初二数学反比例函数测试题
初二数学反比例函数试卷
一、选择题(每题5分,共20分)1. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = kx (k≠0)D. y = k/x (k≠0)2. 已知反比例函数y = k/x (k≠0) 中,当 x = 2 时,y = 4,则 k 的值为()A. 2B. 4C. 8D. 163. 在反比例函数y = k/x (k≠0) 中,当 x > 0 时,y 的值()A. 恒为正B. 恒为负C. 可能为正,也可能为负D. 无穷大4. 若两个反比例函数的图象分别位于一、三象限和二、四象限,则它们的比例系数 k ()A. 都大于0B. 都小于0C. 一个大于0,一个小于0D. 一个等于0,一个不等于05. 若反比例函数y = k/x (k≠0) 的图象经过点 (1, -2),则 k 的值为()A. -2B. -1C. 2D. 1二、填空题(每题5分,共20分)6. 若反比例函数y = k/x (k≠0) 的图象经过一、三象限,则 k 的取值范围是______。
7. 若反比例函数y = k/x (k≠0) 的图象经过二、四象限,则 k 的取值范围是______。
8. 反比例函数y = k/x (k≠0) 的图象与坐标轴围成的图形的面积是______。
9. 已知反比例函数y = k/x (k≠0) 中,当 x = 3 时,y = -6,则 k 的值为______。
10. 若反比例函数y = k/x (k≠0) 的图象经过点 (2, -3),则 k 的值为______。
三、解答题(每题10分,共20分)11. (1)已知反比例函数y = k/x (k≠0) 的图象经过点 (1, 2),求 k 的值。
(2)求反比例函数y = k/x (k≠0) 的图象与 x 轴、y 轴所围成的图形的面积。
12. (1)已知反比例函数y = k/x (k≠0) 的图象经过点 (-2, 3),求 k 的值。
反比例函数考试题(含答案)
反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
八年级数学反比例函数练习题
第一课时[A 组]1、下列函数中,哪些是反比例函数?( )(1)y=-3x ; (2)y=2x+1; (3) y=-x 2;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数:(1) x y 1-= ;(2)xy=12 ;(3) xy=-13 (4)y=3x3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . (1) 写出用高表示长的函数式; (2) 写出自变量x 的取值范围; (3) 当x =3cm 时,求y 的值5、已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式;(2)当13x =时,求y 的值; (3)y =3时,x 的值。
7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗?8、当m 为何值时,函数224-=m x y 是反比例函数,并求出其函数解析式.9、已知y 成反比例,且当4b =时,1y =-。
求当10b =时,y 的值。
10:画出下列函数双曲线,y=-x 2的图象,已知点A (-3,a )、B (-2,b ),C(4,c)在双曲线,y=-x 2的图象令上,请把[B 组]11、已知函数221()m y m m x -=+,当m 取何值时(1)是正比例函数;(2)是反比例函数。
12、(1)已知y =y1+y2,y1与x 成正比例,y2与x 成反比例, 并且x =2和x =3时,y 的值都等于 19.求y 和x 之间的函数关系式(2)若y 与2x -2成反比例,且当x=2时,y=1,则y 与x 之间的关系式为13、(03广东)如图1,某个反比例函数的图像经过点P .则它的解析式( )(A )xy 1=(x >0) (B )x y 1-= (x >0)(C )xy 1=(x <0) (D )x y 1-= (x <0)第二课时[A 组]1、xy 3-=的图像叫 ,图像位于 象限,在每一象限内,当x 增大时,则y ;函数4y x=图象在第象限,在每个象限内y 随x 的减少而 2:、根据下列表格中x 与y 的对应值:(1)在直角坐标系中,描点画出图象;(2)试求式。
反比例函数测试题(含答案)
反比例函数测试题(含答案)(时间90分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分) 1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( )A .正比例函数B .反比例函数C .一次函数D .二次函数 2.函数y =-4x 的图象与x 轴的交点的个数是( )A .零个B .一个C .两个D .不能确定3.反比例函数y =-4x 的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y=x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 37.如果点P 为反比例函数x y 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ的面积为 ( )A .2B . 4C .6D . 8 8.