人教版2020高中数学 专题01 空间几何体专题复习考点精准剖析与创新训练 新人教A版必修2
2020高考人教版文科数学总复习讲义:立体几何课时1含答案
![2020高考人教版文科数学总复习讲义:立体几何课时1含答案](https://img.taocdn.com/s3/m/72244994dd36a32d72758154.png)
空间几何体的结构及三视图、直观图■复习目标■1. 了解柱、锥、台、球的定义、性质及它们之间的关系.2 •掌握柱、锥、台、球的结构特征.3•能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等及其简易组合)的三视图, 能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.. ____________________________________________®知识梳理1.柱、锥、台、球的结构特征(1) 正视图是光线自物体的前面向后面正投影所得的投影图•俯视图是光线自物体的上面向下面正投影所得的投影图.侧视图是光线自物体的左面向右面正投影所得的投影图.(2) 三视图的排列规则:先画正视图,俯视图画在正视图的下方,长度与正视图相等,侧视图则安排在正视图的正右方,高度与正视图相同•3. 直观图空间几何体的直观图常用斜二测法来画,基本步骤是:(1) 画几何体的底面①在已知图形中取互相垂直的x轴和y轴,两轴交于点0,画直观图时,把它们画成对应的x'轴与y'轴,两轴相交于0 '点,且使/ x' O' y'= 45°或135° .②已知图形中平行于x轴或y轴的线段,在直观图中,分别画成平行于x'轴或y'轴的线段.③在已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半•(2) 画几何体的高在已知图形中过0点作z轴垂直于xOy平面,在直观图中对应的z'轴也垂直x' O' y' 平面,已知图形中平行于z轴的线段在直观图中仍平行于z'轴且长度相等•(3) 成图根据实际图形,顺次连接线段的端点,并整理(去掉辅助线,将被遮挡部分改为虚线),就得到了几何体的直观图.1 •根据三视图确定直观图的常用结论(1) 三视图为三个三角形,对应三棱锥;(2) 三视图为两个三角形,一个四边形,对应四棱锥;(3) 三视图为两个三角形,一个带圆心的圆,对应圆锥;(4) 三视图为一个三角形,两个四边形,对应三棱柱;⑸三视图为两个四边形,一个圆,对应圆柱.2 •用斜二测画法画出的水平放置的平面图形的直观图的面积是原图形面积的热身练习1. 下列四个命题:① 有两个面互相平行,其余各面都是四边形的几何体叫棱柱; ② 各个面都是三角形的几何体是三棱锥;③ 用一个平面去截棱锥,棱锥的底面与截面之间的部分是棱台;④ 两个面互相平行且相似,其余各面都是梯形的多面体是棱台. 其中正确的命题有(A )A . 0个B . 1个C . 2个D . 3个馆谅①假,如棱台有两个面互相平行,其余各面是四边形; 由图1至图3可知②、③、④都是错误的.2. 下列说法正确的是(C )A .以直角三角形的一边为轴旋转所得到的旋转体是圆锥B .以直角梯形的一腰为轴旋转所得的旋转体是圆台C .以半圆的直径为轴旋转一周所得到的旋转体是球D .圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径噩3 A 是错误的,以直角三角形的直角边..为轴旋转所得到的旋转体才是圆锥; B 是错误的.以直角梯形的垂直于底的腰 为轴旋转所得的旋转体是圆台;C 是正确;D 是错误的,C._2 "4.(D)圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长.故选3.A .①②B .①③C .①④D .②④CD 圆锥和正四棱锥的正视图和侧视图都是等腰三角形.4. (2018全国卷川)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼.图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(A )由题意可知带卯眼的木构件的直观图如图所示,. 咼频考点 ______________________________-:空间几何体的结构特征鈕11(经典真题)若空间中n 个不同的点两两距离都相等,则正整数n 的取值A .至多等于3B .至多等于4C .等于 5D .大于5殛 根据n 的取值构造相应的几何图形或几何体求解.n = 2时,可以;n = 3时,为正三角形,可以;n = 4时,为正四面体,可以; n = 5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长不可能相等.B本题考查了空间想象能力和推理论证能力,试题有较大的难度•根据题目特点善 于构造几何图形和空间几何体是解决这类问题的关键.变式採究1•在正方体上任意选择4个顶点,它们可能是如下各种几何形体的 4个顶点,这些几何体是 ①③④⑤•(写出所有正确结论的编号)由直观图可知其俯视图应选 A.5.如果一个水平放置的平面图形的斜二测直观图是一个底角为 的等腰梯形,那么这个平面图形的面积是(C )A. 1 + 于 B . 1+ .245 °腰和上底长均为1,所以其面积 S =-2^ X 2 = 2+2.C . 2 + ,2D £+¥① 矩形;② 不是矩形的平行四边形;③ 有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④ 每个面都是等边三角形的四面体; ⑤ 每个面都是直角三角形的四面体.A .①④③B .①②③C .⑤④③D .①④⑥薛3由四面体ABCD 四个顶点是长方体的四个顶点, 可得四面体ABCD 的正视图为①, 侧视图为②,俯视图为③•故四面体ABCD 的三视图分别为①②③.B❺® (1)解决三视图问题,要从以下几个方面加以把握:①搞清正视、侧视、俯视的方向,同一物体由于正视、侧视的方向不同或放置的位置不 同,所画的三视图可能不同.作出正方体ABCD — A ' B ' C ' D '.① 显然可能;②不可能; ③取一个顶点处的三条棱,连接各棱端点构成的四面体; ④取正方体中对面上的两条异面直线对角线的四个端点构成的四面体, —B ' BC 时各面均为直角三角形.如图,四面体 ABCD 的四个顶点是长方体的四个顶点女口 B ' — ACD ';⑤取 D(长方体是虚拟图形,起辅助 作用),则四面体 ABCD 的三视图分别是(①②③④⑤⑥代表图形)(空间几何体的三视图C② 遵循“长对正、高平齐、宽相等 ”的原则.③ 注意几何体中与投影面垂直或平行的线段在三视图中的特点. ④ 要注意实线、虚线的画法,可视轮廓线画成实线,不可视的画成虚线.(2)画三视图时,要注意所给几何体与熟知的几何体的联系,如将几何体放置在正方体(或长方体)中或补形成正方体等,有利用发现线、面与投影面的位置关系,从而准确作出相应 的三视图.变式採究2. (1)在如图所示的空间直角坐标系 O — xyz 中,一个四面体的顶点坐标分别是 (0,0,2),(2,2,0), (1,2,1), (2,2,2).给出编号为①、②、③、④的四个图,贝U幼该四面体的正视图和俯视图分别为(D)2'设A(0,0,2), B(2,2,0), C(1,2,1), D(2,2,2),贝U ABCD 即为满足条件的四面体,得出正视 图和俯视图分别为④和②•(2)由图可知其侧视图为三角形, 根据三视图的“高平齐”得侧视图的高为.3,又由“宽相等”可知侧视图的宽度和俯视图的宽度相等,得侧视图的底为1X sin 60 =~23.所以侧视图的面积为S = |x 訂 3=3.A .①和②B .③和①C .④和③ D .④和②(2)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 (C)A 亞 A. 4 B. { 3 C.3D . 1堪3 (1)在空间直角坐标系中构建棱长为2的正方体,兰厂 由三视图得到空间几何体的直观图A . 3 .2B . 2 3 C. 2 ,2 D . 2如图所示,A . 10B . 12C . 14D . 16FT/0 X(2017北京卷)某四棱锥的三视图如图所示, 则该四棱锥的最长棱的长度为解析可知SD 为该四棱锥的最长棱. 由三视图可知正方体的棱长为 故SD =22+ 22 + 22= 2 3.B将三视图还原为直观图时, 菩案 2,若能将其放置到 “正方体”或“长方体”中去研究, 不仅能较易得到直观图,同时还能发现各元素之间的数量关系与位置关系, 便于问题的解 决.变式探究3. (2017全国卷I )某多面体的三视图如图所示,其中正视图和左视图都由正方形和等 2,俯视图为等腰直角三角形.该多面体的各个面中有 这些梯形的面积之和为 (B ) 腰直角三角形组成,正方形的边长为 若干个是梯形,正(主灌图 侧佐)视图cia将三视图还原为直观图,如图:可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为 2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2.1故这些梯形的面积之和为2 X 2 x (2 + 4)X 2 = 12.■I课时小结1 •与柱、锥、台、球有关的概念题,要结合其定义和结构特征,作出准确的判断,若说明命题是假命题,只需要举出一个反例即可.2 •画三视图要注意“长对正、高平齐、宽相等”.3•三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质. 由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化.。
2020年高考数学专题提升: 空间几何体(含答案)
