全等三角形的判定精品课件

合集下载

三角形全等的判定优秀教学课件

三角形全等的判定优秀教学课件

笑当你快乐时,你要想,这快乐不是永 恒的.当你痛苦时,你要想,这痛苦也不是 永恒的.
第22页,共23页。

11、这个世界其实很公平,你想要比
别人强,你就必须去做别人不想做的事,
你想要过更好的生活,你就必须去承受更
多的困难,承受别人不能承受的压力。

12、逆境给人宝贵的磨炼机会。只有
经得起环境考验的人,才能算是真正的强
第5页,共23页。
新知探究
判定两个三角形全等的方法:
两边和它们的夹角分别相等的两个 三角形全等.
简写成“边角边”或“SAS”.
第6页,共23页。
举例分析
例2:如图,有一池塘,要测池塘两端A,B的距离,可先 在平地上取一个点C,从点C不经过池塘可以直接到达点A和 B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使 CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
AE = CF (已知)
A●
D

E
F

∠A=∠C(已证)
B
●C
AD= CB (已知)
∴△ADE≌△CBF (SAS) ∴∠AED=∠CFB ∴∠FED=∠EFB
∴ DE∥BF
第17页,共23页。
4.若AB=AC,则添加什么条件可得△ABD≌△ACD?
A AD=AD ∠BAD= ∠CAD AB=AC
在△AFB 和△DEC中,
AB=DC
BE
∠B=∠C
BF=CE
∴ △AFB ≌ △DEC
∴ ∠A= ∠D
FC
第13页,共23页。
备选练习
1.在下列推理中填写需要补充的条件,使结
论成立:
(1)如图,在△AOB和△DOC中 ADLeabharlann AO=DO(已知)O

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

三角形全等的判定ppt课件

三角形全等的判定ppt课件


作图区

例题解析
例1 已知:如图,在四边形ABCD中,AB=CD,AD=CB。
求证:∠A=∠C
D
要证明∠A=∠C,需先证明△ABD和△CDB
全等, 然后由全等三角形的性质定理得到结论.A
证明:
在△ABD和△CDB中, AB=CD (已知) AD=CB (已知) BD=DB (公共边)
∴△ABD≌△CDB (SSS)
B E CF
__AC_=DF ( 已知 )
BC=_E_F (已证 ) ∴△ABC≌△DEFS(SS )
新知探究
如图,在∠CAB中,AF=DE, DF=DE. 求证:AD是∠CAB的角平分线.
C
1 2
A
D B
例题解析
已知∠BAC,用直尺和圆规∠BAC的角平分线AD
C
C
作法:
A
D
B
A
B
1、以点A为圆心,适当的长为半径,与角的两边分别交于E、F两点;
注意几何语言规范
2.三角形具有稳定性。房屋的人字架、大桥的钢梁、 起重机的支架、自行车的车座等,采用三角形结构, 起到稳固的作用。
课堂小结
内容
有三边对应相等的 两个三角形全等
边 边边
应用
思路分析
结合图形找隐含条件和 现有条件,证准备条件
书写步骤 四个步骤
注意
1. 说明两三角形全等所需的条 件应按对应边的顺序书写. 2. 结论中所出现的边必须在所 证明的两个三角形中.
A
D
C
B
E
图1
图2
新知探究
如图 ,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转 动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如 果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形 状、大小就完全确定.

