分泌蛋白的合成

分泌蛋白的合成

分泌蛋白的合成、加工与转运:

分泌蛋白的合成始于细胞质的游离核糖体上,游离核糖体先合成了一段带有信号肽的多肽,后SRP与信号肽结合使蛋白质合成暂时中止,SRP-核糖体复合体在SRP的介导下与内质网上的SRP受体结合,随后核糖体也与内质网上的核糖体结合蛋白相结合,此时SRP与SRP受体、信号肽脱离回到细胞质,带有信号肽的多肽开始继续合成成为一条完整多肽,核糖体上的多肽随着合成的同时进入内质网腔内。多肽在内质网腔内完成初步糖基化、折叠与装配后以运输囊泡的形式进入高尔基复合体,在高尔基复合体中修饰、加工和完成糖基化后输出细胞外;亦或是在内质网中完成加工、糖基化后的分泌蛋白通过膜泡从内质网上脱落,以胞吐的形式排出细胞外。

膜蛋白、分泌蛋白和溶酶体酶在合成、加工、转运有何异同?

膜蛋白、分泌蛋白、溶酶体酶都是在游离核糖体上开始合成,后在信号肽的作用下与粗面内质网结合进行继续的合成初步糖基化、修饰折叠。

但是溶酶体酶在进行N-连接的糖基化修饰后即将一个寡糖链共价结合上里溶酶体酶分子的天冬酰胺残基上面。进入高尔基体顺面膜囊在N-乙酰葡糖胺磷酸转移酶和N-乙酰葡糖胺磷酸糖苷酶的作用下产生M6P。M6P与M6P受体的特异性结合将溶酶体酶与其他蛋白质分离开,在特定小泡中浓缩排入细胞质。

膜蛋白在合成的时候会在多肽链上合成“起始转移信号”和“停止转移信号”。这两种信号的多少决定了该蛋白的跨膜次数。

蛋白质的合成加工

综述细胞内的蛋白质合成、加工、修饰、分选与运输方式及其生物学意义。 蛋白质是生命活动的主要承担者,是构成细胞和生物体结构的重要物质,在生物体及细胞的生命活动中发挥重大作用。 1.许多蛋白质是构成细胞和生物体结构的重要物质,称为结构蛋白。 2.细胞内的化学反应离不开酶得催化,绝大多数酶都是蛋白质。 3.有些蛋白质具有运输载体的功能。(血红蛋白运输氧) 4.有些蛋白质起信息传递的作用,能够调节机体的生命活动。(如,胰岛素) 5.有些蛋白质有免疫功能,人体的抗体是蛋白质,可以帮助人体抵御病菌和病毒等抗原的侵害。 1 蛋白质的合成 蛋白质的生物合成过程实质上是基因表达的一个过程,它包括转录和翻译。即把mRNA 分子中的碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序的过程,可分为起始、延长和终止3个阶段,分别由不同的起始因子、延伸因子和终止因子(释放因子)参与。细胞中的蛋白质都是在核糖体上合成的,并都是起始于细胞质基质之中。 2 蛋白质的加工与修饰 许多新生肽要经过一种或几种共价键修饰,这种修饰可以在正延伸着的肽链中进行。一般情况下,翻译后修饰一是为了功能上的需要,另一种情况是折叠成天然构象的需要。在粗面内质网合成并进入内质网腔的蛋白质发生的主要化学修饰作用有糖基化、羟基化、酰基化和二硫键的形成。而在细胞质基质中发生蛋白质修饰的类型主要有辅酶或辅基与酶的共价结合、磷酸化和去磷酸化、糖基化、甲基化、酰基化等。蛋白质的修饰加工主要包括: 切除加工:包括切除N-端甲硫氨酸、信号肽序列和切除部分肽段,将无活性的前体转变成活性形式。(包含信号肽的胰岛素前体称为前胰岛素原,去掉信号肽的胰岛素的前体称为胰岛素原),进一步切除称为C链的肽段后才能形成活性形式的胰岛素) 糖基化:糖基化主要发生在内质网和高尔基体中。粗面内质网上合成的大多数蛋白在都发生了糖基化。主要作用是促进蛋白质在成熟过程中折叠成正确构象,增加蛋白质的稳定性,有N-连接的糖基化和O-连接的糖基化之分。(重点) 羟基化:最常见的是内质网上合成的跨膜蛋白在通过内质网和高尔基体的转运过程中发生的,它由不同的酶来催化,把软脂酸链共价地连接在某些跨膜蛋白的暴露在细胞质基质中的结构域。 磷酸化与去磷酸化:蛋白磷酸化与去磷酸化参与代谢调控和信号转导以及蛋白与蛋白之间的相互作用。(PDGF受体的酪氨酸残基经过自身磷酸化后才与细胞质定位蛋白质结合。) 亲脂修饰:最常见的亲脂修饰是酰化和异戊二烯化。蛋白质亲脂修饰后可以改变膜结合能力和特定的蛋白与蛋白之间的相互作用。N-豆蔻酰化(豆蔻酸以酰酰氨键形式共价连在肽链N 端的残基上)能增加特定G蛋白的α亚基对膜结合的β、γ亚基的亲和力。 甲基化:通过甲基转移酶进行。天冬氨酸的甲基化能促进已破坏蛋白的修复或降解,在2,3-二磷酸核酮糖羧化酶(rihilose-2,3-biosphosphate carboxylase)、钙调蛋白(calmodulin)、组氨酸(histone)、某些核糖体蛋白和细胞色素C中都有甲基化的赖氨酸残基。 二硫键形成:二硫键通常只发现于分泌蛋白(如胰岛素)和某些膜蛋白中,在细胞质中由于有各种还原性物质,所以细胞质蛋白没有二硫键。因为内质网腔是一个非还原性环境,所以粗糙内质网上的新生肽只暂时形成二硫键。当新生肽进入内质网腔时,一些肽链可能会按氨基酸次序依次暂时形成二硫键,但最终会通过交换二硫键位置的形式形成正确的结构,内质网中可能还有一种二硫键异构酶催化该过程。 3 蛋白质的分选和转运

