八年级数学上册第13章全等三角形13.1命题定理与证明1命题作业课件华东师大版
华东师大版数学八年级上册1.1命题课件
如果两个角是对顶角,那么这两个角相等.
条件
结论
①两直线平行,同位角相等;②直角都相等.
这两个命题,条件和结论分别是什么?
有些命题的条件和结论不明显,可将它经过适当 变形,改写成“如果……,那么……”的情势.
①两直线平行,同位角相等;②直角都相等. ①如果两直线平行,那么同位角相等;
条件
结论
②如果给出的角是直角,那么这些角都相等.
条件成立时,不能保证结论总是正确,也就是 说结论不成立.像这样的命题,称为假命题.
命题的判断方法: 真命题:用演绎推理论证; 假命题: “举反例”.
例题
【例3】判断下列命题是真命题还是假命题. (1)互为补角的两个角相等; (2)若a=b,则a+c=b+c; (3)如果两个长方形的周长相等,那么这两个长 方形的面积相等. 分析:如果是真命题,给出理由即可,如果是 假命题,需要“举反例”.
练习
1.下列语句:①钝角大于90°;②两点之间,线
段最短;③希望明天下雨;④作AD⊥BC;⑤
同旁内角不互补,两直线不平行.其中是命题
的是( B)
A.①②③
B.①②⑤
C.①②④⑤ D.①②④
2.命题“平行于同一条直线的两条直线互相平行” 的
条件是( D )
A.平行
B.两条直线
C.同一条直线 D.两条直线平行于同一条直线
例2中的命题,是正确的吗?
根据等边三角形的判定,我们知道,例2的命题 是正确的. 如果条件成立,那么结论一定成立.像这样的 命题,称为真命题.
思考
内错角相等. 一个钝角和一个锐角的和是平角. 这两个命题是真命题吗?
我们知道,只有两直线平行时形成的内错角才 相等.所以第一个命题不是真命题. 91°和1°的和不是平角,所以第二个命题也不 是真命题.
1三角形全等的判定(第4课时)PPT课件(华师大版)
当堂检测
1.为班级中每名同学准备了长分别为a、b、c三根木条,所有同学都
用三根木条,首尾顺次拼接组成三角形,这时小陈同学说:“我们所
有人的三角形,形状和大小是完全一样的”小陈同学的说法根据
_______.
SSS
根据:三个木条长度a,b,c,无论怎么摆放,长度不变,利用三
角形全等的判定理由:SSS
当堂检测
(简写为“边边边”或“S.S.S.”)
A
几何语言:
在△ABC和△ DEF中,
AB=DE,
B
C
D
BC=EF,
CA=FD,
∴ △ABC ≌△ DEF(S.S.S.).
E
F
讲授新课
典例精析
【例1】如图,在四边形 ABCD 中,AD = CB,AB = CD.
求证: ∠B = ∠D.
证明:在△ABC 和△CDA 中,
=,
= ,
=.
∴△ABC≌△DFC(SSS).
讲授新课
变式1 若将上题中右边的三角形向左平移(如图),若AB=DF,
AC=DE,BE=CF.问:△ABC和△DFE全等吗?
解:全等.
A
B
E
D
C
F
∵ BE=CF ,
∴BE+EC=CF+EC.
即BC=FE .
在△ABC和△DFE中,
在△ABD和△CDB中,
=(已知),
= (已知),
=(公共边).
∴△ABD≌△CDB(SSS),
∴∠A=∠C.(全等三角形的对应角相等).
②证明:∵ △ABD≌△CDB(已证) ,
∴∠ABD=∠CDB, ∠ADB=∠CBD .
(全等三角形的对应角相等)
【华师大版】初中八年级数学上册第13章全等三角形课件
∴∠1=∠2( ) ∴∠3=∠4( )
∴AC∥FD(内错角
BC=ED(已证) 相等,两直线平行
∴△ABC≌△FED(SAS)
如图小线明段的设AB计是方一案个:池先在塘池的塘长旁度取,一个能 现直在接到想达测A量和这B处个的池点塘C的,连长结度A,C并在延长至 水方D使这点上法个BC,长测较=使度E量方CA就,不便C等=连方地D于结便把CAC,池,,D连,B塘你两结用的有点B米C长什的并尺度么距延测测好离长出。量的至D请EE的点你长,说, 出明来理由吗。?想想看。
2cm
60°
80°
60°
80°
你画的三角形与同伴
画的一定全等吗?
