振动理论练习题

振动理论练习题
振动理论练习题

振动理论练习题

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题

题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。

(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。

题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。

题图题图

题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。

题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。

题图题图

题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。

题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。

题图题图

题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。

(1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。

题图

题图

题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。

题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。

题 弹簧质量系统30o

光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少

题图

题图

题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n

/2

=ω, 求证,在t < t 0 内,有 )sin (1

)(0

t t t x t x n n n s ωωω-= 在t > t 0内, 有

)(cos ]sin )([sin 1)(000

t t t t t t x t x n n n n s -+--=ωωωω。

题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l

a y s π

-=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。

题图

题图

题 如题图,质量m 1,m 2被无质量弦牵引,求所示质量的微幅振动微分方程和固有频率,分别给各阶模态形状,设张力T 不变。

题 求如题图所示系统的固有频率,分别给出n =l ,n =2时的模态形状。

题图

题图

题 求如题图所示扭转系统在扭转刚度k 1=k 2,转动惯量J 1=2J 2时的固有频率和正则模态。

题 在题中,若k 1=0,02≠k 则成为2自由度退化系统,具有一个零固有频率和一个非零固有频率,求其正则模态。讨论此系统对应的移动位移运动的弹簧质量M -K 系统的形式。求证当使用?=?1-?2为坐标时,系统可被看成单自由度系统。

题 设n 自由度无阻尼系统自由运动方程为

0K x x

M =+ ,设它的n 个固有频率?i (i =1,2,…, n )互不相同,求证系统模态向量?i (i =1,2,…, n )对质量矩阵M 和刚度矩阵K 的正交性,即证明

???≠==j i j i m i j T i 0M φφ,?

??≠==j i j i k i j

T

i 0K φφ, i , j =1, 2, 3, … , n 。

题 如题图,为滑块+单摆系统,设x (t )= a sin ?t ,其中m k =ω。求: (1)单摆的最大摆角;(2)系统的固有频率。

题图

题图

题 如题图,其中2/3km c =,m 1=m 2=m ,m 1上受阶跃力F 1,求零初始条件下系统响应。

题 如题图,各质量上的激励力F 1=F 2=F 3=F sin ?t ,其中?=m k /,各阶模态阻尼比为?1=?2=?3=,求各质量的稳态响应。

题图

题图

题如题图所示简支梁,三等分处各有质量m1=m 2=m,各质量下有阻尼器,阻尼系数为C1=C2=30

m

k,其中k0=486EJ/l3,EJ为梁的抗弯刚度,l为梁长度,设梁的质量不计。求:

(1)各阶相对阻尼系数?1,?2;(2)质量m1上受到一单位脉冲力?(t)作用,m1,m2的运动规律。

题设一等直杆在左端自由,右端固定,求它的纵向振动的表达式。

题求如题图所示的阶梯杆的纵向振动的特征方程,有???????。提示:杆的连续条件是当x1=l1, x2=0时,u1=u2,EA1

1

1

x

u

?

?

=EA2

2

2

x

u

?

?

题图题图

题如题图所示,长为l的等直圆杆以等角速度?转动。某瞬时左端突然固定,求杆扭转振动的响应。

题一根重的柔性钢索,长度为l,单位长度的质量为?,上端悬挂,在平面内作自由振动,如题图所示,试推导钢索横向运动微方程,并证明可分离成两个常微分方程。

题图题图

题如题图所示,等截面悬臂梁的自由端有一弹性支承,其刚度系数为k,求特征方程和主振型的正交性条件。题一等截面梁,x=0端自由,x=l端简支,若简支端有横向运动y l(t)=Y l sin?t,证明简支端与自由端的振幅比为0

cos sin

sin

l

Y sh l l ch l l

Y sh l l

ββββ

ββ

-

=

-

,其中

EJ

A

ρ

ω

β

2

4=。

题如题图所示,一根矩形截面杆一端固定一端自由,其长度为l,厚

度为b,横截面积A按直线规律变化:A(x)=A0(1+x/l),其中A0为自由

端的截面积,试用里兹法运用模态截断的思路求杆纵向振动的第1,2

阶固有频率。设第1,2阶振形函数为:

2

2

1

1

)

(

l

x

x-

=

φ ,

3

3

2

1

)