![2020年高考数学专题提升: 空间几何体(含答案)](https://img.taocdn.com/s3/m/215d9c816c175f0e7dd13765.png)
空间几何体一、单项选择题(每题5分;共55分)1.某几何体的三视图如图所示,则该几何体的体积为()A. π+412B. π+13C. π+1D. π+142.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为()A. 16+12πB. 32+12πC. 24+12πD. 32+20π3.直三棱柱ABC−A1B1C1的底面是边长为2的正三角形,侧棱长为√3,D为BC中点,则三棱锥A−B1DC1的体积为()A. 3B. 32C. 1D. 24.如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A. 12πB. 24πC. 36πD. 48π5.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为r1,大圆柱底面半径为r2,如图1放置容器时,液面以上空余部分的高为ℎ1,如图2放置容器时,液面以上空余部分的高为ℎ2,则ℎ1ℎ2=()A. r2r1 B. (r2r1)2 C. (r2r1)3 D. √r2r16.如图,长方体ABCD−A1B1C1D1的体积是36,点E在棱CC1上,且CE=2EC1,则三棱锥E-BCD的体积是()A. 3B. 4C. 6D. 127.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是平行四边形A′B′C′D′,如图2所示.其中A′B′=2A′D′=4,则该几何体的表面积为( )A. 16+12πB. 16+8πC. 16+10πD. 8π8.某几何体的三视图如图所示,若该几何体的体积为10,则棱长为a的正方体的外接球的表面积为()3A. 12πB. 14πC. 4√3πD. 16π9.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400cm2,900cm2,高为9cm,长方体形凹橹的体积为4300cm3,那么这个斗的体积是()注:台体体积公式是V=1(S' +√S′S+S)h.3A. 5700cm3B. 8100cm3C. 10000cm3D. 9000cm310.在四棱锥P−ABCD中,PB=PD=2,AB=AD=1,PC=√3PA=3,∠BAD= 120°,AC平分∠BAD,则四棱锥P−ABCD的体积为()A. √62B. √6 C. √63D. √311.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5∘≈513)A. 600立方寸B. 610立方寸C. 620立方寸D. 633立方寸二、填空题(每空4分;共44分)12.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,正视图中的曲线为四分之一圆弧,则该几何体的表面积是________.13.已知某正四棱锥的底面边长和侧棱长均为2cm,则该棱锥的体积为________ cm3.14.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为________.15.祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为________,表面积为________.16.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.17.学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A1B1C1D1,挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm2,不考虑打印损耗,制作该模型所需原料的质量为________g.18.某三棱锥的三视图如图所示,则该三棱锥体积是________,四个面的面积中最大的是________.19.在《九章算术》中有称为“羡除”的五面体体积的求法.现有一个类似于“羡除”的有三条棱互相平行的五面体,其三视图如图所示,则该五面体的体积为________.20.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别为棱A1D1、C1D1的中点,NBC1,若P、M分别为线段D1B、EF上的动点,则|PM|+是线段BC1上的点,且BN=14|PN|的最小值为________.参考答案一、单项选择题1.【答案】A2.【答案】A3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】A9.【答案】C10.【答案】A11.【答案】D二、填空题12.【答案】24√213.【答案】4314.【答案】1315.【答案】2π;(3 +√2)π316.【答案】1017.【答案】118.818.【答案】1;3√5219.【答案】2420.【答案】√6。
2020学年高中数学第1章空间几何体章末复习课学案新人教A版必修2(2021-2022学年)
![2020学年高中数学第1章空间几何体章末复习课学案新人教A版必修2(2021-2022学年)](https://img.taocdn.com/s3/m/e9fd713084254b35effd34d1.png)
第1章空间几何体正方体;③侧棱垂直于底面两条边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体。
其中真命题的个数是( )A.1 B.2 C.3 D.4(2)在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个 C.3个 D.4个(1)A(2)D[(1)①若侧棱不垂直于底面,则底面是矩形的平行六面体不是长方体,错误;②若底面是菱形,则棱长都相等的直四棱柱不是正方体,错误;③若侧棱垂直于底面两条平行边,则侧棱不一定垂直于底面,故侧棱垂直于底面两条边的平行六面体不一定是直平行六面体,错误;④若平行六面体对角线相等,则对角面皆是矩形,于是可得侧棱垂直于底面,因此对角线相等的平行六面体是直平行六面体,正确.(2)如图所示,在长方体ABCDA1B1C1D1中,取四棱锥A1。
ABCD,则此四棱锥的四个侧面都是直角三角形.]ﻬ与空间几何体结构特征有关问题的解答技巧(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.棱台上、下底面面积分别为16,81,有一平行于底面的截面,其面积为36,则截面截得两棱台高的比为( )A.1∶1B.1∶2 C.2∶3D.3∶4C[将棱台还原为棱锥,设顶端小棱锥的高为h,两棱台的高分别为x1,x2,则错误!未定义书签。
错误!未定义书签。
=错误!,解得x1=错误!,错误!错误!=错误!,解得x2=错误!未定义书签。
h. 故错误!未定义书签。
=错误!未定义书签。
]【例2】如图所示的三棱锥O.ABC为长方体的一角.其中OA,OB,OC两两垂直,三个侧面OA B,OAC,OBC的面积分别为1。
5cm2,1 cm2,3 cm2,求三棱锥O.ABC的体积.ﻬ[解]设OA,OB,OC的长依次为x cm,ycm,z cm,则由已知可得错误!未定义书签。
2020版高中数学第1章空间几何体本章方略总结课件新人教A版必修2
![2020版高中数学第1章空间几何体本章方略总结课件新人教A版必修2](https://img.taocdn.com/s3/m/8ff34eaeb90d6c85ed3ac684.png)
类型
表面积相关公式
棱柱 S 全=S 侧+2S 底,其中 S 侧=l 侧棱长·c 直截面周长
体积公式 V=S 底·h
圆柱 S 全=2πr2+2πrh(r:底面半径,h:高)
棱锥
S 全=S 侧+S 底
V=πr2h
V=13S 底·h 高
S 全=πr2+πrl(r:底面半径,l:母线
圆锥 长)
棱台
S 全=S 侧+S 上底+S 下底
(2)中心投影与平行投影的区别与联系: ①中心投影和平行投影都是画空间图形常用的方法.平行投影用于斜二测画法和三 视图.经中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来最像原来 的物体. ②画实际效果图时,一般用中心投影法,画立体几何图形时一般用平行投影法.
Hale Waihona Puke 三、空间几何体的表面积与体积
子
图例
(1)底面是多边形,各侧面均是三 棱锥 角形;(2)各侧面有一个公共顶点. 金字塔
圆锥
(1)底面是圆;(2)是以直角三角形
的一条直角边所在的直线为旋转 泥工用的重
轴,其余两边旋转形成的面所围 成的几何体.
心锤
(1)两底面相互平行;(2)是用一个 棱台 平行于 棱锥 底面 的平 面去 截棱
锥,底面和截面之间的部分.
A.12
B.18
C.24
图3 D.36
【解析】 如图 4,这个几何体是一个长方体(长、宽、高分别为 5,4,3)挖去一个 底面为等腰梯形(上底为 3,下底为 5,高为 3)的四棱柱后得到的,其中四棱柱的底面积 S =(3+52)×3=12,故这个几何体的体积为 5×4×3-12×3=60-36=24.故选 C.
A.158 C.182
2020新课标高考数学讲义:立体几何含解析
![2020新课标高考数学讲义:立体几何含解析](https://img.taocdn.com/s3/m/31a2780ee518964bcf847c86.png)
球
S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).
