人教版七级数学上册同步练习题及答案全套
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.5.3 近似数和有效数字)
1.5.3 近似数和有效数字5分钟训练(预习类训练,可用于课前)1.台湾是我国最大的岛屿,总面积为35 989.76平方千米.用科学记数法应表示为(保留三个有效数字)()A.3.59×106平方千米B.3.60×106平方千米C.3.59×104平方千米D.3.60×104平方千米答案:D2.填空(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数_______到哪一位;(2)一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都叫做这个数的_________;(3)除了四舍五入法,常用的近似数的取法还有两种,_______和_______.思路解析:利用近似数完成问题.答案:(1)精确(2)有效数字(3)进一法去尾法3.判断下列各题中哪些是精确数,哪些是近似数.(1)某班有32人;(2)半径为10 cm的圆的面积约为314 cm2;(3)张明的身高约为1.62米;(4)取π为3.14.思路解析:完全准确的数是精确数.如某班有32人,5枝铅笔,73等都是准确数.在解决实际问题时,往往只能用近似数.有时搞的完全准确没有必要;有时测得准确很困难.答案:(1)32人是精确数.(2)(3)(4)都是近似数.10分钟训练(强化类训练,可用于课中)1.用四舍五入法取近似值,0.012 49精确到0.001的近似数是______,保留三个有效数字的近似数是______.思路解析:注意,精确到0.001实际就是精确到千分位,也就是把万分位上的数字用“四舍五入”的方法,去掉千分位以后的数字.保留有效数字时注意计算有效数字是从左边第一个不是零的数字起,到最后一位数字止的.答案:0.012 0.0125.2.用四舍五入法得到的近似值0.380精确到________位,48.68万精确到_______位.思路解析:看最后一位数字在哪一数值上即为精确到该值.答案:千分百3.用四舍五入法取近似值, 396.7精确到十位的近似数是________;保留两个有效数字的近似数是_______.思路解析:本题中,精确到十位以上或保留两个有效数字应用科学记数法.答案:4.0×102 4.0×1024.下列由四舍五入得到的数各精确到哪一位?各有哪几个有效数字?(1)54.9;(2)0.070 8;(3)6.80万;(4)1.70×106思路解析:(1)6.80万不能说精确到百分位,因为6.80万后有个万字.(2)1.70×106也不能说精确到百分位.应先把1.70×106=1 700 000,再看7后的0所在的数位,即精确到万位.答案:(1)54.9精确到十分位(即精确到0.1),有三个有效数字:5,4,9;(2)0.070 8精确到万分位(即精确到0.0001),有三个有效数字:7,0,8;(3)6.80万精确到百位,有三个有效数字:6,8,0;(4)1.70×106精确到万位,有三个有效数字:1,7,0.5.用四舍五入法,求出下列各数的近似数.(1)0.632 8(精确到0.01);(2)7.912 2(精确到个位);(3)47 155(精确到百位);(4)130.06(保留4个有效数字);(5)460 215(保留3个有效数字);(6)1.200 0(精确到百分位).思路解析:本题中(3)(4)(5)先用科学记数法表示出来,再根据要求求出结果,特别注意:47 155精确到百位不能等于472. 1.300×102、4.60×105和1.20中1.300、4.60和1.20后面的零不能省略.解:(1)0.632 8≈0.63;(2)7.912 2≈8;(3)47 155≈4.72×104;(4)130.06≈1.301×102;(5)460 215≈4.60×105;(6)1.200 0≈1.20.6.有玉米45.2吨,用5吨的卡车一次运完,需要多少辆卡车?思路解析:45.2÷5=9.04辆≈10辆,这里用“进一法”来估算卡车的辆数,特别注意这儿9.04≈9是错误的!答案:需要10辆卡车.7.计算:(1)(-1.25)×(-129)×(-2.5)×(+911)×32;(2)(-105)×[35-47-(-53)]-178×6.67-7.67×(-178).思路解析:运用运算律简化计算.解:(1)原式=-54×119×52×911×32=-100;(2)原式=-105×35+105×47-105×53-178(6.67-7.67)=-63+60-175+178=0快乐时光不能怪我老布莱克喜爱猎熊,可偏偏视力又不大好,曾几次差点把人当熊来猎击 这天,老布莱克动身去猎熊前,他的朋友怕他故伎会重演,就找了张白纸,写上“我不是熊”几个斗大的字,贴在自己的背上,可狩猎才开始不一会儿,布莱克就打中了这位朋友的帽子.“难道你没看见我背后有字吗?”又气又怕的朋友喊道.“不,看倒是看见了,”布莱克应道,又凑近仔细看了看,尔后连连道歉:“唉,实在对不起,我没有看清这句话里的那个‘不’字 ”30分钟训练(巩固类训练,可用于课后)1.近似数0.020有_____个有效数字,4.998 4精确到0.01的近似值是_____.思路解析:注意计算有效数字是从左边第一个不是零的数字起,到最后一位数字止的 精确到高分位,如果四舍五入其分位上为0,这个0也要保留,不能省略.答案:2 5.002.地球上陆地的面积为149 000 000平方千米,用科学记数法表示为_____. 思路解析:按照科学记数法定义解题.答案:1.49×108平方千米3.若有理数a,b满足|3a-1|+b2=0,则a(b+1)的值为________.思路解析:显然,|3a-1|和b2都等于0,可求a、b,则代入可求a b+1的值.答案:1 34.年我国国内生产总值(GDP)为22 257亿美元,用科学记数法表示约为________亿美元(四舍五入保留三个有效数字).答案:2.23×1045.下列由四舍五入得到的近似数,各精确到哪一位?(1)29.75; (2)0.002 402; (3)3.7万;(4)4 000; (5)4×104; (6)5.607×102.思路解析:关键看最后一个有效数字的数位.答案:(1)精确到百分位;(2)精确到百万分位;(3)精确到千位;(4)精确到个位;(5)精确到万位;(6)精确到十分位.6.下列各近似数有几个有效数字?分别是哪些?(1)43.8; (2)0.030 800;(3)3.0万; (4)4.2×103思路解析:注意,计算有效数字是从左边第一个不是零的数字起,到最后一位数字止的. 答案:(1)有3个有效数字:4,3,8;(2)有5个有效数字:3,0,8,0,0;(3)有2个有效数字:3,0;(4)有2个有效数字:4,2.7.按四舍五入法,按括号里的要求对下列各数求近似值.(1)3.595 2(精确到0.01);(2)29.19(精确到0.1);(3)4.736×105(精确到千位).思路解析:(1)中的结果3.60不能写成3.6.它们的精确度不同.解:(1)3.595 2≈3.60;(2)29.19≈29.2;(3)4.736×105≈4.74×105.8.把一个准确数四舍五入就可得到一个近似数,这个准确数就是这个近似数的真值.试说明近似数1.80和1.8有什么不同,其真值有何不同?思路解析:根据近似数及其值的意义解题.答案:近似数1. 80和1.8的精确度不同,1.80是精确到百分位,1.8是精确到十分位,它们所表示的真值的范围大小也不相同,近似数1.80的真值大于或等于1.795且小于1.805,而近似数1.8的真值是大于或等于1.75且小于1.85.即近似数1.8的真值范围比近似数1.80的真值范围大得多,反过来近似数1.80比1.8更精确.9.求近似数16.4,1.42,0.387 4,2.561 8的和(结果保留三个有效数字).思路解析:因为和是保留三个有效数字,这里是精确到十分位,因此在计算的过程中,可把超过这个数位的数四舍五入到这个数位的下一位(如0.387 4≈0.39,2.561 8≈2.56),然后进行计算再把算得的结果的末一位四舍五入.解:16.4+1.42+0.387 4+2.561 8≈16.4+1.42+0.39+2.56=20.77≈20.8.10.甲、乙两学生的身高都是1.7×102 cm,但甲学生说他比乙高9 cm.问有这种可能吗.若有,请举例说明.思路解析:根据真值取值范围可得.答案:有这种可能.当甲身高为1.74×102 cm,乙身高为1.65×102 cm时,将他们的身高都四舍五入保留两个有效数字就可以得到.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
人教版七年级数学上册同步练习题及答案全套
人教版七年级数学上册同步练习题及答案全套【编者按】要想学好数学,多做试题是难免的,这样才能够掌握各种试题类型的解题思路。
在考试中应用自如,使自己的水平得到正常甚至超长发挥。
第三章一元一次方程3.11一元一次方程(1)知识检测1.若4xm-1-2=0是一元一次方程,则m=______.2.某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,•则长方形长为______cm.3.已知(2m-3)x2-(2-3m)x=1是关于x的一元一次方程,则m=______.4.下列方程中是一元一次方程的是( )A.3x+2y=5B.y2-6y+5=0C.x-3=D.4x-3=05.已知长方形的长与宽之比为2:1•周长为20cm,•设宽为xcm,得方程:________.6.)利润问题:利润率=.如某产品进价是400元,•标价为600元,销售利润为5%,设该商品x折销售,得方程( )-400=5%400.7.某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x-2)6人,(x+2)4,得方程_______.8.某农户2019年种植稻谷x亩,2019•年比2019增加10%,2019年比2019年减少5%,三年共种植稻谷120亩,得方程_______.9.一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为______.10.某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4•元,•买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把?•若设中型椅子买了x把,则可列方程为______.11.中国人民银行宣布,从2019年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2019年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税).设到期后银行向储户支付现金x元,则所列方程正确的是( )A.x-5000=50003.06%B.x+50005%=5000(1+3.06%)C.x+50003.06%5%=5000(1+3.06%)D.x+50003.06%5%=50003.06%12.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程( )A.3x+9-x=19B.2(9-x)+x=19C.x(9-x)=19D.3(9-x)+x=1913.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,求m的值,•并写出其方程.拓展提高14.小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料?。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套-共4套】第4章第1节-几何图形(1)(吐血推荐)
七年级数学(人教版上)同步练习第四章第一节几何图形(一)【典型例题】例1:填空:(1)长方体、正方体都有个面,长方体的6个面可能都是形,也有可能都有2个面是形,它的面完成相同。
答:6个面,长方形,正方形,对(2)正方体的6个面都是形,6个面的面积是。
答:正方形,相等(3)圆柱的上、下底面是;(4)圆锥的底面是答:圆,圆例2:填空:(1)三棱柱的上、下底面是;侧面是。
答:三角形,四边形(2)四棱柱的上、下底面是;侧面是。
答:四边形四边形例3:一个三棱柱的底面边长为acm,侧棱长为bcm。
(1)这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同? (2)这个三棱柱共有多少条棱,它们的长度分别是多少?答:(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。
(2)共有9条棱,其中侧棱长均为bcm,底面棱长均为acm.例4:图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。
答:都可以,第一个可以围成六棱柱;第二个可以围成三棱柱例5:将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种。
答:1)2)3)例6:两位同学用图形画出的小动物中,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?答:第一个图形是由圆柱体、长方体、球体、正方体组成;第二个图形是由三角形、长方形、五边形、六边形、圆组成。
【模拟试题】(答题时间:40分钟)1. 判断正误(1)圆柱的上下两个面一样大()(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面是四边形()(4)棱锥的侧面都是三角形()(5)棱柱的侧面可能是三角形()(6)圆柱的侧面是长方形()(7)球体不是多面体()(8)圆锥是多面体()(9)棱柱、棱锥都是多面体()(10)柱体都是多面体()2. 一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱。
人教版七年级数学上册同步练习题及答案全套(课课练).