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

完整版三角形全等的判定课件

完整版三角形全等的判定课件

长至E,使CE =CB,连接ED,那么量出DE的长就是A,
B的距离.为什么?
A
B
1
C
2
E
D
完整版三角形全等的判定
40
证明:在△ABC 和△DEC 中,
AC = DC(已知),
∠1 =∠2 (对顶角相等),
BC =EC(已知) ,
A
B
∴ △ABC ≌△DEC(SAS).
∴ AB =DE
1 C
(全等三角形的对应边相等).
②两边及其中一边的的对角对应相 等的两个三角形不一定全等.
③ 现在你知道哪些三角形全等的 判定方法?
SSS, SAS
完整版三角形全等的判定
24
4.“斜边、直角边”公理(HL):
斜边和一条直角边分别相等的两个直角三角形全等。 简写为“斜边、直角边”或“HL”
A
几何语言:
∵ 在Rt△ABC 和 Rt△A'B'C'中, AB =A'B',
一、知识回顾
1、 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形。
2、 已知△ABC ≌△ DEF,找出其中相等的边与角
A
D
①AB=DE ④ ∠A= ∠D
② BC=EF ⑤ ∠B=∠E
③ CA=FD ⑥ ∠C= ∠F
B
CE
F
全等三角形性质:
全等三角形的对应边相等,对应角相等。
完整版三角形全等的判定
1
几何语言:
A
D
E
F
题设
B 结论 C
全等三角形 的对应边相等对应角相等
∵∆ABC ≌∆DEF

①AB=DE ④ ∠A= ∠D ② BC=EF ⑤ ∠B=∠E

三角形全等的判定ppt课件

三角形全等的判定ppt课件

知4-讲
1. 基本事实:两角和它们的夹边分别相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
感悟新知
2. 书写格式:如图12 . 2-8, 在△ ABC 和△ A′B′C′ 中, ∠ B= ∠ B′, BC=B′C′, ∠ C= ∠ C′, ∴△ ABC ≌△ A′B′C′( ASA).
第十二章 全等三角形
12.2 三角形全等的判定
感悟新知
知识点 1 基本事实“边边边”或“SSS”
知1-讲
1. 基本事实:三边分别相等的两个三角形全等(可以简写成 “边边边”或“SSS”). 这个基本事实告诉我们:当三角形的三边确定后, 其形状、大小也随之确定. 这是说明三角形具有稳定性的 依据.
感悟新知
感悟新知
知5-练
例5 如图12.2-11,AB=AE,∠ 1= ∠ 2,∠ C= ∠ D. 求证:△ ABC ≌△ AED.
感悟新知
思路引导:
知5-练
感悟新知
知5-练
技巧点拨:判定两个三角形全等,可采用执果 索因的方法,即根据结论反推需要的条件. 如本 题还缺少∠ BAC= ∠ EAD,需利用已知条件∠ 1= ∠ 2 进行推导.
感悟新知
知2-练
③以点M′为圆心,以MN 长为半径作弧,在∠ BAC 内 部交②中所画的弧于点N′; ④过点N′作射线DN′交BC 于点E. 若∠ B=52°,∠C=83°,则∠ BDE= ___4_5_°__.
感悟新知
知识点 3 基本事实“边角边”或“SAS”
知3-讲
1. 基本事实:两边和它们的夹角分别相等的两个三角形全 等(可以简写成“边角边”或“SAS”).
感悟新知
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD.

12-2 三角形全等的判定 课件(共25张PPT)

12-2 三角形全等的判定 课件(共25张PPT)
并延长到点,使 = .连接并延长到点,使
和 ∠2 的根据是什么?
AB=DE的根据是什么?
.连接,那么量出的长就是,的距离.为什么?
在△ 和△ 中,
=
ቐ ∠1 = ∠2
=
∴△ ≌△ ()∴ = .
【结论】因为全等三角形对应边相等,对应角相等,所以证明线段相等或者
第十二单元 全等三角形
12.2 三角形全等的判定
情景导入
根据上一节的学习,我们知道,如果△ ≌△ ′′′,那么它们
的对应边相等,对应角相等。反过来,根据全等三角形的定义,
如果△ 与 △ ′′′满足三条边分别相等,三个角分别相等,即
= ’’, = ’’, = ’’
与△ABD不全等。这说明,有两边和
其中一边的对角分别相等的两个三角
形不一定全等。
教学新知
探索4:先 任 意 画 出 一 个 △ . 再 画 一 个 △ ′′′ , 使 ′′ = ,
∠′ = ∠,∠′ = ∠(即两角和它们的夹边分别相等).把画
好的△ ′′′剪下来,放到△ 上,它们全等吗?
.求证△ ≌△ .
在△ 中,∠ + ∠ + ∠ = 180°,
∴∠ = 180° − ∠ − ∠.
同理∠ = 180° − ∠ − ∠.
又∠ = ∠,∠ = ∠,∴∠ = ∠
在△ 和△ 中,
三角形木架的形状、大小就不变了.就是说,三角形三条边的长度
确定了,这个三角形的形状、大小也就确定了.
例1:在右图所示的三角形钢架中, = ,是连接点与
中点的支架.求证△ ≅△ .
∵是的中点,∴ = .
在△ 和△ 中,
=
ቐ =