新人教版高中数学必修第二册《空间几何体》课堂精点练习及答案
![新人教版高中数学必修第二册《空间几何体》课堂精点练习及答案](https://img.taocdn.com/s3/m/1230d400700abb68a882fb2a.png)
高一数学《空间几何体》课堂精点练习一、选择题1.已知球的表面积为36π,则该球的体积为()A.8π3B.16π3C.16πD.36π2.如图,'''A B C△是ABC△的直观图,其中''''A B A C,那么ABC△是()A.等腰三角形B.钝角三角形C.等腰直角三角形D.直角三角形3.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2D.π44.某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是()A.62B.22C.1 D.645.某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()A.1 B 3C2D.126.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为()A .4B .43C .23D .37.将一个直角边长为1的等腰直角三角形绕其一条直角边旋转一周所形成几何体的侧面积为( ) A .4πB .2πC .22πD .2π8.某三棱锥的三视图如图所示,则该三棱锥的体积等于( )A .43B .2C .83D .69.一个几何体的三视图如图所示,该几何体外接球的表面积为( )A .28πB .32πC .36πD .112π310.在长方体1111ABCD A B C D -中,4AB =,3BC =,15AA =,M ,N 分别在线段1AA 和AC 上,2MN =,则三棱锥1C MND -体积的最小值为( ) A .4B .321C .432D .2411.如图是某几何体的三视图,则该几何体的体积为( )A .83B .43C .8D .412.已知正方体、等边圆柱(轴截面是正方形)、球的体积相等,它们的表面积分别为S 正,S 柱,S 球,则( ) A .S S S <<正球柱 B .S S S <<正柱球C .S S S <<正球柱D .S S S <<正球柱二、填空题13.各条棱长均为2的四面体的体积为____.14.已知正三棱柱111ABC A B C -的高为6,4AB =,点D 为棱1BB 的中点,则四棱锥1C A ABD -的表面积是________.15.某几何体的三视图如图所示,则此几何体的体积是__________, 表面积是____________.16.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15AA AC ==,3AB =,4BC =, 则阳马111C ABB A -的外接球的表面积是________.三、解答题17.如图,三棱柱111ABC A B C -内接于一个圆柱,且底面是正三角形,如果圆柱的体积是2π,底面直径与母线长相等. (1)求圆柱的侧面积;(2)求三棱柱111ABC A B C -的体积.【经典集训】18.如图所示,半径为R 的半圆内的阴影部分是以直径AB 所在直线为轴,旋转一周得到的一几何体,求该几何体的表面积和体积.(其中30BAC ∠=︒)19.一几何体按比例绘制的三视图如图所示:(1)试画出它的直观图;(2)求它的表面积和体积.参考答案一、选择题1.D 2.D 3.B 4.A 5.B 6.B 7.B 8.A 9.D 10.A 11.B 12.C 二、填空题 13.1314.2394336++ 15.90,138 16.50πS = 三、解答题17.解:(1)设底面圆的直径为2r ,由题可知2π22πV r r =⋅=圆柱, ∴1r =,∴圆柱的侧面积2π24πS r r =⋅=. (2)因为ABC △为正三角形,底面圆的半径为1, ∴可得边长3AB =,∴三棱柱111ABC A B C -的体积133332222V =⨯⨯⨯=. 18.解:过C 作1CO AB ⊥于点1O ,由已知得90BCA ∠=︒, ∵30BAC ∠=︒,2AB R =,∴3AC R =,BC R =,132CO R =. ∴24πS R =球,12333π22πAO S R R R ⨯⨯==圆锥侧, 1232π3π2BO S R R R =⨯⨯=圆锥侧, ∴112222331134ππππ222AO BO S S S S R R R R =++++=+=几何体表球圆锥侧圆锥侧.又∵34π3V R =球,12211111ππ34AO V AO CO R AO ⋅⋅⋅=⋅=圆锥,12211111ππ·34BO V BO CO R BO =⋅⋅⋅=圆锥,∴()1135π6AO BO V V V V R +==-几何体球圆锥圆锥.19.解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截去一个三棱柱,且该几何体的体积是以1A A ,11A D ,11A B 为棱的长方体的体积的34,在直角梯形11AA B B 中,作11BE A B ⊥于E ,则四边形1AA EB 是正方形,11AA BE ==,在1BEB Rt △中,1BE =,11EB =,所以12BB =所以几何体的表面积11111111112ABCD AA D D A B C D BB C C AA B B S S S S S S +++=+正方形正方形矩形矩形梯形 ()(11212121121722=+⨯+⨯⨯+⨯+=.几何体的体积3312142V =⨯⨯⨯=.所以该几何体的表面积为7232.。
立体几何初步空间几何与点线面二轮复习专题练习(一)含答案人教版高中数学新高考指导
![立体几何初步空间几何与点线面二轮复习专题练习(一)含答案人教版高中数学新高考指导](https://img.taocdn.com/s3/m/9fc812b13186bceb19e8bb70.png)
高中数学专题复习《立体几何初步空间几何与点线面》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是(A )4π (B )8π (C )12π (D )16π(2020年高考四川文) 2.设三棱柱ABC-A 1B 1C 1的体积是V ,P.Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-A PQC 的体积为( )A.V 61 B.V 41 C.V 31 D.V 21 (2020全国3理) 3.对于平面α和共面的直线m 、,n 下列命题中真命题是(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n (2020福建理) 4.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A. 直线B. 椭圆C. 抛物线D. 双曲线(2020重庆理数)(10)5.正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A .23B .33C .23D .63(2020全国I )文 6.如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A .α⊥γ且l ⊥mB .α⊥γ且m ∥βC .m ∥β且l ⊥mD .α∥β且α⊥γ(2020全国文7理5)7.不在同一直线上的五个点,能确定平面的最多个数是---------------------------------------( )(A) 8个 (B) 9个 (C) 10个 (D) 12 8.线a 、b 和平面α,下面推论错误的是 A.b a ⊥⇒⎭⎬⎫⊆⊥ααb a B αα⊥⇒⎭⎬⎫⊥b b // a aC ααα⊆⇒⎭⎬⎫⊥⊥a //a b b a 或D b //a b //a ⇒⎭⎬⎫⊆αα9.正方体的两条对角线相交所成角的正弦值等于------( ) (A)22 (B)13(C)223 (D)101010.如图,已知正方体1111ABCD A B C D -中,点E F 、分别在11AB BC 、上(不与线段的端点重合),且AE BF =。
高中数学 第一章 空间几何体复习 新人教版必修2
![高中数学 第一章 空间几何体复习 新人教版必修2](https://img.taocdn.com/s3/m/a549aa5483d049649a66582c.png)
综合应用
例1、(P36 A10) 直角三角形的三边长分别为3cm、 4cm、5cm,绕三边旋转一周分别形成三个几何体.说明 它们的结构特征,画出其直观图和三视图,并求出它们 的表面积和体积.
35 4
S1 36 V1 16
正视图
侧视图
俯视图
45 3
S2 24 V2 12
正视图
侧视图
俯视图
1、如图所示,甲、乙、丙是三个立体图形的三视图,
A 甲、乙、丙对应的标号正确的是( )
甲
乙
丙
①长方体 ②圆锥 ③三棱锥 ④圆柱
A.④③②
B.②①③
C.①②③
D 2、正方体的内切球和外接球的半径之比为(
D.③②④ )
A. 3 :1
B. 3 : 2
C. 2 : 3
D. 3 : 3
两个共底的正四棱锥
D
A C
B
Q
P
D A
C B
Q
S1800 3cm2
正视图
V9000 2cm3 俯视图
侧视图
正四面体:各面都是等边三角形的三棱锥
S1
S
正(主)视图
A1
C
B1
O
A
D
B
侧(左)视图
S
S1
俯视图呢?
C
C1
3
a
正(主)视图
长a
侧(左)视图
宽
俯视图
注意:不含虚线
例 2、圆锥底面半径为 1cm,高为 2cm ,其中
有一个内接正方体,求这个内接正方体的棱长.
