高等数学第七章重积分第九章 重积分

合集下载

重积分的积分性质和计算规则

重积分的积分性质和计算规则

重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。

与单积分类似,重积分也有其特定的积分性质和计算规则。

本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。

一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。

3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。

2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。

在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。

3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。

高等数学-重积分PPT课件

高等数学-重积分PPT课件

重积分的性质
线性性质
若α、β为常数,则∫[αf+βg]=α∫f+β∫g。
积分区域的可加性
若D1、D2是两个不相交的区域,则∫[D1∪D2]f=∫[D1]f+∫[D2]f。
保序性
若在D上,f(x,y)≤g(x,y),则∫[D]f≤∫[D]g。
绝对可积性
若f在D上可积,则|f|在D上也可积,且|∫[D]f|≤∫[D]|f|。
课件内容与结构
课件内容
本课件主要介绍重积分的基本概念、性质、计算方法和应用实例,包括二重积分和三重积分的定义、性质、计算 方法和应用等。
课件结构
课件按照“概念引入-性质探讨-计算方法-应用实例”的逻辑顺序进行编排,层次分明,条理清晰,便于学生理解 和掌握。
02
重积分的定义与性质
重积分的定义
二重积分的定义
计算消费者剩余和生产者剩余
02 重积分可用于计算消费者剩余和生产者剩余,通过对
需求函数和供给函数进行积分得到。
计算社会福利
03
重积分可用于计算社会福利,通过对消费者剩余和生
产者剩余进行加总得到。
06
重积分的数值计算方法
矩形法则与梯形法则
矩形法则
将积分区间划分为若干个小矩形,每个小矩形的面积近似等于其底边长度与高的乘积,将所有小矩形 的面积相加得到积分的近似值。
计算转动惯量
重积分可用于计算物体绕某轴的 转动惯量,通过对物体质量分布 和到轴距离的平方进行积分得到。
计算引力
重积分可用于计算两个物体之间 的引力,通过对两物体间的质量 分布和距离进行积分得到。
在工程学中的应用
计算面积和体积
重积分可用于计算平面图形或立体图形的面积和体积,通过对图形 的边界函数进行积分得到。

高等数学系列教材目录表

高等数学系列教材目录表

高等数学系列教材目录表第一章:极限与连续1.1 极限的概念1.2 极限的运算法则1.3 无穷小与无穷大1.4 一元函数的连续性第二章:函数的导数与微分2.1 导数的定义2.2 导数的基本运算法则2.3 高阶导数与高阶微分2.4 隐函数与参数方程求导第三章:一元函数的微分学应用3.1 最值与最值存在条件3.2 凹凸性与拐点3.3 曲线的渐近线3.4 微分中值定理与Taylor公式第四章:不定积分4.1 不定积分的概念4.2 基本积分表与换元法4.3 分部积分与定积分的计算4.4 函数积分的性质第五章:定积分5.1 定积分的概念5.2 定积分的计算方法5.3 反常积分5.4 定积分的应用第六章:微分方程6.1 常微分方程的基本概念6.2 可分离变量与齐次方程6.3 一阶线性微分方程6.4 高阶线性微分方程第七章:多元函数微分学7.1 多元函数的极限与连续7.2 多元函数的偏导数7.3 隐函数与参数方程的偏导数7.4 多元函数的全微分第八章:重积分8.1 二重积分的概念与计算8.2 极坐标系下的二重积分8.3 三重积分的概念与计算8.4 数值积分与重积分的应用第九章:曲线曲面积分9.1 第一类曲线积分9.2 第二类曲线积分9.3 曲面积分的概念与计算9.4 应用实例解析第十章:无穷级数10.1 数项级数的概念与性质10.2 收敛级数的判定10.3 幂级数与函数展开10.4 泰勒级数与麦克劳林级数第十一章:常微分方程11.1 一阶常微分方程11.2 高阶常微分方程11.3 实际问题建模与解答11.4 系统常微分方程第十二章:向量代数与解析几何12.1 向量空间与基底12.2 向量的内积与外积12.3 线性方程组与矩阵12.4 空间曲线与曲面第十三章:多元函数微分学的应用13.1 梯度与方向导数13.2 多元函数的极值与最值条件13.3 二次型与正定性13.4 特征值与特征向量第十四章:多元积分学14.1 二重积分的计算技巧14.2 三重积分的计算技巧14.3 坐标变换与积分的几何应用14.4 曲线曲面积分的计算方法第十五章:无穷级数的应用15.1 幂级数的收敛域与函数展开15.2 Fourier级数与函数展开15.3 数学物理方程的解析解15.4 波动方程与热传导方程第十六章:曲线积分与曲面积分的应用16.1 曲线积分的物理应用16.2 曲面积分的物理应用16.3 物理场的散度与旋度16.4 应用实例解析与计算第十七章:多元函数的傅里叶级数17.1 多元函数的Fourier级数展开17.2 空间中的Fourier级数与Fourier变换17.3 矢量值函数的Fourier级数展开17.4 傅里叶级数的物理应用第十八章:向量场与格林公式18.1 向量场的数学描述18.2 向量场的积分与路径无关性18.3 格林公式的证明与应用18.4 微分形式与斯托克斯公式这是一份高等数学系列教材的目录表,涵盖了极限与连续、函数的导数与微分、微分方程、重积分、曲线曲面积分、无穷级数、向量代数与解析几何、多元函数微分学的应用等主要内容。

大一高等数学教材章节目录

大一高等数学教材章节目录

大一高等数学教材章节目录第一章导言第1节数学的发展和数学的定义第2节数学基本概念与基本运算第3节数学语言与符号第二章集合论与逻辑第1节集合的基本概念与运算第2节布尔代数与命题逻辑第3节谓词逻辑与命题公式第三章数列与极限第1节数列的概念与性质第2节数列极限的定义第3节数列极限的性质与计算方法第四章函数与连续第1节函数的概念与性质第2节函数的分类与表示第3节连续函数与间断点第五章导数与微分第1节导数的定义与性质第2节函数的求导法则第3节高阶导数与隐函数求导第六章微分中值定理与应用第1节微分中值定理第2节高阶导数的应用第3节泰勒公式及其应用第七章积分与不定积分第1节定积分与不定积分的概念第2节积分运算法则第3节不定积分与定积分的关系第八章微积分基本定理与应用第1节微积分基本定理与反函数微分法第2节曲线的弧长与体积第3节平面和空间曲线的曲率和曲率半径第九章偏导数与多元函数微分学第1节多元函数的定义与性质第2节偏导数的计算法则第3节多元函数的极值与最值第十章重积分与曲面积分第1节重积分的概念与性质第2节二重积分的计算方法第3节曲面积分与曲线积分第十一章空间解析几何第1节空间直线与平面的方程第2节空间曲线的方程与求交问题第3节空间曲面的方程与性质第十二章常微分方程第1节常微分方程的基本概念第2节一阶常微分方程的解法第3节高阶常微分方程的解法第十三章概率论与数理统计第1节概率的基本概念与性质第2节随机变量与概率分布第3节统计量与估计第十四章线性代数第1节矩阵与线性方程组第2节向量空间与变换矩阵第3节特征值与特征向量以上是大一高等数学教材的章节目录,每个章节都包含了该主题的基本概念、性质和相关计算方法。