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m. 8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_ ___和__ ___统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、33、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
人教版七年级上册数学教材同步练习全套(含答案)
人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。
【最新】人教版七年级数学上册整式_同步练习(含答案)含答案.doc
第一节整式一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.或省略不写,例如4乘a写作4a.(2)代数式中出现的乘号一般用“·”(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是- 1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是 4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc 是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母 a.解:(1)五次式;(2)都含有字母 a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a 和b的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象1. “化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为 2C. 单项式-5×102m2n2的系数为-5,次数为 58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是 1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a +b︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】第1章第5节 有理数的乘方
七年级数学(人教版上)同步练习第一章第五节有理数的乘方一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。
二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。
一般地,记作a n。
乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a 的n次方,从结果的角度读作a的n次幂。
注:(1)一个数可以看作这个数本身的一次方。
(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。
(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。
2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。
3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。
(2)同级运算,从左到右进行。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。
注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a与原数只是小数点位置不同。
指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。
5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。
与实际有一点偏差但又非常接近的数称为近似数。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.4.2 有理数的除法)
1.4.2 有理数的除法5分钟训练(预习类训练,可用于课前)1.填空:(1)乘积是1的两个数互为______;(2)有理数的除法法则,除以一个数等于乘以这个数的______;(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.思路解析:根据倒数定义及除法法则来判别.答案:(1)倒数(2)倒数(3)正负相除02.-513,2.6,|-17|,-(-4),-2.5的倒数分别为________.思路解析:本题是求有理数的倒数,正数的倒数小学里我们学过,负数的倒数先确定符号,仍为负数,再把它们的绝对值求倒数注意先要化简.答案:-135,513,7,14,-253.化简下列分数:(1)412--; (2)3618-; (3)-244-.思路解析:本题利用除法可以简化分数的符号.分子、分母、分数的值三个符号中,任意改变其中的两个,值不变.答案:(1)13;(2)-2;(3)6.10分钟训练(强化类训练,可用于课中)1.填空题:(1)-6的倒数是_____,-6的倒数的倒数是_______,-6的相反数是______,-6的相反数的相反数是_______;(2)当两数_____时,它们的和为0;(3)当两数_____时,它们的积为0;(4)当两数_____时,它们的积为1.思路解析:根据倒数、相反数的定义来解.答案:(1) -16-6 6 -6(2)互为相反数(3)其中有一个数为0 (4)互为倒数2.计算:(1)(+36)÷(-4); (2)(-213)÷(-116);(3)(-90)÷15; (4)-1÷(+35).思路解析:本题第(1)(3)两小题应选用除法法则二;第(2)(4)两小题应选用除法法则一进行计算.解:(1)原式=-364=-9;(2)原式=73×67=2;(3)原式=-9015=-6;(4)原式=-1×53=-53.3.计算下列各题:(1)(-1 700 000)÷(-16)÷(-25)÷25;(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.思路解析:同级运算应依次由前向后进行,混合运算应先乘除后加减,或化除为乘.两小题1)用了化除为乘,避免了大数的运算;(2)逆用了运算法则.解:(1)原式=-1 700 000×116×125×125=-170;(2)原式=-13(125+62-187)=0.4.用简便方法计算:(1)(-81)÷214-94÷(-16);(2)1÷{(-1111)×(-156)-(-3.9)÷[1-34+(-0.7)]}.思路解析:依照混合运算顺序进行逐层计算.解:(1)原式=-81×49+49×116=-36+136=-353536;(2)原式=1÷[1211×116+3.9÷(-0.45)]=1÷(2-263)=-320.5.化简下列分数:(1)26--; (2)39--;(3)03-; (4)-ab--.思路解析:利用除法化简分数,主要是简化分数的符号,一般地有,分数的分子、分母、分数本身的三个符号中,任意改变其中两个的符号,分数的值不变,这一结论使上述问题化简过程更为简便,如第(4)小题-ab--=-ab++=-ab.答案: (1)1/3; (2)13; (3) 0; (4)-ab.快乐时光三部曲老师:“这次你考试不及格,所以我要送你三本书.现在先看第一本《口才》.尽量说服父亲不要打你.如果说服不了,赶紧看第二本书《短跑》.如果没跑掉,就只能看第三本书了.”学生:“什么书?”老师:“《外科医学》.”30分钟训练(巩固类训练,可用于课后)1.计算:(1)(-40)÷(-8);(2)(-5.2)÷33 25.思路解析:题(1)能整除,在确定商的符号之后,直接除比较简便;题(2)的除数是分数,把它转化为乘法比较简便.解:(1)原式=5;(2)原式=-265×2578=53.2.计算:(1)(-1)÷(-310); (2)(-0.33)÷(+13)÷(-9);(3)(-9.18)×(0.28)÷(-10.71); (4)63×(-149)+(-17)÷(-0.9).思路解析:先确定结果的符号,然后将除法运算转化成乘法运算.解:(1)原式=103;(2)原式=0.33×3×19=0.11;(3)原式=-9.18×0.28×110.71=-625;(4)原式=63×(-149)+17×109=-91+1063=-905363.3.计算:(-163)÷(19-27+23-114).思路解析:乘法对加法满足分配律,但除法对加法并不满足分配律.只有当把除法转化为乘法以后,才能运用分配律.解:原式=-163÷(1641991414+--)=-163÷53126=-253.4.计算:(1)29÷3×13;(2)(-35)×(-312)÷(-114)÷3;(3)[(+17)-(-13)-(+15)]÷(-1105).思路解析:对于乘除混合运算,首先由负数的个数确定符号,同时将小数化成分数,带分数化成假分数,算式化成连乘积的形式,再进行约分.(1)题注意乘除是同一级运算,应从左往右顺序运算,不能先做乘再做除;(3)题将除转化为乘的同时,化简中括号内的符号,然后用乘法分配律进行运算较简单.解:(1)原式=29×13×13=299;(2)原式=35×72×(-45)×13=-1425;(3)原式=(17+13-15)×(-105)=-17×105-13×105+15×105=-15-35+21=-29.5.混合运算:(1)619÷(-112)×1924; (2)(-81)÷214×49×(-16);(3)(-21316)÷(34×98); (4)|-1.3|+0÷(5.7×|-45|+54).思路解析:第(1)(2)小题应先把带分数化为假分数,然后进行运算;第(3)小题有括号,应先算括号里面的,再把除法转化为乘法进行计算;第(4)小题有0作被除数,早发现可使运算简便.解:(1)原式=-619×23×1924=-16;(2)原式=81×49×49×16=256;(3)原式=-4516×3227=-313;(4)原式=1.3+0=1.3.6.已知m除以5余1,n除以5余4,如果3m>n,求3m-n除以5的余数. 思路解析:此题应用了化除为乘的思想.答案:3m-n除以5的余数是4.7.计算:(-317÷158+1÷365×1198)×(215+1-165).思路解析:前一个括号计算复杂,后一个括号则很特殊且简单,结果为零,因此有时不能只顾算前面忽视后面.答案:原式=(-317÷158+1÷365×1198)×0=0.8.计算:(-191 919×9 898+989 898×1 919)÷(-12+3.14).思路解析:此题看上去好像计算量很大,但仔细观察分子可发现,19 1919=19×10 101,9 898=98×101,989 898=98×10 101,1 919=19×101,这样一来,两个积互为相反数,相加得0.答案:09.有一种“算24”的游戏,其规则是:任取四个1~13之间的自然数,将这四个数(每数只能用一次)进行加减乘除混合运算,其结果为24.例如2,3,4,5作运算.(5+3-2)×4=24,现有四个有理数3、4、-6、10,运用以上规则写出等于24的算式,你能写出几种算法?答案:例如:3×(10+4-6)=24.其他略.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)050850
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 若,满足,则的值为( )A.B.C.D.2. 下列运算正确的是( )A.B.C.D.3. 已知,则的值是()A.B.C.D.4. 已知=,则的值是( )A.B.C.D.5. 的平方根是( )m n (m−1+=0)2n+2−−−−−√(m+n)51−1±1=±39–√|−3|=−3−=−39–√−=932+2=b +8a −17−−−−−√17−a −−−−−√a −b −−−−√3±35±5|a −2|+(b +3)20b a −66−9916−−√B.C.D.6. 的算术平方根是( )A.B.C.D.7. 已知,则的值是( )A.B.C.D.8. 的平方根为( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知,为实数,且,则_________.10. 的平方根是________;的算术平方根是________.11. ,则________.±42±2116−−−√121418±12+(b −1=0a +2−−−−√)2(a +b)20201−12015−201542−2±2±4x y +=0x−3−−−−−√(y−2)2=y x 44|a −1|+=03+b −−−−√a −b =12. 一个正数的平方根为和,则这个正数为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 已知,求的算术平方根是多少?14. 若与是同一个数的平方根,求出这个数.15. 已知实数的平方根是,,求的平方根.16. 先化简,再求值: ,且.2x+1x−7|a −b −1|+=02a +b −5−−−−−−−−√a b 2m−43m−12a −1±3=52b +3−−−−−√a +b 5(3b −a )−4(−a +3b)a 2b 2b 2a 2|a +2|+=0(b −3)2参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】非负数的性质:偶次方非负数的性质:算术平方根【解析】非负数的性质:算术平方根具有非负性.偶次方具有非负性.【解答】解:∵,∴,,∴,,∴.故选.2.【答案】C【考点】平方根有理数的乘方绝对值【解析】根据算术平方根的知识,绝对值的知识,乘方的知识,依次计算,即可解答.【解答】(m−1+=0)2n+2−−−−−√m−1=0n+2=0m=1n =−2(m+n =−1)5B =3–√解:,,故错误;,,故错误;,,故正确;,,故错误.故选.3.【答案】C【考点】非负数的性质:算术平方根算术平方根【解析】依据二次根式中被开方数为非负数,即可得到a 的值,进而得出的值,代入计算即可得到的值.【解答】解:要使有意义,则解得,∴,∴,∴.故选.4.【答案】D【考点】非负数的性质:偶次方非负数的性质:算术平方根非负数的性质:绝对值【解析】先依据非负数的性质求得、的值,然后再代入求解即可.【解答】A =39–√AB |−3|=3BC −=−39–√CD −=−932D C b a −b−−−−√+2=b +8a −17−−−−−√17−a −−−−−√{a −17≥0,17−a ≥0,a =170=b +8b =−8==5a −b −−−−√25−−√C a b |a −2|+(b +3)2∵=,∴=,=.∴原式==.5.【答案】D【考点】平方根算术平方根【解析】此题暂无解析【解答】解:的平方根为.故选.6.【答案】A【考点】算术平方根【解析】根据算术平方根的定义计算即可.【解答】解:,的算术平方根是.故选.7.【答案】A【考点】|a −2|+(b +3)20a 2b −3(−3)29=416−−√±2D =116−−−√141412A非负数的性质:算术平方根非负数的性质:偶次方【解析】根据非负数的性质列式求出、的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,,解得,,所以.故选.8.【答案】C【考点】平方根【解析】当时,的平方根是,代入求出即可.【解答】解:的平方根是,故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】非负数的性质:算术平方根非负数的性质:偶次方【解析】根据非负数的性质得出,,即可解答本题.a b a +2=0b −1=0a =−2b =1(a +b =(−2+1=(−1=1)2020)2020)2020A a ≥0a ±a −√4±=±24–√C 8x−3=0y−2=0解:,,,∴,∴,∴.故答案为:.10.【答案】,【考点】平方根算术平方根【解析】此题暂无解析【解答】解:∵,∴的平方根是,的算术平方根是.故答案为:;.11.【答案】【考点】非负数的性质:绝对值非负数的性质:算术平方根【解析】此题暂无解析【解答】解:由题意得,,,解得,.∴.故答案为:.12.∵+=0x−3−−−−−√(y−2)2∴≥0x−3−−−−−√≥0(y−2)2x−3=0,y−2=0x =3,y =2==8y x 238±22=±24–√4±242±224a −1=03+b =0a =1b =−3a −b =1−(−3)=44【考点】平方根【解析】根据正数平方根互为相反数,可得一个平方根的和为,根据解方程,可得的值,根据平方运算,可得答案.【解答】解:∵一个正数的平方根是和,∴,解得:,故,则这个正数是:.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:∵,∴ 解得 ∴,∴的算术平方根是.【考点】非负数的性质:绝对值非负数的性质:算术平方根算术平方根【解析】利用绝对值以及二次根式的性质得出关于,的方程组,进而求出,即可得出答案.【解答】解:∵,250x 2x+1x−72x+1+x−7=0x=22x+1=552=2525|a −b −1|+=02a +b −5−−−−−−−−√{a −b −1=0,2a +b −5=0,{a =2,b =1.==2a b 21a b 2–√a b =2a b |a −b −1|+=02a +b −5−−−−−−−−√a −b −1=0,∴ 解得 ∴,∴的算术平方根是.14.【答案】解:∵与是同一个数的平方根,∴或,解得或,∴当时,,当时,,∵,,∴这个数是或.【考点】平方根【解析】根据一个数的平方根有两个,这两个数互为相反数,由与是同一个数的平方根,可知或,从而可以得到的值,进而可以求得这个数.【解答】解:∵与是同一个数的平方根,∴或,解得或,∴当时,,当时,,∵,,∴这个数是或.15.【答案】解:由已知的平方根是,则,则;由,则,则,则,所以的平方根为.【考点】算术平方根平方根【解析】{a −b −1=0,2a +b −5=0,{a =2,b =1.==2a b 21a b 2–√2m−43m−12m−4=3m−12m−4=−(3m−1)m=−3m=1m=−32m−4=2×(−3)−4=−10m=12m−4=2×1−4=−2(−10=100)2(−2=4)210042m−43m−12m−4=3m−12m−4+3m−1=0m 2m−43m−12m−4=3m−12m−4=−(3m−1)m=−3m=1m=−32m−4=2×(−3)−4=−10m=12m−4=2×1−4=−2(−10=100)2(−2=4)210042a −1±32a −1==932a =5=52b +3−−−−−√2b +3==2552b =11a +b =16a +b ±4先依据平方根的定义得到,,从而可求得、的值,然后可求得的值,最后依据平方根的性质求解即可.【解答】解:由已知的平方根是,则,则;由,则,则,则,所以的平方根为.16.【答案】解:原式,,.代入上式,得到原式【考点】非负数的性质:偶次方非负数的性质:绝对值整式的加减——化简求值【解析】先化简代数式,合并同类项得到最简式,根据等式成立,因为绝对值大于等于零,完全平方式大于等于零,两者的和等于零只能是各自为零,解得未知数的值,代入化简好的代数式中得到最后的结果.【解答】解:原式,,.代入上式,得到原式2a −1=92b +3=25a b a +b 2a −1±32a −1==932a =5=52b +3−−−−−√2b +3==2552b =11a +b =16a +b ±4=15b −5a +4a −12b a 2b 2b 2a 2=3b −a a 2b 2=ab(3a −b).∵|a +2|+=0(b −3)2∴a =−2b =3=−2×3×(−2×3−3)=−6×(−9)=54.=15b −5a +4a −12b a 2b 2b 2a 2=3b −a a 2b 2=ab(3a −b).∵|a +2|+=0(b −3)2∴a =−2b =3=−2×3×(−2×3−3)=−6×(−9)=54.。
