ′(AAS ),∴DH =M 1G =6,HM 1=GN ′=6-m ,∵点N ′(6-m ,m -6)在线段AB 上,直线AB 的解析式24y x =-;即()6264m m -=--, 解得143m =, 当点N 旋转与点B 重合,∴M 2N ′=NM 2-OB =6-4=2,114(0,)3M ,2(0,2)M , 1423m ∴≤≤,②N 在CD 上,当点N 绕点M 3旋转与点A 重合,∵M 3N =M 3N ′,∠NM 3N ′=90°,∴∠HNM 3+∠HM 3N =90°,∠HM 3N +∠GM 3N′=90°,∴∠HNM 3=∠GM 3N′,在△HNM 3和△GM 3N ′中,333333HDM GM N DHM M GN M N N M ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴△HNM 3≌△GM 3N ′(AAS ),∴DH =M 3G =6-2=4,HM 3=GN ′=2,114(0,)3M ,3(0,4)M ,1443m ∴≤≤ ③N 在CF 上, 当点N 与点F 重合绕点M 4旋转到AB 上N ′, ∵M 4N =M 4N ′,∠NM 4N ′=90°,·线∴∠M 5NM 4+∠M5M 4N =90°,∠M 5M 4N +∠GM 4N′=90°,∴∠M5NM 4=∠GM 4N′,在△M5NM 4和△GM 4N ′中,54454444M NM GM N NM M M GN M N N M ∠=∠⎧⎪∠='='∠⎨'⎪⎩, ∴△M 5NM 3≌△GM 3N ′(AAS ),∴FM 5=M 4G =6,M 5M 4=GN ′=-6-m ,∴点N ′(-6-m ,m +6),点N ′在线段AB 上,直线AB 的解析式24y x =-;()6264m m +=---, 解得223m =-, 当点N 绕点M 5旋转点N ′与点A 重合,∵M 5N =M 5N ′,∠NM 5N ′=90°,∴∠NM 5O +∠FM 5N =90°,∠OM 5N +∠OM 5N′=90°,∴∠FM 5N =∠OM 5N′,在△FM 5N 和△OM 5N ′中,555555FM N OM N NFM N OM M N M N ∠=∠⎧⎪∠=∠'='⎨'⎪⎩, ∴△FM 3N ≌△OM 5N ′(AAS ),∴FM 5=M 5O =6,FN =ON ′=2,56(0,)M -,422(0,)3M -,2263m -≤≤-, ④N 在FE 上,点N 绕点M 6旋转点N ′与点B 重合,MN =MB =2,66(0,)M -,422(0,)3M -,2263m -≤≤-,·线综上:2143m ≤≤或2263m -≤≤- 【点睛】 本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.5、两直线平行,内错角相等;55;等量代换;已知;180C D ∠+∠=︒;同旁内角互补,两直线平行【解析】【分析】由题意根据平行线的性质与判定即可补充说理过程.【详解】解://AB CD (已知),C B ∴∠=∠(两直线平行,内错角相等),又55B ∠=︒(已知),55C ∴∠=︒(等量代换),125D ∠=︒ (已知),180C D ∴∠+∠=︒,//BC DE ∴(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等;55;等量代换;已知;180C D ∠+∠=︒;同旁内角互补,两直线平行.【点睛】本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.。

2016年绥化市中考数学试卷(带答案)

2016年绥化市中考数学试卷(带答案)

2016年绥化市中考数学试卷(带答案)黑龙江省绥化市2016年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×1072.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.53.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A.B.C.D.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是______.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是______.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______.三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是______分;(2)频率统计表中a=______,b=______;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的______和______.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为______.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为______km/h,H点坐标______.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?27.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN 交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.28.(10分)(2016•绥化)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.2016年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万,这个数用科学记数法表示正确的是9.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:①线段既是轴对称图形又是中心对称图形,②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,所以既是轴对称图形又是中心对称图形的个数是3个.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过k>0判断出函数所经过的象限.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米【考点】解直角三角形的应用-方向角问题.【分析】在RT△AOB中,由∠AOB=30°可知AB=AO,由此即可解决问题.【解答】解:由题意∠AOB=90°﹣60°=30°,OA=500,∵AB⊥OB,∴∠ABO=90°,∴AB=AO=250米.故选A.【点评】本题考查解直角三角形,方向角,直角三角形中30度角所对的直角边等于斜边的一半等知识,解题的关键是搞清楚方向角的定义,利用直角三角形性质解决问题,属于中考常考题型.7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>【考点】函数自变量的取值范围.【分析】由二次根式的被开方数大于等于0可得2x﹣1≥0,由分式有意义的性质可得2x﹣1≠0,即可求出自变量x的取值范围.【解答】解:由二次根式的被开方数大于等于0可得2x﹣1≥0①,由分式有意义的性质可得2x﹣1≠0②,由①②可知x>,故选D.【点评】本题考查了自变量的取值范围,熟练掌握①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 【考点】由实际问题抽象出一元一次方程.【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.【解答】解:∵长方形的长为xcm,长方形的周长为30cm,∴长方形的宽为(15﹣x)cm,∵这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,∴x﹣1=15﹣x+2,故选D.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣【考点】分式的加减法.【分析】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【解答】解:原式=﹣=,故选:A.【点评】本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是2016.【考点】倒数;相反数.【分析】先求出﹣的相反数是,再求得它的倒数为2016.【解答】解:﹣的相反数是,的倒数是2016.故答案为:2016.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=15°.【考点】平行线的性质.【分析】根据平行线的性质得到∠A=∠AFE=30°,由角的和差得到∠CFE=∠AFE﹣∠AFC=15°,根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠A=∠AFE=30°,∴∠CFE=∠AFE﹣∠AFC=15°,∵CD∥EF,∴∠C=∠CFE=15°,故答案为:15°.【点评】本题考查了平行线的性质:两直线平行,同位角相等.熟记平行线的性质是解题的关键.14.