2、角.角.边
若三角形的两个内角分别是60° 和45°,且45°所对的边为3cm, 你能画出这个三角形吗?
60°
45°
分析:
这里的条件与1中的条件有什 么相同点与不同点?你能将它 转化为1中的条件吗?
60°
75°
两角和它们的夹边对应相 等的两个三角形全等,简写 成“角边角”或“ASA”
“边边角”不能判定两个三角形全等
2.在下列推理中填写需要补 充的条件,使结论成立:
(1)如图,在△AOB和△DOC中
A
D
O
AO=DO(已知)
B
C
∠__A__O_B_=_∠___D_O__C_( 对顶角相等 )
BO=CO(已知)
∴ △AOB≌△DOC( SAS )
(2).如图,在△AEC和△ADB中, C
AB = AC,
B
C
∠A = ∠A(公共角),
AD = AE,
∴ △ ABE ≌ △ ACD(SAS).
练习二
1.若AB=AC,则添加什么条件可得
华师大版八年级上册1命题、定理与证明课件
∵ DF 平分∠ CDO,BE 平分∠ ABO(已知),
∴∠ 1= 1 ∠ CDO,∠ 2= 1 ∠ ABO(_角__平__分__线__的__定__义_ ).
2
2
∴∠ 1= ∠ 2(等量代换).
解题秘方:根据上一步的因为条件填写下一步的根据.
感悟新知
4-1. 如图, 已知: 点A,B,C 在同一条直线上.
感悟新知
知1-练
解:条件:两个角互为补角;结论:这两个角相等. 假命题. 条件:a=b;结论:a+c=b+c. 真命题. 条件:两个长方形的周长相等;结论:这两个长方
形的面积相等. 假命题.
感悟新知
知1-练
2-1. 下列命题是真命题的是( A ) A. 如果两个角不相等,那么这两个角不是对顶角 B. 如果a2=b2, 那么a=b C. 两个互补的角一定是邻补角 D. 如果两个角是同位角,那么这两个角一定相等
知2-练
感悟新知
知识点 3 命题证明的一般步骤
知3-讲
1. 证明 根据条件、定义以及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过程叫做 证明.
感悟新知
知3-讲
2. 命题证明的一般步骤 第一步:分清命题的条件和结论,若命题与图形有关,则
根据题意,画出图形,并在图形上标出相关的字母和符号; 第二步:根据条件、结论,结合图形,写出已知、求证; 第三步:视察图形,分析证明思路,找出证明方法; 第四步:写出证明的过程,并注明根据.
结论不成立,像这样的命题,称为假命题.
感悟新知
知1-练
例 1 把下列命题改写成“如果……,那么……”的情势: 对顶角相等; 平行于同一条直线的两条直线平行; 同角或等角的余角相等. 解题秘方:紧扣命题的结构情势进行改写.
八年级数学上册 第13章 全等三角形13.1 命题、定理与证明 2定理与证明课件
3.经过分析,找出由已知推出求证的
途径,写出证明过程.
第十一页,共二十二页。
根据下列命题,画出图形,并结合
图形写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
2)内错角相等,两直线平行;
3)一个角的平分线上的点到这个角的两边
的距离相等; 4)两条平行线的一对(yī duì)内错角的平分线互相
∴ OE⊥OF 2 第十七页,共二十二页。
如何(rúhé)判断一个命题是假命题?
只要举出一个例子(反例),
它符合(fúhé)命题的题设,但不满足 结论就可以了.
第十八页,共二十二页。
判断下列(xiàliè)命题是真命题还是假命题.
如果是假命题,举出一个反例:
1)相等的角是对顶角; 2)同位角相等;
4)两条平行线的一对(yī duì)内错角的平分线互相 平行.