已知:反比例函数x my 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 3) 第6题12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描述的反比例函数的解析式是 .15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 .16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 .18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.OA 12第17题21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x=在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第23题图第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -(1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客. (1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足 关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?图1图227.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示: (1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C .二、填空题9.y =x m 2 10.152y x=- 11.三 12.y =x 50013.m ≠-5 n =-3 14.y=x315.B 16.n >4,n <4 17.(0) 18.①②④ 三、解答题19.(1)y =x6;(2)在 20. y =6x,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<122.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;月)y ()(5)48412t ==23.(1)51a k=-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =xk(k >0),当x 变小时,y 增大 27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =1528.(1)8xy =-;(2)126。
反比例函数》测试题(含答案)
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
反比例函数单元测试卷含答案
反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。
答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。
答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。
它的一般形式为y = k/x,其中k为常数。
2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。
当x趋近于无穷大或无穷小时,函数的值趋近于零。
两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。
3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。
将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。
以上就是反比例函数单元测试卷的答案。
希望能对你的学习有所帮助!。
初二数学人教版(下册)反比例函数综合练习(附答案)
反比例函数综合练习一、选择题1.反比例函数y= -2/x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限2.已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为()、. 若双曲线y=6/x 经过点A(m,3),则m的值为()A.2 B.-2 C.3 D.-33. 如图,过原点的一条直线与反比例函数y=k/x(k<0)的图像分别交于A、B两点,若A、、点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(-b,-a) D.(-a,-b)4、下列关系中,两个量之间为反比例函数关系的是()A 、 正方形的面积S 与边长a 的关系B 、 正方形的周长L 与边长a 的关系C 、 长方形的长为a ,宽为20,其面积S 与a 的关系D 、 长方形的面积为40,长为a ,宽为b ,a 与b 之间的关系 5、在同一直角坐标系中,函数x y 3=与xy 1-=的图象大致是( )6、设()()2211,,,y x B y x A 是反比例函数xy 2-=图象上和两点,若1x <2x <0则1y 与2y 之间的关系是( )A 、2y <1y <0B 、1y <2y <0C 、2y >1y >0D 、1y >2y >0 7、函数k kx y +=与xky =在同一坐标系中的图象如图所示,则k 的取值范围为( ) A 、k >0 B 、k <0 C 、-1<k <0 D 、k <-18、(2006年兰州市)如图1所示,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形△P 1A 1O 、△P 2A 2O 、△P 3A 2O ,设它们的面积分别是S 1、S 2、S 3,则( ) A 、S 1<S 2<S 3 B 、S 2<S 1<S 3 C 、S 1<S 3<S 2 D 、S 1=S 2=S 3yOxyOxyOxO xyx二、填空题9.在函数xky =中,当2=x 时,3-=y 。
