随机过程例题(课堂PPT)

合集下载

2随机过程(上课用)

2随机过程(上课用)



xf ( x ) dx
n
[x
i 1

i
a ] P ( xi )
2


( x a ) f ( x ) dx
2
第二章 随机过程
3、随机变量的数字特征(续)

(3)相关函数
无论是离散的还是连续的随机变量,两个随机
变量的相关函数统一定义为
R ( 1 , 2 ) E [ 1 2 ]
第二章 随机过程
一维概率分布函数和密度函数

因为随机过程在任一时刻对应1个随机变量
把随机过程在时刻
则该随机过程在时刻 F1 ( x , t 1 ) P [ ( t 1 ) x ]
t 1 对应随机变量记为
t 1的一维概率分布函数定
( t1 )
义为
其一维概率密度函数定
义为 f 1 ( x , t 1 )
(t ) 都是是连续的随机变量



xf 1 ( x , t ) dx
第二章 随机过程
2、随机过程的方差

同理,随机过程的方差也是一个关于时间 的函数,可由下式计算
( t ) D [ ( t )]
2
E {[ ( t ) a ( t )] }
2
若每个时刻对应的 则 (t )

T /2 T / 2
f
2
(t ) d t
1 T
T
li m

T /2 T / 2
f
2
(t ) d t
第二章 随机过程
二、能量谱密度和功率谱密度

能量信号f(t)的能量谱密度E(ω)

随机过程第十一章PPT课件

随机过程第十一章PPT课件

17
例8.赌徒输光问题: 甲乙两人玩抛硬币游戏,一开始甲带有 a元钱,乙带有m a元钱,独立重复抛 一枚均匀硬币,若第n次出现正面,则 甲赢1元,否则甲输1元。游戏一直到某人 输光结束。计算最后甲输光的概率。
18
解 : 以 Sn表 示 抛 n次 硬 币 后 甲 所 拥 有 的 钱 数 。 则 {Sn}是 一 时 齐 M arkov链 , 状 态 空 间 是 {0,1,...,m },一 步 转 移 概 率 为 :
p ijP X n 1j|X n i q pjj ii
i,j 0 ,1
p
p
一 步 转 移 矩 阵 P q pq p , 状 态 转 移 图 : 0
q q
1
9
例 3 ( . 随 机 游 动 )
1
2
3
4
5
设 一 醉 汉 在 I{1, 2, 3, 4, 5}作 随 机 游 动 : 如 果 现 在 位 于 点 ( i 1i5),则 下 一 时 刻 各 以 1/3概 率 向 左 或 向 右 移 动 一 格 , 或 以 概 率 1/3呆 在 原 处 ; 如 果 现 在 位 于 点 1( 或 点 5) , 则 下 一 时 刻 以 概 率 1移 到 点 2( 或 点 4) 。
令 h i P ( 最 终 被 7 吸 收 |X 0 i ) , 则 h 7 1 , h 3 0 .
利 用 对 称 性 , h1h5h91 2.
利用Markov性和全概率公式:
h2
13h1
13h5
13h3
1. 3
22
§2 有 限 维 分 布 CK方 程
pijs,suv piks,supkjsu,suv
离去者
系统
现用马氏链来描述这个服务系统:

应用随机过程(第三章)PPT课件

应用随机过程(第三章)PPT课件

Poisson的特性
平稳增量性。
由 E N tt ,知λ是单位时间内发和事件
的平均次数。 称λ为Poisson近程的强度或速率。
例3.1.1 售票处乘客以10人/小时的平均速率 到达,则9:00 ~10:00最多有5名乘客的 概率?10:00 ~11:00没有人的概率?
例3.1.2 保险公司接到的索赔次数
k 0
k 0 m m k pm 1pkm t m k k !e t
k 0m m !k k !!pm 1pkm t m k k !e t
pm tet 1pktk
m ! k0 k!
tpm ept
m!
Poisson过程的推广
非齐Poisson过程
定义3.3.1 计数过程 N t,t0称作强度函
过程 N t,t0 ,每次的赔付金额Yi都相
互独立,且有相同的分布F,且每次的索赔 额与与它发生的时间无关。则[0,t]内保险
公司赔付的总额 X t,t0 就是一个复
合Poisson 过程,其中:
XtNtYi i1
例3.3.3
(顾客成批到达的排队系统)设顾客到达某
服务系统的时刻 S1, S2, ,形成一个
t 6 6 1 02
1 第i位顾客在商场买东西 Yi 0 第i位顾客在商场未买东西
• 以 N1t 表示在时间[0,t]内到达商场的人
数, E N 112 4320
• 以 N2t 表示在时间[0,t]内在商场买东西
的人数,
E N 1 t E N 1 tY i t 0 .9 i 1
• 若以Zi 表示第i位顾客在商场消费金额,且
Z i~ B 2,0 .5 0
•则
N3 t N 1tZi i1