解析:过圆锥的顶点 S 和正方体底面的一条对角线 CD
作圆锥的截面,得圆锥的轴截面 SEF,正方体对角面 CDD1C1 , 如图所示.
2020版高考数学一轮复习 7.1空间几何体精品学案 新人教版
![2020版高考数学一轮复习 7.1空间几何体精品学案 新人教版](https://img.taocdn.com/s3/m/36be732269dc5022aaea00d3.png)
2020版高考数学一轮复习精品学案:第七章立体几何【知识特点】1、本章知识点多,需加强理解,如空间几何体的结构特征,几何体的表面积、体积公式、三视图的特点,平面的基本性质及应用,直线与直线、直线与平面、平面与平面的位置关系的判定及性质,三种空间角的定义,利用空间向量求空间角及距离的方法等;2、空间想象力要求高,复杂几何体的结构,由几何体画三视图,由三视图还原几何体,线面位置关系的讨论判定空间直角坐标系的建立及点的坐标的确定都需要有较强的空间想象能力;3、运算能力要求高,体现在利用空间向量求空间角及距离,还体现在复杂几何体的表面积和体积的计算上;4、本章知识结构思路清晰,首先整体、直观把握几何体的结构特点,再按照点⇒线⇒面的位置关系的判定过程和面⇒线⇒点的性质过程进行两次转化与化归(还介绍了空间向量在立体几何中的应用)。
【重点关注】1、三视图是新增内容,利用考查空间想象能力,是考查的热点;2、与球有关的几何体的结构、表面积及体积计算是常考知识点;3、直线、平面间的位置关系是本章重点,要熟记线面位置关系的判定定理和性质定理,熟悉定理中某一条件不具备时的反例,并注意使用符号要规范,推理逻辑要严谨;4、在空间角和距离的求解和位置关系的判定中,越来越体现空间向量这一工具的巨大作用。
【地位和作用】立体几何主要研究空间的直线、平面和简单几何体及它们的几何性质、位置关系的判定、画法、度量计算以及相关的应用。
以培养学生的发展空间想像能力和推理论证能力。
立体几何是高考必考的内容,试题一般以“两小题一大题或一大题一小题”的形式出现,分值在17—23分左右。
立体几何在高考中的考查难度一般为中等,从解答题来看,立体几何大题所处的为前4道,有承上启下的作用。
现就立体几何的地位与作用归纳如下:一、立体几何两个层次的要求:必修与必选必修:加强几何直观能力识图(有图识图、无图想图)画图(直观图与三视图的转化)降低逻辑推理能力要求(判定与性质)选修:以算代证、向量计算是趋势1、客观题考查知识点:(1) 判断:线线、线面、面面的位置关系;(2) 计算:求角(异面直线所成角、线面角、二面角);求距离(主要是点面距离、球面距离);求表面积、体积;(3) 球内接简单几何体(正方体、长方体、正四面体、正三棱锥、正四棱柱)(4)三视图、直观图(由几何体的三视图作出其直观图,或由几何体的直观图判断其三视图)2、主观题考查知识点:(1) 有关几何体:四棱锥、三棱锥、(直、正)三、四棱柱;(2) 研究的几何结构关系:以线线、线面(尤其是垂直)为主的点线面位置关系;(3) 研究的几何量:二面角、线面角、异面直线所成角、线线距、点面距离、面积、体积。
2020年高考数学一轮复习精品学案(人教版a版)空间几何体
![2020年高考数学一轮复习精品学案(人教版a版)空间几何体](https://img.taocdn.com/s3/m/d9d0d7fceff9aef8951e06e4.png)
2020 年高考数学一轮复习精选教案(人教版 a 版)空间几何体一.【课标要求】1.利用实物模型、运算机软件观看大批空间图形,认识柱、锥、台、球及其简单组合体的结构特色,并能运用这些特色描绘现实生活中简单物体的结构;2.能画出简单空间图形〔长方体、球、圆柱、圆锥、棱柱等的简略组合〕的三视图,能识不上述的三视图所表示的立体模型,会使用资料〔如:纸板〕制作模型,会用斜二侧法画出它们的直观图;3.经过观看用两种方法〔平行投影与中心投影〕画出的视图与直观图,认识空间图形的不一样表示形式;4.达成实习作业,如画出某些建筑的视图与直观图〔在不阻挡图形特色的基础上,尺寸、线条等不作严格要求〕;二.【命题走向】近几年来,立体几何高考命题形式比较牢固,题目难易适中,解答题常常立足于棱柱、棱锥和正方体地点关系的证明和夹角距离的求解,而选择题、填空题又常常研究空间几何体的几何特色和体积表面积。
所以复习时我们要第一掌握好空间几何体的空间结构特色。
培育好空间想能力。
推断 2018 年高考对该讲的斩钉截铁观察力度可能不大,但常常出一些创新式题目,详细推断以下:〔1〕题目多出一些选择、填空题,常常出一些观察空间想象能力的试题;解答题的观察地点关系、夹角距离的载体使空间几何体,我们要想像的出此中的点线面间的地点关系;〔2〕研究立体几何咨询题时要重视多面体的应用,才能觉察隐含条件,利用隐蔽条件解题。
三.【重点精讲】1.柱、锥、台、球的结构特色〔 1〕柱棱柱:同样的,有两个面相互平行,其余各面差不多上四边形,同时每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做棱柱;棱柱中两个相互平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共极点叫做棱柱的极点。
底面是三角形、四边形、五边形的棱柱分不叫做三棱柱、四棱柱、五棱柱圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;不论旋转到什么地点,不垂直于轴的边都叫做圆柱侧面的母线棱柱与圆柱统称为柱体;〔 2〕锥棱锥:同样的有一个面是多边形,其余各面差不多上有一个公共极点的三角形,由这些面所围成的几何体叫做棱锥;那个多边形面叫做棱锥的底面或底;有公共极点的各个三角形面叫做棱锥的侧面;各侧面的公共极点叫做棱锥的极点;相邻侧面的公共边叫做棱锥的侧棱。
人教A版2020届高考数学二轮复习讲义及题型归纳(中档):立体几何第一章 空间直线、平面平行垂直
![人教A版2020届高考数学二轮复习讲义及题型归纳(中档):立体几何第一章 空间直线、平面平行垂直](https://img.taocdn.com/s3/m/60f8b7306c85ec3a86c2c503.png)
第一章空间直线、平面平行垂直一、考纲解读1.要理解空间直线和平面各种位置关系的定义.2.以立体几何的定义,公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定,理解其判定定理与性质定理.二、命题趋势探究有关平行的问题是高考的必考内容,主要分为两大类:一类是空间线面关系的判定和推理;一类是几何量的计算,主要考查学生的空间想象能力,思维能力和解决问题的能力. 平行关系是立体几何中的一种重要位置关系,在高考中,选择题、填空题几乎每年都考,难度一般为中档题,且常常以棱柱、棱锥为背景.(1)高考始终把直线与平面、平面与平面平行的判定与性质作为考查的重点,通常以棱柱、棱锥为背景设计命题.考查的方向是直线与平面、平面与平面的位置关系,结合平面几何有关知识考查.(2)以棱柱、棱锥为依托考查两平行平面的距离,可转化为点面距离,线面距离和两异面直线间的距离问题,通常是算、证结合,考查学生的渗透转化思想.三、知识点精讲(一).直线和平面平行1.定义直线与平面没有公共点,则称此直线l与平面α平行,记作l∥α2.判定方法(文字语言、图形语言、符号语言)(见表8-9)表8-9文字语言图形语言符号语言线∥线⇒线∥面如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行(简记为“线线平行⇒线面平行11l ll llααα⎫⎪⊂⇒⎬⎪⊄⎭∥∥面∥面⇒线∥面如果两个平面平行,那么在一个平面内的所有直线都平行于另一个平面aaαββα⎫⇒⎬⊂⎭∥∥3.性质定理(文字语言、图形语言、符号语言)(见表8-10)表8-10文字语言图形语言符号语言线∥面⇒线∥线如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ll l llαβαβ⎫⎪'⊂⇒⎬⎪'=⎭∥∥(二).两个平面平行1.定义没有公共点的两个平面叫作平行平面,用符号表示为:对于平面α和β,若αβφ=,则α∥β2.判定方法(文字语言、图形语言、符号语言)(见表8-11)表8-11文字语言图形语言符号语言判定定理线∥面⇒面∥面如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行(简记为“线面平行⇒面面平行,,a b a b Pαα⊂⊂=a bββαβ⇒∥,∥∥线⊥面⇒面∥面如果两个平面同垂直于一条直线,那么这两个平面平行llααβ⊥⎫⇒⎬⊥⎭∥β3.性质定理(文字语言、图形语言、符号语言)(见表8-12)表8-12文字语言图形语言符号语言面//面⇒线//面如果两个平面平行,那么在一个平面中的所有直线都平行于另外一个平面////aaαββα⎫⇒⎬⊂⎭性质定理如果两个平行平面同时和第三个平面相交,那么他们的交线平行(简记为“面面平行⇒////.a a bbαβαγβγ⎫⎪=⇒⎬⎪=⎭线面平行”)面//面⇒线⊥面如果两个平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线//llαββα⎫⇒⊥⎬⊥⎭(三).