初二数学反比例函数试题答案及解析
初二数学反比例函数试题答案及解析1.如图,过反比例函数图象上的一点A,作x轴的垂线,垂足为B点,则.【答案】4.【解析】根据反比例函数k的几何意义可得:S=k=4.△AOB故答案是4.【考点】反比例函数系数k的几何意义.2.某函数具有下列性质:①图像在二、四象限内;②在每个象限内,函数值随自变量的增大而增大.则其函数解析式可以为.【答案】y=.【解析】首先根据题意可得此函数可以是反比例函数,并且k<0,所以函数解析式可以为:y=.故答案是y=.【考点】反比例函数的性质.3.如图,一次函数y=2x﹣2的图象与x轴、y轴分别相交于B、A两点,与反比例函数的图象在第一象限内的交点为M(3,m).(1)求反比例函数的解析式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)y=(2)存在.理由见解析【解析】(1)先把M(3,m)代入y=2x﹣2求出m,确定M点的坐标,然后利用待定系数法确定反比例函数解析式;(2)先确定A点坐标为(0,﹣2),B点坐标为(1,0),再根据勾股定理计算出AB=;根据M点坐标得到MC=4,BC=2,则利用勾股定理可计算出BM=2,然后证明Rt△OBA∽Rt△MBP,利用相似比计算出BP,于是可确定P点坐标.解:(1)把M(3,m)代入y=2x﹣2得m=2×3﹣2=4,∴M点坐标为(3,4),把M(3,4)代入y=得k=3×4=12,∴反比例函数的解析式为y=;(2)存在.作MC⊥x轴于C,如图,把x=0代入y=2x﹣2得y=﹣2;把y=0代入y=2x﹣2得2x﹣2=0,解得x=1,∴A点坐标为(0,﹣2),B点坐标为(1,0),∴OA=2,OB=1,在Rt△OAB中,AB==,∵M点坐标为(3,4),∴MC=4,BC=3﹣1=2,在Rt△MBC中,MB==2,∵MA⊥MB,∴∠BMP=90°,而∠OBA=∠MBP,∴Rt△OBA∽Rt△MBP,∴=,即=,∴BP=10,∴OP=11,∴点P的坐标为(11,0).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法确定函数解析式;熟练运用勾股定理和相似比进行几何计算.4.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A. 12米B. 13米C.14米D.15米【答案】A【解析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.点评:此题是勾股定理在实际生活中的运用,比较简单.5.若点A(﹣2,a),B(﹣1,b),C(3,c)在双曲线(k>0)上,则a、b、c的大小关系为(用“<”将a、b、c连接起来).【答案】b<a<c【解析】根据题意,易得a、b、c的值,比较可得答案.解:根据题意,易得a=﹣,b=﹣k,c=,又由k>0,易得b<a<c.故答案为b<a<c.点评:本题考查反比例函数图象上的点的特点,同一反比例函数图象上点的横纵坐标的积为同一常数.6.已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x【答案】C【解析】由点A(1,2)在反比例函数y=的图象上根据待定系数法即可求得结果.解:∵点A(1,2)在反比例函数y=的图象上∴∴该反比例函数的解析式是y=故选C.【考点】待定系数法求函数关系式点评:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.两个反比例函数,在第一象限内的图像如图所示,点,,,…,在函数的图像上,它们的横坐标分别是,,,…,,纵坐标分别是1,3,5,…,共2013个连续奇数,过点,,,…,分别作y轴的平行线,与函数的图像交点依次是(,),(,),(,),…,(,),则 .【答案】【解析】因为点P1,P2,P3,…,P2010在反比例函数图象上,根据P1,P2,P3的纵坐标,推出P2010的纵坐标,再根据和的关系求解即可.解:∵P1,P2,P3的纵坐标为1,3,5,是连续奇数∴Pn 的纵坐标为:2n-1∴P2013的纵坐标为2×2013-1=4025∵与在横坐标相同时,的纵坐标是的纵坐标的2倍∴.【考点】找规律-坐标的变化点评:解题的关键是仔细分析所给图形的特征得到规律,再根据得到的规律解题即可.8.如图,正方形OABC的面积为9,点O为坐标原点B在函数的图象上,点P (m,n)在的图象上任意一点,过P分别作x轴y轴的垂线,垂足分别是E,F,并设长方形OEPF和正方形OABC不重合部分的的面积为S。
八年级下册反比例函数练习题(含答案)