人教版七年级数学上册全套同步练习(完整版)
超级资源:七年级上册全册同步练习(人教完整版)正数和负数课后训练基础巩固1.下列说法正确的是().A.一个数前面加上“-”号,这个数就是负数B.零既不是正数也不是负数C.零既是正数也是负数D.若a是正数,则-a不一定是负数2.表示相反意义量的是().A.“前进8 m”与“前进6 m”B.“盈利50元”与“亏损160元”C.“黑色”与“白色”D.“你比我高3 cm”与“我比你重5千克”3.海水涨了-4 cm的意义是().A.海水涨了4 cm B.海水下降了4 cmC.海水水位没有变化D.无法确定4.如果收入200元记作+200元,那么支出150元记作().A.+150元B.-150元C.+50元D.-50元5.在-3,0,1,3这四个数中是负数的是().A.-3 B.0C.1 D.3能力提升6.关于“零”的说法正确的是().(1)是整数,也是正数;(2)不是正数,也不是负数;(3)不是整数,是正数;(4)是整数,也是自然数.A.(1)(4) B.(2)(4)C.(1)(2) D.(1)(3)7.用正负数表示具有相反意义的量.(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.8.在下列横线上填上适当的词,构成相反意义的量.(1)收入10元,________6元;(2)高出海平面500 m,__________海平面100 m;(3)减少60 kg,________80 kg;(4) ________500元,节约700元;(5)向东走5米,________走6米.9.如果自行车车条长度超过标准长度2 mm,记作+2 mm,那么比标准长度短1.5 mm,记作________.10.如果全班某次数学成绩的平均成绩为83分,某同学考了85分,记作+2分,那么得90分记作____________分,-5分表示的是____________分.11.孔子出生于公元前551年,如果用-551年表示,那么下列中国历史文化名人的出生年代表示为:(1)司马迁出生于公元前145年:__________;(2)李白出生于公元701年:________;(3)欧阳修出生于公元1007年:________.12.按照“神舟”号飞船环境控制与生命保障系统的设计指标,飞船返回舱的温度为21 ℃±4 ℃,该返回舱的最高温度为__________.13.教室高2.8米,课桌高0.6米,如果把课桌面记作0米,则教室的顶部和地面分别记作什么?教室中天花板与地面的距离是多少?如果以天花板为0米,那么桌面高度和地面各记作什么?14.摩托车厂周计划每天生产250辆摩托车,由于工作轮休,每天上班的人数不一定相多?比计划多多少辆?(2)星期几生产的摩托车最少?比计划少多少辆?参考答案1答案:B点拨:零不是正数也不是负数,它是正负数的分界线.2答案:B点拨:相反意义的量描述的必须是同一件事,必须有数据和单位,意义相反.3答案:B点拨:海水涨了-4 cm,实际不但没有涨,反而下降了4 cm.4答案:B点拨:收入与支出意义相反,规定收入为正,那么支出就为负.5答案:A6答案:B点拨:(1)是整数,但不是正数,错误;(2)正确;(3)错误;(4)是整数,是最小的自然数,正确.7答案:(1)低于海平面20米(2)-13吨点拨:正负数在实际问题中,表示一对具有相反意义的量.8答案:(1)支出(2)低于(3)增加(4)浪费(5)向西点拨:收入与支出、高于与低于,减少与增加、浪费与节约,向东与向西意义相反.9答案:-1.5 mm点拨:超过标准长度记为+,那么低于标准长度则记为-.10答案:+778点拨:85分记作+2分,说明基准数是平均分83分,90分超过7分,因而记+7分,-5分表示比83少5分,应该是78分.11答案:(1)-145年(2)701年(3)1007年点拨:公元前551年,如果用-551年表示说明以公元元年为标准.12答案:25 ℃点拨:21 ℃±4 ℃表示返回时,要么比21 ℃高4 ℃,要么低4 ℃,所以最高是21+4=25(℃).13解:教室的顶部记为+2.2米,地面记为-0.6米;教室中天花板与地面的距离是2.8米;·如果天花板为0米,桌面记作-2.2米,地面记为-2.8米.14解:(1)星期二、星期四、星期五比计划量多,其中星期五最多,比计划多10辆;(2)星期日的产量比计划量少的最多,比计划少25辆.课后训练基础巩固1.在-1,+7,0,23-,516中,正数有().A.1个B.2个C.3个D.4个2.12-的相反数是().A.12B.-2 C.2 D.以上都不对3.在如图所示的数轴上,表示112-的点为().A.M点B.N点C.H点D.K点4.若|a|≥0,那么().A.a>0 B.a<0C.a≠0 D.a为任意数5.下列判断不正确的有().①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.有理数a,b在数轴上的位置如图所示,则a与b的大小关系是().A.a<b B.a=b C.a>b D.无法确定能力提升7.下列说法不正确的是().A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近8.下列分数中,大于13-而小于14-的数是().A.1120-B.413-C.316-D.617-9.-|-3|的相反数是().A.3 B.-3C.13D.13-10.数轴上的两点A,B分别表示-7和-3,那么A,B两点间的距离是________.11.绝对值小于3的负整数有__________,绝对值不小于2且不大于5的非负整数有__________.12.图中两个圆圈分别表示正数集合和整数集合,请写出一些数(每个类别不少于3个数),并填入两个圆圈及重叠部分.你能说出这个重叠部分表示什么数的集合吗?13.正式排球比赛,对所使用的排球的重量是有严格规定的,检查5个排球的重量,超个问题.14.自己任写三个数,使它大于57-而小于18-.15.一探险队,要沿着一条东西走向的河流进行考察,第一天沿河岸向上游走了5 km,第二天又向上游走了4.3 km,第三天开始计划有变,第三天又向下游走了4.8 km,第四天又向下游走了3 km,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?参考答案1答案:B 点拨:四个数中,只有+7,516是正数,故选B. 2答案:A 点拨:只有符号不同的两个数互为相反数,故选A.3答案:A4答案:D 点拨:任何数的绝对值都是一个非负数,因此,不论a 为何值,都有|a |≥0,所以a 为任意数,故选D.5答案:C 点拨:①②错误,原因是应包含0,④点可以表示数,但点不是数.只有③正确,故选C.6答案:C 点拨:法一:数轴上的点所表示的数,右边的总比左边的大.法二:从数轴上看a 是正数,b 是负数,正数大于负数,故选C.7答案:B 点拨:只有负数的绝对值比它本身大,所以A 正确,负有理数越大离原点越远,绝对值也越大,故C 、D 正确,B 错误,两个数相等,它们的绝对值必相等.所以选B.8答案:B 点拨:通过比较绝对值的方法,再估数比较,1110120203->>,331612-<,661718->,所以都不在13和14之间,所以只有B 合适,或借助于数轴解决.故选B. 9答案:A 点拨:-|-3|=-3,即求-3的相反数,所以是3,选A.10答案:4 点拨:借助于数轴可知A ,B 相距4个单位长度.11答案:-1,-2 2,3,4,5 点拨:①绝对值小于3的整数有2,1,0,―1,―2,负整数是-1,-2;②不小于2就是≥2且不大于5就是≤5,即介于2,5之间包括2,5的正整数,所以是2,3,4,5.12答案:答案不唯一,如下图:重叠部分表示的数是正整数集合.点拨:正数包括正整数、正分数,整数包括正整数,0和负整数,所以两个集合重合的部分就是正整数集合.13解:第2个球更好一些,因为它的绝对值最小,说明接近规定的重量.点拨:重量最接近规定重量的质量最好,也就是求绝对值最小的那个球,|-10|=10,所以选择第2个球. 14解:不唯一,如:12-,14-,38-,47-,37-,17-,…. 点拨:通过比较它们的绝对值,设这个数为a ,那么a 在57>a >18之间的数的相反数,也可以根据小数的例子,约在0.7>a >0.125之间的数的相反数也可,如:-0.2,-0.25,-0.3,…都可.15解:设出发点为原点,向上游走为正方向,那么向下游走为负,画出数轴如图所示.利用数轴分析,得第四天后,探险队在出发点的上游,距离出发点1.5 km.课后训练基础巩固1.下面是小华做的数学作业,其中算式中正确的是().①4477⎛⎫-+=⎪⎝⎭;②1107744⎛⎫--=⎪⎝⎭;③1155⎛⎫+-=-⎪⎝⎭;④1155⎛⎫-+=-⎪⎝⎭.A.①②B.①③C.①④D.②④2.下列交换加数位置的变形中,正确的是().A.1-4+5-4=1-4+5-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.73.下列计算结果中等于3的是().A.|-7|+|+4| B.|(-7)+(+4)|C.|+7|+|-4| D.|(+7)-(-4)|4.已知胜利企业第一季度盈利26 000元,第二季度亏本3 000元,该企业上半年盈利可用算式表示为().A.(+26 000)+(+3 000) B.(-26 000)+(+3 000)C.(+26 000)+(-3 000) D.(-26 000)+(-3 000)5.一个数加上-12得-5,那么这个数为().A.17 B.7C.-17 D.-76.将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号的代数和的形式应是______.能力提升7.计算:(-5)-(+3)+(-9)-(-7)+12所得结果正确的是().A.1102-B.192-C.182D.1232-8.当x<0,y>0时,x,x+y,x-y,y中最小的数是().A.x B.x-y C.x+y D.y9.-0.25比-0.52大__________,比215-小2的数是__________.10.若a>0,b<0,则a-b__________0,b-a__________0.11.已知a=23,b=34-,c=12-,则式子(-a)+b-(-c)=__________.12.计算下列各式:(1)0-(-6)+2-(-13)-(+8);(2)3174⎛⎫+⎪⎝⎭-(+6.25)-182⎛⎫- ⎪⎝⎭-(+0.75)-1224;(3)-0.5-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭;(4)712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.下表是某中学七年级6名学生的体重情况:(1)根据已知情况完成下表:(3)最轻的与最重的相差多少?14.有一批食品罐头,标准质量为每听454 g,现抽取10听样品进行检测,结果如下表15.若|a-1|+|b+3|=0,则b-a-12的值为多少?16.一口3.5米深的井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米,此时它爬出井口了吗?参考答案1答案:D点拨:减去一个数等于加上这个数的相反数,所以②正确,一个数加上0或减去0,结果不变,③错误,④正确.2答案:D点拨:应用加法交换律交换加数的位置时,应连同符号一起移动,只有D 正确,故选D.3答案:B点拨:A、C是绝对值的和,B、D分别是和差的绝对值,只有B的结果等于3,故选B.4答案:C点拨:盈利记为正,亏本记为负,总盈利就是两季度盈利的和,所以C正确.5答案:B6答案:6-3+7-2点拨:省略加号和括号,遇负号可以用减法法则变为加法,也可以采用化简符号的方法.7答案:B点拨:根据法则统一为加法,运算结果是192-,故选B.8答案:B点拨:x<0,y>0,x<x+y<y,x-y<x,所以x-y<x<x+y<y.故选B.9答案:0.27235-点拨:根据题意列式计算得,-0.25-(-0.52)=0.27,215--2=235-.10答案:><点拨:减去一个负数相当于加上一个正数,所以a-b>0;减去一个正数相当于加上一个负数,所以b-a<0.11答案:2312-点拨:代入求值2312312334234212⎡⎤⎛⎫⎛⎫-+----=---=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.12解:(1)原式=6+2+13-8=13;(2)原式=31117228442-+-6.25-0.75=114822-+-7=4-7=-3;(3)原式=-0.5+3.25+2.75-7.5=-2;(4)原式=721142369966--+-=-7-3=-10.13解:(1)+543-33640(2)小刚的体重最重,小颖的体重最轻;(3)最轻的与最重的相差:45-34=11(kg)或+5-(-6)=11(kg).答:最轻的与最重的相差11 kg.点拨:(1)由小颖的体重数据可知平均体重为40 kg,所以小刚、小芳的体重减平均体重记为+5,-3,而小明、小京、小宁的体重分别是43 kg,36 kg,40 kg;根据(1)中表格可解决(2)(3).14解:把超过标准质量的克数用正数表示.不足标准质量的克数用负数表示,列出10(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+(5+5)=10(g).因此,这10听罐头的总质量为454×10+10=4 550(g).点拨:当已知的一列数中和数都比较大,但都与某一个数比较接近时,一般就以这“某一个数”为基数,超过的记为正,不足的记为负,这样计算起来比较快捷、简便.15解:由题意,得a-1=0;b+3=0,所以a=1,b=-3,把a=1,b=-3,代入b-a-12,得b-a-12=-3-1-12=142-.点拨:两个非负数相加得0,所以每个数只能是0,由此得a=1,b=-3,代入即可求出b-a-12的值.16解:将向上的方向记为正,向下的方向记为负,由题意知青蛙总的向上爬了:+0.7-0.1+0.42-0.15+1.25-0.2+0.75-0.1+0.65=(0.7+0.42+1.25+0.75+0.65)+(-0.1-0.15-0.2-0.1)=3.77-0.55=3.22(米).因为3.22<3.5,所以这只青蛙没爬出井口.点拨:可以将向上的方向记为正,向下的方向记为负,由题意知青蛙各次分别爬了+0.7和-0.1;+0.42和-0.15;+1.25和-0.2;+0.75和-0.1;+0.65.课后训练基础巩固1.一个有理数和它的相反数相乘,积为().A.正数B.负数C.正数或0 D.负数或02.下列说法正确的是().A.异号两数相乘,取绝对值较大的因数的符号B.同号两数相乘,符号不变C.两数相乘,如果积为负数,那么这两个因数异号D.两数相乘,如果积为正数,那么这两个因数都为正数3.如果ab=0,那么一定有().A.a=b=0 B.a=0C.b=0 D.a,b至少有一个为04.三个数的积是正数,那么三个数中负数的个数是().A.1 B.0或2C.3 D.1或35.若两个有理数的商是正数,和为负数,则这两个数().A.一正一负B.都是正数C.都是负数D.不能确定6.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数().A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数7.计算(-12)÷[6+(-3)]的结果是().A.2 B.6C.4 D.-4能力提升8.若||mm=1,则m__________0.9.若ab<0,bc<0,则ac__________0.10.计算:(1)(-10)×13⎛⎫- ⎪⎝⎭×(-0.1)×6;(2)-3×56×415×(-0.25);(3)-15÷(-5)÷1 1 5⎛⎫- ⎪⎝⎭;(4)-8-2710.6(3)3⎡⎤⎛⎫-+-⨯÷-⎪⎢⎥⎝⎭⎣⎦.11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2 ℃,用了退烧药后,以每15分钟下降0.2 ℃的速度退烧,求两小时后,欢欢的体温.12.某班分小组举行知识竞赛,评分标准是:答对一道题加10分,答错一道题扣10分,不答不得分也不扣分.已知每个小组的基本分为100分,有一个小组共答20道题,其中答对了10道题,不答的有2道题,结合你学过的有理数运算的知识,求该小组最后的得分是多少.13.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a+3b+ba-cd的值是多少?14.若|a+1|+|b+2|=0,求a+b-ab.15.若定义一种新的运算为a*b=1abab-,计算[(3*2)]*16.参考答案1答案:D点拨:如1×(-1)=-1,一个正数和一个负数相乘,积为负数,但不要漏掉0的情况.2答案:C点拨:根据有理数乘法法则,例如-2×4=-8,A错;(-2)×(-4)=8,B错;(-2)×(-5)=10,D错.故C正确.3答案:D点拨:0同任何数相乘都得0.4答案:B点拨:几个不为零的有理数相乘,积的符号由负因数的个数决定,因为三个数的积是正数,所以负因数为偶数个或0个,故选B.5答案:C点拨:从商为正数得出两个数同号,从和为负数得出两个数都为负数,若两个数都为正数,和只能为正数.6答案:D点拨:不要漏掉互为相反数这种情况.7答案:D点拨:(-12)÷[6+(-3)]=(-12)÷3=-4,故选D.8答案:>点拨:若m>0,|m|=m,则m mm m==1;若m<0,|m|=-m,则m mm m-==-1,m为分母,不能等于0.9答案:>点拨:因为ab<0,所以a,b异号,又因为bc<0,所以b,c异号,所以a,c同号,故ac>0.10解:(1)原式=11106310⎛⎫-⨯⨯⨯⎪⎝⎭=-2.(2)原式=3×56×95×14=98.(3)原式=-15×15⎛⎫- ⎪⎝⎭×56⎛⎫- ⎪⎝⎭=52-.(4)原式=231 871353⎡⎤⎛⎫⎛⎫---+-⨯⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=21 87153⎡⎤⎛⎫⎛⎫---+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=31 8753⎡⎤⎛⎫---+⨯-⎪⎢⎥⎝⎭⎣⎦=114 8787555⎛⎫----=-+=-⎪⎝⎭.点拨:(1)(2)先取号,再统一化为分数进行运算,(3)统一化为乘法运算,(3)先算括号里的,再算括号外的.括号里的先算乘除,再算加减.11解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6,即两小时后,欢欢的体温是37.6 ℃.