2012年全国初中数学联赛试题参考答案和评分标准 (1)
【真题】2012年全国初中数学竞赛(孝感赛区)初赛试卷及参考答案PDF
2. (7 分)如果正比例函数 y=ax(a≠0)与反比例函数 y= (b≠0 )的图象有 两个交点, 其中一个交点的坐标为 (﹣3, ﹣2) , 那么另一个交点的坐标为 ( A. (2,3) B. (3,﹣2) C. (﹣2,3) D. (3,2) 3. (7 分)如果 a,b 为给定的实数,且 1<a<b,那么 1,a+1,2a+b,a+b+1 这四个数据的平均数与中位数之差的绝对值是( A.1 B. C. D. ) )
4. (7 分)小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你 若给我 2 元,我的钱数将是你的 n 倍”;小玲对小倩说:“你若给我 n 元,我的钱 数将是你的 2 倍”,其中 n 为正整数,则 n 的可能值的个数是( A.1 B.2 C.3 D.4 )
联立方程组得
,
解得
,
,
所以另一个交点的坐标为(3,2) . 或: 利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对 称,因此另一个交点的坐标为(3,2) . 故选:D.
3. (7 分)如果 a,b 为给定的实数,且 1<a<b,那么 1,a+1,2a+b,a+b+1 这四个数据的平均数与中位数之差的绝对值是( A.1 B. C. D. )
参考答案与试题解析
一、选择题(共 5 小题,每小题 7 分,共 35 分.每道小题均给出了代号为 A,B, C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题 后的括号里,不填、多填或错填都得 0 分) 1. (7 分)如果实数 a,b,c 在数轴上的位置如图所示,那么代数式 可以化简为( A.2c﹣a B.2a﹣2b C.﹣a D.a )
-2012全国初中数学竞赛试题及答案(安徽赛区)
中国教育学会中学数学教学专业委员会 2012年全国初中数学竞赛试题【安徽赛区】一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1、如果2a =-11123a+++的值为【 】(A)(B(C )2 (D)解:B ∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为【 】 (A )10 (B )9 (C )7 (D )5 解:B 解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点 解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内,画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为【 】(A )23 (B )4 (C )52 (D )4.5解:图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是4=,所以CD = DE = 4.4、如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是【 】 (A ) 5 (B ) 6 (C ) 7 (D ) 8解:C ∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x ∴正根为3242<++q p p解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p 5、黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是【 】 (A )2012 (B )101 (C )100 (D )99 解:C 1)1)(1(-++=++b a ab b a ∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分) 6、如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 .解:7在910111=+++++a c c b b a 两边乘以9=++c b a 得103=++++++ac bc b a b a c 即7=+++++ac bc b a b a c 7、如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8、设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n 240252012⋯⋯=÷所以共有2012-402=1600个数9、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+a c b cb a 111,所以ac b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得c a a c a +-<1即ac ac a c -<-化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫⎝⎛c a c a 所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤c a 综合得1253≤<-c a 10、已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .解:依题意得()()b a b a b a n -+=-=22 由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个 但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个 三、解答题(共4题,每题20分,共80分)11、如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由C O E A D E S S =△△,得C D B A O B S S =△△.所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-. 因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△ABC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12、如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证: (1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD.(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线.(2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==.故2AB AD BD +=. 13、给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒?并说明理由. 解:14、将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得b a c =,求n 的最小值.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , . 在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得ba c =.在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482a b c ===,,,此时b a c =.综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。
2012年全国初中数学联赛试题详解