第17章反比例函数单元复习测试(时间:120分钟分数:120分) 得分_______ 一、精心选一选,想信你一定能选对!(每题3分,共30分)1.下列函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有().A.0个 B.1个 C.2个 D.3个2.反比例函数y=2x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.已知矩形的面积为10,则它的长y与宽x之间的关系用图象表示大致为()4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• ).5.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是().A.(13,-9) B.(3,1) C.(-1,3) D.(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应().A.不大于2435m3 B.不小于2435m3 C.不大于2437m3 D.不小于2437m3(第6题) (第7题)7.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为().A.I=6RB.I=-6RC.I=3RD.I=2R8.函数y=1x与函数y=x的图象在同一平面直角坐标系内的交点个数是().A.1个 B.2个 C.3个 D.0个9.若函数y=(m+2)|m|-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×210.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y=4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3二、细心填一填,相信你填得又快又准!(每题3分,共27分) 11.一个反比例函数y=k x(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 12.已知关于x 的一次函数y=kx+1和反比例函数y=6x 的图象都经过点(2,m ),则一次函数的解析式是________. 13.一批零件300个,一个工人每小时做15个,用关系式表示人数x•与完成任务所需的时间y 之间的函数关系式为________.14.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.(第14题) (第15题) (第19题)15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.16.反比例函数y=21039n n x --的图象每一象限内,y 随x 的增大而增大,则n=_______.17.已知一次函数y=3x+m 与反比例函数y=3m x -的图象有两个交点,当m=_____时,有一个交点的纵坐标为6. 18.若一次函数y=x+b 与反比例函数y=k x 图象,在第二象限内有两个交点,•则k______0,b_______0,(用“>”、“<”、“=”填空)19.两个反比例函数y=3x ,y=6x 在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y=6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y=3x 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,•对而不全酌情给分)20.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是( •).A .y=3x 与y=1x B .y=-3x 与y=1xC .y=-2x+6与y=1xD .y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有().四、用心做一做,培养你的综合运用能力.22.(8分)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.23.(10分)如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?24.(11分)已知y=y1-y2,y1y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求(1)y与x之间的函数关系式.(2)自变量x的取值范围.(3)当x=14时,y的值.25.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.26.(14分)如图,双曲线y=5x在第一象限的一支上有一点C(1,5),•过点C•的直线y=kx+b(k>0)与x轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.答案:1.B 2.D 3.A 4.A 5.B 6.B 7.A 8.B 9.A 10.D11.y=2x 12.y=x+1 13.y= 14.2 15.y=-8x16.n=-3 17.m=5 18.<,> 19.2004.5 20.A 、B 21.A 、C 、D22.解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0).(2)∵点AB 在一次函数y=kx+b (k ≠0)的图象上, ∴ 解得 ∴一次函数的解析式为y=x+1,∵点C 在一次函数y=x+1的图象上,•且CD ⊥x 轴,∴C 点的坐标为(1,2),又∵点C 在反比例函数y=m x(m ≠0)的图象上, ∴m=2,•∴反比例函数的解析式为y=2x . 23.(1)y=2x-6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.(2)自变量x 取值范围是x>0.25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=,∴m=2,∴反比例函数的解析式为y=2x. 