希望这份目录能够帮助你在学习高等数学的过程中更好地组织学习内容,理解各个章节的关系和内在逻辑。

祝你在数学学习中取得好成绩!。

高等数学教材下册目录

高等数学教材下册目录

高等数学教材下册目录第一章:极限与连续1.1 极限的概念与性质1.1.1 数列极限的定义1.1.2 常用的数列极限1.1.3 函数极限的定义1.1.4 常用的函数极限1.2 极限运算法则1.2.1 有界函数的极限1.2.2 极限的四则运算法则1.2.3 极限的复合运算法则1.3 连续与间断1.3.1 连续函数的定义1.3.2 间断点与间断类型1.3.3 切线与连续函数的性质第二章:导数与微分2.1 导数的概念与性质2.1.1 导数的定义2.1.2 微分中值定理2.1.3 罗尔中值定理2.2 常用函数的导数与微分2.2.1 幂函数与指数函数的导数2.2.2 对数函数与反三角函数的导数 2.2.3 反函数与隐函数的导数2.3 高阶导数与高阶微分2.3.1 高阶导数的定义2.3.2 微分法的应用2.4 凹凸性与曲线的形状2.4.1 凹凸性的判定条件2.4.2 拐点与曲率第三章:定积分与不定积分3.1 定积分的概念与性质3.1.1 定积分的定义3.1.2 定积分的性质与运算3.1.3 定积分的几何应用3.2 不定积分与原函数3.2.1 不定积分的定义与性质3.2.2 基本积分公式与换元法3.2.3 分部积分法与定积分求值3.3 牛顿—莱布尼兹公式与定积分的应用 3.3.1 牛顿—莱布尼兹公式的表述3.3.2 定积分的物理应用3.4 定积分的近似计算3.4.1 零散数据的近似积分计算3.4.2 定积分上和下的近似计算第四章:微分方程4.1 微分方程的基本概念4.1.1 微分方程的定义与解4.1.2 初等函数与初等微分方程4.1.3 常见的一阶微分方程4.2 可分离变量与线性微分方程4.2.1 可分离变量的微分方程4.2.2 线性微分方程的解法4.2.3 齐次和非齐次线性微分方程4.3 高阶线性微分方程4.3.1 高阶线性微分方程的解法4.3.2 常系数与非齐次线性微分方程 4.4 变量可分离与齐次微分方程4.4.1 变量可分离的微分方程4.4.2 齐次微分方程的解法4.5 常见微分方程的物理与几何应用 4.5.1 指数增长模型与对数增长模型 4.5.2 简谐振动与受阻振动4.5.3 驻点与稳定性分析第五章:向量与空间解析几何5.1 空间直角坐标系与向量的基本概念 5.1.1 空间直角坐标系的建立5.1.2 空间向量的定义与运算5.1.3 向量的数量积与数量积的几何应用 5.2 空间中的直线和平面5.2.1 空间中直线的方程及性质5.2.2 空间中平面的方程及性质5.3 空间曲面与二次曲线5.3.1 空间曲面的分类与方程5.3.2 二次曲线的分类与方程5.3.3 曲面与曲线的几何应用5.4 空间解析几何的应用5.4.1 空间几何的物理与工程应用5.4.2 空间几何的计算机图形学应用第六章:多元函数与偏导数6.1 多元函数的概念与性质6.1.1 多元函数的定义与取值空间6.1.2 多元函数的极限与连续6.1.3 多元函数的偏导数6.2 多元函数的方向导数与梯度6.2.1 多元函数的方向导数6.2.2 多元函数的梯度与最速上升方向 6.3 多元复合函数与隐函数6.3.1 多元复合函数的求导法则6.3.2 多元隐函数的求导法则6.3.3 多元隐函数的微分与线性近似 6.4 多元函数的极值与条件极值6.4.1 多元函数的极值与极值判定条件 6.4.2 多元函数的条件极值与约束条件 6.5 多元函数的泰勒公式与误差估计6.5.1 多元函数的二阶泰勒公式6.5.2 误差估计与局部线性化第七章:重积分7.1 重积分的概念与性质7.1.1 二重积分的定义与性质7.1.2 二重积分的计算与重要定理7.2 二重积分与坐标变换7.2.1 极坐标系下的二重积分 7.2.2 广义换元公式与坐标变换 7.3 三重积分的概念与计算7.3.1 三重积分的定义与性质 7.3.2 直角坐标系下的三重积分 7.4 三重积分与坐标变换7.4.1 柱面坐标系下的三重积分 7.4.2 球面坐标系下的三重积分 7.5 重积分的应用7.5.1 重心、质心与形心7.5.2 质量、质心与转动惯量 7.5.3 重积分的物理与几何应用第八章:曲线积分与曲面积分8.1 曲线积分的概念与性质8.1.1 曲线积分的定义与性质 8.1.2 第一类曲线积分的计算 8.1.3 第二类曲线积分的计算8.2 曲线积分的应用8.2.1 质量、质心与转动惯量8.2.2 流量与环量8.3 曲面积分的概念与性质8.3.1 曲面积分的定义与性质8.3.2 曲面积分的计算与重要定理 8.4 曲面积分的应用8.4.1 曲面的质量与曲面的质心8.4.2 流量与散度定理8.4.3 曲面积分的物理与几何应用第九章:无穷级数与傅里叶级数9.1 无穷级数的概念与性质9.1.1 数项级数的收敛性判定9.1.2 幂级数的收敛域与求和9.1.3 函数展开成级数9.2 函数项级数的点态与一致收敛性 9.2.1 函数项级数的定义与性质9.2.2 函数项级数的收敛定理9.3 傅里叶级数与傅里叶级数展开9.3.1 傅里叶级数的定义与性质9.3.2 傅里叶级数的收敛定理9.4 傅里叶级数的应用9.4.1 周期信号与频谱分析9.4.2 偏微分方程的分离变量法此为《高等数学教材下册》目录,供参考学习之用。