2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。
3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。
4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。
2012全国初中数学竞赛试题参考答案和评分标准(湖南卷)
中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题 1.C 2.D 3.D 4.B 5.D二、填空题 6.8 7.7<x ≤19 8.8 9.32-10.223 三、解答题11.解: 因为当13x -<<时,恒有0y <,所以 23420m m ∆=+-+>()(), 即210m +>(),所以1m ≠-. …………(5分)当1x =-时,y ≤0;当3x =时,y ≤0,即 2(1)(3)(1)2m m -++-++≤0, 且233(3)2m m ++++≤0, 解得m ≤5-. …………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得 ()121232x x m x x m +=-+=+,. 因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-. …………(20分)12.解:因为sin ∠ABC =45AO AB =,8AO =,所以 AB = 10.由勾股定理,得 BO6=.易知△ABO ≌△ACO , 因此 CO = BO = 6.于是A (0,-8),B (6,0),C (-6,0). 设点D 的坐标为(m ,n ),由S △COE = S △ADE ,得S △CDB = S △AOB . 所以 1122BC |n |=AO BO , 1112()8622n ⨯-=⨯⨯, 解得n =-4. 因此D 为AB 的中点,点 D 的坐标为(3,-4). …………(10分) 因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△A BC的重心,所以点E 的坐标为),(380-. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为y =a (x -6)(x +6). 将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为 228273y x =-. …………(20分) 13. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形. …………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以 22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠. …………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F . …………(20分)14.解:设a -b = m (m 是素数),ab = n 2(n 是正整数).因为 (a +b )2-4ab = (a -b )2,所以 (2a -m )2-4n 2 = m 2,(2a -m +2n )(2a -m -2n ) = m 2. …………(5分)因为2a -m +2n 与2a -m -2n 都是正整数,且2a -m +2n >2a -m -2n (m 为素数),所以2a -m +2n =m 2,2a -m -2n =1.解得:a =2(1)4m +,n =214m -. 于是 b = a -m =214m -(). ………(10分) 又a ≥2012,即2(1)4m +≥2012. 又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025. 当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025. …………(20分)。
2012年全国初中数学联合竞赛试题及解答
又 c a ( 6 2) ( 2 1) 6 ( 2 1) ,而 ( 6) ( 2 1) 3 2 2 0 .所 以 6
2 1 ,故 c a .因此 b a c .
2.方程 x 2 xy 3 y 34 的整数解 ( x, y ) 的组数为(
因为 2 | ab | a b 1 ,所以
2 2
因此 a ab b 的最小值为 0,当 a
4 4
2 2 2 2 或a 时取得. ,b ,b 2 2 2 2
5.若方程 x 2 px 3 p 2 0 的两个不相等的实数根 x1 , x2 满足 x1 x1 4 ( x2 x2 ) ,
2
验证可知: b 因此, t 1 . 方法二:由 a
1 a 1 1 a 1 时 t 1; b 时 t 1 . ,c ,c 1 a a 1 a a
1 1 bc . b 可得 bc b c a b ca a b 同理可得: ca , ab . bc ca
1
) D.
6 3
B.
5 3
C.
2 6 3
2 5 3
易知 BG:GH=2:1,所以 BG =
2 2 5 BH 3 3
A F
D G
H
B
2 2 4
C
4
P
E
)
4.已知实数 a, b 满足 a b 1 ,则 a ab b 的最小值为 ( A. 【答】B.
1 . 8
B.0.
C.1.
D.
m 2
m 2
设 n 2k 1 (其中 k 是正整数) ,则 5 2 4k (k 1) ,即 5 2
2012年全国初中数学竞赛试题
2012年全国初中数学竞赛试题(正题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A)(B)(C)2 (D)2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)(C)(D)3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A)(B)4 (C)(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A)5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A)(B)(C)(D)5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为.9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为.9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.(第10(甲)题)10(乙).已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC=.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:△BOC∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD = 2BD.(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值.2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)2012-04-16 人教网。
2012年全国各地九年制义务教育初三数学竞赛试题及参考答案解析试题参考答案和评分标准 (1)