蛋白质合成、加工和转运的过程

一、蛋白质的合成 1、核糖体是合成蛋白质的机器,其功能是按照mRNA的指令由氨基酸合成蛋白质。 2、游离核糖体游离于胞质中,合成细胞内的基础蛋白质;附着核糖体,附着在内质网表面,构 成粗面内质网的核糖体,合成分泌蛋白和膜蛋白。 3、蛋白质合成的一般过程: 1)氨基酸的活化。氨基酸和tRNA在氨酰一tRNA合成酶作用下合成活化的氨酰一 tRNA。2)起始、延伸和终止。3)蛋白质合成后的加工。肽链N端Met的去除; 氨基酸残基的化学修饰,乙酰化、甲基化、磷酸化等;肽链的折叠;二硫键的形成。 二、蛋白质的分泌合成、加工修饰和转运 1、信号肽介导分泌性蛋白在粗面内质网的合成。 1)信号肽是蛋白质合成中最先被翻译出来的一段氨基酸序列,通常由18-30个疏水氨基酸组成,能指引核糖体与内质网结合,并引导合成的多肽链进入内质网 腔。 2)新生分泌性蛋白质多肽链在胞质中的游离核糖体上起始合成。当新生肽链N端的信号肽被翻译后,可立即被细胞质基质中的信号识别颗粒(SRP)识别、结 合。 3)与信号肽识别结合的SRP,识别结合内质网膜上的SRP-R,并介导核糖体锚泊附着于内质网膜的通道蛋白移位子上。而SRP则从信号肽一核糖体复合体上解离, 返回细胞质基质中重复上述过程。 4)在信号肽的引导下,合成中的肽链,通过由核糖体大亚基的中央管和移位子蛋白共同形成的通道,穿膜进入内质网网腔。随之,信号肽序列被内质网膜俄面的信号肽酶且除, 新生肽链继续延伸,直至完成而终止。最后完成肽链合成的核糖体大、小亚基解聚,并 从内质网上解离。 2、跨膜驻留蛋白的插入和转移决定了蛋白质的两种去处:1)穿过膜进腔,为可溶性蛋 白质,包括分泌蛋白和内质网驻留蛋白。2)嵌入内质网膜中,形成膜蛋白。 3、粗面内质网与外输性蛋白质的分泌合成、加工修饰和转运过程密切相关。 1)新生多肽链的折叠与装配,与合成同时发生。内质网为新生多肽链正确的折叠和装配提供了有利的环境。分子伴侣通过对多肽链的识别结合来协助它们的折叠组装和转运。 2)蛋白质的糖基化。在粗面内质网网膜腔面的糖基转移酶作用下发生N一连接糖基化。 三、蛋白质的加工、分选和定向运输 1、蛋白质在高尔基体内加工等。 1)糖蛋白的加工合成。糖基化修饰加工合成的糖蛋白,主要包括N一连接糖蛋白和O一连接糖蛋白两种类型。前者,糖链合成与糖基化修饰始于内质网,完成 于高尔基复合体;后者,则主要或完全是在高尔基复合体中进行和完成的。 2)蛋白质糖链的加工有严格的区域性和顺序性:甘露糖去除发生在中间扁囊高尔基复合体靠近顺面的部位;N一乙酰葡萄糖胺加入在中间部;半乳糖加入在中 间扁囊区靠近反面的部位。 3)蛋白质的水解加工。 2、分选蛋白质:高尔基体通过对蛋白质的修饰、加工,使其带上能被高尔基复合体网膜上专一 受体识别的分选信号,进而选择、浓缩,形成不同靶向的分泌泡。 四、蛋白质合成的质量监控 1、内质网至高尔基体的蛋白质必须是正确折叠和组装的。分子伴侣可特异性的识别错