点拨:先求出两小时内有多少个15分钟,再根据每15分钟下降0.2 ℃求出两小时下降的体温数,用39.2 ℃减去下降的体温数.12解:根据题意,得100+10×10+(20-10-2)×(-10)=100+100-80=120(分).答:该小组最后的得分是120分.点拨:所得分数等于基础分加上所得分,所得分等于答对的得分减去答错的扣分.不答不得分也不扣分.13解:因为a,b互为相反数且a≠0,所以a+b=0,ba=-1.因为c,d互为倒数,所以c·d=1,所以3a+3b+ba-cd=3(a+b)+ba-cd=3×0+(-1)-1=-2.点拨:a,b互为相反数且a≠0,那么两数和为0,商为-1,c,d互为倒数,两数积为1,3a+3b=3(a+b).14解:因为|a+1|+|b+2|=0,且|a+1|≥0,|b+2|≥0,所以a+1=0,b+2=0,所以a=-1,b=-2,所以a+b-ab=-1+(-2)-(-1)×(-2)=-3-2=-5.点拨:|a+1|+|b+2|=0,所以a+1=0,b+2=0,求出a、b的值,代入a+b-ab中,求出式子的值.15解:因为a*b=1abab -,所以[(3]1,6)=321* 1326⨯-⨯=6156⎛⎫-* ⎪⎝⎭=611565611 1()1565 -⨯-=--⨯+=1 6 -.点拨:观察所给式子的特点,按字母表示的运算顺序代入求值即可.先从a=3,b=2开始计算.课后训练基础巩固1.求25-3× [32+2×(-3)]+5的值为().A.21 B.30 C.39 D.712.对于(-2)4与-24,下面说法正确的是().A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是().A.22433⎛⎫-=⎪⎝⎭B.23=2×3=6C.-32=-3×(-3)=9 D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是().A.18 B.19C.10 D.95.若a n>0,n为奇数,则a().A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为().A.13 B.-13C.5 D.-58.下列式子正确的是().A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则().A.a n,b n互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是().A.等于1 B.大于1C.不小于1 D.小于111.某市约有230万人口,用科学记数法表示这个数为().A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330 000毫克/千瓦时,用科学记数法表示并精确到1 000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷3 2 3⎛⎫- ⎪⎝⎭;(2)-72+2×(-3)2-(-6)÷2 1 3⎛⎫- ⎪⎝⎭.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2 004行式子;(2)用字母表示你所发现的规律.参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A 正确,故选A. 2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D 正确,故选D. 4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a 为正数.6解:71112128⎛⎫⨯= ⎪⎝⎭(米).答:第7次后剩下的木棒长1128米. 7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C. 8答案:C 点拨:A.-16<4<-8,错误; B .-8<-16<4,错误; C .-16<-8<4,正确;D .4<-8<-16,错误.故选C.9答案:C 点拨:a ,b 互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n 不确定,2n 为偶数,2n +1为奇数,所以只有C 正确.10答案:C 点拨:|x |≥0,则|x |+1≥1,故C 正确. 11答案:D12答案:3.30×105 13答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14. 14解:(1)原式=9-(-8)÷827⎛⎫- ⎪⎝⎭=9-(-8)×278⎛⎫- ⎪⎝⎭=9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54) =-49+18+54 =23.点拨:先算乘方,再算乘除,最后算加减. 15解:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2. 点拨:利用|a +1|与(b -2)2的非负性. 16解:∵|x -1|≥0,(y +3)2≥0, 又∵|x -1|+(y +3)2=0, ∴|x -1|=0,(y +3)2=0. ∴x =1,y =-3.∴(xy )2=[1×(-3)]2=9.17解:(1)2 0042+(2 004×2 005)2+2 0052 =(2 004×2 005+1)2.(2)n 2+[n ×(n +1)]2+(n +1)2 =[n ×(n +1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.课后训练基础巩固1.单项式22m n-的系数、次数分别是( ).A .-1,2B .-2,3C .12,2D .12-,3 2.多项式2x 2-x +1的各项分别是( ). A .2x 2,x,1 B .2x 2,-x,1 C .-2x 2,x ,-1 D .-2x 2,-x ,-1 3.下列各式中,是二次三项式的是( ). A .a 2+b 2 B .x +y +7 C .5-x -y 2 D .x 2-y 2+x -3x 2 4.原产量n 吨,增产30%之后的产量应为( ). A .(1-30%)n 吨 B .(1+30%)n 吨 C .n +30%吨 D .30%n 吨5.下列式子①-1,②223a -,③216x y ,④2ab π-,⑤abc ,⑥3a +b ,⑦0,⑧m 中,是单项式的是__________.(只填序号)6.单项式3a 3b 的系数是________,次数是____;单项式256x y-的系数是_____,次数是______.7.254143a b ab --+是______次____项式,其中三次项系数是______,二次项为______,常数项为____,写出所有的项________. 能力提升8.下列说法中正确的是( ). A .5不是单项式B .2x y+是单项式 C .x 2y 的系数是0 D .x -32是整式 9.下列说法正确的是( ).A .单项式223x y-的系数是-2,次数是3B .单项式a 的系数是0,次数是0C .-3x 2y +4x -1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-10.-ax2y b+1是关于x,y的五次单项式,且系数为12-,则a=______,b=______.11.对于单项式“5x”可以这样解释,苹果每千克5元,某人买了x千克,共付款5x 元,请你对“5x”再给出另一个实际生活方面的解释:_________________________________.12.用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是_________.13.指出下列多项式的每一项,并说明是几次几项式.(1)x3-x+1;(2)x3-8x2y2+5y2.14.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长L;(2)花坛的面积S.参考答案1答案:D 点拨:原式可以化为212m n -,易看出系数为12-,次数为3. 2答案:B 点拨:多项式中的每一个单项式是多项式的项,注意要带着符号.3答案:C 点拨:A 、D 不是三项式,B 的各项中最高次数是一次,只有C 选项是二次三项式,故选C.4答案:B 点拨:增长后就是原产量的(1+30%)倍,所以B 正确.5答案:①②③④⑦⑧ 点拨:⑤中分母上含有字母,⑥是3a 与b 的和,因此都不是单项式.6答案:3 4 56- 3 点拨:系数是单项式中的数字因数,次数是单项式中所有字母的指数和.7答案:三 三 54-43ab - 1 254a b -,43ab -,1 点拨:本题考查了多项式的次数、系数项和各项的名称、系数、次数等,要根据定义明确回答,并且要注意符号和书写.8答案:D 点拨:本题考查了整式中各定义的注意点,只有D 是正确的.9答案:D 点拨:不论是单项式中的系数还是多项式中的项都带着符号,因而A 、C 选项错,a 的系数是1,次数也是1,故B 也错,只有D 正确.10答案:12 2 点拨:由题意可知-a =12-,所以a =12,b +1=3,所以b =2. 11答案:答案不唯一,如:某种联想电器的单价是x 元,而联想笔记本电脑的单价是它的5倍,则联想笔记本电脑的单价是5x 元,…点拨:同一个式子在不同的条件下意义也不相同,只要给出一个实际生活中的合理解释即可.12答案:3n +2 点拨:观察图形可知顺序第1,2,3,4,…,对应的枚数分别是5,8,11,…,每次增加3枚,因此应是3的n 倍加2.13解:(1)x 3、-x 、1,是三次三项式; (2)x 3、-8x 2y 2、5y 2,是四次三项式. 点拨:构成多项式的每一个单项式都是多项式的项,并且次数最高项的次数是多项式的次数.注意几次几项式的写法.14解:(1)L =2a +2πr ;(2)花坛的面积是一个长方形的面积与两个半圆的面积之和,即S =2ar +πr 2. 答:花坛的周长为(2a +2πr );面积为(2ar +πr 2).点拨:(1)花坛的周长是半径为r 的两个半圆的长加上长度为a 的两线段的长;(2)面积分为三部分:两个半径相等的半圆的面积和一个长为a ,宽为2r 的长方形的面积.课后训练基础巩固1.下列各组中的两个单项式能合并的是( ). A .4和4x B .3x 2y 3和-y 2x 3C .2ab 2和22abD .m 和2nm 2.下列各题中合并同类项正确的是( ). A .2x 2+3x 2=5x 4 B .3x +2y =5xy C .7x 2-3x 2=4 D .9a 2b -9ba 2=0 3.下面计算正确的是( ).A .6a -5a =1B .a +2a 2=3a 3C .-(a -b )=-a +bD .2(a +b )=2a +b4.计算6a 2-2ab -2(3a 2+12ab )所得的结果是( ). A .-3abB .-abC .3a 2D .9a 25.如果m -n =15,那么-2(n -m )的值是( ). A .25B .52C .25-D .110能力提升6.若A =x 2-5x +2,B =x 2-5x -6,则A 与B 的大小关系是( ). A .A >B B .A =B C .A <B D .无法确定7.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是( ).A .-4(x -3)2+(x -3)B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2-(x -3)8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ).A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm 9.计算:(1)2(2a -3b )+3(2b -3a );(2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)]. 10.先化简,再求值. (1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3; (2)12x -2(x -213y )+231()23x y -+,其中x =-2,y =-3. 11.一个多项式加上-2x 3-x 2y +4y 3后,得x 3-x 2y +3y 3,求这个多项式,并求当x =12-,y =12时,这个多项式的值. 12.七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m 名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生?13.有这样一道题:“当a =2 012,b =-2 013时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013的值.”小明说:本题中a =2 012,b =-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.参考答案1答案:C 点拨:实质考查同类项概念,只有同类项才能合并,只有C 选项字母相同,相同字母的指数也相同.故选C.2答案:D 点拨:合并同类项,系数相加,字母部分(字母及其指数)不变,所以A 、B 、C 都错,系数互为相反数的同类项相加为0,D 正确.3答案:C 点拨:A.6a -5a =a ,故此选项错误;B.a 与2a 2不是同类项,不能合并,故此选项错误;C.-(a -b )=-a +b ,故此选项正确;D.2(a +b )=2a +2b ,故此选项错误;故选C.4答案:A 点拨:去括号,6a 2-2ab -212(3)2a ab +=6a 2-2ab -6a 2-ab ,合并同类项得-3ab .5答案:A 点拨:-2(n -m )=2(m -n )=2×15=25,故选A. 6答案:A 点拨:求差法比较大小,A -B =(x 2-5x +2)-(x 2-5x -6)=x 2-5x +2-x 2+5x +6=8>0,差大于0,被减数大于减数,所以A >B .7答案:D 点拨:把(x -3)看成一项,那么(x -3)2与-5(x -3)2,-2(x -3)与(x -3)就是同类项,分别合并,得-4(x -3)2,-(x -3),所以结果是-4(x -3)2-(x -3),故选D.8答案:B 点拨:设小长方形的长为a ,宽为b ,∴上面的阴影周长为:2(n -a +m -a ),下面的阴影周长为:2(m -2b +n -2b ),∴总周长为:4m +4n -4(a +2b ),又∵a +2b =m ,∴4m +4n -4(a +2b )=4n .9解:(1)2(2a -3b )+3(2b -3a )=4a -6b +6b -9a =4a -9a -6b +6b =-5a ; (2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)] =2x 2-2xy -6x 2+9xy -2(x 2-2x 2+xy -y 2) =-4x 2+7xy -2(-x 2+xy -y 2) =-4x 2+7xy +2x 2-2xy +2y 2 =-2x 2+5xy +2y 2.点拨:有括号的先去括号,再合并同类项.10解:(1)原式=-2x 3+4x -213x -x -3x 2+2x 3 =-2x 3+2x 3+4x -x -213x -3x 2 =3x -2103x . 当x =3时,原式=3×3-103×32=9-30=-21. (2)原式=22123122323x x y x y -+-+=-3x +y 2.当x =-2,y =-3时,原式=-3×(-2)+(-3)2=6+9=15. 点拨:对于整式加减的求值问题,如果能化简,要先化简,再求值,这样可以简化计算.必须注意:在代入求值时,如果字母的取值为负数,要添加括号.11解:由题意,得(x 3-x 2y +3y 3)-(-2x 3-x 2y +4y 3)=x 3-x 2y +3y 3+2x 3+x 2y -4y 3=3x 3-y 3;当x =12-,y =12时,3x 3-y 3=3331111342222⎛⎫⎛⎫⎛⎫⨯--=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答:这个多项式是3x 3-y 3;当x =12-,y =12时,这个多项式的值是12-. 点拨:本题是已知和与一个加数求另一个加数,所以根据“所求多项式=和-加数”可列式计算求出,再代入求值.12解:根据题意,得m +(2m -10)+1(210)2m - =3m -10+m -5=(4m -15)(人).答:七年级(1)班共有学生(4m -15)人.点拨:由题意可知:第一组有学生m 名;第二组的学生数是(2m -10)人;第三组的学生数是1(210)2m -人,相加即可得到总人数. 13解:7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013 =(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b +2 013=2 013. ∵化简后式子的值是一个常数,式子的值不变,∴a =2 012,b =-2 013是多余的条件,故小明的观点正确. 点拨:需要通过计算说明,数学说理要严谨.课后训练基础巩固1.在①2x +3y -1;②1+7=15-8+1;③1-12x =x +1;④x +2y =3中方程有______个.( ).A .1B .2C .3D .4 2.下列四个方程中,一元一次方程是( ). A .x 2-1=0 B . x +y =1 C .12-7=5 D .x =0 3.下列方程中,以4为解的方程是( ). A .2x +5=10 B .-3x -8=4C .12+3=2x -3 D .2x -2=3x -64.下列方程变形正确的是( ). A .由3+x =5,得x =5+3 B .由7x =-4,得x =74-C .由12y =0,得y =2D .由3=x -2,得x =3+25.根据“x 的3倍与5的和比x 的13少2”列出方程是( ). A .3x +5=23x- B .3x +5=3x+2C .3(x +5)=23x-D .3(x +5)=3x+26.七年级(1)班有20名女生,占全班人数的40%,求七年级(1)班的学生人数.(只设出未知数,列出方程)能力提升7.下列方程:①x-1=5;②1123x=;③1x=5;④x(x+1)=2;⑤4-2x=x+1中是一元一次方程的是().A.①②B.①②③④C.①②③⑤D.①②⑤8.下列运用等式的性质变形正确的是().A.若x=y,则x-5=y+5 B.若a=b,则ac=bcC.若a bc c=,则2a=3b D.若x=y,则x ya a=9.方程x+2=3的解也是方程ax-3=5的解时,a=__________.10.方程(m-1)x|m|+2=0是关于x的一元一次方程,那么m的取值是__________.11.如果x=1是方程-1=3x+m的解,则m=__________.12.一个长方形的周长为26厘米,如果长减少1厘米,宽增加2厘米,则长方形就变成了正方形,设长方形的长为x厘米,可列方程为______.13.利用等式的性质解一元一次方程:(1)3=x-5;(2)3-x=12;(3)3y=2;(4)2x-5=3.14.