2012年全国九年级义务教育初中中考数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a << 【答】C. 因为11a =+,1b =,所以110a b<<,故b a <.又2)1)c a -=-=1),而221)30-=->,1>,故c a >.因此b a c <<.2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A.3. B.4. C.5. D.6. 【答】B.方程即22()234x y y ++=,显然x y +必须是偶数,所以可设2x y t +=,则原方程变为22217t y +=,它的整数解为2,3,t y =±⎧⎨=±⎩从而可求得原方程的整数解为(,)x y =(7,3)-,(1,3),(7,3)-,(1,3)--,共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE,与CD 交于点F,连接BF 并延长与线段DE 交于点G,则BG 的长为 ( )【答】D.过点C 作CP//BG,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE,所以△ADF ≌△ECF,所以CF =DF,又CP//FG,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE.连接BD,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD,所以BG3==. 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )EC AA.18-.B.0.C.1.D.98. 【答】B.442222222219()2122()48a ab b a b a b ab a b ab ab ++=+-+=-+=--+.因为222||1ab a b ≤+=,所以1122ab -≤≤,从而311444ab -≤-≤,故2190()416ab ≤-≤,因此219902()488ab ≤--+≤,即44908a ab b ≤++≤.因此44a ab b ++的最小值为0,当22a b =-=或22a b ==-时取得. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( )A.0.B.34-.C.1-.D.54-. 【答】 B.由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--,所以2222121212()2464x x x x x x p p +=+-⋅=++,332212121212()[()3]2(496)x x x x x x x x p p p +=++-⋅=-++.又由232311224()x x x x +=-+得223312124()x x x x +=-+,所以2246442(496)p p p p p ++=+++,所以(43)(1)0p p p ++=,所以12330,,14p p p ==-=-.代入检验可知:1230,4p p ==-均满足题意,31p =-不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p +=+-=-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A.36个.B.40个.C.44个.D.48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________. 【答】 1±.由1a t b +=得1b t a =-,代入1b t c +=得11t t a c +=-,整理得2(1)()0ct ac t a c -++-= ①又由1c t a+=可得1ac at +=,代入①式得22()0ct at a c -+-=,即2()(1)0c a t --=,又c a ≠,所以210t -=,所以1t =±.验证可知:11,1a b c a a -==-时1t =;11,1a b c a a+=-=-+时1t =-.因此,1t =±. 2.使得521m⨯+是完全平方数的整数m 的个数为 . 【答】 1.设2521m n ⨯+=(其中n 为正整数),则2521(1)(1)mn n n ⨯=-=+-,显然n 为奇数,设21n k =-(其中k 是正整数),则524(1)mk k ⨯=-,即252(1)m k k -⨯=-.显然1k >,此时k 和1k -互质,所以252,11,m k k -⎧=⨯⎨-=⎩或25,12,m k k -=⎧⎨-=⎩或22,15,m k k -⎧=⎨-=⎩解得5,4k m ==. 因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 【答】设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE,PF ⊥AE,则易证△ACE ≌△ACD,所以CE =CD =12BC. 又PF =PA sin ∠BAE =PA sin 60°=2AP,PF =CE,所以2AP =12BC, 因此BCAP4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .【答】332. 因为22313(3)(1)(1)(1)a a a a abc a bc a a bc b c a b c --=-+=+-=--+=--,所以2131(1)(1)a a abc =----.EB同理可得2131(1)(1)b b b a c =----,2131(1)(1)c c c a b =----. 结合22243131319a b c a a b b c c ++=------可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ++=------,所以4(1)(1)(1)(1)(1)(1)9a b c a b c ---=-+-+-. 结合1abc =-,4a b c ++=,可得14ab bc ac ++=-. 因此,222233()2()2a b c a b c ab bc ac ++=++-++=.实际上,满足条件的,,a b c 可以分别为11,,422-.第二试 (A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <.又因为c 为整数,所以1114c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩……………………15分 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.2012年全国九年级义务教育初中中考数学联合竞赛试题参考答案及评分标准 第1页(共4页)证明:连接OA,OB,OC.∵OA ⊥AP,A D ⊥OP,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC,∠PBD =∠COD,∴△PB D ∽△COD, ……………………20分∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. ……………………25分 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =又AB 的中点E 的坐标为(3,0)b ,所以AE……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD,又A E ⊥PD,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………10分又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………15分又因为AM//BC,所以OA OMOB OC =,3||2|6|-=-. ……………………20分 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-. ……………………25分2012年全国九年级义务教育初中中考数学联合竞赛试题参考答案及评分标准 第1页(共5页)。
【数学竞赛】2012年全国初中数学联赛试题答案
【数学竞赛】2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A B C D 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即。
(整理)全国初中数学联赛试题参考答案和评分标准