(

l

x

x-

=

φ。

题随机过程X[t]的样本函数为:)

sin

)

sin

)(

2

2

1

1

φ

ω

φ

ω+

+

+

=t

a

t

a

t

x

2

1

(

(,式中a1,a2,?1,?2是常数,?1,?2

为统计独立的在[0,2?]上均匀分布的随机变量,求自相关函数R xx(?)。

题图

题 某平稳随机过程的自相关函数为:162cos 25)(4+=-τπττ

f e R xx ,求其均值?x ,方差2x ε,功率谱密度函数

S xx (f )和单边谱密度函数G xx (f )。

题 已知某振动系统的输入为力,输出为位移,系统位移响应的y (t )的自功率谱为:

)(4)()(2

2022220∞<<-∞+-=

ωωω?ωωωa

S yy ,求响应y (t )的自相关函数和均方值。

题 系统示意图如题图,设F 1 (t )为均值为零的白噪声,其自功率谱密度函数为S FF (?),求稳态情况下响应的自功率谱密度函数,互功率谱密度函数及各响应的均方值。

题 如题图,系统由主系统(m 1,k 1)和副系统(m 2,C 2,k 2)组成,设作用在m 1上的F 1(t )为零均值白噪声,试以响应y 1(t )的均方值最小为条件确定副系统的m 2,C 2,k 2。 题 设线性系统随机运动方程为

)(t W KX X C X

=++ 其中: ??

?

???--=5.1119C ;

C K 100=。 W (t )为平稳白噪声激励向量,有 E [W (t )]=0,E [W (t )W T (t +?)]=I ?(t ),I 为单位矩阵,用实模态分析法求响应

的相关函数矩阵R XX (t )。

题图

振动与波动习题与答案

振动与波动习题与答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν= 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π = 2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 丄、八 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体, 甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 旋转机械分类: I类:为固定的小机器或固定在整机上的小电机,功率小于15KW U类:为没有专用基础的中型机器,功率为15~75KW刚性安装在专用基础上功率小于300KW的机器。 川类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 W类:为轻型结构基础上的大型旋转机械,如透平发电机组。 机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采 取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1 转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2 旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2 旋转机械振动模糊诊断法的实现 隶属函数的确定

振动基础知识

精心整理 基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。

(六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动 d=Dsin(2πt/T+Φ) D T f ω和f ω f 将式( d 振动三要素:振幅D、频率f和相位Φ(八)、表示振动的参数:位移、速度、加速度振动位移:d=Dsin t D

π) 振动速度:v=Dωcosωt=Vsin(ωt+ 2 V=Dω 振动加速度:a=-Dω2sinωt=Asin(ωt+π) A=-Dω2 (九)振动三要素在工程振动中的意义 1、振幅 ○振幅~物体动态运动或振动的幅度。 ★振幅是振动强度和能量水平的标志,是评价机器运转状态优劣的主要指标。 即“有没有问题看振幅”。 ○峰峰值、单峰值、有效值 振幅的量值可以表示为峰峰值(pp)、 单峰值(p)、有效值(rms)或平均值(ap)。 峰峰值是整个振动历程的最大值,即正峰 与负峰之间的差值;单峰值是正峰或负峰 的最大值;有效值即均方根值。 ○振动位移、振动速度、振动加速度 振幅分别用振动位移、振动速度、振 动加速度值加以描述、度量,三者相互之间可以通过微分或积分进行换算。在振动测量中,除特别注明外,习惯上: ○振动位移的量值为峰峰值,单位是微米[μm]或毫米[mm]; ○振动速度的量值为有效值(均方根值),单位是毫米/秒[mm/s]; ○振动加速度的量值是单峰值,单位是米/秒平方[m/s2]或重力加速度[g],1[g]=9.81[m/s2]。 ○峰峰值、有效值、单峰值三者之间的量值关系 单峰值=峰峰值/2,有效值=0.707峰峰值(峰峰值=1.414有效值) 平均值=0.637峰峰值,平均值应用较少。 △在低频范围内,振动强度与位移成正比; △在中频范围内,振动强度与速度成正比; △在高频范围内,振动强度与加速度成正比。 频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

振动分析基础知识讲课教案

旋转机械振动分析基础 汽轮机、发电机、燃气轮机、压缩机、风机、泵等都属于旋转机械,是电力、石化和冶金等行业的关键设备。这些设备出现故障后,大多会带来严重的经济损失。 振动在设备故障中占了很大比重,是影响设备安全、稳定运行的重要因素。振动又是设备的“体温计”,直接反映了设备健康状况,是设备安全评估的重要指标。一台机组正常运行时,其振动值和振动变化值都应该比较小。一旦机组振动值变大,或振动变得不稳定,都说明设备出现了一定程度的故障。振动对机组安全、稳定运行的危害主要表现在: (1)振动过大将会导致轴承乌金疲劳损坏。 (2)过大振动将会造成通流部分磨损,严重时将会导致大轴弯曲。统计数据表明,汽轮发电机组60%以上的大轴弯曲事故就是由于摩擦引起的。 (3)振动过大还将使部件承受大幅交变应力,容易造成转子、联结螺栓、管道、地基等的损坏。 正因为振动对设备安全运行相当重要,人们对振动问题都很重视。目前大型机组上普遍安装了振动监测系统,并将振动信号投了保护。振动超标时,保护动作,机组自动停机,从而保证设备的绝对安全。