线面垂直1.定义:如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.2.判定定理(文字语言、图形语言、符号语言)(见表1)表1文字语言图形语言符号语言判断定理一条直线与一个平面内的,a ba llb la b Pαα⊂⎫⎪⊥⎪⇒⊥⎬⊥⎪⎪=⎭两条相交直线都垂直,则该直线与此平面垂直βα_b_a_a βα_ab_3.性质定理(文字语言、图形语言、符号语言)(见表2)表2文字语言图形语言符号语言_ab_文字语言图形语言符号语言_a βα线垂直于面的性质如果一条直线垂直于一个平面,则该直线与平面内所有直线都垂直,l a l aαα⊥⊂⇒⊥(四).斜线在平面内的射影 1.斜线的定义一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和这个平面的交点叫做斜足. 2.射影的定义过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.3.直线与平面所成的角平面内的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.特别地,一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是的角,故直线与平面所成的角的范围是.如图8-122所示,是平面的斜线,为斜足;是平面的垂线,为垂足;是在平面的射影,的大小即为直线与平面所成的角的大小.00,2π⎡⎤⎢⎥⎣⎦PA αA PO αO AO PA αPAO ∠PAα(五).平面与平面垂直 1.二面角的定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面;如图8-123所示,在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角,二面角的范围是.平面角是直角的二面角叫做直二面角.2.平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直.(如图8-124所示,若,,且,,,则)l αβ--l O O αβl OA OB OA OB AOB ∠[]0,πCD αβ=CD γ⊥AB αγ=BE βγ=AB BE ⊥αβ⊥一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.3.判定定理(文字语言、图形语言、符号语言)文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直αβα⊥⇒⎭⎬⎫⊂⊥bbβα_b4.性质定理(文字语言、图形语言、符号语言)文字语言图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直ββαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥babba βα_b_a四、思路小结(一).线线平行、线面平行、面面平行的转换如图0所示.性质性质性质判定判定判定线∥面线∥线面∥面图0(1) 证明直线与平面平行的常用方法:①利用定义,证明直线a 与平面α没有公共点,一般结合反证法证明;②利用线面平行的判定定理,即线线平行⇒线面平行.辅助线的作法为:平面外直线的端点进平面,同向进面,得平行四边形的对边,不同向进面,延长交于一点得平行于第三边的线段;③利用面面平行的性质定理,把面面平行转化成线面平行; (2) 证明面面平行的常用方法:①利用面面平行的定义,此法一般与反证法结合; ②利用面面平行的判定定理; ③利用两个平面垂直于同一条直线; ④证明两个平面同时平行于第三个平面.(3) 证明线线平行的常用方法:○1利用直线和平面平行的判定定理;○2利用平行公理; (二).证明空间中直线、平面的垂直关系线线线面面面 (1)证明线线垂直的方法 ①等腰三角形底边上的中线是高; ②勾股定理逆定理; ③菱形对角线互相垂直; ④直径所对的圆周角是直角; ⑤向量的数量积为零;⑥线面垂直的性质();⊥−−−−→←−−−−判定定理性质定理⊥−−−−→←−−−−判定定理性质定理⊥,a b a b αα⊥⊂⇒⊥⑦平行线垂直直线的传递性(∥). (2)证明线面垂直的方法 ①线面垂直的定义;②线面垂直的判定(); ③面面垂直的性质();平行线垂直平面的传递性(∥); ⑤面面垂直的性质().(3)证明面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理().,a c a ⊥b b c ⇒⊥,,,,a b a c c b b c P a ααα⊥⊥⊂⊂=⇒⊥,,,b a b a a αβαβαβ⊥=⊥⊂⇒⊥,a b α⊥a b α⇒⊥,,l l αγβγαβγ⊥⊥=⇒⊥,a a βααβ⊥⊂⇒⊥性质性质性质性质性质 判定判定 判定 判定 判定 线∥面 线∥线面∥面线⊥面 线⊥线面⊥面图 3空间中的线面平行、垂直的位置关系结构图如图3所示,由图可知,线面垂直在所有关系中处于核心位置. 五、解答题题型总结核心考点一:平行证明【例1】已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 为侧棱PC 上的两个三等分点,如图所示.求证://AN MBD 平面.原图:连结AC 交BD 于O ,连结OM ,∵底面ABCD 为矩形,∴O 为AC 的中点, ∵M N 、为侧棱PC 的三等分点, ∴CM MN =,∴//OM AN ,∵OM ⊂平面MBD ,AN ⊄平面MBD , ∴AN ∥平面MBD .【例2】已知直四棱柱1111ABCD A B C D -,F 为棱1BB 的中点,M 为体对角线1AC 的中点. 求证:直线MF ∥平面ABCD .ABC D MN PPN MD CBAO原图:【解析】法一:延长1C F 交CB 的延长线于点N ,连接AN .因为F 是1BB 的中点,所以F 为1C N 的中点,B 为CN 的中点. 又M 是线段1AC 的中点,故MF AN ∥. 又MF ⊄平面ABCD ,AN ⊂平面ABCD . ∴MF ∥平面ABCD .法二:(可将图形调整一下,看得会更明显) 连结1B D ,BD ,由11AD B C ∥,11AD B C =,∴点M 平分线段1B D ,又点F 平分线段1B B ,∴MF BD ∥. 又BD ⊂面ABCD ,MF ⊄面ABCD , ∴直线MF ∥平面ABCD .【例3】长方体1111ABCD A B C D -中,点1P BB ∈(异于B 、1B ),1P A B A M =,1PC BC N =,求证:MN ∥平面ABCD . 【解析】 法一: ∵1PBM AA M △∽△,∴1PM PBMA AA =. ∵1PBN CC N △∽△,∴1PN PBNC CC =D 1A 1B 1C 1M ABC DF NFMD 1C 1B 1A 1DC BAFMD 1C 1B 1A 1D CBAABCD A 1B 1C 1D 1O又∵11CC AA =,∴PM PNMA NC=,∴AC MN ∥, 又MN ⊄面ABCD ,AC ⊂面ABCD , ∴MN ∥面ABCD . 法二:可利用直线与平面的性质定理证明. 连结AC 、11A C ,长方体中AC ∥面11A C B ,AC ⊂面ACP ,又1A B PA M =,1PC BC N =, ∴面ACP面11A C B MN =,∴AC MN ∥,又MN ⊄面ABCD ,AC ⊂面ABCD , ∴MN ∥面ABCD .核心考点二:垂直证明【例1】如图,已知平行六面体1111ABCD A B C D -的底面是菱形, 且1160A AB A AD ∠=∠=︒,求证:1CC BD ⊥.原图:∵底面ABCD 是菱形,∴BD AC ⊥DC BAD 1C 1B 1A 1NM P A 1D 1C 1B 1B CDAQP A BCDMN 连结BD ,AC 交于点O ,连结1A B ,1A D ∵1160A AB A AD ∠=∠=︒,由11A AD A AB △≌△可知, ∴1A BD △为等腰三角形,又BO OD =,∴1AO BD ⊥.又1AC AO O =, ∴BD ⊥面1A AO ,又11AA CC ∥,且1CC ⊂面1A AO , ∴1CC BD ⊥.【例2】在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,M 、N 分别为PC 、AB 的中点.若45PDA ∠=︒,求证:MN ⊥面PCD .【追问】设2AB AD =,则PC ⊥面DMN .原图:法一:取PD 中点Q ,连结AQ ,MQ ,则12MQ CD ∥; ∴MQ NA ∥,∴ANMQ 是平行四边形;∵PA ⊥底面ABCD ,且CD ⊂面ABCD ,∴CD PA ⊥;又由底面是矩形有CD AD ⊥,∴CD ⊥面PAD ; 又AQ ⊂面PAD ,∴AQ CD ⊥;又∵45PDA ∠=︒,∴APD △是等腰直角三角形;NMDCBA PRPABCD MN又PQ QD =,∴AQ PD ⊥; 又CD PD D =,AQ ⊥面PCD ; 又MN AQ ∥,∴MN ⊥面PCD . 