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米.(1)飞机飞行速度为x千米/时,则顺风中飞机的速度为__________,逆风中飞机的速度为__________;(2)列出方程__________.15.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?(列方程求解)16.在学完等式的性质后,赵老师让同桌之间交流一下,看看对这部分知识的理解情况,下面是三位同学的对话,李红说:从ab=bc能得到a=c,小明说:从a cb b=,也能得到a=c,它们互相批评对方不对,邻座的小华说他俩都对,你认为呢?请你评判一下他们三人谁对谁错.参考答案1答案:B点拨:含有未知数且是等式.①②不是,③④是.2答案:D点拨:只有一个未知数,且未知数的次数是1,所以A、B、C都不符合,只有D符合.3答案:D点拨:将4代入各方程检验,只能使方程2x-2=3x-6左右两边相等,是它的解,故选D.4答案:D点拨:D选项两边同时加2,再根据等式的对称性,3+2=x变化得到,因而正确,故选D.5答案:A点拨:x的3倍与5的和是3x+5,x的13是3x,少2,3x较大,所以A正确.6解:设全班人数为x,得40%x=20.点拨:设全班人数为x,那么女生占40%是40%x.7答案:D点拨:③④不是,它们的未知数的次数不是1,①②⑤是,故选D.8答案:B点拨:A、C不符合等式性质,D除以a有可能是0,都不正确,B即使c =0,也正确.9答案:8点拨:方程x+2=3的解是x=1,ax-3=5的解也是1,将x=1代入,得a=8.10答案:-1点拨:方程是一元一次方程,所以|m|=1,m=±1,但(m-1)不能等于0,即m≠1,所以m=-1.11答案:-4点拨:把x=1代入方程中,得方程-1=3+m,根据等式的性质,解得m=-4.12答案:x-1=15-x点拨:由题意可得长与宽的和等于13厘米,那么长方形的宽为(13-x)厘米,根据题意列出方程x-1=13-x+2,即x-1=15-x.13解:(1)3=x-5,方程两边都加5,得3+5=x-5+5,化简,得8=x,即x=8.(2)3-x=12,方程两边都加-3,得3-x+(-3)=12+(-3),化简,得-x=52-,两边都乘以-1,得x=5 2 .(3)3y=2,方程两边都除以3,得3y÷3=2÷3,化简,得y=2 3 .(4)2x-5=3,方程两边都加5,得2x-5+5=3+5,化简,得2x=8,方程两边都除以2,得2x÷2=8÷2,即x=4.点拨:解方程,就是把方程变形,使方程左边只含未知数,右边是常数,再变为x=a(a 是常数)的形式.如:方程3=x-5中,要去掉方程右边的-5,因此两边都加5.再利用等式的对称性得到x=8.14答案:(1)(x+24)千米/时(x-24)千米/时(2)5.5(x+24)=6(x-24)点拨:顺风飞行速度=飞机飞行速度+风速;逆风飞行速度=飞机飞行速度-风速.15解:设余下的布还可以做x套儿童服装,根据题意,得1.5x+3.5×80=355.方程两边都加-280,得1.5x+3.5×80-280=355-280,化简得1.5x=75,两边都除以1.5,得x =50.答:余下的布还可以做50套儿童服装.点拨:根据做成人服装的用料+做儿童服装的用料=总的布料,列出方程求解.16解:李红的说法错误,小明的说法正确,因此小华的理解也是错误的.点拨:等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.由此从ab=bc得到a=c,两边同除以b,b可以是0,所以李红说的不正确;而从a cb b =,得。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套-共4套】第4章第2节-直线、射线、线段
七年级数学(人教版上)同步练习第四章第二节直线、射线、线段一. 教学内容:平面图形(一)二. 学习目的:1. 通过实例了解点线面体的几何特征,感受它们之间的关系2. 了解直线、射线、线段的概念、表示方法及画法;3. 掌握点与直线的位置关系;掌握直线公理;4. 了解直线、射线、线段之间的关系;5. 理解线段的和、差及线段的中点等概念,会比较线段的大小;6. 理解两点间的距离的概念,会度量两点间的距离。
三. 技能要求:1. 会比较线段的大小,理解线段的和差与线段中点等概念。
2. 会用直尺、圆规、刻度尺等工具画线段,画线段的和差、线段的中点。
3.逐步掌握学过的几何图形的表示方法,懂得学过的几何语言,能用这些语言准确,整洁地画出图形。
认识学过的图形,会用语言描述这些简单的几何图形。
【教学过程】一. 重要数学思想1.数形结合的思想。
建立位置关系与数量关系的联系,即由形的背景建立数量关系,和由数量关系研究位置关系的思想。
2.方程的思想。
本章中一些角与线段的计算问题要通过设元,列方程解出未知数来解决。
通过这种训练初步形成方程的思想。
3.分类及分类讨论的思想。
通过本章中一些命题确定的题设条件产生的不唯一结论的讨论,初步形成分类讨论的思想。
二. 重要数学能力1.培养几何术语的表达能力。
本章是平面几何的第一章,要学习许多几何术语的表达,如“有且只有”、“经过”、“无限延长”等,掌握它们需要有一个过程。
因此,要了解它们的含义,逐步培养表达能力。
2.图形的观察记忆等能力,观察图形的特征。
并在一些稍复杂的图形中分辨出几何概念定义的基本图形。
三. 知识点讲解1. 体、面、线、点(1)只考虑物体的形状,大小和位置的物体叫做几何体。
体是由面围成的,面与面相交于线,线与线相交于点。
对于面、线、点应认识到它们是不定义的原始概念,只给一个形象上的、描述性的认识。
(2)面有平面和曲面。
如桌面可以想象为一个平面。
皮球的表面可以想象为一个曲面。
人教版七年级数学上册全套同步练习(完整版)
超级资源:七年级上册全册同步练习(人教完整版)正数和负数课后训练基础巩固1.下列说法正确的是().A.一个数前面加上“-”号,这个数就是负数B.零既不是正数也不是负数C.零既是正数也是负数D.若a是正数,则-a不一定是负数2.表示相反意义量的是().A.“前进8 m”与“前进6 m”B.“盈利50元”与“亏损160元”C.“黑色”与“白色”D.“你比我高3 cm”与“我比你重5千克”3.海水涨了-4 cm的意义是().A.海水涨了4 cm B.海水下降了4 cmC.海水水位没有变化D.无法确定4.如果收入200元记作+200元,那么支出150元记作().A.+150元B.-150元C.+50元D.-50元5.在-3,0,1,3这四个数中是负数的是().A.-3 B.0C.1 D.3能力提升6.关于“零”的说法正确的是().(1)是整数,也是正数;(2)不是正数,也不是负数;(3)不是整数,是正数;(4)是整数,也是自然数.A.(1)(4) B.(2)(4)C.(1)(2) D.(1)(3)7.用正负数表示具有相反意义的量.(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.8.在下列横线上填上适当的词,构成相反意义的量.(1)收入10元,________6元;(2)高出海平面500 m,__________海平面100 m;(3)减少60 kg,________80 kg;(4) ________500元,节约700元;(5)向东走5米,________走6米.9.如果自行车车条长度超过标准长度2 mm,记作+2 mm,那么比标准长度短1.5 mm,记作________.10.如果全班某次数学成绩的平均成绩为83分,某同学考了85分,记作+2分,那么得90分记作____________分,-5分表示的是____________分.11.孔子出生于公元前551年,如果用-551年表示,那么下列中国历史文化名人的出生年代表示为:(1)司马迁出生于公元前145年:__________;(2)李白出生于公元701年:________;(3)欧阳修出生于公元1007年:________.12.按照“神舟”号飞船环境控制与生命保障系统的设计指标,飞船返回舱的温度为21 ℃±4 ℃,该返回舱的最高温度为__________.13.教室高2.8米,课桌高0.6米,如果把课桌面记作0米,则教室的顶部和地面分别记作什么?教室中天花板与地面的距离是多少?如果以天花板为0米,那么桌面高度和地面各记作什么?14.摩托车厂周计划每天生产250辆摩托车,由于工作轮休,每天上班的人数不一定相多?比计划多多少辆?(2)星期几生产的摩托车最少?比计划少多少辆?参考答案1答案:B点拨:零不是正数也不是负数,它是正负数的分界线.2答案:B点拨:相反意义的量描述的必须是同一件事,必须有数据和单位,意义相反.3答案:B点拨:海水涨了-4 cm,实际不但没有涨,反而下降了4 cm.4答案:B点拨:收入与支出意义相反,规定收入为正,那么支出就为负.5答案:A6答案:B点拨:(1)是整数,但不是正数,错误;(2)正确;(3)错误;(4)是整数,是最小的自然数,正确.7答案:(1)低于海平面20米(2)-13吨点拨:正负数在实际问题中,表示一对具有相反意义的量.8答案:(1)支出(2)低于(3)增加(4)浪费(5)向西点拨:收入与支出、高于与低于,减少与增加、浪费与节约,向东与向西意义相反.9答案:-1.5 mm点拨:超过标准长度记为+,那么低于标准长度则记为-.10答案:+778点拨:85分记作+2分,说明基准数是平均分83分,90分超过7分,因而记+7分,-5分表示比83少5分,应该是78分.11答案:(1)-145年(2)701年(3)1007年点拨:公元前551年,如果用-551年表示说明以公元元年为标准.12答案:25 ℃点拨:21 ℃±4 ℃表示返回时,要么比21 ℃高4 ℃,要么低4 ℃,所以最高是21+4=25(℃).13解:教室的顶部记为+2.2米,地面记为-0.6米;教室中天花板与地面的距离是2.8米;·如果天花板为0米,桌面记作-2.2米,地面记为-2.8米.14解:(1)星期二、星期四、星期五比计划量多,其中星期五最多,比计划多10辆;(2)星期日的产量比计划量少的最多,比计划少25辆.课后训练基础巩固1.在-1,+7,0,23-,516中,正数有().A.1个B.2个C.3个D.4个2.12-的相反数是().A.12B.-2 C.2 D.以上都不对3.在如图所示的数轴上,表示112-的点为().A.M点B.N点C.H点D.K点4.若|a|≥0,那么().A.a>0 B.a<0C.a≠0 D.a为任意数5.下列判断不正确的有().①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.有理数a,b在数轴上的位置如图所示,则a与b的大小关系是().A.a<b B.a=b C.a>b D.无法确定能力提升7.下列说法不正确的是().A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近8.下列分数中,大于13-而小于14-的数是().A.1120-B.413-C.316-D.617-9.-|-3|的相反数是().A.3 B.-3C.13D.13-10.数轴上的两点A,B分别表示-7和-3,那么A,B两点间的距离是________.11.绝对值小于3的负整数有__________,绝对值不小于2且不大于5的非负整数有__________.12.图中两个圆圈分别表示正数集合和整数集合,请写出一些数(每个类别不少于3个数),并填入两个圆圈及重叠部分.你能说出这个重叠部分表示什么数的集合吗?13.正式排球比赛,对所使用的排球的重量是有严格规定的,检查5个排球的重量,超个问题.14.自己任写三个数,使它大于57-而小于18-.15.一探险队,要沿着一条东西走向的河流进行考察,第一天沿河岸向上游走了5 km,第二天又向上游走了4.3 km,第三天开始计划有变,第三天又向下游走了4.8 km,第四天又向下游走了3 km,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?参考答案1答案:B 点拨:四个数中,只有+7,516是正数,故选B. 2答案:A 点拨:只有符号不同的两个数互为相反数,故选A.3答案:A4答案:D 点拨:任何数的绝对值都是一个非负数,因此,不论a 为何值,都有|a |≥0,所以a 为任意数,故选D.5答案:C 点拨:①②错误,原因是应包含0,④点可以表示数,但点不是数.只有③正确,故选C.6答案:C 点拨:法一:数轴上的点所表示的数,右边的总比左边的大.法二:从数轴上看a 是正数,b 是负数,正数大于负数,故选C.7答案:B 点拨:只有负数的绝对值比它本身大,所以A 正确,负有理数越大离原点越远,绝对值也越大,故C 、D 正确,B 错误,两个数相等,它们的绝对值必相等.所以选B.8答案:B 点拨:通过比较绝对值的方法,再估数比较,1110120203->>,331612-<,661718->,所以都不在13和14之间,所以只有B 合适,或借助于数轴解决.故选B. 9答案:A 点拨:-|-3|=-3,即求-3的相反数,所以是3,选A.10答案:4 点拨:借助于数轴可知A ,B 相距4个单位长度.11答案:-1,-2 2,3,4,5 点拨:①绝对值小于3的整数有2,1,0,―1,―2,负整数是-1,-2;②不小于2就是≥2且不大于5就是≤5,即介于2,5之间包括2,5的正整数,所以是2,3,4,5.12答案:答案不唯一,如下图:重叠部分表示的数是正整数集合.点拨:正数包括正整数、正分数,整数包括正整数,0和负整数,所以两个集合重合的部分就是正整数集合.13解:第2个球更好一些,因为它的绝对值最小,说明接近规定的重量.点拨:重量最接近规定重量的质量最好,也就是求绝对值最小的那个球,|-10|=10,所以选择第2个球. 14解:不唯一,如:12-,14-,38-,47-,37-,17-,…. 点拨:通过比较它们的绝对值,设这个数为a ,那么a 在57>a >18之间的数的相反数,也可以根据小数的例子,约在0.7>a >0.125之间的数的相反数也可,如:-0.2,-0.25,-0.3,…都可.15解:设出发点为原点,向上游走为正方向,那么向下游走为负,画出数轴如图所示.利用数轴分析,得第四天后,探险队在出发点的上游,距离出发点1.5 km.课后训练基础巩固1.下面是小华做的数学作业,其中算式中正确的是().①4477⎛⎫-+=⎪⎝⎭;②1107744⎛⎫--=⎪⎝⎭;③1155⎛⎫+-=-⎪⎝⎭;④1155⎛⎫-+=-⎪⎝⎭.A.①②B.①③C.①④D.②④2.下列交换加数位置的变形中,正确的是().A.1-4+5-4=1-4+5-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.73.下列计算结果中等于3的是().A.|-7|+|+4| B.|(-7)+(+4)|C.|+7|+|-4| D.|(+7)-(-4)|4.已知胜利企业第一季度盈利26 000元,第二季度亏本3 000元,该企业上半年盈利可用算式表示为().A.(+26 000)+(+3 000) B.(-26 000)+(+3 000)C.(+26 000)+(-3 000) D.(-26 000)+(-3 000)5.一个数加上-12得-5,那么这个数为().A.17 B.7C.-17 D.-76.将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号的代数和的形式应是______.能力提升7.计算:(-5)-(+3)+(-9)-(-7)+12所得结果正确的是().A.1102-B.192-C.182D.1232-8.当x<0,y>0时,x,x+y,x-y,y中最小的数是().A.x B.x-y C.x+y D.y9.-0.25比-0.52大__________,比215-小2的数是__________.10.若a>0,b<0,则a-b__________0,b-a__________0.11.已知a=23,b=34-,c=12-,则式子(-a)+b-(-c)=__________.12.计算下列各式:(1)0-(-6)+2-(-13)-(+8);(2)3174⎛⎫+⎪⎝⎭-(+6.25)-182⎛⎫- ⎪⎝⎭-(+0.75)-1224;(3)-0.5-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭;(4)712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.下表是某中学七年级6名学生的体重情况:(1)根据已知情况完成下表:(3)最轻的与最重的相差多少?14.有一批食品罐头,标准质量为每听454 g,现抽取10听样品进行检测,结果如下表15.若|a-1|+|b+3|=0,则b-a-12的值为多少?16.一口3.5米深的井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米,此时它爬出井口了吗?参考答案1答案:D点拨:减去一个数等于加上这个数的相反数,所以②正确,一个数加上0或减去0,结果不变,③错误,④正确.2答案:D点拨:应用加法交换律交换加数的位置时,应连同符号一起移动,只有D 正确,故选D.3答案:B点拨:A、C是绝对值的和,B、D分别是和差的绝对值,只有B的结果等于3,故选B.4答案:C点拨:盈利记为正,亏本记为负,总盈利就是两季度盈利的和,所以C正确.5答案:B6答案:6-3+7-2点拨:省略加号和括号,遇负号可以用减法法则变为加法,也可以采用化简符号的方法.7答案:B点拨:根据法则统一为加法,运算结果是192-,故选B.8答案:B点拨:x<0,y>0,x<x+y<y,x-y<x,所以x-y<x<x+y<y.故选B.9答案:0.27235-点拨:根据题意列式计算得,-0.25-(-0.52)=0.27,215--2=235-.10答案:><点拨:减去一个负数相当于加上一个正数,所以a-b>0;减去一个正数相当于加上一个负数,所以b-a<0.11答案:2312-点拨:代入求值2312312334234212⎡⎤⎛⎫⎛⎫-+----=---=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.12解:(1)原式=6+2+13-8=13;(2)原式=31117228442-+-6.25-0.75=114822-+-7=4-7=-3;(3)原式=-0.5+3.25+2.75-7.5=-2;(4)原式=721142369966--+-=-7-3=-10.13解:(1)+543-33640(2)小刚的体重最重,小颖的体重最轻;(3)最轻的与最重的相差:45-34=11(kg)或+5-(-6)=11(kg).答:最轻的与最重的相差11 kg.点拨:(1)由小颖的体重数据可知平均体重为40 kg,所以小刚、小芳的体重减平均体重记为+5,-3,而小明、小京、小宁的体重分别是43 kg,36 kg,40 kg;根据(1)中表格可解决(2)(3).14解:把超过标准质量的克数用正数表示.不足标准质量的克数用负数表示,列出10(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+(5+5)=10(g).因此,这10听罐头的总质量为454×10+10=4 550(g).点拨:当已知的一列数中和数都比较大,但都与某一个数比较接近时,一般就以这“某一个数”为基数,超过的记为正,不足的记为负,这样计算起来比较快捷、简便.15解:由题意,得a-1=0;b+3=0,所以a=1,b=-3,把a=1,b=-3,代入b-a-12,得b-a-12=-3-1-12=142-.