一、振动分析基本概念 振动是一个动态量。图所示是一种简单的振动形式-简谐振动,即振动量按余弦(或正弦)函数规律周期性地变化,幅值反映了振动大小;频率反映了振动量动态变化的快慢程度;相位反映了信号在t=0时刻的初始状态。 可见,为了完全描述一个振动信号,必须同时知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。 振动是一个动态变化量。为了突出反映交变量的影响,振动监测时常取波形中正、负峰值的差值作为振动幅值,又称为峰峰值。 简谐振动是一种简单的振动形式,实际机组上发生的振动比简谐振动要复杂得多。不管振动多么复杂,由信号分析理论可知,都可以将其分解为若干具有不同频率、幅值和相位的简谐分量的合成。 旋转机械振动分析离不开转速,为了方便和直观起见,

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

振动台的基本知识

振动台的原理 电动振动试验系统的工作原理类似于扬声器。即通电导体在磁场中受到电磁力的作用而运动。 当振动台磁路中的动圈通过交变电流信号时产生激振力磁路中即产生振动运动。 振动台的结构 振动台专业术语 ◎频率范围:振动试验系统在额定激振力下,最大位移和最大加速度规定的频率范围。 ◎额定推力:振动试验系统能够产生的力(单位:N);在随机振动时该力规定为均方根值。 ◎最大位移:振动试验系统能够产生的最大位移值。该值受振动台机械运行限制,通常用双振幅表示(单位为:mmp-p). ◎最大加速度:振动试验系统在空载条件下能够产生的最大加速度值(单位: m/s2) ◎最大速度:振动试验系统所产生的最大速度(单位:m/s2)。 ◎最大载荷:振动台面上最大加载重量(单位:kg). ◎运动部件:电动振动台运动部件是由台面、动圈(含骨架)、动圈的悬挂连接件、柔性支承、电器连接件和冷却连接件组成的运动系统。 ◎容许偏心力矩:振动台面导向系统允许的最大偏心力矩值。

振动台、夹具、试件图 试验方法 ◎正弦振动试验 正弦振动试验有两种方法:一是扫频试验,根据试验规定的频率用扫描方法不断地改变激振频率;二是定频试验。正弦振动的目的是在试验室内模拟电工电子产品在运输、存储、使用过程中所经受的振动及影响,并考核其适应性。如按IEC(国际电工委员会标准),国标GB/T2423,美国军标MIL-810,国军标GJB150 等对试件进行扫频试验,或采用驻留共振点的连续定频试验。

◎随机振动试验 电子电工产品在运输过程中所经受的 振动绝大多数是随机性质的振动,随机振动 比正弦振动的频域宽,而且是一个连续的频 谱,它能同时在所有的频率上对产品进行振 动激励。 ◎冲击试验和碰撞 冲击和碰撞都属冲击范畴,规定冲击脉冲波型的冲击试验,主要是用来确定元件、设备和其它产品在使用和运输过程中经受多次重复(碰撞则是多次重复)的机械冲击的适用性,以及评价结构的完好性。

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

振动基础知识分析

基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便于测试了解其结构特性,如模态试验用的力锤。 (二)应力应变:材料或构件在单位截面上所承受的垂直作用力称为应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。 (三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。位移的单位可以用μm 表示。进一步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。通常我们测试的都是动态位移量。有角位移、线位移等。 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2 或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。 (六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动

d=Dsin(2πt/T+Φ) D――振动的最大值,称为振幅 T――振动周期,完成一次全振动所需要的时间 f――单位时间内振动的次数,即周期的倒数为振动频率, f =1/T (Hz)(1) 频率f 又可用角频率来表示,即 ω=2π/T (rad/s) ω和f的关系为 ω=2πf (rad/s)(2) f =ω/2π(Hz)(3) 将式(1)、(2)、(3)代入式可得 d =D sin(ωt+Φ)=Dsin(2πft+Φ) 可以用正玄或余玄函数描述的振动过程称之为简谐振动