高等数学 课件 PPT 第九章 重积分

高等数学 课件 PPT 第九章  重积分
分析
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4

高等数学教材是什么内容

高等数学教材是什么内容

高等数学教材是什么内容高等数学是一门包含了微积分、线性代数、微分方程和概率统计等多个分支的学科。

因此,高等数学教材所涵盖的内容相当广泛。

下面将为你详细介绍高等数学教材的主要内容。

第一章:极限与连续高等数学教材的第一章主要介绍极限和连续的概念与性质。

包括实数的性质,数列极限、函数极限的定义和计算方法,以及连续函数的定义和性质等内容。

第二章:导数与微分第二章是高等数学教材的重点内容之一,涵盖了导数和微分相关的知识。

包括导数的定义和计算方法,高阶导数,隐函数与参数方程的求导,微分的定义和计算方法等内容。

第三章:微分中值定理与导数的应用第三章主要介绍微分中值定理及其应用,包括拉格朗日中值定理、柯西中值定理等。

同时还介绍了函数的单调性、凹凸性、极值以及曲线的绘制等相关内容。

第四章:不定积分第四章主要讲解不定积分的概念和计算方法。

包括基本积分公式、换元积分法、分部积分法、有理函数的积分等。

并介绍了变限积分和定积分的概念。

第五章:定积分与定义的应用第五章主要介绍定积分的概念、性质和计算方法。

包括牛顿-莱布尼茨公式、换元法计算定积分、定积分的应用等内容。

还会涉及到计算物体的质量、弧长、曲线面积等物理学中的应用。

第六章:多元函数微分学第六章是高等数学教材中相对较为复杂的部分,主要介绍多元函数、偏导数、全微分以及多元函数的极值等内容。

同时还会涉及到隐函数的偏导数和全微分等相关概念。

第七章:多重积分第七章讲述了多元函数的多重积分的概念和计算方法。

包括二重积分的计算、三重积分的计算,以及变量替换法、极坐标法和球坐标法等多种积分方法。

第八章:曲线积分与曲面积分第八章主要介绍曲线积分和曲面积分的概念和计算方法。

包括第一类曲线积分和第二类曲线积分的计算,以及曲面积分的计算和应用等内容。

第九章:无穷级数第九章主要讲解数列极限和函数极限的进一步拓展,即无穷级数的概念和性质。

包括等比级数、调和级数、幂级数和傅里叶级数等内容。

第十章:常微分方程第十章是高等数学教材的最后一章,主要介绍常微分方程的基本概念、解法和应用。

第九章 重积分(二重和三重)高数课件

第九章 重积分(二重和三重)高数课件

其中Ω 其中Ω 所围立体. 所围立体
z
π
4
0≤r ≤ R Ω: 0 ≤ ϕ ≤ π 4 0 ≤ θ ≤ 2π

r=R
∫∫∫Ω
3. 三重积分的计算
(1) 投影法 (“先单后重”) 先单后重” 先单后重
z = z2 (x, y)
z
z = z1(x, y)
= ∫∫ dxdy∫
D
z2 ( x, y)
z1( x, y)
f (x, y, z)d z
关键:正确的判断上、下曲面 关键:正确的判断上、下曲面; 找对投影区域. 找对投影区域
2011-2012学年高等数学第二学期期 中考试说明
• 题型: 题型: 个小题); 个小题); 一、填空题(5个小题);二、选择题( 5个小题);三、 填空题( 个小题);二 选择题( 个小题);三 计算题( 个小题);四 计算题( 个小题);五 个小题); 个小题); 计算题( 5个小题);四、计算题( 5个小题);五、计 算与解答题( 个小题);六 证明题( 个小题 个小题); 个小题)。 算与解答题( 2个小题);六、证明题( 1个小题)。 • 考试时间: 考试时间: 2012年5月4日(第10周周五)下午 :00-6:00 年 月 日 周周五) 周周五 下午4: - : • 考试地点: 考试地点: 化学工程与工艺6班 制药工程 化学工程与工艺 班、制药工程1—2班: 24-303 班 生物工程1—2班:24-305 班 生物工程

2 h
h
x
o
y
例. 计算三重积分
其中Ω 其中Ω为由
柱面 x2 + y2 = 2x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体. 成半圆柱体

重积分

重积分

重积分的理解引言:在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。

这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。

高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。

在本章中将介绍重积分的概念、计算法以及它们的一些应用。

重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其它一些工程学科中碰到它们。

摘要:重积分是大学高等数学学习过程中很重要的一部分,在一元函数积分学中,定积分的定义是将定义在区间[],a b 上的一元函数()f x 采用划分,近似,求和,取极限等四个步骤,得到某种确定形式的和的极限,这就是定积分()()ba f x d dx ⎰. 若将一元函数分别推广成平面区域和空间区域,这就得到了二重积分和三重积分的概念。

本篇论文主要讲述了重积分的性质,计算,应用以及所涉及的习题,这些事我对重积分学习的一个总结。

关键词:重积分,二重积分,三重积分,性质,应用二重积分的定义:设(),f x y 为有界闭区间D 上的有界函数,将D 任意划分为n 个小闭区域12,,...,n σσσ∆∆∆并以i σ∆表示第i 块闭区域的面积,在第i 块上任意取点(),i i ξη。

令λ为所有i σ∆的直径的最大值,若()01lim ,ni i i i f f λξησ→=∆∑.存在,则成(),f x y 在闭区间D 上可积,并把上述极限称为(),f x y 在D 上的二重积分,记为(),Df x y d σ⎰⎰.即(),Df xy d σ⎰⎰()01l i m ,ni ii i f λξησ→==∆∑.其中()1,ni i i i f ξησ=∆∑. 称为积分和,(),f x y . 称为被积函数,d σ称为面积元,(),f x y d σ称为被积表达式D 称为积分区域。

《高等数学》课程教案

《高等数学》课程教案

《高等数学》课程教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、理论和方法,培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生的逻辑思维和抽象思维能力,引导学生认识高等数学在自然科学和社会科学中的重要地位。