随机过程课件PPT资料(正式版)

随机过程课件PPT资料(正式版)
应怎样分才合理呢➢?」
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。

随机过程PPT课件

随机过程PPT课件
xk (t), k 1, 2,....., m ; 即 x (t) { xk (t); k 1, 2,....., m } 对 随 机 变 量 x (t )的 各 样 本 函 数 进 行 采 样 , 对 应 于 时 刻 t t1 , t2 , ...., tn 可 设 几 个 离 散 型随机变量:
§2.1 随机过程的概念及其统计特性
1、 随机过程的概念 例子:热噪声电压。(有电子元器件内部微观粒子 (如电子)的随机热运动所引起的端电压。用一 台高灵敏无线电接收机,观测“热噪声电压” (无信号输入),n次观测结果分别 为,X 1 ( t ) ,X 2 ( t ) ,….,X n ( t ) 。 如图所示。可以看出,每次观测到热噪声电压都是 不同的,且在观测之前是不可预测的,即每次的 观测结果是随机的。
只取V0(或t ) 12两个值。
• 3 0 连续型随机序列
• 时间是离散的,状态是连续的。在任一离散 时刻的状态是连续型随机变量。对连续型随
机过程进行等时间间隔采样,即设到连续随 机序列。
• { , ……, }。 X(nt) X (t) X (2t)
X (nt)
• 4 0 离散随机序列
• 状态和时间均是离散的。
• 将连续型随机信号经过数模转换等间隔采 样后,即为离散随机序列。简称为随机序 列或随机数字信号。
• 若采样间隔为 t :X (t) ,X (2t) ……,X (nt)。或记 为: , X (1 ) X ( 2 ) ……,X ( n ) 。
• 以为时间按间隔增长,故常称离散随机序 列为时间序列。这类随机信号是本课程讨 论的主要对象。
• 按随机过程的分布函数(或概率密度)的 不同特性分:
• (1)平稳随机过程; • (2)马儿可夫(Markov)过程; • (3)独立增量过程; • (4)独立随机过程; • 等等

随机过程_课件---第三章

随机过程_课件---第三章

随机过程_课件---第三章第三章随机过程3.1 随机过程的基本概念1、随机过程定义3-1 设(),,F P Ω是给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,F P Ω上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}tX ω,{}tX 或(){}X t 。

注:随机过程(){,:,}X t t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间是()00,,t T X t ω∈是概率空间(),,F P Ω上的随机变量;对于给定样本点()00,,X t ωω∈Ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。

E 称为随机过程的相空间,也成为状态空间,通常用""t X x =表示t X 处于状态x 。

2、随机过程分类:随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续随机序列、离散随机序列。

3、有穷维分布函数定义3-2 设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,nt tX X 构成n 维随机向量()1,,n t t XX ,其n 维联合分布函数为:()()11,,11,,,,nnt t nt t nF x x P X x Xx ≤≤其n 维联合密度函数记为()1,,1,,n t tn f x x 。

我们称(){}1,,11,,:1,,,nt t n n Fx x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。

3.2 随机过程的数字特征1、数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==?()t E X 是时间t 的函数。

2、方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差。

随机事件PPT(共19张PPT)

随机事件PPT(共19张PPT)