2012年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数•第一试一、选择题:(本题满分42分,每小题7分)1.已知2012 , b:=,3- .2 , c:=,6- 2,那么a,b,c的大小关系是( )A. a< b< cB. a < c< bC. b< a< cD.b< c< a 【答】C.1 _因为一二\ 2 + 1,=3 +、、2 ,1 1 l所以0 ,故b a .又c-a = (、.-2) -1)―飞a b a b(、,2 1),而(、.6)2 -(.2 1)2=3 -0,所以,6.21,故c a.因此b ::a : c.2 22.方程x 2xy 3y =34的整数解(x, y)的组数为()A . 3.B . 4. C. 5. D . 6.【答】B.方程即(x y)2 2y2 =34 ,显然x y必须是偶数,所以可设x,y=2t,则原方程变为2 2I t = 2,2t2 y2 =17 ,它的整数解为'从而可求得原方程的整数解为(x,y)= (-7,3), (1,3), (7,-3),ly v,3.已知正方形ABCD勺边长为1, E为BC边的延长线上一点, BF 并延长与线段DE交于点G,贝U BG的长为A .迈3【答】D.过点C作CP//BG,交DE于点P.因为BC= CE= 1,所以CP是△ BEG 的中位线,所以P为EG的中点.又因为AD= CE= 1 , AD//CE,所以△ ADF^A ECF,所以CF= DF,又CP//FG ,所以FG是厶DCP的中位线,所以G为DP的中点.1 寸2因此DG = GP= PE= — DE =——3 3连接BD,易知/ BDC=Z EDC= 45°,所以/ BDE= 90 °又BD= J2,所以BG= J BD 2+ DG 2= ^2^~ ¥934.已知实数a, b满足a2 b2 =1,则a4 ab b4的最小值为CE= 1,连接AE,与CD交于点F,连接()C.19A ..B . 0.C . 1.D .—.8 8【答】B.4422222221 2 9 a 4ab b 4=(a 2 b 2)-2a 2b 2 - ab =1 -2a 2b 2ab 二-2(ab_—)2—.4 8”221 1 3 1 1 1 29因为2|ab^a b =1,所以ab ,从而 ab,故0乞(ab ),因此2 244 44 161?99 亦 44 90 _ -2(ab ),即 0 _ a ab b 488 8因此a 4ab b 4的最小值为0,当a2,b2或a 2, b 2时取得.2 2 2 22323X 1,X 2 满足 X 1 X 1 =4-(X 2 - X 2),则实数 p的所有可能的值之和为3 A . 0.B ..4【答】B.2 2 2 2x-i x 2 = (x , x 2) _2片 x 2 = 4 p 6p 4 , x ; x ; =(x 「x 2)[(x 1 - x 2)2-3捲 x 2] = -2p(4 p 29p ■ 6).2323223322又由 X 1 X 1 =4-(X 2 X 2)得 X 1 X 2 =4 -(X 1 X 2),所以 4p 2 6p 4 = 4 2p(4p 2 9 p 6),3所以 p(4p 3)( p 1)=0,所以 5 =0, p 2 二一3, p 3=—1.43代入检验可知:p 1 =0, p 2均满足题意,p 3 =-1不满足题意.433因此,实数p 的所有可能的值之和为p 1 p^ 0 ().44abcd (数字可重复使用),要求满足a ^b d .这样的四5.若方程x 2 • 2px -3p -2 =0的两个不相等的实数根 C . -1.由一元二次方程的根与系数的关系可得 X 1 X 2 = -2p ,论 x 2 = -3 p - 2,所以6.由1 , 2, 3, 4这四个数字组成四位数 位数共有A . 36 个.B . 40 个.【答】C.根据使用的不同数字的个数分类考虑: (1) 只用1个数字,组成的四位数可以是 (2) 使用2个不同的数字,使用的数字有( )C . 44 个.D . 48 个. 1111, 2222, 3333, 4444,共有 4 个.6 种可能(1、2, 1、3, 1、4, 2、3, 2、4, 3、4).如果使用的数字是1、2,组成的四位数可以是1122, 1221, 2112, 2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6X 4= 24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232 , 2123,2321 , 3212, 2343, 3234, 3432, 4323,共有8 个.(4)使用4个不同的数字1 , 2, 3, 4,组成的四位数可以是1243, 1342, 2134 , 2431 , 3124 , 3421 , 4213 , 4312 ,共有8 个.因此,满足要求的四位数共有 4 + 24+ 8+ 8= 44个. 二、填空题:(本题满分28分,每小题7分)1 1 1 1. ___________________________________________________________________ 已知互不相等的实数 a,b,c 满足a +—= b +—= c +—= t ,贝U t= _________________________________ .bca【答】_1.1 1 1 11 由a t 得b ,代入b t 得 t ,整理得ct 2-(ac T )t • (a-c ) =0①b t -ac t -a c 1 2 2 2又由c t 可得ac •仁at ,代入①式得ct -at ・(a -c )=:0,即(c-a )(t -1)=0,又c = a ,a所以t 2 -1 =0,所以t验证可知:b 匚山二口 时t -1; b J,c = -L 时t =-1.因此,t =T .1-a a 1 +a a2. 使得5 2m 1是完全平方数的整数 m 的个数为 ____________ . 【答】1.设5 2m ,1= n 2 (其中n 为正整数),则5 2m = n 2-1=(n ,1)(n-1),显然n 为奇数,设n = 2k-1 (其中 k 是正整数),则 5 2m =4k (k -1),即 5 2m ,=k (k -1).因此,满足要求的整数 m 只有1个.因为 a 2 —3a -1 =a 2 —3a abc =a(bc a - 3) = a(bc — b — c 1) = a(b —1)(c-1),所以显然k 1,此时k 和k -1互质,所以L 严或L m.k-1=1, k-1=2「k = 2m_2或 ’解得k =5,m = 4.k-1=5,3.在厶 ABC 中,已知 AB = AC ,/ A = 40 P 为 AB 上一点,/ ACP = 20°,则匹AP【答】、、3 .设D 为BC 的中点,在△ ABC 外作/ CAE = 20°,则/ BAE = 60° . 1 作 CEL AE, PF 丄 AE,则易证△ ACE^A ACD 所以 CE= CD= - BC.2J31又 PF = PA sin / BAE = PA S in 60°= AP, PF = CE 所以AP = BC2 2 2因此匕BC =丿3 .AP4.已知实数 a,b,c 满足 abc - -1 , a b 4 ,a b — a - 3a -1 b - 3b -1 c - 3c -1c 2【答3322a -3a -1 (b-1)(c-1)1c1,~2=(a -1)(c-1) c -3c-1 (a-1)(b-1)4所以—(a -1)(b -1)(c -1) =(a -1) (b -1) (c-1).91 结合 abc = -1, a b c = 4,可得 ab bc ac . 4 222 233 因此,a b c = (a ■ b c) -2(ab bc ac) .21 1实际上,满足条件的 a,b,c 可以分别为 ,一,4.2 2第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为 解 设直角三角形的三边长分别为a,b,c ( aEbcc ),贝U a + b + c = 30.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由 a _b : c 及 a b c =30得 30 二a b c : 3c ,所以 c 10. 由 a b c 及a b c =30得 30 = a b c 2c ,所以 c :: 15. 又因为c 为整数,所以11乞C 乞14........................... 5分根据勾股定理可得 a 2 b^c 2,把c =30-a -b 代入,化简得ab-30(a b) 45^ 0 ,所以2 2(30 -a)(30-b) =450 =2 3 5 ,........................ 10分30 - a = 52,1 a = 5,因为a,b 均为整数且a 兰b ,所以只可能是2解得彳............... 15分[30 —b = 2汽32,lb = 12. 169所以,直角三角形的斜边长 C =13,三角形的外接圆的面积为 竺二................ 20分4.. 2•(本题满分25分)如图,PA 为。