已知:如图,AB、CD被直线EF所截,且
AB∥CD,EG、FH分别(fēnbié)是∠AEF和
∠EFD的平分线
求证:EG∥FH
A
E
B
G CF
第十六页,共二十二页。
H D
例2.证明(zhèngmíng):邻补角的平分线互相垂直.
已知:如图,∠AOB、∠BOC互为邻补角(bǔ , jiǎo)
c
3a
1
2
b
第九页,共二十二页。
c
证明 :∵a∥已b 知( (zhèngmíng)
∴∠3=∠2
3a
1
)2
b
(两直线平行(píngxíng),同位角相) 等
∵ ∠3=∠1 ( 对顶角相等)(xiāngděng)
∴∠1=∠2 ( 等量代换)
华东师大版八年级数学上册第13章全等三角形
03
全等三角形在几何图形 中的应用
利用全等三角形求线段长度
通过全等三角形的对应边相等 ,可以求出一些线段的长度。
在一些复杂的几何图形中,可 以通过构造全等三角形来简化 问题,进而求出所需线段的长 度。
利用全等三角形的性质,可以 通过已知条件推导出其他线段 的长度。
利用全等三角形求角度大小
通过全等三角形的对应角相等,可以求出一些角的大小。 在一些涉及到角度计算的几何问题中,可以通过构造全等三角形来简化计算过程。
过程中的细节和准确性避免出错。
06
章节小结与拓展延伸
知识点总结回顾
全等三角形的定义和性质
01
能够准确描述全等三角形的定义,理解全等三角形的对应边相
等、对应角相等的性质。
全等三角形的判定方法
02
掌握SSS、SAS、ASA、AAS和HL五种全等三角形的判定方法,
并能够灵活运用它们来解决实际问题。
全等三角形的应用
全等三角形的对应边上的中线 相等。
全等三角形的判定方法
ASA(角边角)
SAS(边角边)
两边和它们的夹角对应相等的两 个三角形全等。
两角和它们的夹边对应相等的两 个三角形全等。
AAS(角角边)
两角和其中一个角的对边对应相 等的两个三角形全等。
SSS(边边边)
三边对应相等的两个三角形全等 。
HL(斜边、直角边)
直角三角形全等的判定
判定方法一
判定方法二
斜边和一条直角边对应相等的两个直角三 角形全等(HL)。
两个锐角对应相等的两个直角三角形,若 斜边相等,则这两个直角三角形全等。
判定方法三
注意事项
两个锐角对应相等的两个直角三角形,若 一条直角边相等,则这两个直角三角形全 等。
八年级数学上第13章全等三角形13.1命题、定理与证明1命题目标二命题的真假课华东师大
第13章
全等三角形
1课3题. 12.
命题
1
目标二 命题的真假
习题链接
温馨提示:点击 进入讲评
1 2B 3D 4D
5A 6C 7C 8
答案呈现
9
1 下列四个命题:①对顶角相等;②同旁内角互补; ③ 4的算术平方根是 2;④两直线平行,同位角相等. 其中是假命题的是__②__③____(填序号).
2 【2020·岳阳】下列命题是真命题的是( B ) A.一个角的补角一定大于这个角 B.平行于同一条直线的两条直线平行 C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小
9 【教材P55练习T2变式】判断下列命题是真命题还是假 命题,若是假命题,请举出反例. (1)两个锐角的和是锐角;
解:假命题.反例:∠1=70°,∠2=80°, 但∠1+∠2=150°,不是锐角.(举反例不唯一)
(2)经过直线外一点,有且只有一条直线与这条直线 平行; 解:真命题.