法二:先完全仿照法一可证明CD ⊥面PAD ; 取CD 中点R ,连接MR 、NR 、PN 、NC ; 则MR PD ∥,NR AD ∥,∴面MRN ∥面PDA ; ∴CD ⊥面MRN ,∴MN CD ⊥; ∵45PDA ∠=︒,∴PA AD =, 又BC AD =,∴PA BC =,又AN BN =,且90PAN CBN ∠=∠=︒, ∴根据三角形全等可知PN NC =; 又PM MC =,∴MN PC ⊥; ∵CD PC C =,∴MN ⊥面PCD . 【追问】∵45PDA ∠=︒,PA AD ⊥,∴2PD AD =又2AB AD =,∴PD AB CD ==,即PCD △是等腰三角形. ∵M 是PC 的中点,∴DM PC ⊥.由例题知MN PC ⊥,结合MN DM M =,得PC ⊥面DMN .【例3】(2018江苏,15)在平行六面体ABCD-A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ;(2)平面ABB1A1⊥平面A1BC.证明(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【例4】如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°, BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解因为BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.在Rt△BFD中,BF=,DF=,得cos∠BDF=,所以,直线BD与平面ACFD所成角的余弦值为.【例5】由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.【例6】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,且PO=6,M为PD的中点.(1)证明:AD⊥平面P AC;(2)求直线AM与平面ABCD所成角的正切值.(1)证明∵PO⊥平面ABCD,且AD⊂平面ABCD,∴PO⊥AD.∵∠ADC=45°,且AD=AC=2,∴∠ACD=45°,∴∠DAC=90°,∴AD⊥AC.∵AC⊂平面P AC,PO⊂平面P AC,且AC∩PO=O,∴AD⊥平面P AC.(2)解取DO的中点N,连接MN,AN,由PO⊥平面ABCD,得MN⊥平面ABCD,∴∠MAN是直线AM与平面ABCD所成的角.∵M为PD的中点,∴MN∥PO,且MN=PO=3,AN=DO=.在Rt△ANM中,tan∠MAN=,即直线AM与平面ABCD所成角的正切值为.【例7】如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.求证:(1)PE⊥BC;(2)平面P AB⊥平面PCD;(3)EF∥平面PCD.证明(1)∵P A=PD,且E为AD的中点,∴PE⊥AD.∵底面ABCD为矩形,∴BC∥AD,∴PE⊥BC.(2)∵底面ABCD为矩形,∴AB⊥AD.∵平面P AD⊥平面ABCD,∴AB⊥平面P AD.∴AB⊥PD.又P A⊥PD,P A∩AB=A,∴PD⊥平面P AB.∵PD⊂平面PCD,∴平面P AB⊥平面PCD.(3)如图,取PC的中点G,连接FG,GD.∵F,G分别为PB和PC的中点,∴FG∥BC,且FG=BC.∵四边形ABCD为矩形,且E为AD的中点,∴ED∥BC,ED=BC,∴ED∥FG,且ED=FG,∴四边形EFGD为平行四边形,∴EF∥GD.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.【例8】如图,在三棱锥P-ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面P AC;(2)平面ABN⊥平面PMC.3.证明(1)在△ABN中,M是AB的中点,D是BN的中点,所以MD∥AN.又因为AN⊂平面P AC,MD⊄平面P AC,所以MD∥平面P AC.(2)在△ABC中,CA=CB,M是AB的中点,所以AB⊥MC.又因为AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,所以AB⊥平面PMC.又因为AB⊂平面ABN,所以平面ABN⊥平面PMC.。
高中数学必修2(人教a版)第一章几何空间体1.1知识点总结含同步练习及答案
![高中数学必修2(人教a版)第一章几何空间体1.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/eae21c96af1ffc4fff47acd2.png)
高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征组合体展开图截面分析三、知识讲解1.典型空间几何体描述:空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.例题:用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.2.空间几何体的结构特征描述:多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱ABCDEF − A′ B′ C ′ D′ E′ F ′或棱柱A′ D.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥S−ABCD或者棱锥S−AC.棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母O表示.例题:下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱ABCD − A1 B1 C1 D1,令四边形ABCD 是梯形,可知面ABB1A1∥面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥解:D ABCDEF OA = OB =⋯= AB S − ABCDEF如下图,正六边形中,,那么正六棱锥中,SA>OA=AB,即侧棱长大于底面边长.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除如图所示的几何体中,是台体的是()A.①②B.①③C.③D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有()A.1个B.2个C.3个D.4个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.3.组合体描述:简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.----完整版学习资料分享----。
2020年高考数学立体几何专题复习(后附答案)
![2020年高考数学立体几何专题复习(后附答案)](https://img.taocdn.com/s3/m/8e57ff2d5f0e7cd184253685.png)
2020年高考数学立体几何专题复习(后附答案)教学目的1. 复习《立体几何初步》的相关知识及基本应用2. 掌握典型题型及其处理方法教学重点、难点《立体几何初步》的知识梳理和题型归类以及重点题型的处理方法知识分析1. 多面体的结构特征对于多面体的结构要从其反应的几何体的本质去把握,棱柱、棱锥、棱台是不同的多面体,但它们也有联系,棱柱可以看成是上、下底面全等的棱台;棱锥又可以看作是一底面缩为一点的棱台,因此它们的侧面积和体积公式可分别统一为一个公式。
2. 旋转体的结构特征旋转体是一个平面封闭图形绕一个轴旋转生成的,一定要弄清圆柱、圆锥、圆台、球分别是由哪一种平面图形旋转生成的,从而可掌握旋转体中各元素的关系,也就掌握了它们各自的性质。
3. 表面积与体积的计算有关柱、锥、台、球的面积和体积的计算,应以公式法为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素。
4. 三视图与直观图的画法三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化。
5. 线线平行的判定方法(1)定义:同一平面内没有公共点的两条直线是平行直线; (2)公理4:a b b c a c //////,,⇒; (3)平面几何中判定两直线平行的方法;(4)线面平行的性质:a a b a b ////αβαβ,,⊂=⇒ ; (5)线面垂直的性质:a b a b ⊥⊥⇒αα,//;(6)面面平行的性质:αβαγβγ////,, ==a a b 。
6. 直线和平面平行的判定方法 (1)定义:a a αα=∅⇒//;(2)判定定理:a b a b a ////,,⊄⊂⇒ααα; (3)线面垂直的性质:b a b a a ⊥⊥⊄,,,ααα//;(4)面面平行的性质:αβαβ////,a a ⊂⇒。