(3)抽到的数字会是0吗? 绝对不会是0
(4)抽到的数字会是1吗?
12345
可能是1,也可能不是1,事先无法确定
问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分
别刻有 1 到 6 的点数. 请思考以下问题:掷一次骰子,
在骰子向上的一面上,
(1)可能出现哪些点数? 1、2、3、4、5、6
(2)出现的点数大于0吗?
4个黑棋2个白棋
只要使两种棋子的个数相等
嘿嘿,这次 非让你死不
可!
相传古代有个王国,国王非常阴险而多疑,一位正直的大 臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法 规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”
和“死”的两张纸条),犯人当众抽签,若抽到“死”签 ,则立即处死,若抽到“生”签,则当众赦免.
课堂练习 完成课本 P129 练习1、2
国王一心想处死大臣,与几个心腹密谋,想出一条毒计 :暗中让执行官把“生死签”上都写成“死”,两死抽一,
必死无疑. 然而,在断头台前,聪明的大臣迅速抽出一张签纸塞进
嘴里,等到执行官反应过来,签纸早已吞下,大臣故作叹息 说:“我听天意,将苦果吞下,只要看剩下的签是什么字就 清楚了.”剩下的当然写着“死”字,国王怕犯众怒,只好当
谚语中蕴含着这样的思想:当具备某条件时,某结果出现的可能性非常大. 朝霞不出门,晚霞行千里 (3)出现的点数会是7吗? (2)出现的点数大于0吗? 然而,在断头台前,聪明的大臣迅速抽出一张签纸塞进嘴里,等到执行官反应过来,签纸早已吞下,大臣故作叹息说:“我听天意,将苦果吞下,只要看剩下的签是什么字就清楚了.
问题3 袋子中装有4个黑棋、2个白棋,这些棋子的形状、 大小、质地等完全相同,即除颜色外无其他差别. 在看不到 棋子的条件下,随机从袋子中摸出1个棋子.

随机过程课件

随机过程课件

。每个可能取的值称为一个状态。
对随机过程 {X (t) , t T} 进行一次试验 (即在 T 上进行一次全程观测) , 其结果是 t 的函数, 记为
x(t) , t T , 称它为随机过程的一个 样 本 函 数 或 样本曲线 .
所有不同的试验结果构成一族样本函数.
随机过程 总体
样本函数 个体
(4)连续参数、连续状态的随机过程。如例3,T=[0,∞], 状态空间为[-∞,∞]。
离散参数的随机过程亦称为随机序列。
四、随机过程的分布函数族
给定随机过程 {X (t),t T}.
对固定的 t T, 随机变量 X (t) 的分布函数一 般与 t 有关, 记为 FX (x,t) P{X (t) x}, x R.
1 0.5
-4
-2
-0.5
2
4
-1
当t固定时,X(t)是随机变量,故{X(t), t>0}是一族随机变量。
另一方面,对随机变量 做一φ次试验得一个试验值 ,
就是一条样本曲线。X (t) a cos(0t )
二、随机过程的概念
1 定义 参数集:设T是实数轴 (, )上的一个子集,且包含无限多
个数。随机过程是一族随机变量,可用 {X (t),t T} 来表示。T称为 随机过程的参数集。
在次概数率是论一中个曾随指机出变,量在,单记位X时(t间)为内[0一,t]电内话的站呼接叫到次的数呼唤 次数可用一离散型随机变量 X()表示,且有
P{X() k} k e , k 0, 1,2, ,( 0)
k! 在[0,t]时间内接到的呼唤次数,这一随机变量可记为X(t)。
P{X(t) k} (t)k et , k 0, 1,2, ,( 0)