又点B 也在双曲线上,∴n==-2,∴点B 的坐标为(-1,-2). ∵直线y=kx+b 经过点A 、B .∴ 解得 ∴一次函数的解析式为y=x-1. (2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x>2或-1<x<0.26.解:(1)∵点C (1,5)在直线y=-kx+b 上,∴5=-k+b ,又∵点A (a ,0)也在直线y=-kx+b 上,∴-ak+b=0,∴b=ak将b=ak 代入5=-k+a 中得5=-k+ak ,∴a=+1. (2)由于D 点是反比例函数的图象与直线的交点20x 01k b b -+=⎧⎨=⎩11k b =⎧⎨=⎩2m 21-122k b k b =+⎧⎨-=-+⎩11k b =⎧⎨=-⎩5k∴ ∵ak=5+k ,∴y=-8k+5 ③ 将①代入③得:=-8k+5,∴k=,a=10. ∴A (10,0),又知(1,5),∴S △COA =12×10×5=25. 599y y k ak⎧=⎪⎨⎪=-+⎩5959。
初二数学反比例函数试题答案及解析
初二数学反比例函数试题答案及解析1.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP =S△ABO,若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)双曲线的函数关系式为y=﹣;(2)当x<﹣1时,0<y<2;(3)存在;点P坐标为(﹣,4).【解析】(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP =S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.试题解析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵yA =yB,∴AB∥x轴,∴S△ABP =S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(yP ﹣2)=5,即×5×(yP﹣2)=5,解得yP=4,∴点P坐标为(﹣,4).【考点】1、相似三角形的判定与性质;2、待定系数法;3、函数大小的比较;4、反比例函数2.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是____________________.【答案】y3<y2<y1.【解析】∵k=6>0,∴图象在一、三象限,且在每一象限内y随x的增大而减小.∵x1<x2,∴y1>y2>0,∵x3<0,∴y3<0,∴y3<y2<y1.故答案是y3<y2<y1.【考点】反比例函数图象上点的坐标特征.3.已知反比例函数y=的图象上有三个点(2,),(3,),(,),则,,的大小关系是()A.>>B.>>C.>>D.>>【答案】A.【解析】试题解析:∵-k2-1<0∴反比例函数y=的图象在第二、四象限∴>>故选A.【考点】反比例函数图象上点的坐标特征.4.已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中的()A.B.C.D.【答案】A【解析】由长方形的面积公式得y=,且x>0,y>0,而B中有x<0,y<0的情况,C,D中有x=0或y=0的情况,据此即可得出结果.解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.已知反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为12,求此函数的解析式.【答案】(1)k<0 (2)y=﹣【解析】(1)直接根据反比例函数的性质求解即可,k<0;(2)直接根据k的几何意义可知:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,所以|k|=12,而k<0,则k=﹣12.解:(1)∵反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,∴k<0;(2)设A(x,y),由已知得,|xy|=|k|=12,∵k<0,∴k=﹣12,所以,反比例函数的解析式为y=﹣.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.在同一平面直角坐标系中,正比例函数y=(m﹣1)x与反比例函数y=的图象的大体位置不可能是()A.B.C.D.【答案】D【解析】根据题意,依次分析选项中的图象,根据图象,求出其参数的范围,并解看有无公共解,若有,则可能是它们的图象,若无解,则不可能是它们的图象;即可得答案.解:依次分析选项可得:A、4m>0,m﹣1>0;解可得m>1;故可能是它们的图象.B、4m>0,m﹣1<0;解可得0<m<1;故可能是它们的图象.C、4m<0,m﹣1<0;解可得m<1;故可能是它们的图象.D、4m<0,m﹣1>0;无解;故不可能是它们的图象.故选D.点评:本题考查正比例函数与反比例函数的图象性质,注意①正比例函数与反比例函数的图象与k的关系,②两个函数中参数的关系.7.若A(,b)、B(-1,c)是函数的图象上的两点,且<0,则b与c的大小关系为()A.b<c B.b>c C.b=c D.无法判断【答案】B【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.解:∵,∴故选B.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.