点拨:两个非负数相加得0,所以每个数只能是0,由此得a=1,b=-3,代入即可求出b-a-12的值.16解:将向上的方向记为正,向下的方向记为负,由题意知青蛙总的向上爬了:+0.7-0.1+0.42-0.15+1.25-0.2+0.75-0.1+0.65=(0.7+0.42+1.25+0.75+0.65)+(-0.1-0.15-0.2-0.1)=3.77-0.55=3.22(米).因为3.22<3.5,所以这只青蛙没爬出井口.点拨:可以将向上的方向记为正,向下的方向记为负,由题意知青蛙各次分别爬了+0.7和-0.1;+0.42和-0.15;+1.25和-0.2;+0.75和-0.1;+0.65.课后训练基础巩固1.一个有理数和它的相反数相乘,积为().A.正数B.负数C.正数或0 D.负数或02.下列说法正确的是().A.异号两数相乘,取绝对值较大的因数的符号B.同号两数相乘,符号不变C.两数相乘,如果积为负数,那么这两个因数异号D.两数相乘,如果积为正数,那么这两个因数都为正数3.如果ab=0,那么一定有().A.a=b=0 B.a=0C.b=0 D.a,b至少有一个为04.三个数的积是正数,那么三个数中负数的个数是().A.1 B.0或2C.3 D.1或35.若两个有理数的商是正数,和为负数,则这两个数().A.一正一负B.都是正数C.都是负数D.不能确定6.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数().A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数7.计算(-12)÷[6+(-3)]的结果是().A.2 B.6C.4 D.-4能力提升8.若||mm=1,则m__________0.9.若ab<0,bc<0,则ac__________0.10.计算:(1)(-10)×13⎛⎫- ⎪⎝⎭×(-0.1)×6;(2)-3×56×415×(-0.25);(3)-15÷(-5)÷1 1 5⎛⎫- ⎪⎝⎭;(4)-8-2710.6(3)3⎡⎤⎛⎫-+-⨯÷-⎪⎢⎥⎝⎭⎣⎦.11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2 ℃,用了退烧药后,以每15分钟下降0.2 ℃的速度退烧,求两小时后,欢欢的体温.12.某班分小组举行知识竞赛,评分标准是:答对一道题加10分,答错一道题扣10分,不答不得分也不扣分.已知每个小组的基本分为100分,有一个小组共答20道题,其中答对了10道题,不答的有2道题,结合你学过的有理数运算的知识,求该小组最后的得分是多少.13.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a+3b+ba-cd的值是多少?14.若|a+1|+|b+2|=0,求a+b-ab.15.若定义一种新的运算为a*b=1abab-,计算[(3*2)]*16.参考答案1答案:D点拨:如1×(-1)=-1,一个正数和一个负数相乘,积为负数,但不要漏掉0的情况.2答案:C点拨:根据有理数乘法法则,例如-2×4=-8,A错;(-2)×(-4)=8,B错;(-2)×(-5)=10,D错.故C正确.3答案:D点拨:0同任何数相乘都得0.4答案:B点拨:几个不为零的有理数相乘,积的符号由负因数的个数决定,因为三个数的积是正数,所以负因数为偶数个或0个,故选B.5答案:C点拨:从商为正数得出两个数同号,从和为负数得出两个数都为负数,若两个数都为正数,和只能为正数.6答案:D点拨:不要漏掉互为相反数这种情况.7答案:D点拨:(-12)÷[6+(-3)]=(-12)÷3=-4,故选D.8答案:>点拨:若m>0,|m|=m,则m mm m==1;若m<0,|m|=-m,则m mm m-==-1,m为分母,不能等于0.9答案:>点拨:因为ab<0,所以a,b异号,又因为bc<0,所以b,c异号,所以a,c同号,故ac>0.10解:(1)原式=11106310⎛⎫-⨯⨯⨯⎪⎝⎭=-2.(2)原式=3×56×95×14=98.(3)原式=-15×15⎛⎫- ⎪⎝⎭×56⎛⎫- ⎪⎝⎭=52-.(4)原式=231 871353⎡⎤⎛⎫⎛⎫---+-⨯⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=21 87153⎡⎤⎛⎫⎛⎫---+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=31 8753⎡⎤⎛⎫---+⨯-⎪⎢⎥⎝⎭⎣⎦=114 8787555⎛⎫----=-+=-⎪⎝⎭.点拨:(1)(2)先取号,再统一化为分数进行运算,(3)统一化为乘法运算,(3)先算括号里的,再算括号外的.括号里的先算乘除,再算加减.11解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6,即两小时后,欢欢的体温是37.6 ℃.点拨:先求出两小时内有多少个15分钟,再根据每15分钟下降0.2 ℃求出两小时下降的体温数,用39.2 ℃减去下降的体温数.12解:根据题意,得100+10×10+(20-10-2)×(-10)=100+100-80=120(分).答:该小组最后的得分是120分.点拨:所得分数等于基础分加上所得分,所得分等于答对的得分减去答错的扣分.不答不得分也不扣分.13解:因为a,b互为相反数且a≠0,所以a+b=0,ba=-1.因为c,d互为倒数,所以c·d=1,所以3a+3b+ba-cd=3(a+b)+ba-cd=3×0+(-1)-1=-2.点拨:a,b互为相反数且a≠0,那么两数和为0,商为-1,c,d互为倒数,两数积为1,3a+3b=3(a+b).14解:因为|a+1|+|b+2|=0,且|a+1|≥0,|b+2|≥0,所以a+1=0,b+2=0,所以a=-1,b=-2,所以a+b-ab=-1+(-2)-(-1)×(-2)=-3-2=-5.点拨:|a+1|+|b+2|=0,所以a+1=0,b+2=0,求出a、b的值,代入a+b-ab中,求出式子的值.15解:因为a*b=1abab -,所以[(3]1,6)=321* 1326⨯-⨯=6156⎛⎫-* ⎪⎝⎭=611565611 1()1565 -⨯-=--⨯+=1 6 -.点拨:观察所给式子的特点,按字母表示的运算顺序代入求值即可.先从a=3,b=2开始计算.课后训练基础巩固1.求25-3× [32+2×(-3)]+5的值为().A.21 B.30 C.39 D.712.对于(-2)4与-24,下面说法正确的是().A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是().A.22433⎛⎫-=⎪⎝⎭B.23=2×3=6C.-32=-3×(-3)=9 D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是().A.18 B.19C.10 D.95.若a n>0,n为奇数,则a().A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为().A.13 B.-13C.5 D.-58.下列式子正确的是().A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则().A.a n,b n互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是().A.等于1 B.大于1C.不小于1 D.小于111.某市约有230万人口,用科学记数法表示这个数为().A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330 000毫克/千瓦时,用科学记数法表示并精确到1 000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷3 2 3⎛⎫- ⎪⎝⎭;(2)-72+2×(-3)2-(-6)÷2 1 3⎛⎫- ⎪⎝⎭.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2 004行式子;(2)用字母表示你所发现的规律.参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A 正确,故选A. 2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D 正确,故选D. 4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a 为正数.6解:71112128⎛⎫⨯= ⎪⎝⎭(米).答:第7次后剩下的木棒长1128米. 7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C. 8答案:C 点拨:A.-16<4<-8,错误; B .-8<-16<4,错误; C .-16<-8<4,正确;D .4<-8<-16,错误.故选C.9答案:C 点拨:a ,b 互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n 不确定,2n 为偶数,2n +1为奇数,所以只有C 正确.10答案:C 点拨:|x |≥0,则|x |+1≥1,故C 正确. 11答案:D12答案:3.30×105 13答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14. 14解:(1)原式=9-(-8)÷827⎛⎫- ⎪⎝⎭=9-(-8)×278⎛⎫- ⎪⎝⎭=9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54) =-49+18+54 =23.点拨:先算乘方,再算乘除,最后算加减. 15解:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2. 点拨:利用|a +1|与(b -2)2的非负性. 16解:∵|x -1|≥0,(y +3)2≥0, 又∵|x -1|+(y +3)2=0, ∴|x -1|=0,(y +3)2=0. ∴x =1,y =-3.∴(xy )2=[1×(-3)]2=9.17解:(1)2 0042+(2 004×2 005)2+2 0052 =(2 004×2 005+1)2.(2)n 2+[n ×(n +1)]2+(n +1)2 =[n ×(n +1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.课后训练基础巩固1.单项式22m n-的系数、次数分别是( ).A .-1,2B .-2,3C .12,2D .12-,3 2.多项式2x 2-x +1的各项分别是( ). A .2x 2,x,1 B .2x 2,-x,1 C .-2x 2,x ,-1 D .-2x 2,-x ,-1 3.下列各式中,是二次三项式的是( ). A .a 2+b 2 B .x +y +7 C .5-x -y 2 D .x 2-y 2+x -3x 2 4.原产量n 吨,增产30%之后的产量应为( ). A .(1-30%)n 吨 B .(1+30%)n 吨 C .n +30%吨 D .30%n 吨5.下列式子①-1,②223a -,③216x y ,④2ab π-,⑤abc ,⑥3a +b ,⑦0,⑧m 中,是单项式的是__________.(只填序号)6.单项式3a 3b 的系数是________,次数是____;单项式256x y-的系数是_____,次数是______.7.254143a b ab --+是______次____项式,其中三次项系数是______,二次项为______,常数项为____,写出所有的项________. 能力提升8.下列说法中正确的是( ). A .5不是单项式B .2x y+是单项式 C .x 2y 的系数是0 D .x -32是整式 9.下列说法正确的是( ).A .单项式223x y-的系数是-2,次数是3B .单项式a 的系数是0,次数是0C .-3x 2y +4x -1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-10.-ax2y b+1是关于x,y的五次单项式,且系数为12-,则a=______,b=______.11.对于单项式“5x”可以这样解释,苹果每千克5元,某人买了x千克,共付款5x 元,请你对“5x”再给出另一个实际生活方面的解释:_________________________________.12.用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是_________.13.指出下列多项式的每一项,并说明是几次几项式.(1)x3-x+1;(2)x3-8x2y2+5y2.14.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长L;(2)花坛的面积S.参考答案1答案:D 点拨:原式可以化为212m n -,易看出系数为12-,次数为3. 2答案:B 点拨:多项式中的每一个单项式是多项式的项,注意要带着符号.3答案:C 点拨:A 、D 不是三项式,B 的各项中最高次数是一次,只有C 选项是二次三项式,故选C.4答案:B 点拨:增长后就是原产量的(1+30%)倍,所以B 正确.5答案:①②③④⑦⑧ 点拨:⑤中分母上含有字母,⑥是3a 与b 的和,因此都不是单项式.6答案:3 4 56- 3 点拨:系数是单项式中的数字因数,次数是单项式中所有字母的指数和.7答案:三 三 54-43ab - 1 254a b -,43ab -,1 点拨:本题考查了多项式的次数、系数项和各项的名称、系数、次数等,要根据定义明确回答,并且要注意符号和书写.8答案:D 点拨:本题考查了整式中各定义的注意点,只有D 是正确的.9答案:D 点拨:不论是单项式中的系数还是多项式中的项都带着符号,因而A 、C 选项错,a 的系数是1,次数也是1,故B 也错,只有D 正确.10答案:12 2 点拨:由题意可知-a =12-,所以a =12,b +1=3,所以b =2. 11答案:答案不唯一,如:某种联想电器的单价是x 元,而联想笔记本电脑的单价是它的5倍,则联想笔记本电脑的单价是5x 元,…点拨:同一个式子在不同的条件下意义也不相同,只要给出一个实际生活中的合理解释即可.12答案:3n +2 点拨:观察图形可知顺序第1,2,3,4,…,对应的枚数分别是5,8,11,…,每次增加3枚,因此应是3的n 倍加2.13解:(1)x 3、-x 、1,是三次三项式; (2)x 3、-8x 2y 2、5y 2,是四次三项式. 点拨:构成多项式的每一个单项式都是多项式的项,并且次数最高项的次数是多项式的次数.注意几次几项式的写法.14解:(1)L =2a +2πr ;(2)花坛的面积是一个长方形的面积与两个半圆的面积之和,即S =2ar +πr 2. 答:花坛的周长为(2a +2πr );面积为(2ar +πr 2).点拨:(1)花坛的周长是半径为r 的两个半圆的长加上长度为a 的两线段的长;(2)面积分为三部分:两个半径相等的半圆的面积和一个长为a ,宽为2r 的长方形的面积.课后训练基础巩固1.下列各组中的两个单项式能合并的是( ). A .4和4x B .3x 2y 3和-y 2x 3C .2ab 2和22abD .m 和2nm 2.下列各题中合并同类项正确的是( ). A .2x 2+3x 2=5x 4 B .3x +2y =5xy C .7x 2-3x 2=4 D .9a 2b -9ba 2=0 3.下面计算正确的是( ).A .6a -5a =1B .a +2a 2=3a 3C .-(a -b )=-a +bD .2(a +b )=2a +b4.计算6a 2-2ab -2(3a 2+12ab )所得的结果是( ). A .-3abB .-abC .3a 2D .9a 25.如果m -n =15,那么-2(n -m )的值是( ). A .25B .52C .25-D .110能力提升6.若A =x 2-5x +2,B =x 2-5x -6,则A 与B 的大小关系是( ). A .A >B B .A =B C .A <B D .无法确定7.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是( ).A .-4(x -3)2+(x -3)B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2-(x -3)8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ).A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm 9.计算:(1)2(2a -3b )+3(2b -3a );(2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)]. 10.先化简,再求值. (1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3; (2)12x -2(x -213y )+231()23x y -+,其中x =-2,y =-3. 11.一个多项式加上-2x 3-x 2y +4y 3后,得x 3-x 2y +3y 3,求这个多项式,并求当x =12-,y =12时,这个多项式的值. 12.七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m 名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生?13.有这样一道题:“当a =2 012,b =-2 013时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013的值.”小明说:本题中a =2 012,b =-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.参考答案1答案:C 点拨:实质考查同类项概念,只有同类项才能合并,只有C 选项字母相同,相同字母的指数也相同.故选C.2答案:D 点拨:合并同类项,系数相加,字母部分(字母及其指数)不变,所以A 、B 、C 都错,系数互为相反数的同类项相加为0,D 正确.3答案:C 点拨:A.6a -5a =a ,故此选项错误;B.a 与2a 2不是同类项,不能合并,故此选项错误;C.-(a -b )=-a +b ,故此选项正确;D.2(a +b )=2a +2b ,故此选项错误;故选C.4答案:A 点拨:去括号,6a 2-2ab -212(3)2a ab +=6a 2-2ab -6a 2-ab ,合并同类项得-3ab .5答案:A 点拨:-2(n -m )=2(m -n )=2×15=25,故选A. 6答案:A 点拨:求差法比较大小,A -B =(x 2-5x +2)-(x 2-5x -6)=x 2-5x +2-x 2+5x +6=8>0,差大于0,被减数大于减数,所以A >B .7答案:D 点拨:把(x -3)看成一项,那么(x -3)2与-5(x -3)2,-2(x -3)与(x -3)就是同类项,分别合并,得-4(x -3)2,-(x -3),所以结果是-4(x -3)2-(x -3),故选D.8答案:B 点拨:设小长方形的长为a ,宽为b ,∴上面的阴影周长为:2(n -a +m -a ),下面的阴影周长为:2(m -2b +n -2b ),∴总周长为:4m +4n -4(a +2b ),又∵a +2b =m ,∴4m +4n -4(a +2b )=4n .9解:(1)2(2a -3b )+3(2b -3a )=4a -6b +6b -9a =4a -9a -6b +6b =-5a ; (2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)] =2x 2-2xy -6x 2+9xy -2(x 2-2x 2+xy -y 2) =-4x 2+7xy -2(-x 2+xy -y 2) =-4x 2+7xy +2x 2-2xy +2y 2 =-2x 2+5xy +2y 2.