(3)如果a2=b2,那么a=b. 假命题.反例:a=2,b=-2,有a2=b2, 但a≠b.(举反例不唯一)
3 【2021·安阳文峰区期末】下列命题是真命题的是( D ) A.若 x2+kx+14是完全平方式,则 k=1 B.一个正数的算术平方根一定比这个数小 C.若等腰三角形的两边长分别是 3 和 7,则第三边长 是3或7 D.两点之间线段最短
4 【2020·通辽改编】下列命题中,是假命题的是( D ) A.无理数都是无限小数 B.因式分解ax2-a=a(x+1)(x-1) C.棱长是1cm的正方体的表面展开图的周长一定 是14 cm D.六边形的内角和是360°
华东师大版八年级数学上册13.全等三角形课件
画一画:一组对应元素 1.一组对应边相等或一组对应角相等
①一条边:
②一个角:
60件画三角形时 有几种可能的情况?
这两个三角形一定会全等吗?
分别按照下面条件,用刻度尺或量角器画三角形, 并和周围的同学比较一下,所画的图形是否全等。
画一画:两组对应元素
①一边一内角:
针旋转多少度与△ECB重合。
A 1
D E
B
2
(第 4题 )
C
A C(第5题) B
3、 全等三角形的记法:
A
D
B
CE
4、 全等三角形的性质:
几何语言:
ABC DEF
AB DE ∠A=∠
D
F BC EF
AC DF
∠B=∠ E
全等三角形的对应边相等; 对应角相等。
∠C=∠ F
如图,以直线L为对称轴,画出三角形ABC对
称图 形,并指出它们的对应顶点、对应边、
若∠A=80对0,应∠角B。=700
等吗?
会有哪几种可能的情况?
①.两边一角; ②.两角一边;
③.三角;
④.三边
对于按以上 每一种可能 画得三角形 是否全等, 以后我们一 起分别逐个 探讨研究。
如图,点O是平行四边形ABCD的对角线的交点, △AOB绕O旋转180º,可以与△_COD 重合,这说 明△AOB≌△_COD .这两个三角形的对应边是AO 与 C_O_,OB与_OD_,BA与_CD_;对应角是∠AOB 与∠_ CO_D,∠OBA与∠_ ODC ,∠BAO与_∠DCO 。
O
C
A (第 1题 ) B
3.如图,△ABC≌△DEF,且A和D,B和E是对应顶点,
则相等的边有
华东师大版八年级上册数学第13章13.1课题1 命题
(3)互为相反数的两个数相加得0; 是命题.如果两个数互为相反数,那么这两个数相加 得0; (4)同旁内角互补; 是命题.如果两个角是同旁内角,那么这两个角互补; (5)对顶角相等. 是命题.如果两个角互为对顶角,那么这两个角相 等.
知识模块三 命题的分类 真命题:如果条件成立,那么结__论__一__定__成__立__,这样的
知识模块二 命题的构成 观察一组命题,并思考命题是由几部分组成的? (1)如果两条直线都与第三条直线平行,那么这两条直 线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)如果两个角的和是180°,那么这两个角是邻补角; (4)等式两边都加同一个数,结果仍是等式.
归纳: 每个命题都是由_条__件_和_结__论_两部分组成,条__件__是
第13章 全等三角形 13.1 命题、定理与证明
课题1 命题
学习目标
1.了解命题的概念以及命题的构成,能把命题改为“如果……, 那么……”的形式; 2.知道真命题和假命题,会用举例法或画图法等判断一个命题 的真假性; 3.在学习的过程中体会数学的逻辑思维能力和有条理的推理能 力. 【学习重点】 命题的概念,区分命题的条件和结论. 【学习难点】 区分命题的条件和结论,会把一些简单命题改写成“如果……, 那么……”的形式.
命题叫做真命题. 假命题:如果条件成立,不__能__保__证__结__论__一__定__成__立__,这
样的命题叫做假命题.
范例 下列命题是真命题还是假命题?
(1)两条直线被第三条直线所截,同旁内角互补;
(假命题)
(2)等式两边都加同一个数,结果仍是等式;( 真命题)
(3)互为相反数的两个数相加得0;
华师大八年级数学上册《命题》课件
√ (2)等式两边都加同一个数,结果仍是等式; √ (3)互为相反数的两个数相加得0;
(4)同旁内角互补;
√ (5)对顶角相等.
命题的真假
真命题:如果条件成立,那么结论一定成立, 这样的命题叫做真命题.