二、教学内容1. 第一章:极限与连续教学重点:极限的定义、性质,函数的连续性,无穷小比较,洛必达法则。

2. 第二章:导数与微分教学重点:导数的定义,求导法则,高阶导数,隐函数求导,微分方程。

3. 第三章:积分与面积教学重点:不定积分,定积分,积分计算方法,面积计算,弧长与曲线长度。

4. 第四章:级数教学重点:数项级数的概念,收敛性判断,功率级数,泰勒级数,傅里叶级数。

5. 第五章:常微分方程教学重点:微分方程的基本概念,一阶线性微分方程,可分离变量的微分方程,齐次方程,线性微分方程组。

三、教学方法1. 采用讲授法,系统地讲解高等数学的基本概念、理论和方法。

2. 运用示例法,通过典型例题展示解题思路和技巧。

3. 组织练习法,让学生在课堂上和课后进行数学练习,巩固所学知识。

四、教学评价1. 过程性评价:关注学生在课堂上的参与程度、思维品质和问题解决能力。

2. 终结性评价:通过课后作业、单元测试、期中考试等方式,检验学生掌握高等数学知识的情况。

五、教学资源1. 教材:《高等数学》及相关辅助教材。

2. 课件:制作精美、清晰的课件,辅助课堂教学。

3. 习题库:提供丰富的习题,供学生课后练习。

4. 网络资源:利用网络平台,提供相关的高等数学学习资料和在线答疑。

5. 辅导资料:为学生提供补充讲解和拓展知识点的辅导资料。

六、第六章:多元函数微分学教学重点:多元函数的极限与连续,偏导数,全微分,高阶偏导数,方向导数,雅可比矩阵与行列式。

七、第七章:重积分教学重点:二重积分,三重积分,线积分,面积分,体积积分,重积分的计算方法,对称性原理。

八、第八章:常微分方程的应用教学重点:常微分方程在物理、生物学、经济学等领域的应用,求解方法,数值解法,稳定性分析。

简单版高等数学教材

简单版高等数学教材

简单版高等数学教材高等数学是大学数学课程中的一门重要学科,涵盖了微积分、线性代数、概率论等内容。

本文将就简化版的高等数学教材进行介绍,着重强调其中的关键概念和解题思路。

第一章微积分微积分是高等数学的基础,它研究函数的变化率、曲线的斜率以及曲线下的面积等问题。

这一章主要讲解导数和积分的概念。

导数是函数变化快慢的度量,可以通过极限的方法求得。

积分则是导数的逆运算,可以求得曲线下的面积。

第二章一元函数微分学在这一章中,我们将学习一元函数的导数和微分。

通过导数,我们可以判断函数在某一点的增减性以及极值点的存在。

微分则是导数在微小变化量上的应用,可以近似计算函数的变化量。

第三章一元函数积分学这一章主要研究一元函数的积分。

通过积分,我们可以求得函数曲线下的面积,解决累加问题。

同时,积分还能够计算函数的平均值和反函数等。

第四章二元函数微分学在这一章中,我们将学习二元函数的导数和微分。

二元函数是含有两个变量的函数,它的导数可以衡量函数在某一点的变化率。

通过求偏导数,我们可以分析函数在各个方向上的变化情况。

第五章二重积分与曲线积分这一章主要研究二重积分和曲线积分的计算方法。

二重积分可以求解平面区域上某个量的总量,曲线积分则可以计算沿曲线的某个物理量。

这两种积分方法在实际问题中有着广泛的应用。

第六章多元函数微分学在这一章中,我们将进一步深入研究多元函数的导数和微分。

多元函数是含有多个变量的函数,它的导数可以衡量函数相对于各个变量的变化率。

通过求偏导数,我们可以找到函数的极值点。

第七章多重积分与曲面积分这一章主要研究多重积分和曲面积分的计算方法。

多重积分可以求解空间区域上某个量的总量,曲面积分则可以计算沿曲面的某个物理量。

这两种积分方法在物理、工程和经济等领域有着广泛的应用。

第八章线性代数线性代数是研究向量、矩阵和线性方程组的学科。

本章将介绍向量的概念、向量的运算法则以及矩阵的性质和运算法则。

同时,还将学习线性方程组的解法和矩阵的特征值与特征向量等内容。

北邮新编高等数学教材答案

北邮新编高等数学教材答案

北邮新编高等数学教材答案第一章:导数和微分1.求下列函数的导数:(1) f(x) = x^3 + 2x^2 - 3x + 1(2) f(x) = sin(x) + cos(x)(3) f(x) = e^x / (1 + e^x)第二章:定积分1.计算下列定积分:(1) ∫(0 to π) sin(x) dx(2) ∫(-∞ to ∞) e^(-x^2) dx(3) ∫(1 to 2) ln(x) dx第三章:多元函数微分学1.求下列函数的偏导数:(1) f(x, y) = x^2 + y^2 - xy(2) f(x, y) = e^x sin(y)第四章:多元函数的极限与连续性1.计算下列函数的极限:(1) lim (x, y)→(0, 0) (x^2 + y^2) / sqrt(x^2 + y^2)(2) lim (x, y)→(1, 1) (x^2 + y^2) / (x + y - 2)第五章:一阶常微分方程1.求解下列一阶常微分方程:(1) dy/dx + y = x(2) dy/dx = y/x第六章:多元函数的极值与条件极值1.求函数 f(x, y) = x^2 + xy + y^2 在D={(x,y)|x^2 + y^2 ≤ 4} 上的极值。

第七章:重积分1.计算下列二重积分:(1) ∬(D) x^2 + y^2 dA, D = { (x, y) | x^2 + y^2 ≤ 1 }(2) ∬(D) e^(-x^2-y^2) dA, D = { (x, y) | x^2 + y^2 ≤ 2, x ≥ 0, y ≥ 0 }第八章:二阶常微分方程1.求解二阶常微分方程:(1) d^2y/dx^2 + 2dy/dx + 2y = 0(2) d^2y/dx^2 + 4dy/dx + 4y = sin(x)第九章:无穷级数1.求下列级数的和:(1) ∑(n=1 to ∞) 2^n / 3^n(2) ∑(n=0 to ∞) n/(n^2+4)第十章:傅里叶级数与傅里叶变换1.求函数 f(x) = x 在[-π, π] 上的傅里叶级数展开式。