蛋白质的生物合成习题与参考答案 (2)

第十五章蛋白质生物合成 一、填空题: 1.三联体密码子共有64 个,其中终止密码子共有 3 个,分别为UAA 、UAG 、UGA 。 2.密码子的基本特点有四个分别为从5′→3′无间断性、简并性、变偶性、通用性。 3.次黄嘌呤具有广泛的配对能力,它可与U 、 C 、 A 三个碱基配对,因此当它出现在反密码子中时,会使反密码子具有最大限度的阅读能力。4.原核生物核糖体为70 S,其中大亚基为50 S,小亚基为30 S;而真核生物核糖体为80 S,大亚基为60 S,小亚基为40 S。 5.原核起始tRNA,可表示为tRNA f甲硫,而起始氨酰tRNA表示为 f Met-tRNA f甲硫;真核生物起始tRNA可表示为tRNA I甲硫,而起始氨酰-tRNA表示为Met-tRNA f甲硫。 6.肽链延伸过程需要进位、转肽、移位三步循环往复,每循环一次肽链延长 1 个氨基酸残基,原核生物中循环的第一步需要EF-Tu 和EF-Ts 延伸因子;第三步需要EF-G 延伸因子。 7.原核生物mRNA分子中在距起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤碱基的序列称为Shine-Dalgrano序列,它可与16S-rRNA 3′-端核苷酸序列互补。 8.氨酰-tRNA的结构通式可表示为:O tRNA-O-C-CH-R NH2, 与氨基酸键联的核苷酸是A(腺嘌呤核苷酸)。 实用文档

9.氨酰-tRNA合成酶对氨基酸和相应tRNA都具有较高专一性,此酶促反应过程中由ATP 水解提供能量。 10.肽链合成的终止阶段,RF1因子和RF2因子能识别终止密码子,以终止肽链延伸,而RF3因子虽不能识别任何终止密码子,但能协助肽链释放。 11.蛋白质合成后加工常见的方式有磷酸化、糖基化、脱甲基化、信号肽切除。 12.真核生物细胞合成多肽的起始氨基酸为甲硫氨酸,起始tRNA为tRNA I甲硫,此tRNA分子中不含T C 序列。这是tRNA家庭中十分特殊的。 二、选择题(只有一个最佳答案): 1.下列有关mRAN的论述,正确的一项是( C ) A、mRNA是基因表达的最终产物 B、mRNA遗传密码的阅读方向是3′→5′ C、mRNA遗传密码的阅读方向是5′→3′ D、mRNA密码子与tRNA反密码子通过A-T,G-C配对结合 E、每分子mRNA有3个终止密码子 2.下列反密码子中能与密码子UAC配对的是( D ) A、AUG B、AUI C、ACU D、GUA 3.下列密码子中,终止密码子是( B ) A、UUA B、UGA C、UGU D、UAU 实用文档