假命题:如果条件成立时,不能保证结论总是正确, 也就是说结论不成立,这样的命题叫做假命题.
1熊猫没有翅膀。 2大象是红色的。 3同位角相等。 4请你吃饭。 5从3数到10。
句子 1 2 3 (能判断一件事情) 是命题
句子 4 5 (不能判断一件事情) 不是命题
问题3 请同学们观察一组命题,并思考命题是由 几部分组成的? (1)如果两条直线都与第三条)两条平行线被第三条直线所截, 同旁内角互补;
(3)如果两个角的和是90º, 那么这两个角互余;
(4)等式两边都加同一个数, 结果仍是等式.
(5)两点之间,线段最短.
命题是由条件和结论两部分组成。条件是已知 事项,结论是由已知事项推出的事项。
如果两个角的和是90º,那么这两个角互余。
条件
结论
数学中的命题常可以写成“如果…,那么…”的形式. “如果”开始的部分是条件, “那么”开始的部分是结论.
8)同角的余角相等(√ )
9)同旁内角互补(× )
问题8请同学们判断下列两个命题的真假,并思考如 何判断命题的真假.
命题1: 在同一平面内,如果一条直线垂直于两条平 行线中的一条,那么它也垂直于另一条. 命题2:一个锐角与一个钝角的和等于一个平角。
命题1是真命题(可进行推理证明),命题2是假 命题(举反例如60°的角与170°的角)。
第13章 全等三角形
3.1 命题、定理与证明 1.命题
华师版八上数学1命题、定理与证明上课课件
2. 下列命题是定理的是( B ) A. 两点之间,线段最短 B. 两直线平行,内错角相等 C. 两点确定一条直线 D. 过一点有且只有一条直线与已知直线垂直
基本事实、定理、真命题之间的联系与区分:
命题
从基本事实或其他 真命题出发
可以作为进一步判断 真命题 其他命题真假的根据
定理
基本事实与定理的联系与区分: 定理与基本事实都是真命题,都是我们解决问题的根据, 它们的区分是:基本事实是公认的真命题,不需要推理论证; 定理是由基本事实直接或间接推理论证得到的.
2. 把下列命题改写成“如果……,那么……”的情势: (1)全等三角形的对应角相等; (2)有一个角等于 60°的等腰三角形是等边三角形.
命题的构成: 1. 命题是由条件和结论两部分组成的,条件是已知事项,
结论是由已知事项推出的事项.
2. 命题通常可写成“如果……,那么……”的情势.用 “如果”开始的部分就是条件,用“那么”开始的部 分就是结论.
如果两个角是对顶角,那么这两个角相等;
条件
结论
命题改写的原则 如果命题不是“如果……,那么……”的情势,可将 其进行改写,改写的原则是不改变命题的原意,必要 时可添加一些“修饰”成分使句子完整、语言通顺.
(2)如图所示,一位同学在画图时发现: 三角形三条 边的垂直平分线的交点都在三角形的内部.于是他得出 结论:任何一个三角形三条边的垂直平分线的交点都在 三角形的内部.他的结论正确吗?
(3)我们曾经通过计算四边形、五边形、六边形、 七边形等的内角和,得到一个结论: n 边形的内角和 等于 ( n -2) ×180°. 这个结论正确吗?是否有一个 多边形的内角和不满足这一规律?
习题13.1
1. 判断下列命题是真命题还是假命题,若是假命题, 举一个反例加以说明: (1)两个锐角的和等于直角; (2)两条直线被第三条直线所截,同位角相等.
八年级数学上册 第13章 全等三角形 13.1 命题、定理与证明 2 定理与证明导学课件
13.1 命题(mìng tí)、定理与证明
【归纳总结(zǒngjié)】证明文字叙述的真命题的一般步骤: (1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出
求证;(4)证明.
第十二页,共十七页。
13.1 命题、定理与证明
总结(zǒngjié)反思
小结(xiǎojié)
图 13-1-1
第九页,共十七页。
13.1 命题、定理(dìnglǐ)与证明
解:可以判定(pàndìng)AB∥CD.理由: ∵ ∠1+∠2=80°+100°=180°, ∴AB∥CD(同旁内角互补,两直线平行).
