(完整版)小学五年级奥数:牛吃草问题(题目+答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
精心整理
牛吃草问题
例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?
设每头牛每周吃草一份,
100头牛3周吃的草:100×3=300(份)
50头牛8周吃的草:50×8=400(份)
草的生长速度:(400-300)÷(8-3)=20(份)
原有牧草的份数:100×3-3×20=240(份)
(240+20×2)÷2=140(头)
① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.
17头牛30天吃的草:17×30=510(份)
19头牛24天吃的草:19×24=456(份)
每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)
8天可吃草数:240+8×9=312(份)
设卖牛前有x 头:
6x+2(x-4)=312
x=40
② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?
设一头牛一天吃一份草.
9头牛12天吃的草:9×128头牛)=5(份)
从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)
开始的44×12=48(份)
(头)
③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.
每天新长的草量:(8×20-14×10)÷(20-10)=2(份)
原有的草量:8×20-2×20=120(份)
若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)
羊的只数:120÷6=20(只)
④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?
青草的生长速度:(17×30-19×24)÷(30-24)=9(份)
精心整理
精心整理
原有的草的份数:17×30-9×30=240(份)
让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16
头牛吃6天,那么,可供11头牛吃几天?
每天草减少的量:(20×5-16×6)÷(6-5)=4(份)
牧场上原有的草:(20+4)×5=120(份)
可供11头牛吃:120÷(11+4)=8(天)
⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12
头牛吃7天,那么可供6头牛吃几天?
每天草减少的量:(20×5-12×7)÷(7-5)=8(份)
牧场上原有的草:(20+8)×5=140(份)
可供6头牛吃:140÷(6+8)=10(天)
⑦牧场上的一片牧草,可供24头牛吃6,那么
可以供19头牛吃几周?
每周新生草量:(18×10-24×6)÷(10-6)
原来有草:24×6-9×6=90(份)
设19头牛吃完这片牧草用了x周:
19x=90+9x
X=9。

相关文档
最新文档