如图,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1,过点B作轴垂线,垂足为C,连接AC、AB.(1)m= ;(2)若△ABC的面积为4,则点B的坐标为【答案】(1)4;(2)【解析】(1)把A的坐标代入反比例函数的解析式,即可求出m和得出反比例函数的解析式;(2)设B的坐标是(a,b),根据B在反比例函数上得出ab的值,再根据△ABC的面积为4求解即可.(1)把A(1,4)代入得;(2)设B的坐标是(a,b),∵B在反比例函数上,∴ab=4∵△ABC的面积为4,∴×a×(4-b)=4,∴2a ab=4,∴2a-2=4,a=3,∵ab=4,∴b=.则点B的坐标为(3,).【考点】反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,三角形的面积点评:待定系数法求函数的解析式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.如图,双曲线在第一象限内如图所示作一条平行y轴的直线分别交双曲线于A、B两点,连OA、OB,则S=。
初二数学反比例函数试题答案及解析
初二数学反比例函数试题答案及解析1.如图,经过原点的两条直线、分别与双曲线相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).(1)求值及点坐标;(4分)(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(4分)(3)若P点坐标为(m,n),且,求P点坐标.(4分)【答案】(1)k=3,B点坐标为(﹣3,﹣1);(2)a=1,四边形APBQ的面积为16;(3P点坐标为(1,3).【解析】(1)根据分别莲花山图象上点的坐标特征得到k=3×1=3,再根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣3,﹣1);(2)根据反比例函数图象上点的坐标特征得到a=1,即P点坐标为(1,3),再根据正比例函数图象和反比例函数图象的性质得到点P与点Q关于原点对称,所以点Q的坐标为(﹣1,﹣3),由于OA=OB,OP=OQ,则根据平行四边形的判定得到四边形APBQ为平行四边形,然后根据两点间的距离公式计算出AB,PQ,可得到即AB=PQ,于是可判断四边形APBQ为矩形,再计算出PA和PB,然后计算矩形APBQ的面积;(3)由于四边形APBQ为平行四边形,加上∠APB=90°,则可判断四边形APBQ为矩形,则OP=OA,根据两点间的距离公式得到m2+n2=10,且mn=3,则利用完全平方公式得到(m+n)2﹣2mn=10,可得到m+n=4,根据根与系数的关系可把m、n看作方程x2﹣4x+3=0的两根,然后解方程可得到满足条件的P点坐标.试题解析:(1)把A(3,1)代入y=得k=3×1=3,∵经过原点的直线l与双曲线y=(k≠0)相交于A、B、1∴点A与点B关于原点对称,∴B点坐标为(﹣3,﹣1);(2)把P(a,3)代入y=得3a=3,解得a=1,∵P点坐标为(1,3),∵经过原点的直线l与双曲线y=(k≠0)相交于P、Q点,2∴点P与点Q关于原点对称,∴点Q的坐标为(﹣1,﹣3),∵OA=OB,OP=OQ,∴四边形APBQ为平行四边形,∵AB2=(3+3)2+(1+1)2=40,PA2=(1+1)2+(3+3)2=40,∴AB=PQ,∴四边形APBQ为矩形,∵PB 2=(1+3)2+(3+1)2=32,PQ2=(3﹣1)2+(1﹣3)2=8,∴PB=4,PQ=2,∴四边形APBQ的面积=PA•PB=2•4=16;(3)∵四边形APBQ为平行四边形,而∠APB=90°,∴四边形APBQ为矩形,∴OP=OA,∴m2+n2=32+12=10,而mn=3,∵(m+n)2﹣2mn=10,∴(m+n)2=16,解得m+n=4或m+n=﹣4(舍去),把m、n看作方程x2﹣4x+3=0的两根,解得m=1,n=3或m=3,n=1(舍去),∴P点坐标为(1,3).【考点】反比例函数综合题.2.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题解析:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故选C.【考点】反比例函数系数k的几何意义.3.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A. 12米B. 13米C.14米D.15米【答案】A【解析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A .点评:此题是勾股定理在实际生活中的运用,比较简单.4. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( ) A .(x >0)B .(x≥0)C .y=300x (x≥0)D .y=300x (x >0)【答案】A【解析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可. 解:∵煤的总吨数为300,平均每天烧煤的吨数为x , ∴这些煤能烧的天数为y=(x >0),故选:A .点评:此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.5. 如图,反比例函数的图象与一次函数y=mx+b 的图象交于A (1,3),B (n ,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.