【归纳总结】证明(zhèngmíng)几何命题的依据: 已知条件、定义、基本事实、定理等.
正确性需要进行证明;如果要说明它是假命题,只要举一个反例就可以 了.
第八页,共十七页。
13.1 命题(mìng tí)、定理与证明
目标三 会进行(jìnxíng)简单的推理证明
例 3 教材补充例题如图 13-1-1,直线 AB,CD 被直线 EF 所截, 若∠1=80°,∠2=100°. 由此你可以判定 AB 和 CD 平行吗?为什 么? [全品导学号:90702083]
第十六页,共十七页。
内容(nèiróng)总结
第13章 全等三角形。13.1 命题、定理与证明。2.经过观察(guānchá)、讨论、发现,理解由特殊事例得到的结论不一 定正确.。于是小华猜想:不论a,b为何值,总有a2+b2>2ab.。理由:∵a2+b2-2ab=(a-b)2≥0,。【归纳总结】由特 殊事例递推猜想所得到的命题不一定是真命题,其正确性需要进行证明。解:可以判定AB∥CD.理由:。已知条件、定义、 基本事实、定理等.。【归纳总结】证明文字叙述的真命题的一般步骤:
华东师大版八年级数学上册第13章《全等三角形》全章课件(共285张PPT)
练习:将下列命题改写成“如果…那么…”
的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式: 如果两个角不相等, 那么这两个角不可能是对顶角。
观察 2、下列各图中的两个三角形是全等形吗? 思考
A
D
B A
C
E
M C
F S
O
O
B
D
N
T
经过平移、旋转、翻折等位移变换
得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫做
全等三角形。
A
D
B
CE
F
2、把两个全等的三角形重叠到一起时, 重合的顶点叫做对应顶点,重合的边叫做 对应边,重合的角叫做对应角。
强调:
观察、猜想、度量、实验得 出的结论未必都正确;
一个命题的真假,常常需要 进行有理有据的推理才能作出正 确的判断,这个推理过程叫做命 题的证明.把经过证明的真命题 叫做定理.
巩固:
下列语句中哪些是命题?请判断其中命题 的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强. (2)两个奇数的和是偶数. (3)两个无理数的乘积一定是无理数. (4)偶数一定是合数吗? (5)连结AB. (6)不相等的两个角不可能是对顶角.
3、全等三角形的表示法:
A
D
B
CE
F
表示图中的△ABC和△DEF全等:
记作△ABC≌△DEF, 读作△ABC全等于△DEF.
第13章 全等三角形(13.1) 华东师大版八年级数学上册同步练习(含答案)
命题 定理与证明【A层基础夯实】知识点1 命题是分式;③过点P作直线l 1.(2024·保定期中)下列句子:①负数没有相反数;②2x3x+5的平行线;④两个单项式的和一定是多项式.其中是命题的有( )A.1个B.2个C.3个D.4个2.(易错警示题·概念不清)下列命题中是假命题的是( )A.对顶角相等B.两直线平行,同旁内角互补C.同位角相等D.三角形的内角和是180°3.(2024·宁波期中)能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是( )4.指出下列命题的条件和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补.知识点2 定理与证明5.“同角或等角的补角相等”是( )A.定义B.基本事实C.定理D.假命题6.下列能作为证明依据的是( )A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以7.请举出一个关于角相等的定理:.8.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD().∵∠BGC=∠F(已知),∴CD∥EF(),∴AB∥EF(),∴∠B+∠F=180°().又∵∠BGC+∠BGD=180°(),∠BGC=∠F(已知),∴∠F+∠BGD=180°().【B层能力进阶】9.下列命题:①各边相等的多边形是正多边形;②正多边形是轴对称图形;③正六边形的每个外角均为60°;④正n边形有(n-3)条对角线.其中是真命题的个数为( )A.4B.3C.2D.110.下列命题是定理的是( )A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2024·上海期中)把命题“关于某个点中心对称的两个三角形全等”改写成“如果……,那么……”的形式是.12.