点拨:有括号的先去括号,再合并同类项.10解:(1)原式=-2x 3+4x -213x -x -3x 2+2x 3 =-2x 3+2x 3+4x -x -213x -3x 2 =3x -2103x . 当x =3时,原式=3×3-103×32=9-30=-21. (2)原式=22123122323x x y x y -+-+=-3x +y 2.当x =-2,y =-3时,原式=-3×(-2)+(-3)2=6+9=15. 点拨:对于整式加减的求值问题,如果能化简,要先化简,再求值,这样可以简化计算.必须注意:在代入求值时,如果字母的取值为负数,要添加括号.11解:由题意,得(x 3-x 2y +3y 3)-(-2x 3-x 2y +4y 3)=x 3-x 2y +3y 3+2x 3+x 2y -4y 3=3x 3-y 3;当x =12-,y =12时,3x 3-y 3=3331111342222⎛⎫⎛⎫⎛⎫⨯--=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答:这个多项式是3x 3-y 3;当x =12-,y =12时,这个多项式的值是12-. 点拨:本题是已知和与一个加数求另一个加数,所以根据“所求多项式=和-加数”可列式计算求出,再代入求值.12解:根据题意,得m +(2m -10)+1(210)2m - =3m -10+m -5=(4m -15)(人).答:七年级(1)班共有学生(4m -15)人.点拨:由题意可知:第一组有学生m 名;第二组的学生数是(2m -10)人;第三组的学生数是1(210)2m -人,相加即可得到总人数. 13解:7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013 =(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b +2 013=2 013. ∵化简后式子的值是一个常数,式子的值不变,∴a =2 012,b =-2 013是多余的条件,故小明的观点正确. 点拨:需要通过计算说明,数学说理要严谨.课后训练基础巩固1.在①2x +3y -1;②1+7=15-8+1;③1-12x =x +1;④x +2y =3中方程有______个.( ).A .1B .2C .3D .4 2.下列四个方程中,一元一次方程是( ). A .x 2-1=0 B . x +y =1 C .12-7=5 D .x =0 3.下列方程中,以4为解的方程是( ). A .2x +5=10 B .-3x -8=4C .12+3=2x -3 D .2x -2=3x -64.下列方程变形正确的是( ). A .由3+x =5,得x =5+3 B .由7x =-4,得x =74-C .由12y =0,得y =2D .由3=x -2,得x =3+25.根据“x 的3倍与5的和比x 的13少2”列出方程是( ). A .3x +5=23x- B .3x +5=3x+2C .3(x +5)=23x-D .3(x +5)=3x+26.七年级(1)班有20名女生,占全班人数的40%,求七年级(1)班的学生人数.(只设出未知数,列出方程)能力提升7.下列方程:①x-1=5;②1123x=;③1x=5;④x(x+1)=2;⑤4-2x=x+1中是一元一次方程的是().A.①②B.①②③④C.①②③⑤D.①②⑤8.下列运用等式的性质变形正确的是().A.若x=y,则x-5=y+5 B.若a=b,则ac=bcC.若a bc c=,则2a=3b D.若x=y,则x ya a=9.方程x+2=3的解也是方程ax-3=5的解时,a=__________.10.方程(m-1)x|m|+2=0是关于x的一元一次方程,那么m的取值是__________.11.如果x=1是方程-1=3x+m的解,则m=__________.12.一个长方形的周长为26厘米,如果长减少1厘米,宽增加2厘米,则长方形就变成了正方形,设长方形的长为x厘米,可列方程为______.13.利用等式的性质解一元一次方程:(1)3=x-5;(2)3-x=12;(3)3y=2;(4)2x-5=3.14.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米.(1)飞机飞行速度为x千米/时,则顺风中飞机的速度为__________,逆风中飞机的速度为__________;(2)列出方程__________.15.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?(列方程求解)16.在学完等式的性质后,赵老师让同桌之间交流一下,看看对这部分知识的理解情况,下面是三位同学的对话,李红说:从ab=bc能得到a=c,小明说:从a cb b=,也能得到a=c,它们互相批评对方不对,邻座的小华说他俩都对,你认为呢?请你评判一下他们三人谁对谁错.参考答案1答案:B点拨:含有未知数且是等式.①②不是,③④是.2答案:D点拨:只有一个未知数,且未知数的次数是1,所以A、B、C都不符合,只有D符合.3答案:D点拨:将4代入各方程检验,只能使方程2x-2=3x-6左右两边相等,是它的解,故选D.4答案:D点拨:D选项两边同时加2,再根据等式的对称性,3+2=x变化得到,因而正确,故选D.5答案:A点拨:x的3倍与5的和是3x+5,x的13是3x,少2,3x较大,所以A正确.6解:设全班人数为x,得40%x=20.点拨:设全班人数为x,那么女生占40%是40%x.7答案:D点拨:③④不是,它们的未知数的次数不是1,①②⑤是,故选D.8答案:B点拨:A、C不符合等式性质,D除以a有可能是0,都不正确,B即使c =0,也正确.9答案:8点拨:方程x+2=3的解是x=1,ax-3=5的解也是1,将x=1代入,得a=8.10答案:-1点拨:方程是一元一次方程,所以|m|=1,m=±1,但(m-1)不能等于0,即m≠1,所以m=-1.11答案:-4点拨:把x=1代入方程中,得方程-1=3+m,根据等式的性质,解得m=-4.12答案:x-1=15-x点拨:由题意可得长与宽的和等于13厘米,那么长方形的宽为(13-x)厘米,根据题意列出方程x-1=13-x+2,即x-1=15-x.13解:(1)3=x-5,方程两边都加5,得3+5=x-5+5,化简,得8=x,即x=8.(2)3-x=12,方程两边都加-3,得3-x+(-3)=12+(-3),化简,得-x=52-,两边都乘以-1,得x=5 2 .(3)3y=2,方程两边都除以3,得3y÷3=2÷3,化简,得y=2 3 .(4)2x-5=3,方程两边都加5,得2x-5+5=3+5,化简,得2x=8,方程两边都除以2,得2x÷2=8÷2,即x=4.点拨:解方程,就是把方程变形,使方程左边只含未知数,右边是常数,再变为x=a(a 是常数)的形式.如:方程3=x-5中,要去掉方程右边的-5,因此两边都加5.再利用等式的对称性得到x=8.14答案:(1)(x+24)千米/时(x-24)千米/时(2)5.5(x+24)=6(x-24)点拨:顺风飞行速度=飞机飞行速度+风速;逆风飞行速度=飞机飞行速度-风速.15解:设余下的布还可以做x套儿童服装,根据题意,得1.5x+3.5×80=355.方程两边都加-280,得1.5x+3.5×80-280=355-280,化简得1.5x=75,两边都除以1.5,得x =50.答:余下的布还可以做50套儿童服装.点拨:根据做成人服装的用料+做儿童服装的用料=总的布料,列出方程求解.16解:李红的说法错误,小明的说法正确,因此小华的理解也是错误的.点拨:等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.由此从ab=bc得到a=c,两边同除以b,b可以是0,所以李红说的不正确;而从a cb b =,得。
人教版七年级上册数学配套练习册答案
人教版七年级上册数学配套练习册答案[篇一:人教七年级数学上册同步练习题与答案]1正数和负数<第一课时>〔基础训练〕1.任意写出5个正数:________________;任意写出5个负数:_______________.2.在银行存入款存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:?13,?2,3.14,+305,0,-23. 54则正数有___________ _;负数有____________.4.向东行进-50m表示的意义是〔〕a.向东行进50m c.向北行进50m b.向南行进50m d.向西行进50m5.下列结论中正确的是〔〕a.0既是正数,又是负数 b.o是最小的正数c.0是最大的负数d.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,?311,+3.1,?,222004,+2008.其中是负数的有〔〕a.2个b.3个 c.4个d.5个7.下列各数中,哪些是正数?哪些是负数?+8,-25,68,o,22,-3.14,0.001,-889. 7〔综合训练〕1.写出比o小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.1正数和负数<第二课时>〔课前小测〕1.如果向南走5米,记作+5米,那么向北走8米应记作___________. 2.零下15℃,表示为_____,比o℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4."甲比乙大-3岁"表示的意义是________________.5.在-7,0,-3,4,+9100,-0.27中,负数有〔〕 3d.3个 a.0个 b.1个c.2个〔基础训练〕1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________.2.如果把+210元表示收入210元,那么-60元表示______________.3.粮食产量增产11%,记作+11%,则减产6%应记作______________.4.如果把公元2008年记作+2008年,那么-205年表示______________.5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从a地出发,如果甲向南走50m记为+50m,则乙向北走30m记为;这时甲、乙两人相距米.8.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.<1>求这五次测量的平均值是;<2>如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差分别是多少?1.2.1 有理数<第三课时>〔课前小测〕1.海拔高度是+1356m,表示____________,海拔高度是-254m,表示____________.22,2009,11?,,0,-3,+1,-6.8中,正整数有< > 24d.5个 a.2个 b.3个 c.4个3.一潜水艇所在高度是-60米,如果它下潜10米,所在高度为米.〔基础训练〕1.___________________统称为整数,_____________统称为分数,整数和分数统称为____________, 零和负数统称为_____,零和正数统称为__ _____.2.下列说法中正确的是〔〕a.非负有理数就是正有理数 b.零表示没有,不是自然数c.正整数和负整数统称为整数 d.整数和分数统称为有理数4.下列说法中不正确的是〔〕a.-3.14既是负数,分数,也是有理数;b.0既不是正数,也不是负数,但是整数c.-2000既是负数,也是整数,但不是有理数; d.o是非正数5.把下列各数分别填在相应集合中:1,-0.20,31,32,-78,0,-2.13,0.68,-2009. 5?};分数集合:?};负整数集?};负分数集?};负数集合: ?}; ?}; ?};整数集合:{ { 正整数集合:{ 合:{ 合:{ 正分数集合:{正数集合:{[篇二:最新人教版七年级数学上册全套同步练习题<课课练>与答案].1 正数和负数基础检测 4621.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数375有,负数有 .2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作m,水位不升不降时水位变化记作 m.3.在同一个问题中,分别用正数与负数表示的量具有的意义.4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜.用正数和负数表示这三年我国全年平均降水量比上年的增长量.拓展提高5.下列说法正确的是〔〕a.零是正数不是负数b.零既不是正数也不是负数c.零既是正数也是负数d.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是〔〕a.向东行进30米b.向东行进-30米c.向西行进30米d.向西行进-30米7.甲、乙两人同时从a地出发,如果向南走48m,记作+48m,则乙向北走32m,记为这时甲乙两人相距m.9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是〔〕a、-3.14b、0c、7d、3 33、既是分数又是正数的是〔〕a、+2b、-4c、0d、2.3拓展提高4、下列说法正确的是〔〕a、正数、0、负数统称为有理数b、分数和整数统称为有理数c、正有理数、负有理数统称为有理数d、以上都不对5、-a一定是〔〕a、正数b、负数c、正数或负数d、正数或零或负数 136、下列说法中,错误的有〔〕①?24是负分数;②1.5不是整数;③非负有理数不包括0;④7整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数.a、1个b、2个c、3个d、4个7、把下列各数分别填入相应的大括号内:?7,3.5,?3.1415,0,1314,0.03,?3,10,? 1722自然数集合{ ?};整数集合{ ?};正分数集合{ ?};非正数集合{ ?};8、简答题:〔1〕-1和0之间还有负数吗?如有,请列举.〔2〕-3和-1之间有负整数吗?-2和2之间有哪些整数?〔3〕有比-1大的负整数吗?有比1小的正整数吗?〔4〕写出三个大于-105小于-100的有理数.1.2.2数轴基础检测1、画出数轴并表示出下列有理数:1.5,?2,2,?2.5,2、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度.3、比较大小,在横线上填入">"、"<"或"=". 10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是.5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有 .6.在数轴上,点a、b分别表示-5和2,则线段ab的长度是 .7.从数轴上表示-1的点出发,向左移动两个单位长度到点b,则点b表示的数是 ,再向右移动两个单位长度到达点c,则点c表示的数是 .8.数轴上的点a表示-3,将点a先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度. 92,?,0. 231.2.3相反数基础检测1、-〔+5〕表示的相反数,即-〔+5〕=;-〔-5〕表示的相反数,即-〔-5〕=.2、-2的相反数是;3、化简下列各数:-〔-68〕= -〔+0.75〕=-〔-5的相反数是;0的相反数是 . 73〕=5 -〔+3.8〕=+〔-3〕= +〔+6〕=4、下列说法中正确的是〔〕a、正数和负数互为相反数b、任何一个数的相反数都与它本身不相同c、任何一个数都有它的相反数d、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-〔-3〕的相反数是.6、已知数轴上a、b表示的数互为相反数,并且两点间的距离是6,点a在点b的左边,则点a、b表示的数分别是.7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=.8、一个数a的相反数是非负数,那么这个数a与0的大小关系是 a0.9、数轴上a点表示-3,b、c两点表示的数互为相反数,且点b到[篇三:人教版七年级上数学同步练习题与答案].1 正数和负数基础检测 4621.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有375有 .2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作m,水位不升不降时水位变化记作 m.3.在同一个问题中,分别用正数与负数表示的量具有的意义.4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜.用正数和负数表示这三年我国全年平均降水量比上年的增长量.拓展提高5.下列说法正确的是〔〕a.零是正数不是负数b.零既不是正数也不是负数c.零既是正数也是负数d.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是〔〕a.向东行进30米b.向东行进-30米c.向西行进30米d.向西行进-30米7.甲、乙两人同时从a地出发,如果向南走48m,记作+48m,则乙向北走32m,记为这时甲乙两人相距m.9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是〔〕a、-3.14b、0c、7d、3 33、既是分数又是正数的是〔〕1a、+2 b、-4c、0 d、2.3 3拓展提高4、下列说法正确的是〔〕a、正数、0、负数统称为有理数b、分数和整数统称为有理数c、正有理数、负有理数统称为有理数d、以上都不对5、-a一定是〔〕a、正数b、负数c、正数或负数d、正数或零或负数6、下列说法中,错误的有〔〕 4①?2是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;7⑤0是最小的有理数;⑥-1是最小的负整数.a、1个b、2个c、3个d、4个7、把下列各数分别填入相应的大括号内:?7,3.5,?3.1415,0,1314,0.03,?3,10,? 1722自然数集合{ ?};整数集合{ ?};正分数集合{ ?};非正数集合{ ?};8、简答题:〔1〕-1和0之间还有负数吗?如有,请列举.〔2〕-3和-1之间有负整数吗?-2和2之间有哪些整数?〔3〕有比-1大的负整数吗?有比1小的正整数吗?〔4〕写出三个大于-105小于-100的有理数.1.2.2数轴基础检测1、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度.2、比较大小,在横线上填入">"、"<"或"=". 