计算:()﹣3﹣4tan45°+|1﹣|=3+2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:原式=8﹣4×1+﹣1=4+2﹣1=3+2.故答案为:3+2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.15.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是y=3(x﹣5)2﹣1.【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:y=3(x﹣4)2+2向右平移1个单位所得抛物线解析式为:y=3(x﹣5)2+2;再向下平移3个单位为:y=3(x﹣5)2﹣1.故答案为:y=3(x﹣5)2﹣1.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为16cm.【考点】垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM 即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.17.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是π﹣1.【考点】扇形面积的计算.【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【解答】解:在Rt △ACB 中,AB==2,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD=, ∴D 为半圆的中点,S 阴影部分=S 扇形ACB ﹣S △ADC =π×22﹣×()2=π﹣1. 故答案为π﹣1.【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,掌握面积公式是解题的关键.18.如图,在四边形ABCD 中,∠ABC=30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB=3,BC=4,则BD= 5 (提示:可连接BE )【考点】旋转的性质.【分析】要求BD 的长,根据旋转的性质,只要求出AE 的长即可,由题意可得到三角形ABE 的形状,从而可以求得AE 的长,本题得以解决.【解答】解:连接BE ,如右图所示,∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等边三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案为:5.【点评】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.19.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.【考点】规律型:数字的变化类.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.【解答】解:∵;;;…∴;∴.故答案为:1.6×105或160000.【点评】本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.20.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是44.5分;(2)频率统计表中a=12,b=0.30;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据题意可知中位数是第50个数和51个数的平均数,本题得以解决;(2)根据表格和随机抽取了100名学生的成绩,可以求得a、b的值,本题得以解决;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得该次大赛中成绩不低于41分的学生人数.【解答】解:(1)∵随机抽取了100名学生的成绩,由表格可得,1+2+3+3+6+7+5+8+15=50,50+9+59,∴中位数为:=44.5,故答案为:44.5;(2)由表格可得,a=100×0.12=12,b=30÷100=0.30,故答案为:12,0.30;(3)补全的频数分布直方图如右图所示,(4)由题意可得,1200×(0.20+0.35+0.30)=1020(人),即该次大赛中成绩不低于41分的学生有1020人.【点评】本题考查频数分布直方图、用样本估计总体、频数分布表、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1•x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1•x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.【解答】解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m>0,解得:m<.∴m的取值范围为m<.(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,∴x1+x2=﹣2,x1•x2=2m,∴x12+x22=﹣2x1•x2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m的值为﹣1.【点评】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m>0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】解(1)设A两种商品的进价是a元,B两种商品的进价是b元,根据题意列方程组即可得到结论(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意了不等式即可得到结论.【解答】解:(1)设A商品的进价是a元,B商品的进价是b元,根据题意得:,解得:,答:A商品的进价是16元,B商品的进价是4元;(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意得:16x+4(100﹣x)≤900,解得:x≤41,∵x为整数,∴x的最大整数解为41,∴最多能购进A种商41件【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确的理解题意是解题的关键.24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.【考点】相似三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心.【分析】(1)先根据内心的性质得出∠BAD=∠CAD,再由圆周角定理得出∠CAD=∠CBD,故可得出∠BAD=∠CBD,进而可得出结论;(2)连接BE,根据点E是△ABC的内心得出∠ABE=∠CBE.由∠CBD=∠BAD可得出∠BAD+∠ABE=∠CBE+∠CBD,进而可得出结论.【解答】(1)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD.∵∠BDF=∠ADB,∴△BFD∽△ABD;(2)证明:连接BE,∵点E是△ABC的内心,∴∠ABE=∠CBE.又∵∠CBD=∠BAD,∴∠BAD+∠ABE=∠CBE+∠CBD.∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,即∠DBE=∠BED,∴DE=DB.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,利用三角形内心的性质求解是解答此题的关键.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的①和③.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为0<x<5.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.【考点】二次函数与不等式(组);二次函数的图象;抛物线与x轴的交点.【分析】(1)根据题意容易得出结论;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;(3)设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.【解答】解:(1)上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.(3)设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).画出二次函数y=x2﹣2x﹣3的大致图象(如图所示),由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.【点评】本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为10km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【考点】一次函数的应用.【分析】(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出求出当y=0时候的横坐标,再求出两横坐标的差值即可.