(3)求△AOB 的面积.【答案】(1)y= y=x+2 (2)x <﹣3或0<x <1 (3)4【解析】(1)把A (1,3)代入反比例函数即可得到k=3,然后把B (n ,﹣1)代入y=求出n ,再把A 点和B 点坐标代入y=mx+b 中得到关于m 、b 的方程组,然后解方程组即可;(2)观察图象可得到当x <﹣3或0<x <1时,反比例函数的图象都在一次函数的图象的上方; (3)先求出直线AB 与x 轴的交点C 的坐标,则S △OAB =S △OAC +S △OBC ,然后利用三角形的面积公式计算即可.解:(1)把A (1,3)代入反比例函数,∴k=1×3=3,∴反比例函数的解析式为y=, 把B (n ,﹣1)代入y=得,n=﹣3,∴点B 的坐标为(﹣3,﹣1),把A (1,3)、点B (﹣3,﹣1)代入一次函数y=mx+b 得,m+b=3,﹣3m+b=﹣1,解得m=1,b=2,∴一次函数的解析式为y=x+2;(2)当x <﹣3或0<x <1时,反比例函数的值大于一次函数的值; (3)连OA 、OB ,直线AB 交x 轴与C 点,如图, 对于y=x+2,令y=0,x=﹣2,∴C 点坐标为(﹣2,0),∴S △OAB =S △OAC +S △OBC =×2×3+×2×1=4.点评:本题考查了反比例函数与一次函数的交点问题:同时满足反比例函数的解析式和一次函数的解析式的点的坐标为它们图象的交点坐标.也考查了待定系数法求函数的解析式以及坐标轴上点的坐标特点.6. 已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( ) A .y=B .y=C .y=D .y=2x【答案】C【解析】由点A(1,2)在反比例函数y=的图象上根据待定系数法即可求得结果. 解:∵点A(1,2)在反比例函数y=的图象上 ∴∴该反比例函数的解析式是y=故选C.【考点】待定系数法求函数关系式点评:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 如图,正方形ABOC 的面积为4,反比例函数的图象过点A ,则k = .【答案】—4 【解析】反比例函数中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为.解:依题意得, 又∵图象位于第二象限, ∴ ∴.【考点】反比例函数中k 的几何意义点评:本题属于基础应用题,只需学生熟练掌握反比例函数中k 的几何意义,即可完成.8. 如图,在平面直角坐标系中,已知点在双曲线上,轴于D ,轴于,点在轴上,且,则图中阴影部分的面积之和为A .6B .12C .18D .24【答案】B【解析】过A 作AG 垂直于x 轴,交x 轴于点G ,由AO=AF ,利用三线合一得到G 为OF 的中点,根据等底同高得到三角形AOD 的面积等于三角形AFD 的面积,再由A ,B 及C 三点都在反比例函数图象上,根据反比例的性质得到三角形BOD ,三角形COE 及三角形AOG 的面积都相等,都为,由反比例解析式中的k 值代入,求出三个三角形的面积,根据阴影部分的面积等于三角形BOD 的面积+三角形COE 的面积+三角形AOG 的面积+三角形AFG 的面积=4三角形AOD 的面积,即为2|k|,即可得到阴影部分的面积之和.解:过A 作AG ⊥x 轴,交x 轴于点G∵AO=AF ,AG ⊥OF ,∴G 为OF 的中点,即OG=FG , ∴S △OAG =S △FAG ,又A ,B 及C 点都在反比例函数上,∴S △OAG =S △BOD =S △COE ==3,∴S △OAG =S △BOD =S △COE =S △FAG =3,则S 阴影=S △OAG +S △BOD +S △COE +S △FAG =12, 故选B .【考点】反比例函数的性质,等腰三角形的性质,三角形的面积公式 点评:反比例函数(k≠0)图象上的点到坐标轴的垂线,此点到原点的连线及坐标轴围成的直角三角形的面积等于,熟练掌握此性质是解本题的关键.9. 如图所示,设A 为反比例函数图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 .【答案】【解析】由矩形ABOC 的面积为3根据反比例函数系数k 的几何意义可得,再根据图象在第二象限即可求得结果.解: 因为矩形ABOC 的面积为3 所以,解得 因为图象在第二象限, 所以, 所以这个反比例函数解析式为.【考点】反比例函数系数k 的几何意义点评:反比例函数系数k 的几何意义:过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为.10.如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.【答案】(1)m=3,k=12;(2)或【解析】(1)根据反比例函数图象上的点的坐标的特征可得,即可求得结果;(2)存在两种情况,①当M点在x轴的正半轴上,N点在y轴的正半轴上时,②当M点在x轴的负半轴上,N点在y轴的负半轴上时,根据平行四边形的性质求解即可.(1)由题意可知,解得m1=3,m2=-1(舍去)∴A(3,4),B(4,3);∴k=4×3=12;(2)存在两种情况,如图:①当M点在x轴的正半轴上,N点在y轴的正半轴上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).∵四边形AN1M1B为平行四边形,∴线段N1M1可看作由线段AB向左平移3个单位,再向下平移3个单位得到的由(1)知A点坐标为(3,4),B点坐标为(4,3),∴N1点坐标为(0,1),M1点坐标为(1,0)设直线M1N1的函数表达式为,把x=1,y=0代入,解得.