分泌蛋白的合成

问题一: 1.分泌蛋白的合成: (1)在游离的核糖体上由信号密码翻译出一段16~30个氨基酸组成的肽链,也就是信号肽。(2)SPA识别信号肽并与之结合,形成SRP-核糖体复合体,蛋白质的合成暂时中止。SRP-核糖体复合物在SPR的介导下,向粗面内质网上的SPR受体靠近,通过SPR受体识别并结合SPR,使正在合成蛋白质的核糖体附着在内质网上。 (3)当核糖体附着于内质网膜之后,SPR受体发生构象变化,SPR与受体分开,离开内质网,重新进入SPR循环。 (4)SPR与膜上受体分离后,处于暂停状态的肽链合成又恢复,新合成的肽链通过由核糖体大亚基的中央管和转移器蛋白共同形成的通道,穿膜进入内质网腔 (5)这时,信号肽由内质网腔面的信号肽酶切掉,新生肽链继续合成。当核糖体沿mRNA 阅读到终止密码时,多肽的合成停止,合成后的多肽链游离于粗面内质网腔中。 2.分泌蛋白的加工: (1)蛋白质的糖基化:N-连接的糖链合成起始于内质网,完成于高尔基复合体。在内质网形成的形成的糖蛋白具有相似的糖链,由顺面进入高尔基复合体后,在各膜囊之间的转运过程中,发生了一系列有序的加工和修饰,原来糖链中大部分甘露糖被切除,但又被多种糖基转移酶依次加上了不同类型的糖分子,形成了结构特异的寡糖链。O-连接的基化在高尔基复合体中进行,通常的一个连接上去的糖单元是N-乙酰半乳糖胺。连接的部位为丝氨酸、苏氨酸和酪氨酸的OH基团,然后逐次将糖基转移上去形成寡糖链。 (2)蛋白水解活化:高尔基复合体的膜结合着很多类蛋白水解酶,可以将某些蛋白质N端或C端切除,成为成熟的多肽,具有生物活性。 3.分泌蛋白的转运:分泌蛋白进入内质网腔后主要有两个转运途径。 (1)经过折叠及糖基化作用,以运输囊泡的形式进入高尔基复合体,在高尔基复合体中修饰,加工后再输出细胞外,这是分泌蛋白质常见的排出途径。 (2)含有分泌蛋白质的膜泡由内质网上脱离下来形成一种浓缩泡,通过胞吐作用而被排出。这种途径仅见于某些哺乳动物的胰腺外分泌细胞。 问题二: 1.相同点:膜蛋白、分泌蛋白、溶酶体酶的合成与加工相同。 (1)转运相同:都是由附着在内质网上的核糖体合成。 (2)加工相同:都需要进入粗面内质网腔中进行N-连接糖基化,形成糖蛋白;糖基化完成后,都需要经过内质网腔至高尔基复合体,在此处寡糖的成分被修饰和加工,并进行其特有的糖基化——O-连接糖基化。 2.不同点:膜蛋白、分泌蛋白、溶酶体酶的转运不同。 (1)膜蛋白的转运:跨膜蛋白的转运分为单次跨膜蛋白转运和多次跨膜蛋白转运。 1)单次跨膜蛋白转运: i)新生肽链协同翻译插入。在新生跨膜蛋白的肽链中既含有N端起始转移信号,又具有停止转移信号。由起始转移信号引导肽链向内质网膜转移,在整个肽链尚未完成转移之前,停止转移信号便停止转移。起始转移信号从移位子上解除释放,停止转移信号形成单次跨膜α螺旋结构区,其蛋白的氨基端深入内质网腔内,羧基端则滞留于细胞质侧。 ii)信号肽在肽链内部,称为内信号肽。内信号肽作为起始转移信号启动多肽链的转移,多肽