【解答】解:(1)由函数图可以得出,小芳家距离甲地的路程为10km,花费时间为0.5h,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为: +=,故点H的坐标为(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40,设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小芳出发1.75小时后被妈妈追上,此时距家25km;(3)将y=0代入直线CD解析式有:﹣20x+40=0,解得x=2,将y=0代入直线EF的解析式有:﹣60x+110=0,解得x=,2﹣=(h)=10(分钟),故小芳比预计时间早10分钟到达乙地.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省绥化市2016年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×1072.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.53.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是______.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是______.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______.14.计算:()﹣3﹣4tan45°+|1﹣|=______.15.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是______.16.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为______cm.17.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是______.18.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=______(提示:可连接BE)19.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=______.20.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=______(提示:可过点A作BD的垂线)三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是______分;(2)频率统计表中a=______,b=______;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的______和______.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为______.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为______km/h,H点坐标______.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?27.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN 交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.28.(10分)(2016•绥化)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.2016年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.今年我国参加高考的考生人数约为940万,这个数用科学记数法表示正确的是()A.94×105B.94×106C.9.4×106D.0.94×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万,这个数用科学记数法表示正确的是9.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:①线段既是轴对称图形又是中心对称图形,②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,所以既是轴对称图形又是中心对称图形的个数是3个.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过k>0判断出函数所经过的象限.5.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.250米C.米D.500米【考点】解直角三角形的应用-方向角问题.【分析】在RT△AOB中,由∠AOB=30°可知AB=AO,由此即可解决问题.【解答】解:由题意∠AOB=90°﹣60°=30°,OA=500,∵AB⊥OB,∴∠ABO=90°,∴AB=AO=250米.故选A.【点评】本题考查解直角三角形,方向角,直角三角形中30度角所对的直角边等于斜边的一半等知识,解题的关键是搞清楚方向角的定义,利用直角三角形性质解决问题,属于中考常考题型.7.函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>【考点】函数自变量的取值范围.【分析】由二次根式的被开方数大于等于0可得2x﹣1≥0,由分式有意义的性质可得2x﹣1≠0,即可求出自变量x的取值范围.【解答】解:由二次根式的被开方数大于等于0可得2x﹣1≥0①,由分式有意义的性质可得2x﹣1≠0②,由①②可知x>,故选D.【点评】本题考查了自变量的取值范围,熟练掌握①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.8.一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x﹣1=(15﹣x)+2 【考点】由实际问题抽象出一元一次方程.【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.【解答】解:∵长方形的长为xcm,长方形的周长为30cm,∴长方形的宽为(15﹣x)cm,∵这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,∴x﹣1=15﹣x+2,故选D.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.9.化简﹣(a+1)的结果是()A.B.﹣C.D.﹣【考点】分式的加减法.【分析】先根据通分法则把原式变形,再根据平方差公式、合并同类项法则计算即可.【解答】解:原式=﹣=,故选:A.【点评】本题考查的是分式的加减法,掌握分式的加减法法则、平方差公式是解题的关键.10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.二、填空题(共10小题,每小题3分,满分30分)11.﹣的相反数的倒数是2016.【考点】倒数;相反数.【分析】先求出﹣的相反数是,再求得它的倒数为2016.【解答】解:﹣的相反数是,的倒数是2016.故答案为:2016.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=15°.【考点】平行线的性质.【分析】根据平行线的性质得到∠A=∠AFE=30°,由角的和差得到∠CFE=∠AFE﹣∠AFC=15°,根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠A=∠AFE=30°,∴∠CFE=∠AFE﹣∠AFC=15°,∵CD∥EF,∴∠C=∠CFE=15°,故答案为:15°.【点评】本题考查了平行线的性质:两直线平行,同位角相等.熟记平行线的性质是解题的关键.14.计算:()﹣3﹣4tan45°+|1﹣|=3+2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:原式=8﹣4×1+﹣1=4+2﹣1=3+2.故答案为:3+2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.15.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是y=3(x﹣5)2﹣1.【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:y=3(x﹣4)2+2向右平移1个单位所得抛物线解析式为:y=3(x﹣5)2+2;再向下平移3个单位为:y=3(x﹣5)2﹣1.故答案为:y=3(x﹣5)2﹣1.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为16cm.【考点】垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM 即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.17.