人教版八年级数学上册第12章全等三角形复习课件 (共28张PPT)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
∵ AD是△ABC 的中线
∴ BD=CD
又 ∵ DE=AD
ADC EDB
B
D
C
∴ △ADC ≌ △EDB
∴ AC = EB
在△ABE中,AE < AB+BE=AB+AC
E
即 2AD < AB+AC
∴ AD1(ABAC) 2
课堂练习
1.已知BD=CD,∠ABD=∠ACD,DE、
DF分别垂直于AB及AC交延长线于E、F,
2.点A、F、E、C在同一直线上,AF=CE, BE = DF,BE∥DF,求证:AB∥CD。
证明: AFCE AECF
又 BE∥DF
12 又 BEDF
AEB≌ CFD AC AB∥CD
3、如图:在△ABC中,∠C =900,AD 平分∠ BAC,DE⊥AB交AB于E, BC=30,BD:CD=3:2,则 DE= 12 。
变式:以上条件不变,将
△ABC绕点C旋转一定角度 (大于零度而小于六十度), 以上的结论海成立吗?
∴ BE=AD
6:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全
等三角形?请任选一对给予证明。
E
答: △ABC≌△DEF
A
F
B
证明:∵ AB∥DE
∴ ∠A=∠D
C
D
∵ AF=DC ∴ AF+FC=DC+FC
§例5:如图,在△ABC 中,AD⊥ BC,CE⊥ AB,垂足分别为D、E, AD、CE交于点H,请你添加一个适 当的条件: BE=EH ,使 △AEH≌△CEB。
§例6:求证:三角形一边上的中线小于其他两边之和的一半。
已知:如图,AD是△ABC 的中线,求证:AD12(ABAC)
证明: 延长AD到E,使DE=AD,连结BE
求证:DE=DF
证明:∵∠ABD=∠ACD(已知)
∴∠EBD=∠FCD(等角的补角相等)
又∵DE⊥AE,DF⊥AF(已知)
∴∠E=∠F=900(垂直的定义 )
在△DEB和△DFC中
∵ EF(已证)
EBD=FCD(已证)
BD=CD(已知)ຫໍສະໝຸດ Baidu
∴△DEB≌△DFC(AAS)
∴DE=DF(全等三角形的对应边相等)
余的线段与另一条线段相等。 (割)
2、把一个三角形移到另一位置, 使两线段补成一条线段,再证明 它与长线段相等。(补)
P27
P27
P27
拓展题
8.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF. 求证:BC∥EF
找夹角 SAS ① 已知两边 找另一 S边 SS
找直 角 HL
② 已知一边一边 边角 为为角角 的邻的边对 边 找 找找 夹边角 任 的 的一 对 另AA 一 角 角 A A边SSSAS
③已知 两 找 找角 任 夹 一 边 AA边 SAAS找夹角的另一A角 SA
二.角的平分线:
1.角平分线的性质: 角的平分线上的点到角的两边的距离相等.
c
D
A
B E
4.已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条
直线上求证:BE=AD 证明:
E
∵ △ABC和△ECD都是等边三角形
A
∴ AC=BC DC=EC ∠BCA=∠DCE=60°
∴ ∠BCA+∠ACE=∠DCE+ ∠ACE
B
D
即∠BCE=∠DCA
C
在△ACD和△BCE中
AC=BC ∠BCE=∠DCA DC=EC ∴ △ACD≌△BCE (SAS)
人教版八年级数学上册
第十二章 全等三角形复习课件
知识点
1.全等三角形的性质: 对应边、对应角、对应线段相等,周长、面积也相等。
2.全等三角形的判定: ①一般三角形全等的判定:
SAS、ASA、AAS、SSS
②直角三角形全等的判定:
SAS、ASA、AAS、SSS、HL
知识点
3.三角形全等的证题思路:
∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平 分线上 (已知)
∴ QD=QE(角的平分线上的点到角 的两边的距离相等)
2.角平分线的判定:
到角的两边的距离相等的点在角的平 分线上。
∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边 的距离相等的点在角的平分线上)
∴ AC=DF
在△ABC和△DEF中
AC=DF
∠A=∠D
AB=DE
∴ △ABC≌△DEF (SAS)
7.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA, CD过点E,则AB与AC+BD相等吗?请说明理由。
C A
E B
要证明两条线段的和与一条线段 相等时常用的两种方法: D 1、可在长线段上截取与两条线段 中一条相等的一段,然后证明剩
FH⊥AD, FM⊥BC
M H
∴FM=FH (角平分线上的点到这个角的两边距离 ∴FG=FH(等量代换)∴点F在∠DAE的平分线上
例题选析
§例1:如图,D在AB上,E在AC上,且∠B =∠C,那么补充下列一具条件后,仍无法判 定△ABE≌△ACD的是( ) B
A.AD=AE
B. ∠AEB=∠ADC
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等
证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F
∵BM是△ABC的角平分线,点P在
BM上, PD⊥AB于D,PE⊥BC于E
A
ND
M
PF
∴PD=PE(角平分线上的点到这个B角的两边E距 C
离相等).
同理,PE=PF.
∴PD=PE=PF.
即点P到三边AB、BC、CA的距离相等
3.如图,已知△ABC的外角∠CBD和∠BCE的平分线相
交于点F,求证:点F在∠DAE的平分线上.
证明: 过点F作FG⊥AE于G, FH⊥AD于H,FM⊥BC于M
∵点F在∠BCE的平分线上,
FG⊥AE, FM⊥BC
G
∴FG=FM(角平分线上的点到 这个角的 又两∵边距点离F相在等∠)C. BD的平分线上,
C.BE=CD
D.AB=AC
§例2:已知:如图,CD⊥AB,BE⊥AC, 垂足分别为D、E,BE、CD相交于O点, ∠1=∠2,图中全等的三角形共有( )
A.1对D B.2对 C.3对 D.4对
例3. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
C
A
B
§例4:下面条件中, 不能证出Rt△ABC≌Rt△A' B'C'的是[C] (A.)AC=A'C' , BC=B'C' (B.)AB=A'B' , AC=A'C' (C.) AB=B'C' , AC=A'C' (D.)∠B=∠B' , AB=A'B'