片段教学讲稿:分泌蛋白的合成和运输

一、复习 通过上一节课的学习,我们知道细胞内部就像一个繁忙的工厂,在细胞质中有许多忙碌不停的“车间”,也就是细胞器。各种细胞器的形态、结构不同,在功能上也各有分工。 现在我们来复习下各种细胞器的功能。第一个,线粒体。它是细胞进行有氧呼吸的主要场所,是细胞的?“动力车间”。细胞生命活动所需的能量,大约95%来自线粒体。溶酶体是?“消化车间”,内部含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。液泡主要存在于植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。核糖体有的附着在内质网上,有的游离分布在细胞质中,是“生产蛋白质的机器”。高尔基体主要是对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”。中心体存在于动物和某些低等植物的细胞中,由两个互相垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关。内质网是由膜连接而成的网状结构,是细胞内蛋白质合成和加工,以及脂质合成的“车间”。叶绿体是绿色植物进行光合作用的场所,是植物细胞的“养料制造车间”和“能量转换站”。 二、导入 细胞内有许多条“生产线”,单是一种简单的细胞就可以推出许多的“产品”,例如蛋白质,糖蛋白,脂类等等。而每一条“生产线”都需要若干细胞器的相互配合。正如ppt所呈现的,蛋白质的合成、加工等与核糖体、内质网和高尔基体等细胞器有关,那这些细胞器之间是如何进行协调配合,才能生产出蛋白质这一产品呢?这节课我们就以分泌蛋白为例,来学习细胞器之间的协调配合。(板书) 三、新课

(一)概念介绍 在学习分泌蛋白的合成和运输之前,我们先要了解几个相关概念。 1.分泌蛋白。(顾名思义,在细胞内合成后,分泌到细胞外起作用的蛋白质叫做分泌蛋白,如消化酶、抗体和部分激素。比如唾液淀粉酶、胃蛋白酶、胰蛋白酶,胰岛素、生长激素等。) 2.同位素标记法。放射性同位素会释放出具有穿透力的射线,科学家们可以用相应的探测仪器探测到这些射线,进而追踪到放射性同位素的位置。(用放射性同位素标记的化合物,化学性质不会改变。根据同位素标记的化合物的放射性,科学家可以对有关物质的运行和化学变化进行追踪。)这种方法就叫做同位素标记法。 在课本48页的资料分析中,科学家将用放射性同位素氘3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中。结果如图4-2豚鼠胰腺腺泡细胞分泌蛋白形成过程图解。我们将探测到射线的位置用红点来表示,红点位置的移动,代表着被标记的亮氨酸的位置移动。科学家们通过追踪氘3H标记的亮氨酸的位置变化,就可以弄清分泌蛋白的合成和运输过程。

生物化学试题 蛋白质生物合成.

第十四章蛋白质生物合成.. (一A型题 1 遗传密码的简并性指的是(1995年生化试题 A 一些三联体密码可以缺少一个嘌呤碱或嘧啶碱 B 密码中有许多稀有碱基 C 大多数的氨基酸有一组以上的密码 D 一些密码适用于一种以上的氨基酸 E 以上都不是 [答案] C 2 原核事物蛋白质合成中肽链延长所需的能量来源于(1996年生化试题 A. ATP B. GTP C. GDP D. UTP E. CTP [答案] B 3.下列关于氨基酸密码的叙述哪一项是正确的(1996年生化试题、 A.由DNA链中相邻的三个核苷酸组成, B.由tRNA链中相邻的三个核苷酸组成

C.由mRNA链中相邻的三个核苷酸组成 D.由rRNA链中相邻的三个核苷酸组成 E.由多肽链中相邻的三个氨基酸组成 (答案 C 4.氯霉素的抗菌作用是由于抑制了细菌的(1997年生化试题 A.细胞色素氧化酶 B.核蛋白体上的转肽酶 C.嘌呤核苷酸代谢 D.基因表达E,二氢叶酸还原酶 答案B 5 一个mRNA的部分顺序和密码编号如下(1998年生化试题..CAG CUC UAU CGG UAG AAU AGC..... 140 141 142 143 144 145 146 以此mRNA为模板,经翻译后生成多肽链含有的氨基酸数是: A.140 B.141 C.142 D.143 E.146