说明命题“若a>b,则ac>bc”是假命题的一个反例的c的值可以是.13.(2024·漳州期中)(1)如图,“若∠1=∠2,则AB∥CD”,该命题是(填“真命题”或“假命题”).(2)若上述命题为真命题,请说明理由;若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.【C层创新挑战(选做)】14.(推理能力)【阅读】在证明命题“如果a>b>0,c<0,那么a2+bc>ab+ac”时,小明的证明过程如下:证明:∵a>b>0,∴a2>,∴a2+bc>.∵a>b,c<0,∴bc>,∴ab+bc>,∴a2+bc>ab+ac.【问题解决】(1)请将上面的证明过程填写完整;(2)有以下几个条件①a>b,②a<b,③a<0,④b<0.请从中选择两个作为已知条件,得出结论|a|>|b|.你选择的条件序号是,并给出证明过程. 命题 定理与证明【A层基础夯实】知识点1 命题是分式;③过点P作直线l 1.(2024·保定期中)下列句子:①负数没有相反数;②2x3x+5的平行线;④两个单项式的和一定是多项式.其中是命题的有(C)A.1个B.2个C.3个D.4个2.(易错警示题·概念不清)下列命题中是假命题的是(C)A.对顶角相等B.两直线平行,同旁内角互补C.同位角相等D.三角形的内角和是180°3.(2024·宁波期中)能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是(C)4.指出下列命题的条件和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;【解析】(1)条件:两个角的和等于平角,结论:这两个角互为补角,是真命题. (2)内错角相等;【解析】(2)条件:两个角是内错角,结论:这两个角相等,是假命题.如图,∠1与∠2是内错角,∠2>∠1.(3)两条平行线被第三条直线所截,同旁内角互补.【解析】(3)条件:两条平行线被第三条直线所截,结论:同旁内角互补,是真命题.知识点2 定理与证明5.“同角或等角的补角相等”是(C)A.定义B.基本事实C.定理D.假命题6.下列能作为证明依据的是(D)A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以7.请举出一个关于角相等的定理: 两直线平行,同位角相等(答案不唯一) .8.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD( 同位角相等,两直线平行 ).∵∠BGC=∠F(已知),∴CD∥EF( 同位角相等,两直线平行 ),∴AB∥EF( 平行公理的推论 ),∴∠B+∠F=180°( 两直线平行,同旁内角互补 ).又∵∠BGC+∠BGD=180°( 平角的定义 ),∠BGC=∠F(已知),∴∠F+∠BGD=180°( 等量代换 ).【B层能力进阶】9.下列命题:①各边相等的多边形是正多边形;②正多边形是轴对称图形;③正六边形的每个外角均为60°;④正n边形有(n-3)条对角线.其中是真命题的个数为(C)A.4B.3C.2D.110.下列命题是定理的是(B)A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2024·上海期中)把命题“关于某个点中心对称的两个三角形全等”改写成“如果……,那么……”的形式是 如果两个三角形关于某个点中心对称,那么这两个三角形全等 .12.说明命题“若a>b,则ac>bc”是假命题的一个反例的c的值可以是 0(答案不唯一) .13.(2024·漳州期中)(1)如图,“若∠1=∠2,则AB∥CD”,该命题是假命题(填“真命题”或“假命题”).【解析】(1)由题中图形可知,∠1,∠2既不是同位角也不是内错角,即使∠1=∠2也不能得到AB∥CD,故该命题为假命题;(2)若上述命题为真命题,请说明理由;若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.【解析】(2)添加BE∥DF(答案不唯一).理由如下:∵BE∥DF,∴∠EBD=∠FDN.又∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2,即∠ABD=∠CDN,∴AB∥CD.【C层创新挑战(选做)】14.(推理能力)【阅读】在证明命题“如果a>b>0,c<0,那么a2+bc>ab+ac”时,小明的证明过程如下:证明:∵a>b>0,∴a2> ,∴a2+bc> .∵a>b,c<0,∴bc> ,∴ab+bc> ,∴a2+bc>ab+ac.【问题解决】(1)请将上面的证明过程填写完整;(2)有以下几个条件①a>b,②a<b,③a<0,④b<0.请从中选择两个作为已知条件,得出结论|a|>|b|.你选择的条件序号是 ,并给出证明过程.【解析】(1)∵a>b>0,∴a2> ab,∴a2+bc> ab+bc.∵a>b,c<0,∴bc>ac,∴ab+bc> ab+ac,∴a2+bc>ab+ac.(2)选择②④.证明如下: ∵a<b,b<0,∴a<0,∴|a|=-a,|b|=-b.∵a < b,∴-a>-b,∴|a|>|b|.。