2012年全国初中数学竞赛试题及答案
2012年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分) 1.如果2a =-+11123a+++的值为( ).(A) (B(C )2 (D)2. 在平面直角坐标系xO y 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )5 3. 如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 4. 如果关于x 的方程20x px q p q--=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5. 黑板上写有1,12,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板写上数a b ab ++,经过99次操作后,黑板上剩下的数是( ). (A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题7分,共35分) 6. 如果a ,b ,c 是正数,且满足9a b c ++=,111109a bb cc a++=+++,那么a b c b cc aa b+++++的值为 .7. 如图,正方形ABCD 的边长为,E ,F 分别是AB ,BC 的中点,AF与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 8. 设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n的个数为 .9. 如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 .10. 已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n=+成立,则这样的n 的个数为 .三、解答题(共4题,每题20分,共80分)11. 已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y<;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.12. 如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证:(1)OI 是△IBD 的外接圆的切线; (2)AB +AD = 2BD .13. 给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒?并说明理由.14. 将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得ba c=,求n 的最小值.1-5 B B D C D6-10 7,8,-2/3,8,1211. m<-12,12. (1)弦切角定理,鸡爪定理(2)托勒密定理,鸡爪定理13. 201714.65536。
2012年全国初中数学竞赛试题(正题)参考答案
2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。
2010-2012年全国初中数学联赛试题参考答案和评分标准
2010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( B )A .1.B .2.C .3.D .4.2.若实数,,a b c 满足等式23||6a b +=,49||6a b c -=,则c 可能取的最大值为 ( C ) A .0. B .1. C .2. D .3.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A ) A .-13. B .-9. C .6. D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++=( D )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分) 1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += 13 .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = 19. 3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA =5,PC =5,则PB =___10___.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____15___个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由已知等式可得222()()()26a b b c a c -+-+-= ①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ (1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形. (2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形. 综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线. 证明 过点P 作⊙I 的切线PQ (切点为Q )并延长,交BC 于点N. 因为CP 为∠ACB 的平分线,所以∠ACP =∠BCP. 又因为PA 、PQ 均为⊙I 的切线,所以∠APC =∠NPC. 又CP 公共,所以△ACP ≌△NCP ,所以∠PAC =∠PNC.由NM =QN ,BA =BC ,所以△QNM ∽△BAC ,故∠NMQ =∠ACB ,所以MQ//AC.又因为MD//AC ,所以MD 和MQ 为同一条直线.又点Q 、D 均在⊙I 上,所以点Q 和点D 重合,故PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-错误!未找到引用源。
-2012年全国初中数学联赛试卷