(答案 D (二X型题 1.下列哪些氨基酸是蛋白质合成后加工过程形成的(1997年生化试题 A.羟赖氨酸B,磷酸酪氨酸C.羟脯氨酸D,磷酸丝氨酸 (答案 A、B C D 2.下列哪些成分是核蛋白循环终止阶段所需要的(1999年生化试题 A.核蛋白体B,终止因子· C.遗传密码(UAA,UAG UGA D.GTP (答案 A、B、C 四、测试题 (一A型题 1.真核生物在蛋白质生物合成中的启动tRNA是 A。亮氨酸tRNA B.丙氨酸tRNA C,赖氨酸tRNA D。甲酰蛋氨酸tRNA E.蛋氨酸tRNA 2.哺乳动物核蛋白体大亚基的沉降常数是· A.40S B,70S C.30S D.80S E.60S 3。使核蛋白体大小亚基保持分离状态的蛋白质因子是 A IF1.B.IF2 C,IF3 D.EFl E.EF2

生物化学习题-蛋白质的生物合成

第十二章蛋白质的生物合成 一、知识要点 (一)蛋白质生物合成体系的重要组分 蛋白质生物合成体系的重要组分主要包括mRNA 、tRNA 、rRNA、有关的酶以及几十种蛋白质因子。其中,mRNA是蛋白质生物合成的直接模板。tRNA的作用体现在三个方面:3ˊCCA接受氨基酸;反密码子识别mRNA链上的密码子;连接多肽链和核糖体。rRNA和几十种蛋白质组成合成蛋白质的场所——核糖体。 遗传密码的特点:无标点性、无重叠性;通用性和例外;简并性;变偶性。 (二)蛋白质白质生物合成的过程 蛋白质生物合成的过程分四个步骤:氨基酸活化、肽链合成的起始、延伸、终止和释放。 其中,氨基酸活化即氨酰tRNA的合成,反应由特异的氨酰tRNA合成酶催化,在胞液中进行。氨酰tRNA合成酶既能识别特异的氨基酸,又能辩认携带该氨酰基的一组同功受体tRNA分子。 肽链合成的起始对于大肠杆菌等原核细胞来说,是70S起始复合物的形成。它需要核糖体30S和50S亚基、带有起始密码子AUG的mRNA、fMet-tRNA f 、起始因子IF1、IF2、IF3(分子量分别为10 000、80 000和21 000的蛋白质)以及GTP和Mg2+的参加。 肽链合成的延伸需要70S起始复合物、氨酰-tRNA、三种延伸因子:一种是热不稳定的EF-Tu,另一种是热稳定的EF-Ts,第三种是依赖GTP的EF-G以及GTP和Mg2+。 肽链合成的终止和释放需要三个终止因子RF1、RF2、RF3蛋白的参与。 比较真核细胞蛋白质生物合成与原核细胞的不同。 (三)蛋白质合成后的修饰 蛋白质合成后的几种修饰方式:氨基末端的甲酰甲硫氨酸的切除、肽链的折叠、氨基酸残基的修饰、切去一段肽链。 二、习题 (一)(一)名词解释 1.密码子(codon) 2.反义密码子(synonymous codon) 3.反密码子(anticodon) 4.变偶假说(wobble hypothesis) 5.移码突变(frameshift mutant) 6.氨基酸同功受体(isoacceptor) 7.反义RNA(antisense RNA) 8.信号肽(signal peptide) 9.简并密码(degenerate code) 10.核糖体(ribosome) 11.多核糖体(poly some) 12.氨酰基部位(aminoacyl site) 13.肽酰基部位(peptidy site) 14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA合成酶(amino acy-tRNA synthetase) 16.蛋白质折叠(protein folding) 17.核蛋白体循环(polyribosome) 18.锌指(zine finger) 19.亮氨酸拉链(leucine zipper) 20.顺式作用元件(cis-acting element) 21.反式作用因子(trans-acting factor)