∴直线M1N1的函数表达式为;②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).∵AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,∴N1M1∥M2N2,N1M1=M2N2.∴线段M2N2与线段N1M1关于原点O成中心对称.∴M2点坐标为(-1,0),N2点坐标为(0,-1).设直线M2N2的函数表达式为,把x=-1,y=0代入,解得,∴直线M2N2的函数表达式为所以,直线MN的函数表达式为或.【考点】反比例函数的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.11.如图,点A(x1,y1)、B(x2,y2)都在双曲线上,且,;分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析为 .【答案】【解析】根据S 矩形AEOC =S 矩形OFBD =(S 五边形AEODB -S △AGB -S 四边形FOCG )+S 四边形FOCG ,先求得S 矩形AEOC 和S 矩形OFBD 的值,利用k=AE•AC=FB•BD 即可求得函数解析式. ∵x 2-x 1=4,y 1-y 2=2 ∴BG=4,AG=2 ∴S △AGB =4∵S 矩形AEOC =S 矩形OFBD ,四边形FOCG 的面积为2即AE•AC=6 ∴.【考点】反比例函数与一次函数的性质点评:此题难度稍大,综合性比较强,注意反比例函数上的点向x 轴y 轴引垂线形成的矩形面积等于反比例函数的k 值.12. 如图,正方形OABC 的面积为9,点O 为坐标原点B 在函数的图象上,点P (m ,n )在的图象上任意一点,过P 分别作x 轴y 轴的垂线,垂足分别是E ,F ,并设长方形OEPF 和正方形OABC 不重合部分的的面积为S 。
(完整版)反比例函数综合测试题(含答案)
反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学反比例函数测
试题
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
反比例函数测试题
一、选择题
1.反比例函数y =-4
x
的图象在 ( )
A .第一、三象限
B .第二、四象限
C .第一、二象限
D .第三、四象限 2.已知关于x 的函数y =k (x +1)和y =-k
x
(k ≠0)它们在同一坐标系中的大致图象是(• ) 3.已知反比例函数y =x
k
的图象经过点(m ,3m ),则此反比例函数的图象在 ( )
A .第一、二象限
B .第一、三象限
C .第二、四象限
D .第三、四象限 4.函数x k y =
的图象经过点(-4,6),则下列各点中在x
k
y =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6)
5.正比例函数kx y =和反比例函数
k
y =在同一坐标系内的图象为( )
D
6.1k 和2k 的关系一定是( )
A 、1k <0,2k >0
B 、1k >0,2k <0
C 、1k 、2k 同号
D 、1k 、2k 异号
7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数x
kb
y =的图像在( )
A 第一二象限
B 第三 四象限
C 第一三象限
D 第二三象限 二、填空题:(3分×10=30分)
1、y 与x 成反比例,且当y =6时,3
1
=
x ,这个函数解析式为 ; 2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型) 3、函数2x y -=和函数x
y 2
=的图象有 个交点;
4、反比例函数x
k y =的图象经过(-23
,5)点、(a ,-3)及(10,b )点,
则k = ,a = ,b = ;
5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过
象限;
6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;
7、右图3是反比例函数x
k y 2
-=
的图象,则k 的取值范围是 . 8、函数x
y 2
-=的图象,在每一个象限内,y 随x 的增大
而 ;
9、反比例函数x
y 2
=在第一象限内的图象如图,点M 是
图象上
一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()5
22--=m x m y 是y 关于x 的反比例函数,则m 值
为 ; (三)解答题
1、已知一次函数b kx y +=与反比例函数x
m
y =
的图像交于A (—2 ,1) B (1 ,n )俩点。
求 ⑴ 反比例函数和一次函数的表达式?
⑵ 求△AOB 的面积?
2、如图所示:已知直线y=
x 21与双曲线y=)0(>k x
k
交于A B两点,且点A的横坐标为4 ⑴ 求k的值?
y
O P
M
⑵ 若双曲线y=)0(>k x
k
上的一点C 的纵坐标为8,求△AOC 的面积?
3.双曲线5
y x
=
在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).
(1)求点A 的横坐标a 与k 之间的函数关系式;
(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的
面积
.
第3题图。