7. 判定两个平面平行的方法 (1)依定义采用反证法; (2)利用判定定理:αββαααβ//////,,,,b a b a b A ⊂⊂=⇒ ; (3)垂直于同一条直线的两个平面平行; a a ⊥⊥⇒αβαβ,//;(4)平行于同一平面的两个平面平行;αγβγαβ////,/⇒/。
2020高中数学 专题01 空间几何体专题复习考点精准剖析与创新训练 新人教A版必修2
![2020高中数学 专题01 空间几何体专题复习考点精准剖析与创新训练 新人教A版必修2](https://img.taocdn.com/s3/m/8dffde74f61fb7360b4c65bc.png)
专题01 空间几何体专题本重点包括柱、锥、台、球的概念、性质、表面积与体积,直观图与三视图,这些是立体几何的基础,也是研究空间问题的基本载体,所以是高考考查的热点。
知识框架1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积一、考查形式与特点1、本章内容多以客观题出现,考查基本知识,对空间几何体的特征与性质的理解,三视图和直观图,几何体表面积与体积的计算等。
三视图考查特点:一是给出空间图形,选择其三视图;二是已知其中两种三视图,画出另外一种视图;三是三视图与面积体积计算结合在一起考查。
2、球体在近几年的高考中出现频率较高,特别是棱柱、棱锥中球的内切、外接问题,在复习时更要注意多练习相关的题目。
对球中的体积、表面积、球面距离等问题也要进行重点掌握。
3、培养与发展考生的空间想象能力、推理证明能力、运用图形语言进行交流的能力。
考查空间想象能力及空间模型的构造能力。
二、方法策略1、“化整为零”是本章的基本思想。
将一个复杂的几何体分割成若干个常见的熟悉的几何体,或者把几个简单的几何体组合成一个新的几何体,目的在于化繁为简,寻求解题的捷径。
立体几何和平面几何有着密切的联系,空间图形的局部性往往可以透过平面图形的性质去研究,利用截面可以把锥体中的元素关系转化为三角形中的元素关系。
2、“以直代曲”的思想方法即通过空间图形的展开将立体几何问题转化为平面几何问题,曲面问题转化为平面问题,如在推导圆柱、圆锥、圆台的侧面积公式时,就是将其侧面展开,转化为长方形、扇形、圆环来解决。
3、三视图之间的投影规律为:正、俯视图――长对正;正、侧视图――高平齐;俯、侧视图――宽相等。
三视图是新增内容,是高考考查重点,它能极大培养学生的空间想象能力与感知能力,熟悉常见简单几何体三视图在数量上的关系,善于将三视图中的数量关系与原几何体的数量关系联系起来,进行相关的计算。
4、球的表面积与体积的计算的关键是求出球的半径,然后再利用表面积公式及体积公式求解.球的表面积与体积问题常置于多面体的组合体中,解答时要充分利用切、接点正确作出过球心截面,从而使空间问题转化为平面问题,再利用球的半径与多面体的元素的关系求解.特别要注意的题型是球与长方体、正方体的组合体.5、解决问题的重要手段:截、展、拆、拼(1)“截”是指截面,平行于柱、锥、台底面的截面,旋转体的轴截面是帮助我们解题的有力“工具”。
2019-2020学年度第二学期高一数学第一章---空间几何体知识点归纳及基础练习(教师)定稿
![2019-2020学年度第二学期高一数学第一章---空间几何体知识点归纳及基础练习(教师)定稿](https://img.taocdn.com/s3/m/ff18a8710029bd64793e2c9b.png)
第一章空间几何体一、知识点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.4.2相关概念:面:围成多面体的各个多边形。
棱:相邻两个面的公共边。
顶点:棱与棱的公共点。
轴:形成旋转体所绕的定直线。
5、柱体、锥体、球体、台体的结构特征名称棱柱棱锥棱台多面体图形名称圆柱圆锥圆台球旋转体图形(二)、三视图(重点)1、空间几何体的三视图三视图定义正视图光线从几何体的前面向后面正投影,得到的投影图,叫做几何体的正视图.侧视图光线从几何体的左面向右面正投影,得到的投影图,叫做几何体的侧视图.俯视图光线从几何体的上面向下面正投影,得到的投影图,叫做几何体的俯视图.2、三视图间的关系(长对正,高平齐,宽相等)一个几何体的侧视图和正视图高度一样,俯视图和正视图的长度一样,侧视图和俯视图宽度一样.3、三视图的排列规则:正视图在左,侧视图在右,俯视图在正视图的正下方。
4、三种视图都相同的几何体有_______、_______.5、有两种视图相同的几何体有_______、______3、根据三视图,填写几何体的名称.(1) __________ (2) __________ (3) __________(4) __________ (5) __________ (6) __________(三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)2、空间几何体的体积 ①柱体的体积V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=222r rl Sππ+=二、巩固练习:1.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( B ) A.2倍 B.42倍 C.22倍 D.21倍2.已知三个球的体积之比为1:8:27,则它们的表面积之比为( B )A .1:2:3B .1:4:9C .2:3:4D .1:8:273.有一个几何体的正视、侧视、俯视图分别如图所示,则该几何体的表面积为 ( B )A .π12B .π24C .π36D .π484.如右图所示,一个空间几何体的主视图和左视图都是边长为1的 正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( C ) A .π3 B .π2 C .π23D .π4 5.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( B )A .25πB .50πC .125πD .都不对6.三角形ABC 中,AB=32,BC=4,︒=∠120ABC ,现将三角形ABC 绕BC 旋转一周,所得简单组合体的体积为( C ) A .π4 B.π)34(3+ C.12π D.π)34(+7.下图是一个几何体的三视图, 根据图中的数据,计算该几何体的表面积为( D )A.15πB.18πC.22πD.33π8.某四棱锥的三视图如图所示,该四棱锥的表面积是( B )A .32B .16162+C .48D .16322+9.设正方体的棱长为233,则它的外接球的表面积为( C ) 656 5 侧(左)视图俯视图4 4正(主)视图 2 12题主视图俯视图左视图A .π38B .2πC .4πD .π3410.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 ( D ) A .π7 B .π14 C .π21 D .π28 11.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成 的几何体的体积为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 空间几何体专题本重点包括柱、锥、台、球的概念、性质、表面积与体积,直观图与三视图,这些是立体几何的基础,也是研究空间问题的基本载体,所以是高考考查的热点。
知识框架1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积一、考查形式与特点1、本章内容多以客观题出现,考查基本知识,对空间几何体的特征与性质的理解,三视图和直观图,几何体表面积与体积的计算等。
三视图考查特点:一是给出空间图形,选择其三视图;二是已知其中两种三视图,画出另外一种视图;三是三视图与面积体积计算结合在一起考查。
2、球体在近几年的高考中出现频率较高,特别是棱柱、棱锥中球的内切、外接问题,在复习时更要注意多练习相关的题目。
对球中的体积、表面积、球面距离等问题也要进行重点掌握。
3、培养与发展考生的空间想象能力、推理证明能力、运用图形语言进行交流的能力。
考查空间想象能力及空间模型的构造能力。
二、方法策略1、“化整为零”是本章的基本思想。
将一个复杂的几何体分割成若干个常见的熟悉的几何体,或者把几个简单的几何体组合成一个新的几何体,目的在于化繁为简,寻求解题的捷径。
立体几何和平面几何有着密切的联系,空间图形的局部性往往可以透过平面图形的性质去研究,利用截面可以把锥体中的元素关系转化为三角形中的元素关系。
2、“以直代曲”的思想方法即通过空间图形的展开将立体几何问题转化为平面几何问题,曲面问题转化为平面问题,如在推导圆柱、圆锥、圆台的侧面积公式时,就是将其侧面展开,转化为长方形、扇形、圆环来解决。
3、三视图之间的投影规律为:正、俯视图――长对正;正、侧视图――高平齐;俯、侧视图――宽相等。
三视图是新增内容,是高考考查重点,它能极大培养学生的空间想象能力与感知能力,熟悉常见简单几何体三视图在数量上的关系,善于将三视图中的数量关系与原几何体的数量关系联系起来,进行相关的计算。