大学物理题库-振动与波动汇总

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) ) (3cos 12.0π π- =t x (B ) ) (3cos 12.0π π+=t x (C ) ) (32cos 12.0π π- =t x (D ) ) (32cos 12.0π π+ =t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为 μ=5 cm/s ,设t= 3 s 时刻的 波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10- 2cos (πt/2-π/2) (m) (B) y=2×10- 2cos (πt + π) (m) (C) y=2×10- 2cos(πt/2+π/2) (m) (D) y=2×10- 2cos (πt -3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA 2 (B )kA 2 /2 (C )kA 2 /4 (D )0

振动基础理论-状态监测

1.结合实际工作,综合论述开展设备监测诊断工作的八个固定工作程序。 开展设备监测诊断工作的八个固定工作程序为: (1)定监测对象 (2)定监测参数 (3)定监测仪器和设备 (4)定监测点 (5)定监测周期 (6)定监测标准 根据不同的设备,参照国内外已发布的通用标准,或结合实际工作经验制定适合本单位特点的判别标准。 通常情况下,判别标准有三类:一是绝对标准、二是相对标准、三是类比判断标准。 (7)定监测规程 (8)定监测人员 2.在振动监测中,振动传感器的选择十分重要。阐述选择振动传感器应注意的问题。 (1) 测量范围 测量范围又称量程,是保证传感器有用的首要指标,因为超量程测量不仅意味着测量结果的不可靠,而且还可能造成传感器的损坏。 (2) 频响范围 所选传感器的工作频响范围应覆盖整个需要测试的信号频段并略有超出,也就是说应使传感器工作在线性区:其下限频率低于所测信号的低频段,上限频率高于所测信号的高频段。 (3) 信噪比 一般而言,总是希望传感器的灵敏度尽量高,以便检测微小信号,但外界噪声的混入也相应地影响增大,因此要求传感器的信噪比要高,以便在充分放大被测信号的同时,能最有效地抑制噪声信号。 (4) 稳定性 对于长期工况监测,尤其是在线式测量的传感器,要求时间稳定性好,信号漂移越小越好。对于水下、高温等特殊工作环境,还应考虑传感器的环境稳定性。 此外,传感器的工作方式、外形尺寸、重量等也是需要考虑的因素。 3.分析旋转机械转子不平衡故障原因,如何综合分析诊断转子不平衡故障? 转子质量偏心及转子部件缺损是导致转子不平衡的两种因素。转子质量偏心是由于转子的制造误差、装备误差、材质不均匀等原因造成。转子部件缺损是指转子在运行中由于腐蚀、磨损或受疲劳应力作用,使转子叶轮、叶片局部损坏、脱落等原因造成。转子轴系允许最大不平衡量的计算方法: G —平衡等级 m —允许不平衡量 U-不平衡量 M-转子质量 r-平衡半径 计算: e=G/ω 不平衡量:U=M.e 允许的最大不平衡质量:m=U/r M r m M U e == =G/ω U=M.e m=U/r 对转子不平衡故障进行综合分析应把握以下特征: (1)振动的时域波形为正弦波;

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

第一节 振动基础知识

振动基础知识 一、振动的种类及其特点 各种机器设备在运行中,都不同程度地存在振动,这是运行机械的共性。然而,不同的机器,或同一台机器的不同部位,以及机器在不同的时刻或不同的状态下,其产生的振动形式又往往是有差别的,这又体现了设备振动的特殊性。我们可以从不同的角度来考察振动问题,常把机械振动分成以下几种类型。 1.按振动规律分类 按振动的规律,一般将机械振动分为如图2-2几种类型 这种分类,主要是根据振动在时间历程内的变化特征来划分的。大多数机械设备的振动类型是周期振动,准周期振动,窄带随机振动和宽带随机振动,以及某几种振动类型的组合。一般在起动或停车过程中的振动信号是非平稳的。设备在实际运行中,其表现的周期信号往往淹没在随机振动信号之中。若设备故障程度加剧,则随机振动中的周期成分加强,从而整台设备振动增大。因此,从某种意义上讲,设备振动诊断的过程,就是从随机信号中提取周期成分的过程。 2.按产生振动的原因分类 机器产生振动的根本原因,在于存在一个或几个力的激励。不同性质的力激起不同的振动类型。据此,可将机械振动分为三种类型: (1)自由振动给系统一定的能量后,系统所产生的振动。若系统无阻尼,则系统维持等幅振动;若系统有阻尼,则系统为衰减振动。 (2)受迫振动元件或系统的振动是由周期变化的外力作用所引起的,如不平衡、不对中所引起的振动。 (3)自激振动在没有外力作用下,只是由于系统自身的原因所产生的激励而引起的振动,如油膜振荡、喘振等。 因机械故障而产生的振动,多属于受迫振动和自激振动。 3.按振动频率分类 机械振动频率是设备振动诊断中一个十分重要的概念。在各种振动诊断中常常要分析频率与故障的关系,要分析不同频段振动的特点,因此了解振动频段的划分与振动诊断的关系很有实用意义。按着振动频率的高低,通常把振动分为3种类型:

振动与波动(习题与答案)

第10章振动与波动 一.基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即 由它可导出物体的振动速度) =t A v - ω + ω sin(? 物体的振动加速度) =t A a2 cos(? - + ω ω 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件

确定,即 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν = 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω π=2T 或 πν=ω2 6. 相位和初相 谐振动方程中(?+ωt )项称为相位,它决定着作谐振动的物体的状态。t=0时的相位称为初相,它由谐振动的初始条件决定,即 应该注意,由此式算得的?在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。 7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相?,t=t 时刻它与x 轴的夹角为谐振动的相位?ω+t 。旋转矢量A 的末端在x 轴上的投影点 的运动代表着质点的谐振动。 8. 简谐振动的能量 作谐振动的系统具有动能和势能,其 动能 )(sin ?+ωω==t A m m E k 22222 12 1v 势能 )(cos ?+ω==t kA kx E p 2222 12 1 机械能 22 1 kA E E E p k =+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅 初相 2 2112211?+??+?= ?cos cos sin sin tan A A A A (1)当两个简谐振动的相差),,,( 210212±±=π=?-?k k 时,合振动振幅最大,为 21A A +,合振动的初相为1?或2?。

机械振动理论及工程应用

机械振动学学习报告 摘要:简述了机械振动学的发展历程,振动利用中的若干新工艺理论与技术,振动机械及其相关技术的应用与发展,介绍了振动在人类生活工作中起到了非常重要的作用。通过对具体实例——单电机振动给料机的计算分析,得出机械振动对机器工作性能的影响。并介绍了单自由度、多自由度的线性振动系统振动的基本理论和隔振的基本原理。关键词:机械振动;振动给料机;线性振动系统 Abstract:This paper describes the development course of study of mechanical vibration and the utilization of some new technology theory and technology. The vibration has played a very important role in human life and work. By analyzing the practical example-single motor , vibrating feeder calculation and analysis of mechanical vibration machine has influence on the performance. And introduced the single-degree-of-freedom, multi-freedom system vibration of the linear vibration of the basic theory and the basic principle of vibration isolation. Keywords:Mechanical vibration; Vibrates the feeding machine; Linear vibration system 第一章绪论 1.1振动振动学的发展 振动振动学科是20世纪后半期逐渐形成和发展起来的一门新学科。目前正处在迅速发展过程中,由于该学科所涉及的有关技术与工业生产及人类生活联系十分密切,它能为社会创造重大的经济效益和社会效益,能为人类生活提供极大的方便和良好的服务,目前已成为人类生产活动与生活过程中一种不可缺少的手段与必要的机制。国内以闻邦椿院士为首的科研团队一直以极大的精力从事这一领域的研究,在振动利用工程这一学科的多个领域取得了一系列的研究成果,促进了该学科的形成与发展。自然界和人类社会中的某一个量随时间或大或小的变化即称为振动。振动是物质世界运动的一种基本形式,物质世界中的每一个物体及其中的每一个分子都始终处于振动之中。毫无例外,人类自身的每一器官也每时每刻都处在振动之中,例如,心脏的搏动、血液的循环、肺部的张缩呼吸、脑细胞的思维以及耳膜的振动和声带的振动等,前面所列举的这些振

振动测试必须知道的个基本常识

振动测试必须知道的27个基本常识 ?(2015-12-16 10:52:39) 标签:? 1、什么是振动 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2、振动实验的目的 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3、振动分几种 振动分确定性振动和随机振动两种。 4、什么是正弦振动 能用一项正弦函数表达式表达其运动规律的周期运动。例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5、正弦振动的目的 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6、正弦振动的试验条件 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定。 7、什么是振动频率范围 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8、什么是频率 频率:每秒振动的次数.单位:Hz。 9、什么是振动量 振动量:通常通过加速度、速度和位移来表示。加速度:表示速度对时间倒数的矢量。加速度单位:g或m/s2速度:在数值上等于单位时间内通过的路程位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10、什么是试验持续时间 振动时间表示整个试验所需时间,次数表示整个试验所需扫频循环次数。 11、什么是扫频循环 扫频循环:在规定的频率范围内往返扫描一次:例如:5Hz→50Hz→5Hz,从5Hz 扫描到50Hz后再扫描到5Hz。

相关文档
最新文档