高等数学教案ch 9 重积分

高等数学教案ch 9  重积分

第九章重积分教学目的:1、理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。

2、掌握二重积分的(直角坐标、极坐标)计算方法。

3、掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。

4、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。

教学重点:1、二重积分的计算(直角坐标、极坐标);2、三重积分的(直角坐标、柱面坐标、球面坐标)计算。

3、二、三重积分的几何应用及物理应用。

教学难点:1、利用极坐标计算二重积分;2、利用球坐标计算三重积分;3、物理应用中的引力问题。

§9. 1 二重积分的概念与性质一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积.首先, 用一组曲线网把D 分成n 个小区域:∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为 高而底为∆σ i 的平顶柱体的体积为 : f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ). 这个平顶柱体体积之和:i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值. 2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M . 用一组曲线网把D 分成n 个小区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n . 把各小块的质量近似地看作均匀薄片的质量: ρ(ξ i , η i )∆σ i . 各小块质量的和作为平面薄片的质量的近似值: i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量i i i n i M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim),(10.f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和.直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdyy x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二. 二重积分的性质 性质1 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质2如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质3σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质4 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.特殊地σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质5 设M 、m 分别是f (x , y )在闭区域D 上的最大值和最小值, σ为D 的面积, 则有σσσM d y x f m D≤≤⎰⎰),(.性质6(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得σηξσ),(),(f d y x f D=⎰⎰.§9. 2 二重积分的计算法一、利用直角坐标计算二重积分 X --型区域:D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }.此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为⎰=b adx x A V )(dx dy y x f bax x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f bax x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d ,则有⎰⎰⎰⎰=dcy y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .解法1. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰=211][x Ddx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xxDydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰=212][yDdy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y .例2. 计算σd y x y D⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解 画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211x Ddy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x 21)1(3213=--=⎰dx x .也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydyd y x yσ.例3 计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2,其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx x xDxydydx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4 求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积. 解 设这两个圆柱面的方程分别为x 2+y 2=ρ 2及x 2+z 2=ρ 2.利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=Rx R dy x R dx 0022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.二. 利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(.按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim),(.下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i ρξcos =, i i i ρηsin =.于是 ii ni i i i i i i ni i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim),(lim ,即θρρθρθρσd d f d y x f DD)s i n ,c o s (),(⎰⎰⎰⎰=. 若积分区域D 可表示为ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β, 则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5. 计算⎰⎰--Dy xdxdye 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为 0≤ρ≤a , 0≤θ ≤2π .于是⎰⎰⎰⎰---=DDy x d d e dxdy e θρρρ222θθρρπρπρd e d d e a a02020]21[ ][22⎰⎰⎰---== )1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdye 22也常写成⎰⎰≤+--22222a y x y xdxdy e.利用)1(222222a a y x y x edxdy e-≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y x dxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy x dx e dy e dx e dxdy e ,又应用上面已得的结果有)1(42122R D y x e d x d y e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R Rx R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而22π=-∞+⎰dx e x .例6 求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积.解 由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .§9.3 三重积分一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξ i , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim),,(10ζηξλ.三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv——被积表达式, dv 体积元素, x , y , z ——积分变量, Ω——积分区域. 在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=d x d y d zz y x f dv z y x f ),,(),,(. 当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的,因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的.三重积分的性质: 与二重积分类似. 比如dvz y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;Vdv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为 z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([ ⎰⎰⎰=bay x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(, 即⎰⎰⎰⎰⎰⎰=Ωba y x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 计算⎰⎰⎰Ωdvz y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 内任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ), ⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([ ⎰⎰⎰=bay x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域.例1 计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解 作图, 区域Ω可表示为:0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1.于是⎰⎰⎰⎰⎰⎰---Ω=10210210x yx x d z dy dx dxdydzx⎰⎰---=1210)21(x dyy x xdx⎰=+-=1032481)2(41dx x xx . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2 计算三重积分dxdydz z ⎰⎰⎰Ω2,其中Ω是由椭球面1222222=++cz b ya x 所围成的空间闭区域.解 空间区域Ω可表为:2222221cz b y a x -≤+, -c ≤ z ≤c .于是⎰⎰⎰⎰⎰⎰-Ω=c cD zdxdy dz z dxdydz z 22 3222154)1(abc dz z c z ab ccππ=-=⎰-. 练习1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域.2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式,其中Ω由曲面z =1-x 2-y 2, z =0所围成的闭区域. 2. 利用柱面坐标计算三重积分设M (x , y , z )为空间内一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化范围为:0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系: x =ρcos θ, y =ρsin θ, z =z .⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz . 柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydzz y x f θρρθρθρ),sin ,cos (),,(.例3 利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域. 解 闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dzd d z zdxdydz θρρ⎰⎰⎰=πρρρθ20242z d z d d ⎰⎰-=πρρρθ2024)16(21d dπρρπ364]618[2212062=-⋅=. 3. 利用球面坐标计算三重积分设M (x , y , z )为空间内一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化范围为 0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π. 坐标面r =r 0, ϕ=ϕ0, θ=θ0的意义: 点M 的直角坐标与球面坐标的关系: x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ .⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd d r d r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=.例4 求半径为a 的球面与半顶角α为的内接锥面所围成的立体的体积. 解 该立体所占区域Ω可表示为:0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π. 于是所求立体的体积为⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd d r d r d x d y d z V s i n 2⎰⎰⎰=παϕϕϕθ200c o s202s i n a dr r d d⎰⎰=αϕϕϕπ0c o s202s i n 2a dr r d⎰=αϕϕϕπ033s i n c o s 316d a )c o s 1(3443a a -=π.提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ.§9. 4 重积分的应用元素法的推广:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 内任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ内, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 内任取一点P (x , y ), 并在区域D 内取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则σγσd y x f y x f d dA y x ),(),(1cos 22++==, 这就是曲面S 的面积元素. 于是曲面S 的面积为σd y x f y x f A y x D),(),(122++=⎰⎰,或 d x d y yz x z A D22)()(1∂∂+∂∂+=⎰⎰.设dA 为曲面S 上点M 处的面积元素, dA 在xOy 面上的投影为小闭区域d σ, M 在xOy 面上的投影为点P (x , y ), 因为曲面上点M 处的法向量为n =(-f x , -f y , 1), 所以σσd y x f y x f d dA y x ),(),(1||22++==n . 提示: dA 与xOy 面的夹角为(n ,^ k ), dA cos(n ,^ k )=d σ, n ⋅k =|n |cos(n ,^ k )=1, cos(n ,^ k )=|n |-1.讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求? d y d zzxy x A yzD ⎰⎰∂∂+∂∂+=22)()(1,或 d z d x xy zy A zxD ⎰⎰∂∂+∂∂+=22)()(1.其中D yz 是曲面在yOz 面上的投影区域, D zx 是曲面在zOx 面上的投影区域. 例1 求半径为R 的球的表面积.解 上半球面方程为222y x R z --=, x 2+y 2≤R 2.因为z 对x 和对y 的偏导数在D : x 2+y 2≤R 2上无界, 所以上半球面面积不能直接求出. 因此先求在区域D 1: x 2+y 2≤a 2 (a <R )上的部分球面面积, 然后取极限.d x d y yx R R a y x 222222--⎰⎰≤+⎰⎰-=πθ2022arR r d r d R)(222a R R R --=π.于是上半球面面积为2222)(2lim R a R R R Ra ππ=--→.整个球面面积为 A =2A 1=4πR 2. 提示: 222yx R x xz ---=∂∂, 222yx R y yz ---=∂∂, 22222)()(1yx R R yz xz --=∂∂+∂∂+.解 球面的面积A 为上半球面面积的两倍. 上半球面的方程为222y x R z --=, 而222yx R x xz ---=∂∂, 222yx R y yz ---=∂∂,所以 22)()(12222yz x z A R y x ∂∂+∂∂+=⎰⎰≤+d x d y y x R RR y x 2222222--=⎰⎰≤+⎰⎰-=πρρρθ20222RR d d R20224 4R R R R πρπ=--=.例2设有一颗地球同步轨道通讯卫星, 距地面的高度为h =36000km , 运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R =6400km).解 取地心为坐标原点, 地心到通讯卫星中心的连线为z 轴, 建立坐标系. 通讯卫星覆盖的曲面∑是上半球面被半顶角为α的圆锥面所截得的部分. ∑的方程为222y x R z --=, x 2+y 2≤R 2sin 2α. 于是通讯卫星的覆盖面积为 ⎰⎰⎰⎰--=∂∂+∂∂+=xyxyD D dxdyyx R R dxdy yz x z A 22222)()(1.其中D xy ={(x , y )| x 2+y 2≤R 2sin 2α}是曲面∑在xOy 面上的投影区域. 利用极坐标, 得 )c o s 1(222s i n22s i n2220απρρρπρρρθααπ-=-=-=⎰⎰⎰R d R R d R R d A R R .由于hR R +=αcos , 代入上式得hR hR hR R R A +=+-=222)1(2ππ.由此得这颗通讯卫星的覆盖面积与地球表面积之比为%5.4210)4.636(21036)(24662≈⋅+⋅=+=h R h R A π.由以上结果可知, 卫星覆盖了全球三分之一以上的面积, 故使用三颗相隔π32角度的通讯卫星就可以覆盖几乎地球全部表面. 二、质心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有 y M M x =⋅, x M M y =⋅ . 于是 ⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDx d y x d y x y MM y σμσμ),(),(.在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则 平面薄片对x 轴和对y 轴的力矩元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅ . 于是 ⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDx d y x d y x y MM y σμσμ),(),(.提示: 将P (x , y )点处的面积元素d σ看成是包含点P 的直径得小的闭区域. D 上任取一点P (x , y ), 及包含的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求?求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例3 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为 ⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDDd yd y . 所求形心是)37,0(C . 类似地, 占有空间闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )(假宽ρ(x , y , z )在Ω上连续)的物体的质心坐标是⎰⎰⎰Ω=dvz y x x Mx ),,(1ρ, ⎰⎰⎰Ω=dvz y x y My ),,(1ρ, ⎰⎰⎰Ω=dv z y x z Mz ),,(1ρ,其中⎰⎰⎰Ω=dv z y x M ),,(ρ.例4 求均匀半球体的质心.解 取半球体的对称轴为z 轴, 原点取在球心上, 又设球半径为a , 则半球体所占空间闭区可表示为Ω={(x , y , z )| x 2+y 2+z 2≤a 2, z ≥0} 显然, 质心在z 轴上, 故0==y x .⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ==dvzdvdvdv z z ρρ83a =.故质心为)83 ,0 ,0(a .提示: Ω: 0≤r ≤a , 20πϕ≤≤, 0≤θ≤2π.⎰⎰⎰⎰⎰⎰=Ωadr r d d dv 022020sin ϕθϕππ⎰⎰⎰=adr r d d 022020sin ππθϕϕ323a π=,⎰⎰⎰⎰⎰⎰⋅=Ωadr r r d d dv z 022020sin cos ϕϕθϕππ⎰⎰⎰=a dr r d d 0320202sin 21ππθϕϕ42214a ⋅⋅=π.三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量. 在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为 dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为 σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例5 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为 D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x , ⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin⎰⎰⎰⋅==ππθθμρρθθμ02432s i n 4s i n d a d d a2441241Ma a =⋅=πμ,其中μπ221a M =为半圆薄片的质量.类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为⎰⎰⎰Ω+=d v z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=d v z y x x z I y ),,()(22ρ,⎰⎰⎰Ω+=d v z y x y x I z ),,()(22ρ.例6 求密度为ρ的均匀球体对于过球心的一条轴l 的转动惯量.解 取球心为坐标原点, z 轴与轴l 重合, 又设球的半径为a , 则球体所占空间闭区域Ω={(x , y , z )| x 2+y 2+z 2≤a 2}.所求转动惯量即球体对于z 轴的转动惯量I z . ⎰⎰⎰Ω+=dv y x I z )(22ρθϕϕθϕθϕρd d r d r r r s i n )s i n s i n c o s s i n(2222222+=⎰⎰⎰Ωθϕϕρd d r d r 34s i n ⎰⎰⎰Ω=dr r d d a ⎰⎰⎰=ππϕϕθρ200043 sin ρπ5158a =M a 252=,其中ρπ334a M =为球体的质量.提示: x 2+y 2=r 2sin 2ϕcos 2θ+r 2sin 2ϕ sin 2θ=r 2sin 2ϕ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题.设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续.在物体内任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为 ),,(z y x dF dF dF d =F )))(,,(,))(,,(,))(,,((303030dv r z z z y x Gdv r y y z y x Gdv r x x z y x G---=ρρρ,其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量,202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ).例7设半径为R 的匀质球占有空间闭区域Ω={(x , y , z )|x 2+y 2+z 2≤R 2). 求它对于位于点M 0(0, 0, a ) (a >R )处的单位质量的质点的引力.解 设球的密度为ρ0, 由球体的对称性及质量分布的均匀性知F x =F y =0, 所求引力沿z 轴的分量为 dva z y x az G F z 2/32220])([-++-=⎰⎰⎰Ωρ⎰⎰⎰--≤+-++-=RRzR y x a z y x dxdydza z G 22222/32220])([)(ρ⎰⎰⎰---+-=2202/322200])([)(z R R Ra z d d dz a z G ρρρθρπ⎰-+----=RRdz aaz R za a z G )211)((2220ρπ]2)(12[2220⎰-+--+-=RRa az R d a z aR G ρπ)3222(2230a R R R G -+-=πρ2203134aM G a R G -=⋅⋅-=ρπ,其中0334ρπR M =为球的质量.上述结果表明: 匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力.。