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

《三角形全等的判定》-完整版课件

《三角形全等的判定》-完整版课件
观察这些图片,你能看出形状、大小完全一样的几 何图形吗?
你能再举出生活中的一些类似例子吗?
请同学们把一块三角尺按在纸板上, 画下图形后,比较观察这两个三角形 有何关系?从同一张底片冲洗出来的 两张尺寸相同的照片上的图形,放在 一起也能够完全重合吗?
全等三角形的概念
全等三角形: 能够完全重合的两个三角
全等三角形对应角相等.
B
C
请说出目前判定三角形全 等的4种方法:
SAS,ASA,AAS,SSS
问题 任意画一个Rt△ABC,使∠C =90°,再画 一个Rt△A'B'C',使∠C'=90°,B'C'=BC, A'B'=AB,然后把画好的Rt△A'B'C'剪下来放到 Rt△ABC上,你发现了什么?
F
C
B
E
L
从上面的图形中可以看出,若已知 ∠A=60°,∠B=80°,相信你一 定可以求出△ABC的各个角的大小: ∠D=__6_0_°_,∠E=_8_0_°_, 40° ∠F=___.
已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm ; (2)若∠A =100°,则:
C1
比眼力:找全等.
8
Ⅰ 30o
9
8Ⅱ 30o
5
8 30o
8Ⅲ
5 30o
Ⅴ 8
8Ⅵ 30o8
8 Ⅶ
30o 9
Ⅳ8 5
8 Ⅷ
5
如图,有一池塘,为测量池塘两端A、B的距
离,设计了如下方案:如图,先在平地上取 一个可直接到达A、B的点C,再连结AC、
BC并分别延长AC至D、BC至E,使CD=CA,
CE=CB,最后测得DE的距离即为AB的 长.你知道其中的道理吗?

三角形全等的判定ppt课件

三角形全等的判定ppt课件
追问1:这个尺规作图的方法利用了上节课中的哪个知识点?
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD

∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS




SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.

《三角形全等的判定》课件

《三角形全等的判定》课件
《三角形全等的判定》
知识回顾
1.什么叫全等三角形?
能够完全重合的两个三角形叫做全等三角形.
A
2.三边分别相等的两个三角形全等(可以
简写成“边边边”或“SSS”).
符号语言表示:在△ABC和△A'B'C'中,B
C
AB=A'B',
A'
AC=A'C',
BC=B'C',
∴△ABC≌△A'B'C' (SSS). B'
C'
3.两边和它们的夹角分别相等的两个三角形全等(可以
简写成“边角边”或“SAS”).
A
符号语言表示:在△ABC和△A′B′C′中,
AB=A′B′, ∠B=∠B′, BC=B′C′,
B
C
A'
∴△ABC≌△A′B′C′(SAS). B'
C'
4.两角和它们的夹边分别相等的两个三角形全等(可以
简写成“角边角”或者“ASA”).
FE
BE=CF,
A
B
∴Rt△ABE≌Rt△DCF(HL). ∴AE=DF.
随堂练习
1.已知,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90〫,
有如下几个条件:①AC=A′C′,∠A=∠A′;②AC=A′C′, AB=A′B′;③AC=A′C′,BC=B′C′;④ AB=A′B′,
∠A=∠A′.其中,能判定Rt△ABC≌Rt△A′B′C′的条件的
需寻找的条件
可证直角与已知锐角的夹边对 应相等或者与锐角(或直角)
的对边对应相等
可证一直角边对应相等或证一 锐角对应相等