中南大学随机过程第一章PPT课件

中南大学随机过程第一章PPT课件

33
1
F ( x ) k 1 p k ( x x k ) 1 ( 0 x ) 5 ( x 1 ) 1 ( 0 x 2 )
0, x 0,
3
10 9
, ,
10
1
0 x 1,
1 x 2, 2 x .
2020/12/7
胡朝明
53-12
四、连续型随机变量
若存在非负可积函数f(x),对任意实数x,使 得R.V.X的分布函数满足:
x
F (x) f(u )du( x)
则称X为连续型随机变量,称f(x)为连续型随机变 量的概率密度函数,简称概率密度。
2020/12/7
胡朝明
53-13
概率密度函数的性质
1. f(x)≥0;
2) f(x)dx1;
=P(A1)P(A2|A1)P(A3|A1A2)…P(An|A1A2…An-1)
2020/12/7
胡朝明
53-4
六、事件的独立性
▪ 如果事件A,BF,满足
P(AB)=P(A)P(B),
则称事件A与B相互独立。
▪ 如果事件A1,A2,…,AnF,且对任意 s(2≤s≤n)和任意的1≤i1<i2<…<is<n,有 P(Ai1Ai2…Ais)=P(Ai1)P(Ai2)…P(Ais), 则称事件事件A1,A2,…,An相互独立。
上一讲内容回顾 ➢ 概率空间
• 随机试验、样本空间、随机事件体、 概率、概率空间、概率的性质
2020/12/7
胡朝明
53-1
本讲主要内容
➢ 概率空间
• 条件概率、乘法公式、事件的独立性、全 概率公式与贝叶斯公式
➢ 随机变量及其分布程
• 随机变量、分布函数 • 离散型随机变量及其分布律 • 连续型随机变量及其概率密度

《数学随机过程》PPT课件

《数学随机过程》PPT课件
所以X与Y不相关。 故 (X,Y )=0 X与Y不相关
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .

《随机过程》教程.ppt

《随机过程》教程.ppt

无穷大的分类
0, 1 ,2 ,3,……(自然数集合的无限多 为0, 0集合的所有子集构成的集合的 “无限多(势)”为1 , 1集合的所有 子集构成的集合的势为2 , ……),在数 学上已经严格证明: 0, 1 ,2 ,3,等之 间不能建立双射的关系。
对于无穷大,“整体大于部分”的直觉不再成立
对于自然数集 N 1,2,3,4,5,L ,偶数集合
原像集
像集 单射(不同的原
f
像具有不同的像)
f a1 f a2
满射(每一个像都有原像)
原像集
像集
f
b, a, s.t.
b f a
双射(既是单射,又是满射)
原像集
像集
f
从直觉上承认能建立双射关系的两 个集合,其所含元素的“个数”一样多。
可数和不可数的定义
凡是能和自然数集合或者自然数集合的 一个子集建立双射关系的集合称为可数 集合;否则称为不可数集合。 可数和不可数是人类认识“无穷”所产 生的概念,是对无穷的分类。 已经证明连续的区间,和实数集等都是 不可数集合:[1,2],(0.1,0.01),R,等等
事件和Borel集
事件:样本空间中满足一定条件的全体 元素构成子集,“一定条件”有事件的 意义,因此称样本空间的子集为事件。
(举例说明)
不可能事件 必然事件 基本事件:可数和不可数 Borel集:规定了事件的全体及其相容性
概率空间的定义
阅读讲解p.16定义2.1 理解概率空间
概率空间是对随机现象的基本建模方法 概率空间有三个要素:样本空间、Borel事
《随机过程》教程
第三讲 随机对象(一)
本章要义(阅读引言部分)
本章介绍如何对随机现象建立数学模型。

随机过程_课件---第四章

随机过程_课件---第四章

随机过程_课件---第四章第四章 Poisson 过程4.1 齐次Poisson 过程到达时间间隔与等待时间的分布1、定理4-1强度为λ的齐次Poisson 过程{,0}t N t≥的到达时间间隔序列{},1,2,n X n = 是独立同分布的随机变量序列,且是具有相同均值1λ的指数分布。

证:事件{}1X t >发生当且仅当Poisson 过程在区间[]0,t 内没有事件发生,即事件{}1X t >等价于{0}tN =,所以有()(0)t t t P X t P N e λ->===因此,1X 具有均值为1λ的指数分布,再求已知1X 的条件下,2X 的分布。

(](](]211(|)(|)((0tP X t X s P X s P P e λ->====在s,s+t 内没有事件发生(由独立增量性)在s,s+t 内没有事件发生)(由平稳增量性)在,t 内没有事件发生)上式表明2X 与1X 相互独立,而且2X 也是一个具有均值为1λ的指数分布的随机变量,重复同样的推导可以证明定理4-1的结论。