高等数学教材第五版

高等数学教材第五版

高等数学教材第五版高等数学是大学数学中的一门重要课程,它是建立在初等数学的基础上,深入研究数学分析、数理逻辑和数学推理等内容的学科。

高等数学教材第五版是一本经典教材,它在数学教学界有着广泛的影响和良好的口碑。

第一章函数与极限高等数学教材第五版的第一章主要介绍函数与极限的概念,从基本公式、性质、运算和图像等方面深入阐述了函数的基础知识。

通过该章的学习,可以帮助学生建立函数的概念,并能灵活运用。

第二章导数与微分第二章主要介绍导数与微分的概念和性质,以及它们在几何、物理、经济等领域的应用。

通过学习导数与微分的知识,可以帮助学生掌握函数变化规律,并应用于实际问题的解决中。

第三章不定积分第三章主要介绍不定积分的概念、基本公式和求法,以及它们在物理、生物、工程等领域的应用。

通过学习不定积分的知识,可以帮助学生理解积分与导数的关系,掌握积分的运算技巧。

第四章定积分与应用第四章主要介绍定积分的概念、性质和应用。

通过学习定积分的知识,可以帮助学生理解积分与面积、体积等概念的关系,并能够应用定积分解决实际问题。

第五章微分方程第五章主要介绍微分方程的基本概念、解法和应用。

通过学习微分方程的知识,可以帮助学生理解微分方程与实际问题的联系,并能够应用微分方程解决实际问题。

第六章多元函数微分学第六章主要介绍多元函数的概念、偏导数、全微分及其应用。

通过学习多元函数微分学的知识,可以帮助学生理解多元函数的变化规律,并能够应用多元函数微分学解决实际问题。

第七章重积分第七章主要介绍重积分的概念、性质和计算方法。

通过学习重积分的知识,可以帮助学生理解重积分与几何体积和质量等概念的关系,并能够应用重积分解决实际问题。

第八章曲线积分与曲面积分第八章主要介绍曲线积分与曲面积分的概念、性质和计算方法。

通过学习曲线积分与曲面积分的知识,可以帮助学生理解曲线积分与曲面积分与矢量场和流量等概念的关系,并能够应用曲线积分与曲面积分解决实际问题。

第九章空间解析几何第九章主要介绍空间解析几何的基本概念、性质和计算方法。

(完整版)高等数学教案各章的教学目的、重点、难点

(完整版)高等数学教案各章的教学目的、重点、难点

第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式.2、了解函数的奇偶性、单调性、周期性和有界性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4、掌握基本初等函数的性质及其图形。