2012年全国初中数学联赛试卷一、选择题:(本题满分42分,每小题7分)223.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.2244..5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=_________.8.(7分)使得5×2m+1是完全平方数的整数m的个数为_________.9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=_________.10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2= _________.三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.2012年全国初中数学联赛试卷参考答案与试题解析一、选择题:(本题满分42分,每小题7分)﹣b=﹣﹣=,=+,=+1=<<,<<,22,3.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.DE=DE=.,=.2244..≤,﹣+≤时,时,﹣(﹣)+×+﹣,,或a=﹣5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.然后利用得到有关+﹣=[+﹣(+)得=4﹣(),﹣(﹣.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=±1.=t,代入b+c+=t,=t,得:=t=t,时,,时,8.(7分)使得5×2m+1是完全平方数的整数m的个数为1.或9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.BCBAE=PAsin60=AP==故答案为:10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2=.,同理可得:,=+,+=,=,即整理得:,=故答案为:三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.∴只可能是或或,三角形的外接圆的面积为12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.中,﹣的横坐标为:﹣=3b,纵坐标为:b的坐标为是一元二次方程的两根,,.,即,.代入,解得(另一解舍去)∴抛物线的解析式为。
2012年全国初中数学 竞赛试题
2012年全国初中数学竞赛预赛试题及参考答案一、选择题(共6小题,每小题6分,共36分. 以下每道小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】 (A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解.完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m < 【答】C .解.一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >.3.如图,在⊙O 中,CD DA AB ==,给出下列三个 结论.(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30° 时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3 【答】D .解.因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为180°得.2(30)180x x -︒+=︒,解得80x =︒.4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】(A )34 (B )23 (C )13 (D )21【答】B .解.从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△A B C 为等腰三角形,则符合要求的点C 的位置共第3题图O DCBA有【 】(A )2个 (B )3个 (C )4个 (D )5个 【答】D .解.由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求出OC 1=OC 2=225126-=,可得)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【 】(A )221y x =-+ (B )2112y x =-+ (C )241y x =-+ (D )2114y x =-+【答】A .解.221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=. 二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解.71221)(212422222=-⨯=--=-+-n m n mn m .8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-.yxO 第6题图xyOABC 1C 2C 3C 4C 5 第5题图解.11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++11213(1)(3)x x x x =-=++++. ∴22(1)(3)3x x =++,解得 120,4x x ==-.9.如图,在平面直角坐标系中,点B 的坐标是(1,0), 若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转 90°得到线段BA ',则点A '的坐标是 . 【答】(1,1)b a +-+.解.分别过点A 、A '作x 轴的垂线,垂足分别 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,【答】2.解.连接MN ,显然将扇形AED 向右平移 可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 .【答】2-.解.∵α是方程2210x x +-=的根,∴212αα=-.∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又 ∵2,αβ+=-M第10题图E 第9题图∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个. 【答】36.解.利用抽屉原理分析,设最多有x 个小朋友,这相当于x 个抽屉,问题变为把145颗糖放进x 个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x +≤145,解得x ≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解.设王亮出生年份的十位数字为x ,个位数字为y (x 、y 均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况. …………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,整理,得 1011,2xy -=x 、y 均为0 ~ 9的整数,∴0.x = 此时 5.y =∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得 111022x y =-,故x 为偶数,又1021110211,09,22x xy --=≤≤ ∴ 779,11x ≤≤ ∴ 8.x = 此时7.y = ∴王亮的出生年份是1987年,今年25周岁. …………………14分 综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解.(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =-∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分 (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22,∴125224a <-<.解得 822525a -<<-.……………………………………15分 15. 如图,扇形O M N 的半径为1,圆心角是90°.点B 是MN 上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证.四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值.解.(1)证明.如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//. ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分A BCO D EFGPQ M N图①(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分又 222OA AB OB +=,即2221x y +=.∴2221x x +=,解得x =∴当OA的长为3时,四边形EPGQ 是矩形.………………………………12分 (3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=. 在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分A BCOD E F GP QMN 图②B'N MA'QP O'G F E D C B A O 图③。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a << 【答】C.因为11a =,1b =110a b<<,故b a <.又2)1)c a -=-=1),而221)30-=->1>,故c a >.因此b a c <<.2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A .3. B .4. C .5. D .6. 【答】B.方程即22()234x y y ++=,显然x y +必须是偶数,所以可设2x y t +=,则原方程变为22217t y +=,它的整数解为2,3,t y =±⎧⎨=±⎩从而可求得原方程的整数解为(,)x y =(7,3)-,(1,3),(7,3)-,(1,3)--,共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )ABCD【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD,所以BG3==. 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )EC AA .18-. B .0. C .1. D .98. 【答】B.442222222219()2122()48a ab b a b a b ab a b ab ab ++=+-+=-+=--+.因为222||1ab a b ≤+=,所以1122ab -≤≤,从而311444ab -≤-≤,故2190()416ab ≤-≤,因此219902()488ab ≤--+≤,即44908a ab b ≤++≤.因此44a ab b ++的最小值为0,当,22a b =-=或22a b ==-时取得. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( )A .0.B .34-.C .1-.D .54-. 【答】 B.由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--,所以2222121212()2464x x x x x x p p +=+-⋅=++,332212121212()[()3]2(496)x x x x x x x x p p p +=++-⋅=-++.又由232311224()x x x x +=-+得223312124()x x x x +=-+,所以2246442(496)p p p p p ++=+++,所以(43)(1)0p p p ++=,所以12330,,14p p p ==-=-.代入检验可知:1230,4p p ==-均满足题意,31p =-不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p +=+-=-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个. 【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________. 【答】 1±.由1a t b +=得1b t a =-,代入1b t c +=得11t t a c +=-,整理得2(1)()0ct ac t a c -++-= ①又由1c t a+=可得1ac at +=,代入①式得22()0ct at a c -+-=,即2()(1)0c a t --=,又c a ≠,所以210t -=,所以1t =±.验证可知:11,1a b c a a -==-时1t =;11,1a b c a a+=-=-+时1t =-.因此,1t =±. 2.使得521m⨯+是完全平方数的整数m 的个数为 . 【答】 1.设2521m n ⨯+=(其中n 为正整数),则2521(1)(1)mn n n ⨯=-=+-,显然n 为奇数,设21n k =-(其中k 是正整数),则524(1)mk k ⨯=-,即252(1)m k k -⨯=-.显然1k >,此时k 和1k -互质,所以252,11,m k k -⎧=⨯⎨-=⎩或25,12,m k k -=⎧⎨-=⎩或22,15,m k k -⎧=⎨-=⎩解得5,4k m ==. 因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 【答】设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC. 又PF =PA sin ∠BAE =PA sin 60°=2AP ,PF =CE,所以2AP =12BC , 因此BCAP4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .【答】332. 因为22313(3)(1)(1)(1)a a a a abc a bc a a bc b c a b c --=-+=+-=--+=--,所以EB2131(1)(1)a a abc =----. 同理可得2131(1)(1)b b b a c =----,2131(1)(1)c c c a b =----.结合22243131319a b c a a b b c c ++=------可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ++=------,所以4(1)(1)(1)(1)(1)(1)9a b c a b c ---=-+-+-. 结合1abc =-,4a b c ++=,可得14ab bc ac ++=-. 因此,222233()2()2a b c a b c ab bc ac ++=++-++=.实际上,满足条件的,,a b c 可以分别为11,,422-.第二试 (A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <.又因为c 为整数,所以1114c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩……………………15分 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.2012年全国初中数学联合竞赛试题参考答案及评分标准 第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ……………………20分∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. ……………………25分 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………10分又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………15分又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. ……………………20分 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-. ……………………25分2012年全国初中数学联合竞赛试题参考答案及评分标准 第1页(共5页)。