2、定理4-2等待时间n S 服从参数为n ,λ的Γ分布,即分布密度为1()(),(1)!n tt f t e n λλλ--=- 0t ≥证:因为第n 个事件在时刻t 或之前发生当且仅当到时间t 已发生的事件数目至少是n ,即事件{}{}t n N n S t ≥?≤是等价的,因此()()()!j tn t j nt P S t P N n ej λλ∞-=≤=≥=∑上式两边对t 求导得n S 的分布密度为11()()()!(1)!(),0(1)!j j tt j nj nn tt t f t e e j j t et n λλλλλλλλλ-∞∞--==--=-+-=≥-∑∑注:定理4-2又给出了定义Poisson 过程的另一种方法。

从一列均值为1/λ的独立同分布的指数随机变量序列{},1n X n ≥出发,定义第n 个事件发生的时刻为n S ,则12n n S X X X =+++这样就定义了一个计数过程,且所得计数过程{},0t N t ≥就是参数为λ的Poisson 过程。

《随机过程教程》PPT课件幻灯片PPT

《随机过程教程》PPT课件幻灯片PPT

主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象

随机过程Ch4马尔科夫链ppt课件

随机过程Ch4马尔科夫链ppt课件

(u i1 u i ) (u i u i1 ) (u i1 u i2 )
(u1 u 0 ) (i 1)
即 u i 1 u 0 ( i 1)
u i 1 u 0 ( i 1) 1 ( i 1)
uc
1 c
0
1 c
ui
1 i
1
i c
ua
1
a c
a
b
b
,同理可得
pi
p(n) ij
iI
15
4.1 马尔可夫链与转移概率
(2)
pj(n)P{Xn j} P{Xn1 i,Xn j} iI
P{Xn j| Xn1 i}P{Xn1 i} iI
pi(n1)pij iI
(3)(4)为(1)(2)的矩阵表示。
16
4.1 马尔可夫链与转移概率
•定理4.3 设{Xn,nT }为马尔可夫链,则
2
马尔可夫链的性质
4.1 马尔可夫链与转移概率
P{X0=i0, X1=i1, , Xn=in} =P{Xn=in|X0=i0, X1=i1, , Xn-1=in-1}
P{X0=i0, X1=i1, , Xn-1=in-1} = P{Xn=in|Xn-1=in-1}
P{Xn-1=in-1 |X0=i0,X1=i1,,Xn-2=in-2} P{X0=i0,X1=i1,,Xn-2=in-2}
kI
(2)
p pp p (n ) ij
i1 kk 1 k2
kn 1j
(3) P(n)=Pk P1 (I n-1) kn 1 I
(4) P(n)=Pn
10
4.1 马尔可夫链与转移概率
证(1)
p(n) ij
P Xmn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/4/26
10
4谱分析
例3 设随机序列X(n) = W(n) +W(n-1),其中W(n)是高斯随
机序列,mW=0, RW(m)=2(m),求X(n)的均值、自相关 函数和谱密度 GX () .
[解]
mX (n) E[X (n)] E[W (n) W (n 1)] 0
mZ (t) 0
n
RZ (s, t)
e 2 jk (st ) k
k 1
2020/4/26
4
3平稳过程
例1
• 设有随机相位过程 X (t) = a sin(t+),a, 为常数, 为
(0, 2)上服从均匀分布的随机变量,试讨论随机过程 X (t) 的平稳性。
[解]
2
E[ X (t)] E[a sin(t )] a sin(t ) f ( )d
cos
RX ( )
RY (t,t
)(t)和 Y (t)均是平稳过程。
RXY (t, t ) E[ X (t)Y (t )] E{a cos(t )b sin[(t ) ]}
ab sin
2
RXY ( )
所以
2020/4/26
X
(t)和
Y
(t)
是联合平稳的。
0
a
2
sin(t )d 0
2 0
RX (t,t ) E[ X (t) X (t )]
2 a2 sin(t ) sin[(t ) ]d a2 cos
0 2
2
2020/4/26 因此 X (t)是平稳随机过程。
5
3平稳过程
例2(白噪声序列)
• 设 { Xn , n = 0, 1, 2, } 是实的互不相关随机变量
相关函数:
RX
( )
a2 2
cos(0 )
平均功率: P RX (0) a2 2
(2)
E[ X
2 (t)]
E[a 2
cos2 (0t
)]
a2 2
a2
s in(2 0t )
X (t) 是非平稳过程
2020/4/26
平均功率: P lim 1 T E[ X 2 (t)]dt a2 2 T 2T T
2
2随机过程的基本概念
例 求在[0, 1]区间均匀分布的独立随机序列的均值
向量、自相关阵和协方差阵,设N=3。
解:
Xi 的一维概率密度函数为:
1, 0 x 1
f Xi (x) 0,
其它
Xi 的均值:
mXi E[ X i ]
- x f Xi (x)dx
1
1
x dx
0
2
Xi 的自相关函数:
0
1/12
0
0 0 1/12
3
2随机过程的基本概念
例3
n
设复随机过程 Zt Ak e jkt , t 0 ,其中A1,
k 1
A2,