八年级数学上册第13章全等三角形13.1命题定理与证明1命题说课稿华东师大版.doc
13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点。
本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题。
二、说教学目标知识与技能目标:了解命题、真命题、假命题、定理的含义能识别真假命题。
会区分命题的题设和结论。
过程与方法目标:通过命题的真假,培养分类思想。
通过命题的构成,培养学生分析法。
通过命题的构成,培养语言推理技能。
情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。
通过学习命题真假,培养学生尊重科学、实事求是的态度。
通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。
三、教学重点:定义、命题、公理、定理的概念;四、教学难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。
五、说教法学法通过“目标定向,自主合作”,以实现学习目标为目的,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、假命题。
因此就内容看来,可能会较为枯燥、单调;因此在教学设计时,根据不同的学习任务进行了不同的教学设计。
在命题的概念教学中,与以往直接的告知学生概念不同,采用了让学生对两组语句进行比较、区别,然后再学生充分讨论的感性认识基础上,在提出命题的概念,能有效促进学生对命题概念的理解,然后再通过学生举例来加强巩固概念。
在命题的构成这一环节中,通过一个问题的思考与探讨,让学生了解到命题是由题设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生对知识的认识更加透彻。
八年级数学 第13章 全等三角形13.1 命题、定理与证明 1 命题作业 数学
9.下列说法中正确的是( B ) A.“同位角相等”的条件是“两个角相等” B.“互补的两个角是邻补角”是假命题 C.“如果ab=1,那么a+b=2”是真命题 D.“奇数都是3的倍数”是真命题
10.下列命题中是真命题的是( B ) ①在同一平面内,过一点有且只有一条直线与已知直线垂直; ②若a>0,b≤0,则ab<0;③一个角的余角比这个角的补角小; ④不相交的两条直线叫做平行线. A.①② B.①③ C.①②③ D.①②③④
8.判断下列命题的真假,若是假命题,请举一个反例加以说明: (1)能被2整除的数也能被4整除; (2)相等的两个角是对顶角; (3)同角的余角相等; (4)若xy=0,则x=0. 解:(1)假命题:如:6能被2整除,但不能被4整除 (2)假命题:如:两个角都是直角,但不一定是对顶角 (3)真命题 (4)假命 题,如:x=2,y=0,满足xy=0但x≠0
“如果……,那么……”的形式.用“如果”开始的部分是条件,用“那么” 开始的部分是结论.
练习2.命题“两个锐角之和是直角”的条件是 有两个角是锐角 , 结论是 这两个角的和是直角 .
3.正确的命题称为 真命题,错误的命题称为 假命题 .如果要判断一个命 题是假命题,那么我们只要举出一个符合命题条件而不符合命题结论的例子 就可以了,即“举反例”.
第十三章 全等三角形
13.1 命般地,表示判断某一件事情的语句叫做_命__题_.
练习1.下列语句中,不是命题的是( B ) A.锐角小于钝角 B.作∠A的平分线 C.对顶角不相等 D.股票不是人民币
2.命题的结构:许多命题是由_条__件_和结__论__两部分组成的. 条件是已知事项;结论是由已知事项推出的事项.这样的命题可写成
6.下列命题中,为真命题的是( A ) A.两点之间,线段最短 B.同位角相等 C.若a2=b2,则a=b D.若a>b,则-2a>-2b