5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质.教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;闭区间上连续函数性质的应用.第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。

2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3、了解高阶导数的概念,会求某些简单函数的n阶导数。

4、会求分段函数的导数。

5、会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。

教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、隐函数和由参数方程确定的函数的导数。

《高等数学A(Ⅱ)》课程教学大纲

《高等数学A(Ⅱ)》课程教学大纲

《高等数学A(Ⅱ)》课程教学大纲课程编号: 90902002学时:64学分:4适用专业:土木工程、工程管理、道桥、电子信息、计算机科学、通信工程、工业设计、车辆工程、交通运输、材料、电气工程、机械电子、机械设计开课部门:建筑工程学院、信息工程学院、机电工程学院一、课程的性质与任务高等数学A(Ⅱ)课程是应用型本科院校理工类专业的一门专业基础课。

本课程讲授向量代数与空间解析几何、多元函数微分学、重积分和无穷级数的基本内容,通过该课程的学习,使学生掌握高等数学A(Ⅱ)的基本概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、空间想象能力,为学生解决专业领域的实际问题奠定基础。

三、实践教学的基本要求(无)四、课程的基本教学内容及要求第五章向量代数与空间解析几何1.教学内容(1)向量及其线性运算;(2)点的坐标与向量的坐标;(3)向量的数量积与向量积;(4)平面及其方程;(5)空间直线及其方程;(6)曲面与曲线。

2.重点与难点重点:空间直角坐标系,向量及其线性运算,向量的坐标形式,向量数量积、向量积,曲面及其方程,平面及其方程,空间直线及其方程。

难点:向量积,曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程,二次曲面及其方程。

3.课程教学要求了解空间曲线的参数方程及一般方程,平面与平面、直线与直线、平面与直线相交、平行及垂直的关系;理解向量的概念,向量的坐标表达式,向量的共线与共面关系,曲面方程的概念;掌握向量的运算,两个向量的夹角与垂直和平行的条件,平面方程与直线方程的求法,会正确地使用向量运算规则,会利用坐标表达式进行向量的运算,能根据已知条件求平面方程与直线方程,二次曲面的标准方程,以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程,会求空间曲线在一个坐标面上的投影。

在教学中,教师应借用实物模型或多媒体手段。

要把教学重心放在空间解析几何部分。

教师要注重培养学生的空间想象能力。

高等数学教材的目录部分

高等数学教材的目录部分

高等数学教材的目录部分高等数学教材目录:第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义1.2.1 数列极限1.2.2 函数极限1.3 极限的运算法则1.4 连续和间断第二章:导数与微分2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数2.4 隐函数与参数方程的导数2.5 微分的定义与性质2.6 导数的应用第三章:不定积分与定积分3.1 不定积分的概念与性质3.2 基本积分公式与常用积分法3.3 定积分的概念与性质3.4 定积分的计算方法3.5 牛顿-莱布尼茨公式与定积分的应用第四章:微分方程4.1 微分方程的概念与基本术语4.2 一阶常微分方程4.3 二阶常微分方程4.4 高阶线性微分方程4.5 变量可分离的微分方程4.6 微分方程的应用第五章:无穷级数5.1 数列极限与无穷级数的概念5.2 级数的敛散性5.3 正项级数的审敛法5.4 幂级数的收敛域与常见函数展开第六章:多元函数与偏导数6.1 多元函数的概念与性质6.2 偏导数的定义与计算6.3 高阶偏导数与混合偏导数6.4 隐函数的偏导数6.5 多元函数的极值与条件极值第七章:重积分与曲线积分7.1 重积分的概念与性质7.2 二重积分的计算方法7.3 三重积分的计算方法7.4 曲线积分的概念与计算方法7.5 曲面积分的概念与计算方法7.6 广义积分的概念与收敛性第八章:多元函数的积分学8.1 多元函数的概念与性质回顾8.2 参数方程下的曲线积分8.3 曲面积分的参数化与计算8.4 向量场与格林公式8.5 散度与无源场8.6 旋度与无旋场8.7 斯托克斯公式与高斯公式第九章:常微分方程的数值解法9.1 常微分方程初值问题的数值解法概述9.2 欧拉方法与改进欧拉方法9.3 二阶龙格-库塔法9.4 多步法与预测校正法9.5 常微分方程边值问题的数值解法以上是高等数学教材的目录部分,这些章节覆盖了高等数学的核心内容,从函数与极限到常微分方程的数值解法等方面进行了全面而深入的讲述。

高等数学-第九章 二重积分部分

高等数学-第九章 二重积分部分
第九章 重积分 知识总结
一. 二重积分的计算 二. 三重积分的计算 三. 重积分的运用
一. 二重积分的计算
1. 二重积分的性质
例. 比较下列积分值的大小关系:
I1 xy dxdy I2 xy dxdy
x2y21
11
xy1
y
I3 xy dxdy
11
1
解: I1,I2,I3被积函数相同, 且非负,
D f (x, y)d
Dr2()
Df(cos,sin) d d
r1()
o
注:若积分区域为圆域、扇形域、环形域、或由 极坐标曲线围成的区域,可考虑选择极坐标;
若 被 积 函 数 为 f( x 2 y 2 ) 或 f(y ) 型 可 考 虑 选 择 极 坐 标 x
例. 计算二重积分
R2x2y2d,
0
2 0
h 1 2
d
h
2 4
d
z
202 h12(h42)d
[1 (4h)ln 1(4h)4h]
4
o x
y
4、球坐标代换
设 M (x,y,z) R 3,其柱坐(标 ,,为 z),令OM r,
ZOM , 则(r,,) 就称为点M 的球坐标.
xrsinco s yrsin sin
zrco s
0 r
z { ( x ,y ,z ) |a z b ,( x ,y ) D z }b
f(x,y,z)dv
b
z a
adzD Zf(x,y,z)dxdy
x
Dz
y
适用范围:
积分区域介于两个平行于坐标面的平面之间;
在平行于坐标面的截面上二重积分易算 典型题目: 被积函数只为某一变量的函数;且截面面积易求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:BC的方程 x+y=2
B(1,1)
D内 1 x y 2, 0 ln(x y) 1
所以 ln(x y)d [ln(x y)]2d
D
D
A(1,0) B(2,0)
2020/2/13
17
性质6(估值定理) 设在D上f(x,y)的最大值为M,最
小值为m,A为D的面积,即
2020/2/13
4
2)近似: 每个个小区域 i 内任取一点 (i ,i ), 则每个小曲顶柱体的体积近似为:
Vi f (i ,i ). i
3)求和:所有小区域对应小曲顶柱体体
积之和为 n
n
Vi f (i ,i ) i
i 1
i 1
4)取极限:
n
V lim 0 i1
3)作和 4)取极限
n
ri ,i i
i 1
n
M