探究分泌蛋白的合成和分泌过程

探究分泌蛋白的合成和分泌过程 师:这节课我们来探究分泌蛋白的合成和分泌过程。请看图片中潘长江吃米饭,是不是越嚼越甜? 生:是的。 师:为什么呢? 生:唾液淀粉酶分解淀粉成麦芽糖,麦芽糖是甜的。 师:对,唾液淀粉酶属于分泌蛋白。 生:老师,什么是分泌蛋白? 师:顾名思义,在细胞内合成后,分泌到细胞外起作用的蛋白质叫做分泌蛋白,如消化酶、抗体和部分激素。比如唾液淀粉酶、胃蛋白酶、胰蛋白酶,胰岛素、生长激素等。 生:分泌蛋白是在哪里合成的? 师:核糖体,你来思考核糖体的分布、组成、形态结构和功能。 生:核糖体在动植物细胞都有分布,它有RNA和蛋白质组成,椭球形的粒状小体,无膜结构,功能是合成蛋白质的场所。 师:附着核糖体和游离核糖体合成的蛋白质是一样的么? 生:不一样的吧,附着核糖体合成分泌蛋白,游离核糖体合成细胞自身所需蛋白质。 师:合成分泌蛋白接下来到哪里? 生:内质网 师:对,内质网你有了解多少呢? 生:由单层膜构成的囊腔和细管连接而成的网状物,绝大多数动植物细胞都有内质网。细胞核附近较多,并与核膜有一定的联系。有光面和粗面之分,粗面内质网是蛋白质的运输通道。 师:然后呢? 生:运输到高尔基体。 师:你再说一说高尔基体. 生:高尔基体存在于动植物细胞中,是单位膜构成的扁平小囊和其产生的小泡,对蛋白质进行分拣,分别送到细胞内或细胞外的目的地。 师:很好,我们用什么方法可以知道合成的分泌蛋白,要经过内质网和高尔基体,不是直接运输到细胞膜外的呢? 生:用同位素标记法 师:对,同位素标记法,就是用放射性同位素标记的化合物,化学性质不会改变。根据同位素标记的化合物的放射性,科学家可以对有关物质的运行和化学变化进行追踪,这种方法就叫做同位素标记法。你来根据图示说一说分泌过程。 生:核糖体合成分泌蛋白质,内质网和高尔基体要对合成的蛋白质进行加工、包装和运输等。 师:这些细胞器之间协调配合,才能生产出蛋白质这一产品。 生:同位素标记,怎么标记、怎么观察呢? 师:科学家将用放射性同位素氘3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中。我们将探测到射线的位置用红点来表示,红点位置的移动,代表着被标记的亮氨酸的位置移动。科学家们通过追踪氘3H标记的亮氨酸的位置变化,就可以弄清分泌蛋白的合成和运输过程。 生:哦 师:分泌蛋白从合成至分泌到细胞外,依次经过了哪些细胞结构?换句话说,依次在哪些位置出现了红点?生:最开始,被标记的亮氨酸作为原料,在内质网上的核糖体中参与肽链的合成;然后,被标记的亮氨酸出现在附着有核糖体的内质网中;再然后,出现在高尔基体中,又一会儿,出现在靠近细胞膜内侧的囊泡,以及释放到细胞外的分泌物中。 师:对,大约3min后,被标记的亮氨酸出现在附着有核糖体的内质网中;17min后,出现在高尔基体中,117min后,出现在靠近细胞膜内侧的囊泡,以及释放到细胞外的分泌物中。图中1~5表示合成和运输的顺序。你能根据合成的分泌蛋白运输到细胞外的过程示意图,说一说具体过程吗? 生:我试试:分泌蛋白合成的第1步,就是合成蛋白质。氨基酸在内质网上的核糖体中脱水缩合形成肽链,肽链进入内质网进行初步的修饰、加工,形成有一定结构的较成熟的蛋白质。

相关文档
最新文档