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是π﹣1.【考点】扇形面积的计算.【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【解答】解:在Rt △ACB 中,AB==2,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD=, ∴D 为半圆的中点,S 阴影部分=S 扇形ACB ﹣S △ADC =π×22﹣×()2=π﹣1. 故答案为π﹣1.【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,掌握面积公式是解题的关键.18.如图,在四边形ABCD 中,∠ABC=30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB=3,BC=4,则BD= 5 (提示:可连接BE )【考点】旋转的性质.【分析】要求BD 的长,根据旋转的性质,只要求出AE 的长即可,由题意可得到三角形ABE 的形状,从而可以求得AE 的长,本题得以解决.【解答】解:连接BE ,如右图所示,∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等边三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案为:5.【点评】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.19.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.【考点】规律型:数字的变化类.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.【解答】解:∵;;;…∴;∴.故答案为:1.6×105或160000.【点评】本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.20.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.三、解答题(共8小题,满分60分)21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:成绩36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (分)人数 1 2 3 3 6 7 5 8 15 9 11 12 8 6 4成绩分组频数频率35≤x<38 3 0.0338≤x<41 a 0.1241≤x<44 20 0.2044≤x<47 35 0.3547≤x≤50 30 b请根据所提供的信息解答下列问题:(1)样本的中位数是44.5分;(2)频率统计表中a=12,b=0.30;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据题意可知中位数是第50个数和51个数的平均数,本题得以解决;(2)根据表格和随机抽取了100名学生的成绩,可以求得a、b的值,本题得以解决;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得该次大赛中成绩不低于41分的学生人数.【解答】解:(1)∵随机抽取了100名学生的成绩,由表格可得,1+2+3+3+6+7+5+8+15=50,50+9+59,∴中位数为:=44.5,故答案为:44.5;(2)由表格可得,a=100×0.12=12,b=30÷100=0.30,故答案为:12,0.30;(3)补全的频数分布直方图如右图所示,(4)由题意可得,1200×(0.20+0.35+0.30)=1020(人),即该次大赛中成绩不低于41分的学生有1020人.【点评】本题考查频数分布直方图、用样本估计总体、频数分布表、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1•x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1•x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.【解答】解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m>0,解得:m<.∴m的取值范围为m<.(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,∴x1+x2=﹣2,x1•x2=2m,∴x12+x22=﹣2x1•x2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m的值为﹣1.【点评】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m>0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.23.某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.(1)求A、B两种商品的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】解(1)设A两种商品的进价是a元,B两种商品的进价是b元,根据题意列方程组即可得到结论(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意了不等式即可得到结论.【解答】解:(1)设A商品的进价是a元,B商品的进价是b元,根据题意得:,解得:,答:A商品的进价是16元,B商品的进价是4元;(2)设购进A种商品x件,则购进B种商品(100﹣x)件,根据题意得:16x+4(100﹣x)≤900,解得:x≤41,∵x为整数,∴x的最大整数解为41,∴最多能购进A种商41件【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确的理解题意是解题的关键.24.如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D(1)求证:△BFD∽△ABD;(2)求证:DE=DB.【考点】相似三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心.【分析】(1)先根据内心的性质得出∠BAD=∠CAD,再由圆周角定理得出∠CAD=∠CBD,故可得出∠BAD=∠CBD,进而可得出结论;(2)连接BE,根据点E是△ABC的内心得出∠ABE=∠CBE.由∠CBD=∠BAD可得出∠BAD+∠ABE=∠CBE+∠CBD,进而可得出结论.【解答】(1)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD.∵∠BDF=∠ADB,∴△BFD∽△ABD;(2)证明:连接BE,∵点E是△ABC的内心,∴∠ABE=∠CBE.又∵∠CBD=∠BAD,∴∠BAD+∠ABE=∠CBE+∠CBD.∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,即∠DBE=∠BED,∴DE=DB.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,利用三角形内心的性质求解是解答此题的关键.25.自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x >5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的①和③.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为0<x<5.(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.【考点】二次函数与不等式(组);二次函数的图象;抛物线与x轴的交点.【分析】(1)根据题意容易得出结论;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;(3)设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.【解答】解:(1)上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.(3)设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).画出二次函数y=x2﹣2x﹣3的大致图象(如图所示),由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.【点评】本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.26.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为10km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【考点】一次函数的应用.【分析】(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出求出当y=0时候的横坐标,再求出两横坐标的差值即可.。

相关文档
最新文档