Lim
0
i 1
r
i ,i
i
2020/2/13
6
二 二重积分的定义
(definition of double integral)
定义 设 f ( x, y) 是有界闭区域D 上的有界 函
数,将闭区域D 任意分成n 个小闭区域 1 ,
1d d 为D 之面积
D
D
(高为1的平顶柱体的体积在数值上等于
柱体的底面积。)
2020/2/13
14
性质5 若在D上,f ( x, y) g( x, y), 则:
f ( x, y)d g( x, y)d ,
D
D
特别地,
f (x, y) f (x, y) f (x, y)
D
2020/2/13
21
四 小结
二重积分的定义 (和式的极限) 二重积分的几何意义(曲顶柱体的体积) 二重积分的性质
2020/2/13
22
五 思考判断题
设D为平面有界闭区域,f ( x, y)与g( x, y)都 在 D上 连 续 , 且g( x, y)在D上不变号,可否找到某点
(,), 使 得
为曲顶柱体的体积。
D
2)如果 f x, y 0, 则二重积分 f x, yd 解释
为曲顶柱体体积的负值。
D
3)如果 f x, y既有正又有负则, 二重积分 f x, yd
D
解释为曲顶柱体体积的代数和。
(其中xoy面上方柱体的体积取正, xoy面下方柱体的体积取负)。
2 , , n ,其中 i 表示第i 个小闭区域,
也 表 示 它 的 面 积 , 在 每 个 i 上 任 取 一 点
(i ,i ),
作乘积 f (i ,i ) i ,
(i 1,2, , n),
nHale Waihona Puke 并作和 f (i ,i ) i ,
i 1
2020/2/13
D
其 中D是 矩形 闭区 域0: x 1,0 y 2
解: f ( x, y) x y
在D内的最大值为4,最小值为1 区域D的面积为2 所以由性质6得
2 (x y 1)d 8
D
2020/2/13
19
性质7(中值定理) 设函数f ( x, y)在闭区域
D连续,为之面积,则在D上至少存在一点 ( , )
D
D
D
2020/2/13
13
性质3 (区域可加性) 如果闭区域D被有限条曲 线分为有限个部分闭区域,则在D上的二重积 分等于在个部分闭区域上的二重积分的和.
例如 D D1 D2 ,则
f x, yd f x, yd f x, yd
D
D1
D2
性质4 如果在D上 f (x, y) 1
7
如果当各小闭区域的直径中的最大值 趋近于零
时,这和式的极限存在,则称此极限为函数
f ( x, y)在闭区域 D 上的二重积分,
记为 f ( x, y)d ,
D
n

D
f
( x,
y)d

lim
0 i1
f
(i ,i ) i.
积被 积 分积 分 区函 变 域数 量
被面 积积 积 表元 分 达素 和 式
f ( x, y)d f ( x, y)d
D
D
2020/2/13
15
例1 比较下列积分的大小:
1) (x y)2 d 与 (x y)3d
D
D
其中D:(x 2)2 ( y 1)2 2
解:在区域 D内,显然有
y
x y 1, 故在D内 x y 1
m f ( x) M 则 mA f ( x, y)d MA
D
证明: 因为 m f ( x) M
由性质5
md f (x, y)d Md
D
D
D
所以
mA f ( x, y)d MA
D
2020/2/13
18
例2 I ( x y 1)d ,
2020/2/13
9
直角坐标系下面积元素 d 图示 f x, yd
d dxdy,
D
y
f ( x, y)dxdy
D
D yk
i
0
x j
2020/2/13
x
10
2 存在性:当 f (x, y) 在闭区域D上连续时,函数 f (x, y)
在D上的二重积分必定存在。以后总假定 f (x, y) 在D 上
D
( x y)2 ( x y)3
(0,1)
.
(x y)2d (x y)3d 0 (1,0)
D
D
(3,0) x
2020/2/13
16
2) ln(x y)d 与 [ln(x y)]2d,其中区域 D为
D
D
顶点为A(1,0)B(1,1),C(2,0)的三角形闭区域。
2020/2/13
8
注: 1 在二重积分定义中,对区域D的划 分是任意的,故 如果在直角坐标系中用平
行于坐标轴的直线网来划分 D,则除了包含,
边界的一些小闭区域外,其余的小闭区域
都是矩形闭区域。设矩形小闭区域 i
的边长为 x j 和 yk ,

i x jyk
故在直角坐标系中,
第九章 重积分
(Double and iterated integrals)
一元函数定积分是求与定义在某一区 间上的函数有关的某种总量的数学模型, 作为推广,二元函数的二重积分是求与定 义在某一平面区域上的函数有关的某种总 量的数学模型,三元函数的三重积分是求 与定义在某一空间区域上的函数有关的某 种总量的数学模型,这些模型的数学结构 相同,都是和式的极限。
2020/2/13
1
第一节 二重积分的概念及性质
(Conception and property of double integral)
一 问题的提出 二 二重积分的定义 三 二重积分的性质 四 小结与思考判断题
2020/2/13
2
一 问题的提出
1 曲顶柱体的体积
一曲顶柱体其顶为曲面 z f ( x, y)底面为平
使得:
f x, yd f (,).
D
证明:由性质6得,
m

1


D
f
( x,
y)d

M
2020/2/13
20
根据据闭区域上连续函数的介值定理,在D上至少
存在一点 ( ,),
使得
f
( ,)

1


D
f
(x,
y)d

f (x, y)d f ( ,)
的二重积分是存在的。
3 由二重积分的定义可知:曲顶柱体的体积是函数 f (x, y)
在D上的二重积分 V f (x, y)d ,
D
平面薄片的质量是面密度 (x, y) 在薄片所占闭区域D上的
二重积分:M (x, y)d.
D
2020/2/13
11
4 二重积分的几何意义:
1)如果 f x, y 0, 则二重积分 f x, yd 解释
f ( x, y)g( x, y)dxdy f(,) g( x, y)dxdy
D
D
2020/2/13
23
2020/2/13
12
三 二重积分的性质
(Property of double integral)
性质1 被积函数的常数因子可以提到二重 积分号的外面,即:
kf x, yd k f x, yd
D
D
性质2 函数的和(或差)的二重积分等于 各个函数的二重积分的和(或差)。
f x, y gx, yd f x, yd gx, yd
f
i ,i
i
其中


max
1in

的直径
i
2020/2/13
5
2 平面薄片的质量
设平面薄片占有xoy面上的区域为D,它在点
( x , y )处的密度为 r( x, y)
求:此薄片的质量
1) 区域D可分割成n个小区域:
1, 2, i , , n
2)取点 i ,i i
面区域 D,求此曲顶柱体的体积。
解:对区域D进行网状分割(如图)
1) 区域D可分割成n个小区域:
1, 2, i , , n
2020/2/13
相关文档
最新文档