,
An
是相互独立且服从
N(0,
2 k
)的随
机变量,1, 2, … , n 为常数,求 { Zt , t
0 } 的均值函数 mZ (t) 和相关函数 RZ (s, t) 。
2随机过程的基本概念
例1
• 已知随机相位正弦波 X (t) = a cos(t + ),其 中 a >0, 为常数,为在(0, 2)内均匀分
布的随机变量。 求随机过程 { X (t), t (0, ) } 的均值函数 mX (t) 和相关函数 RX (s, t) 。
mX (t) 0
RX
(s, t )
序列,且 E[Xn] = 0,D[Xn] = 2 ,试讨论随机序列的
平稳性 。
[解] 因为: (1) E[Xn] = 0
(2)
RX
(n, n
)
E[ X
n
X
n
]
2,
0,
0 0
故 随机序列的均值为常数,相关函数仅与有关,
因此它是平稳随机序列。
2020/4/26
6
3平稳过程
例3
• 设有随机相位过程 X (t) = a cos(t+),a, 为常数,
a2 2
c os [ (t
s)]
a2 2
c os
,
2020/4/26
( t s)
1
2随机过程的基本概念
例2
• 设 X (t) 为信号过程,Y (t) 为噪声过程,令 W (t) = X (t) + Y (t),
则 W (t) 的均值函数为 其相关函数为
mW (t) mX (t) mY (t)
9
4谱分析
例2
• 已知平稳过程的相关函数为 RX ( ) ea cos(,0其) 中
a > 0, 0 为常数,求谱密度 GX () .
[解]
GX
()
2
0
e a
c os (0
) cos(
) d
0
e a
[c os (0
)
c os (0
)
]d
a
a
a2 ( 0 )2 a2 ( 0 )2
为(0, 2)上服从均匀分布的随机变量,试问 X (t) 是 否为各态历经过程。
E[X (t)]
2
a cos(t )
1
d 0
0
2
X (t) lim 1
T
a cos(t )dt 0
T 2T T
RX
( )
a2 2
cos(
)
X (t) X (t )
2020/4/26 故 X (t) 是为各态历经过程。
8
4谱分析
[例1] 设有随机过程 X (t) = a cos(0t + ), 其中 a, 0
为常数, 在下列情况下,求 X (t) 的平均功率:
(1) 是在( 0, 2 ) 上服从均匀分布的随机变量;
(2) 是在( 0, /2 ) 上服从均匀分布的随机变量。
[解] (1) 随机过程 X (t) 是平稳过程,
7
3平稳过程
[例4] 设有两个随机过程X (t) = a cos(t+) 和Y (t) = b sin(t+),其中a, b, 为常 数, 为(0, 2)上服从均匀分布的随机变量,分析X (t)和Y (t)是否联合平稳。
[解] E[X (t)] E[Y (t)] 0
RX (t,t )
a2 2
rij
E[ X i X
j]
E[ E[
X X
2 i
]
i ]
1/ 3 E[ X j
, ]
1
/
4
,
i j i j
均值向量
自相关阵
协方差阵
1/ 2 MX 1/ 2
1/ 2
2020/4/26
1/ 3 1/ 4 1/ 4 RX 1/ 4 1/ 3 1/ 4
1/ 4 1/ 4 1/ 3
1/12 0 0
CX
RW (s,t) E[W (s)W (t)] E{[ X (s) Y (s)][ X (t) Y (t)]} E[ X (s) X (t)] E[ X (s)Y (t)]
E[Y (s) X (t)] E[Y (s)Y (t)]
2020/4/26
RX (s,t) RXY (s,t) RYX (s,t) RY (s,t)
相关文档
最新文档