三角形全等的判定ppt课件

三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)

全等三角形的判定ppt课件完整版

全等三角形的判定ppt课件完整版

注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∠EB/A/ =∠B, A/ D,B/E交于点C/。
E
D
C C′
A
B
A′
B′
通过实验你发现了什么规律?
探角究边反角映判的定规定律理是:
有两角和它们夹边对应相等的两个三 角形全等(简写成“角边角”或“ASA”)。
符号语言表示
A
在△ABC和△DEF中
∠A=∠D (已知 )
B
C
AB=DE(已知 )
D
∠B=∠E(已知 )
12
B
பைடு நூலகம்
D
C
知识应用
例2.如图,要测量河两岸相对的两点A,B 的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A, C,E在一条直线上,这时 测得DE的长就是AB的长。为什么?
A
B CD F
E
1.你能总结出我们学过哪些判定三角形 全等的方法吗?注意角角边、角边角中
∴AC=AD (全等三角形对应边相等)
C
1.如图,应填什么就有 △AOC≌ △BOD
在△AOC和△BOD中 ∠A=∠B(已知)
(已知)
∠C=∠D (已知)
∴△ADC≌△BOD( ) 2.如图,在△AOC和△BOD中
∠A=∠B(已知)


B C
O D
CA=DB (已知) ∴△ADC≌△BOD(
A

小测:如图,AB⊥BC,AD⊥DC, ∠1=∠2。 求证AB=AD。 A
C
E
C
(2) (1)
利用“角边角”可知,带第(2)块去, 可以配到一个与原来全等的三角 形玻璃。
探究2
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边角 条件证明你的结论吗?
A
D C
B E
F
有两角和它们中的一边对应相等的两个三 角形全等(简写成“角角边”或“AAS”)。
的原貌吗?
A D
C
E
B
探究1
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B (即使两角和它们的夹边对应 相等)。把画好的△A/B/C/剪下,放到 △ABC上,它们全等吗?
C
A
B
画法: 1、画A/B/=AB;
2、在 A/B/的同旁画∠DA/ B/ =∠A ,
两角与边的区别
2.要根据题意选择适当的方法。
3.证明线段或角相等,就是证明它们所 在的两个三角形全等。
布置作业
练习册P39、40 5、 6、 8.
练习册配套练习
谢谢大家
∴ △ABC≌△DEF(ASA)E
F
例题讲解:
例1.已知:点D在AB上,点E在AC上,BE和CD相交于
点O,AB=AC,∠B=∠C。
A
A
求证:BD=CE
证明 :在△ADC和△AEB中
ED
∠A=∠A(公共角)
AC=AB(已知) B
A
∠C=∠B(已知)
∴△ADC≌△AEB(ASA)
D
∴AD=AE(全等三角形的对应边相等) O 又∵∴AABB=-AACD(=A已C知-A)E即BD=CBE(等式性B 质)
PPT教学课件
复习
1.什么是全等三角形? 2.判定两个三角形全等方法有哪些?
边边边:
三边对应相等的两个三角形全等。
边角边:
有两边和它们夹角对应相等的两个
三角形全等。
创设情景,实例引入
怎么办?可以帮帮 我吗?
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?能恢复原来三角形
符号语言:
A
在△ABC和△DEF中
∠A=∠D (已知) ∠B=∠E(已知 ) BC=EF(已知 ) ∴ △ABC≌△DEF(AAS)
B
C
D
E
F
例2.已知,如图,∠1=∠2,∠C=∠D
求证:AC=AD
证明:在△ABD和△ABC中
D
∠1=∠2 (已知)
∠D=∠C(已知)
AB=AB(公共边)
1
A2
B
∴△ABD≌△ABC (AAS)
相关文档
最新文档