4、球的表面积与体积的计算的关键是求出球的半径,然后再利用表面积公式及体积公式求解.球的表面积与体积问题常置于多面体的组合体中,解答时要充分利用切、接点正确作出过球心截面,从而使空间问题转化为平面问题,再利用球的半径与多面体的元素的关系求解.特别要注意的题型是球与长方体、正方体的组合体.5、解决问题的重要手段:截、展、拆、拼(1)“截”是指截面,平行于柱、锥、台底面的截面,旋转体的轴截面是帮助我们解题的有力“工具”。
(2)“展”指的是侧面或某些面的展开图。
(3)“拆”指的是将一个几何体拆成几个几何体,比如,探求三棱锥的体积公式还有一种方法是将一个三棱柱拆成三个等体积的三棱锥。
(4)“拼”指的是将小几何体嵌入一个大几何体中去,比如,求三棱锥体积公式,既可用上面“拆”的方法,也可用“拼”的方法。
三.复习指导1、在正棱锥、台体中,要利用直角三角形(高、斜高及底面边心距组成一个直角三角形、高、侧棱于底面外接圆的半径组成一个直角三角形,底面的边心距、外接圆半径及底边一半组成一个直角三角形,侧棱、斜高与底面一半组成一个直角三角形),进行有关计算。
2、解与直观图有关的问题时,应熟练掌握斜二侧画法的规则,关键是确定直观图的顶点或其他关键点,因此,尽量把定点或其他关键点放在轴上或与轴平行的直线上。
3、求柱、锥、台的体积时,根据体积公式,需要具备已知底面积和高两个重要条件,底面积一般可由底面边长或半径求出,但当高不知道时,求高比较困难,一般要转化为平面几何知识求出高。
4、在复习中应注意对简单组合体的概念、性质以及面积、体积公式的理解和运用,在面积与体积的计算中,应以棱锥和不规则几何体的表面积、体积计算为主,注意分割与补体等思想方法的灵活运用,5、加强数学思想方法的训练。
转化、化归思想贯穿立体几何始终,是处理立体几何问题的基本数学思想,在复习中考生应注意培养化归、转化意识,掌握常见的化归、转化方法。
如:等积转化,立体几何问题向平面问题转化等,复习本章时还要注意加强阅读能力、理解能力的训练。
另外还要注意识图、理解图、应用图的能力的长期培养,做题时多画、多看、多想,在训练中,还应变换图形的位置角度,克服“标准图”带来的思维定势,真正树立空间观念。
典例剖析1.三视图与直观图例1、已知某线段的正视图、俯视图、侧视图对应线段长度分别为2,4,4,试求此线段的长度。
【分析】能正确画出对应线段的三视图是解决此题的关键。
【点评】能够把三视图的投影面移到对应的空间几何体上是画三视图的一种有效方法。
例2.如图是一个几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()Aπ334 B π63 Cπ21D π33 【答案】B【点评】本题考查了三视图的知识,解决本题的关键是由三视图明确是怎样的一个几何体,同时要熟记圆锥的体积公式。
2.几何体表面积、体积的计算例3三棱柱111C B A ABC -中,若E 、F 分别为AB 、AC 的中点,平面11C EB 将三棱柱分成体积为21,V V 的两部分,那么21:V V =________.【答案】7:5【解析】设三棱柱的高为h ,上下底的面积为S ,体积为V , 则Sh V V V =+=21,因为E 、F 分别为AB 、AC 的中点, 所以Sh S S S S h V S S AEF 127)4141(31,411=⋅++=∆=,Sh V Sh V 12512=-=,所以21:V V =7:5. 【点评】解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系,最后用统一的量建立比值得到结论即可.例4.如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm 和半径为3cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm ,当这个几何体如图(3)水平放置时,液面高度为28cm ,则这个简单几何体的总高度为( ) ( ) A .29cm B .30cm C .32cm D .48cm【分析】求解本题抓住解题关键:无论如何放置,水的体积是不变的。
根据这点结合体积公式就可以求解。
【答案】A3.考查空间几何体与线、面关系得交汇例5:两个相同的正四棱锥底面重合组成一个八面体,可放于棱长为1的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,把满足上述条件的八面体称为正方体的“正子体”. (1)若正子体的六个顶点分别是正方体各面的中心,求异面直线DE 与CF 所成的角;(2)问此正子体的体积V 是否为定值?若是,求出该定值;若不是,求出体积大小的取值范围.【解题思路】求异面直线所成角一般通过平移转化为平面角解决,或利用向量法也是求解这类问题的重要方法,可以使问题转化为代数运算解决。
第二问通过设出边长,可以列出关于体积的目标函数,最终转化为二次函数来解决。
21)21(2)1(2222+-=-+=x x x AD 故]1,21[2∈=AD S ABCD]31,61[3122131231∈=⋅⋅⋅=⋅⋅⋅=ABCD ABCD ABCD S S h S V【点评】本题考查了组合问题,这类问题一般涉及两类几何体组合在一起,由于组合体能考查学生更多的几何体知识,能够更好考查空间想象能力,符合大纲能力要求的“空间考查能力”,组合体已成为近几年高考命题的新热点。
需要抓住组合体之间的联系,把空间问题转化为平面问题解决是处理空间几何问题常见的方法。
【创新题求解方法】一.公式法例1(2018•新课标Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12π C.82πD.10π【分析】利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.【答案】B【点评】本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,解决本题的关键是求得圆柱的底面半径和高。
再利用公式求得表面积。
二.等体积法等积变换法:①相同的几何体的体积相等:同一个几何体可以用不同的面做底(注意:三棱锥的任一个面可作为三棱锥的底面);液状物体的形状改变体积不变(比如:水在容器中形状可以多变),②等底面积等高的两个同类几何体的体积相等,体积相等的两个几何体叫做等积体。
例2(2018•南京建邺区一模)如图,直三棱柱ABC﹣A1B1C1的各条棱长均为2,D为棱B1C1上任意一点,则三棱锥D﹣A1BC的体积是.【分析】由已知可得三棱柱ABC ﹣A 1B 1C 1为正三棱柱,分别求出三角形BCD 的面积及A 1 到平面BCC 1B 1的距离,再由等积法得答案.【答案】233【解析】如图,由题意可知,三棱柱ABC ﹣A 1B 1C 1为正三棱柱. 如图,D 为棱B 1C 1上任意一点,则1222,2BCD S =⨯⨯=V . A 1 到平面BCC 1B 1 的距离d=3.∴11123233D A BC A BCD V V --==⨯⨯=. 故答案为:23. 【点评】本题考查棱柱的结构特征,考查利用等积法求多面体的体积,本题就是根据变换底面和高来证明相关的等量关系的.在三棱锥中,用换底面(同时也换高)的方法,常常能把复杂问题简单化、直观化. 三割补法例3(2018•安徽模拟)如图1所示是一种生活中常见的容器,其结构如图2,其中ABCD 是矩形,ABFE 和CDEF 都是等腰梯形,且AD ⊥平面CDEF ,现测得AB=20cm ,AD=15cm ,EF=30cm ,AB 与EF 间的距离为25cm ,则几何体EF ﹣ABCD 的体积为 cm 3.【分析】所求几何体是非规则几何体,把几何体的体积分解为三棱锥A ﹣DCE ,A ﹣EFC 与B ﹣AFC 的体积,然后利用等积法求解.【答案】3500∴几何体EF﹣ABCD的体积为V EF﹣ABCD=V A﹣DCE+V A﹣EFC+V B﹣AFC=1000+1500+1000=3500cm3.故答案为:3500.【点评】本题考查利用等积法求多面体的体积,考查割补法在求解不规则几何体中的巧妙运用。
四构造法例4如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC 向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()A.327B6C6D6【答案】C【点评】通过构造长方体或正方体,使得分散问题集中在一个特殊的空间几何体中,使得所求问题直观化、简单化。
【创新测试题】 一.选择题1.将边长是2的正方形以其一边所在直线为旋转轴绕转一周,所得几何体的侧面积( ). A. 2π B. 8π C. 4π D. 6π 【答案】B【解析】边长是2的正方形,绕其一边旋转一周得到的几何体是圆柱,则所得几何体的侧面积是2228.ππ⨯⨯=2.一个球的表面积是16π,那么这个球的体积为( ) A.316π B. 332πC. π16D. π24 【答案】B【解析】一个球的表面积是16π,所以球的半径为:2;那么这个球的体积为:=⨯3234π332π。