10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是.5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有 .6.在数轴上,点a、b分别表示-5和2,则线段ab的长度是 .7.从数轴上表示-1的点出发,向左移动两个单位长度到点b,则点b表示的数是 ,再向右移动两个单位长度到达点c,则点c表示的数是 .8.数轴上的点a表示-3,将点a先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度.1.2.3相反数基础检测1、-〔+5〕表示的相反数,即-〔+5〕= ;-〔-5〕表示的相反数,即-〔-5〕= .2、-2的相反数是;3、化简下列各数:3-〔-68〕= -〔+0.75〕=-〔-〕=55的相反数是;0的相反数是. 7-〔+3.8〕=+〔-3〕= +〔+6〕=4、下列说法中正确的是〔〕a、正数和负数互为相反数b、任何一个数的相反数都与它本身不相同c、任何一个数都有它的相反数d、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-〔-3〕的相反数是.6、已知数轴上a、b表示的数互为相反数,并且两点间的距离是6,点a在点b的左边,则点a、b表示的数分别是.7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=.8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a0.9、数轴上a点表示-3,b、c两点表示的数互为相反数,且点b到点a 的距离是2,则点c表示的数应该是.10、下列结论正确的有〔〕①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号.a 、2个b、3个 c、4个 d、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?1.2.4 绝对值基础检测:1.-8的绝对值是,记做 .2.绝对值等于5的数有 .3.若︱a︱= a , 则 a .4.的绝对值是2004,0的绝对值是 .5一个数的绝对值是指在上表示这个数的点到的距离.6.如果 x < y < 0, 那么︱x ︱︱y︱.7.︱x - 1 ︱ =3 ,则 x = .8.若︱x+3︱+︱y -4︱= 0,则 x + y =.9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b11.已知︱x︱-︱y︱=2,且y =-4,则 x =.12.已知︱x︱=2 ,︱y︱=3,则x +y = .13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= .14. 式子︱x +1 ︱的最小值是,这时,x值为.15. 下列说法错误的是〔〕a 一个正数的绝对值一定是正数b 一个负数的绝对值一定是正数c 任何数的绝对值一定是正数d 任何数的绝对值都不是负数16.下列说法错误的个数是〔〕〔1〕绝对值是它本身的数有两个,是0和1〔2〕任何有理数的绝对值都不是负数︱.〔3〕一个有理数的绝对值必为正数〔4〕绝对值等于相反数的数一定是非负数a 3b 2c 1d 017.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则 a + b + c 等于〔〕a -1b 0c 1d 2拓展提高:18.如果a , b互为相反数,c, d 互为倒数,m 的绝对值为2,求式子19.某司机在东西路上开车接送乘客,他早晨从a地出发,〔去向东的方向正方向〕,到晚上送走最后一位客人为止,他一天行驶的的里程记录如下〔单位:㎞〕+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14〔1〕若该车每百公里耗油 3 l ,则这车今天共耗油多少升?〔2〕据记录的情况,你能否知道该车送完最后一个乘客是,他在a 地的什么方向?距a地多远?1.3.1有理数的加法基础检测1、计算:〔1〕15+〔-22〕〔2〕〔-13〕+〔-8〕〔3〕〔-0.9〕+1.512、计算:a?b + m -cd 的值. a?b?c。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.2.2 数轴)
1.2.2 数轴5分钟训练(预习类训练,可用于课前)1.判断题:(1)直线就是数轴; ( )(2)数轴是直线; ( )(3)任何一个有理数都可以用数轴上的点来表示; ( )(4)数轴上到原点距离等于3的点所表示的数是+3. ( ) 思路解析:规定了原点、单位长度、正方向的直线才是数轴,所以,直线不一定是数轴,而.答案:(1)× (2)√ ( 3)√ (4)×2.下列各图中,表示数轴的是( )思路解析:数轴的三要素——原点、正方向、单位长度是缺一不可的,所以应当用这三要素检查每个图形,判断是否画的正确.答案:D3.在下面数轴上,A ,H ,D ,E ,O 各点分别表示什么数?解析:判断数轴上的点表示的数,首先看该点在原点的右边还是左边,判断正负;再看该点答案:4,-1,-3,2,010分钟训练(强化类训练,可用于课中)1.数轴的三要素是________,________和_________.答案:原点 正方向 单位长度2.下面说法中错误的是( )A.数轴上原点的位置是任意取的,不一定要居中B.数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个…单位长度,但一经取定,就不可改动C.如果a <b ,那么在数轴上表示a 的点比表示b 的点距离原点更近D.所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数思路解析:根据定义可知A 、B 正确;对D ,我们知道数轴上的点还可以表示无限不循环小数(无理数),故D C ,我们可举反例,如-100<2,但表示2的点距原点更近. 答案:C3.指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.思路解析:在数轴上的每一个数都表示一个数,注意刻度数的意义.答案:O 表示0,A 表示-2 23,B 表示1,C 表示314,D 表示-4,E 表示-0.5. 4.画一条数轴,并画出表示下列各数的点. 212,-5,0,+3.2,-1.4. 思路解析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原答案:快乐时光借力爱迪生在住所搞了不少实用发明.有个朋友来看他,推门时十分费力,推了好几下才进去.客人向爱迪生抱怨:“你这门也太紧了,竟使我出了一身汗.”“谢谢,你有力的推门已经给我屋顶上的水箱压进了几十升水.”爱迪生高兴地说. 30分钟训练(巩固类训练,可用于课后)1.以下四个数,分别是数轴上A 、B 、C 、D 四个点可表示的数,其中数写错的是( )A.-3.5B.-123C.0D.113 思路解析:显然,从数轴上看,B 点表示-1 13.答案:B2.下列各语句中,错误的是( )A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于36.8的点有两个思路解析:根据数轴的意义来判断.答案:B3.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是( )A.3B.1C.-2D.-4思路解析:根据题意,实际是从原点开始向左移动了4个单位长度,即该点为-4. 答案:D4.下列所画数轴对不对?如果不对,指出错在哪里?思路解析:答案:①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轴上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.5.(1)在数轴上距原点3个单位长度的点表示的数是_________.(2)在数轴上表示-6的点在原点的_________侧,距离原点________个单位长度,表示+6的点在原点的________侧,距离原点_________个单位长度.思路解析:根据数轴的意义判断,注意原点左、右的数到原点的距离.答案:(1)±3 (2)左 6 右 66.(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.思路解析:(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.答案:(1)由图看出:-4.5<-3<3<4.5.(2)在数轴上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.7.比较下列各组数的大小:(1)-536与0; (2)31000与0; (3)0.2%与-21; (4)-18.4与-18.5.思路解析:依据“正数都大于0,负数都小于0;正数大于一切负数”和“在数轴上表示的两个数,右边的数总比左边的数大”,比较两个数的大小.答案:(1)-536<0;(2)31000 >0; (3)0.2%>-21;(4)-18.4>-18.5.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)041020
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 代数式中,整式的个数是( )A.B.C.D.2. 关于的多项式没有二次项,则的值是A.B.C.D.3. 下列各式:,,,,中单项式的个数有( )A.个B.个C.个D.个4. 若 是关于,的六次单项式,则的值为( )A.B.C.D.5. 关于多项式,下列说法正确的是 2x+,3yx ,,x ,,1y x y a −b 23π3465x +(m+1)+x+2x 3x 2m ()2−2−1−a 2b 35−251x πx−y21234(m+2)x m 2y 2x y m 5±22−2()5. 关于多项式,下列说法正确的是 A.它是四次四项式B.它的最高次项是C.它的常数项是D.它的一次项系数是 6. 下列代数式:,,,,,中,整式有( )A.个B.个C.个D.个7. 若是二次三项式,则的值为 A.B.C.D.8. 单项式的次数是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 以下式子中有________个单项式,________个多项式,________个整式.,,,,,,,,.10. 多项式次数、项数、第一项的系数分别是________、________、________.()14(1)xy 23(2)1+n m (3)0(4)b a (5)2m+1(6)a +b 536543−(k −2)x+1x |k|k ()±3−3±2−2−xy 13−1312ab 22a +3b 8y x −4a 2b 42a −5b 7a 2x+y −91a −+x +2x 2y 211. 单项式的系数是________,次数是________.12. 已知 ,则的值是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 在一堂数学活动课上,同在一个合作学习小组的小明、小丽、小亮、小彭对学过的知识发表了自己的一些看法.试判断四位同学的说法是否正确,如果不正确,请帮他们修正,写出正确的说法.小明说:“绝对值不大于的整数有个.”小丽说:“若,,则的值为或.”小亮说:“,因为两个负数比较大小,绝对值大的数反而小.”小彭说:“多项式是一次三项式.”14. 已知数轴上的三个点,,,其中点表示数,点表示数,点表示数,数是最小的正整数,是多项式的二次项系数,是单项式 的次数,设的长度为,的长度为.______, ______,________;在数轴上把点,,表示出来;求,的值.15. 已知多项式是五次四项式,且单项式与多项式的次数相同.(1)求、的值;(2)把这个多项式按的降幂排列.16. 已知,.求代数式的值.−22x 2y 3+=0(a −3)2b +4−−−−√2a −3b 35|a |=2|b |=1a +b 31−<−1314−x+xy+2y A B C A a B b C c a b −4−7x+9x 2c −15x 4y 2AB m BC n (1)a =b =c =(2)A B C (3)m n −3+y−3−1x 2y m+1x 3x 43x 2n y 3−m m n x ab =−3a +b =2b +a a 3b 3参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】整式的概念【解析】凡分母中含有字母的代数式都不属于整式.【解答】解:代数式的分母中含有字母,属于分式;代数式的分母中不含有字母,属于整式.故选.2.【答案】C【考点】多项式【解析】根据多项式的定义得到关于的多项式二次项为,由于没有二次项,则二次项系数为,即,然后解方程即可.【解答】解:∵关于的多项式没有二次项,∴,∴.故选.2x+,1y x y 3yx,x,,a −b 23πB x +(m+1)+x+2x 3x 2(m+1)x 20m+1=0x +(m+1)+x+2x 3x 2m+1=0m=−1C3.【答案】C【考点】单项式【解析】根据单项式的定义对各个选项判定即可.【解答】解:在这几个代数式中,单项式有:,,,共个.故选.4.【答案】C【考点】单项式的系数与次数【解析】根据多项式次数定义得出,又由多项系数定义,得出,求解即可.【解答】解:由题意得解得:且,即.故选.5.【答案】B【考点】多项式的项与次数多项式−a 2b 35−25π3C +2=6m 2m+2≠0{+2=6,m 2m+2≠0,m=±2m≠−2m=2C单项式的系数与次数【解析】直接利用多项式的有关定义分析得出答案.【解答】解:、多项式,是五次四项式,故此选项错误,不符合题意;、它的最高次项是,故此选项正确,符合题意;、它的常数项是,故此选项错误,不符合题意;、它的一次项系数是,故此选项错误,不符合题意;故选:.6.【答案】D【考点】整式的概念【解析】根据整式的性质进行解答.【解答】解:中分母含有未知数,则不是整式.中分母也含有未知数,则不是整式,其余项都是整式.故选.7.【答案】D【考点】多项式【解析】直接利用多项式的定义得出,进而得出答案.【解答】解:∵是二次三项式,∴,,解得:.故选.A 3−2−4n−1m 4m 3n 2B −2m 3n 2C −1D −4B (2)m (4)D |k |=2k −2≠03−(k −2)x+1x |k||k |=2k −2≠0k =−2D8.【答案】D【考点】单项式【解析】根据单项式的次数进行选择即可.【解答】解:单项式的次数是,故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】,,【考点】多项式单项式整式的概念【解析】根据几个单项式的和叫做多项式;数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.进行分类即可.【解答】解:,,,,,是整式;是单项式;,是多项式.故答案为:;;.10.【答案】−xy 132D 426ab 22a +3b 8−4a 2b 42a −5b 7a a ,8,−4,ab 2a 2b 22a +3b 2a −5b 7426,,【考点】多项式【解析】根据多项式可以知道该多项式的次数、项数、第一项的系数.【解答】解:因为多项式是次项式,第一项的系数是,故答案为:、、.11.【答案】,【考点】单项式【解析】此题暂无解析【解答】解:.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单项式的系数为,次数为.故答案为:;.12.【答案】【考点】非负数的性质:绝对值非负数的性质:算术平方根【解析】先根据非负数的性质得到,,再把原式去括号合并得到最简结果,把与的值代入计算即可求出值.【解答】33−1−+x +2x 2y 2−+x +2x 2y 233−133−1−45−22x 2y 3−=−4222+3=5−4518a b a b +=02解:∵ ,∴,,∴,,∴.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:因为绝对值不大于的整数:,,,,,,,所以绝对值不大于的整数有个,所以小明的说法不正确;若,,,,则的值为或.所以小丽的说法不正确;,因为两个负数比较大小,绝对值大的数反而小,所以小亮的说法正确;多项式是二次三项式,所以小彭的说法不正确.【考点】整式的概念绝对值【解析】绝对值是数轴上的点到原点的距离【解答】解:因为绝对值不大于的整数:,,,,,,,所以绝对值不大于的整数有个,所以小明的说法不正确;若,,,,则的值为或.所以小丽的说法不正确;,因为两个负数比较大小,绝对值大的数反而小,所以小亮的说法正确;多项式是二次三项式,所以小彭的说法不正确.14.【答案】,,如图所示,+=0(a −3)2b +4−−−−√a −3=0b +4=0a =3b =−42a −3b =6+12=18183−3−2−1012337|a |=2a =±2|b |=1b =±1a +b ±3±1−<−1314−x+xy+2y 3−3−2−1012337|a |=2a =±2|b |=1b =±1a +b ±3±1−<−1314−x+xy+2y 1−46(2)点,,即为所求.,.【考点】多项式单项式的系数与次数数轴【解析】根据单项式和多项式的概念进行作答即可.直接根据数轴上的数的特点和中的结果标出所求点的坐标即可.根据数轴上两点间的距离的求法求解即可.【解答】解:∵最小的正整数是,则;是多项式的二次项系数为,则;是单项式的次数为,则.故答案为:;;.如图所示,点,,即为所求.,.15.【答案】解:(1)∵多项式是五次四项式,且单项式与多项式的次数相同,∴,,解得:,;(2)按的降幂排列为.【考点】多项式单项式【解析】A B C (3)m=a −b =1−(−4)=5n =c −b =6−(−4)=10(1)(1)a 1a =1b −4−7x+9x 2−4b =−4c −15x 4y 26c =61−46(2)A B C (3)m=a −b =1−(−4)=5n =c −b =6−(−4)=10−3+y−3−1x 2y m+1x 3x 43x 2n y 3−m m+1=32n+3−m=5m=2n =2x −3+y−3−1x 4x 3x 2y 3(1)根据已知得出,,求出即可;(2)按的指数从大到小排列即可.【解答】解:(1)∵多项式是五次四项式,且单项式与多项式的次数相同,∴,,解得:,;(2)按的降幂排列为.16.【答案】解:∵,∴,∴.又∵,∴,∴,∴.【考点】因式分解的应用列代数式求值【解析】由,,可得,因为,所以.【解答】解:∵,∴,∴.又∵,∴,∴,∴.m+1=32n+3−m=5x −3+y−3−1x 2y m+1x 3x 43x 2n y 3−m m+1=32n+3−m=5m=2n =2x −3+y−3−1x 4x 3x 2y 3a +b =2(a +b =4)2+2ab +=4a 2b 2ab =−3−6+=4a 2b 2+=10a 2b 2b +a =(+)ab =−30a 3b 3a 2b 2a +b =2ab =−3+=10a 2b 2(+)ab =b +a a 2b 2a 3b 3b +a =−30a 3b 3a +b =2(a +b =4)2+2ab +=4a 2b 2ab =−3−6+=4a 2b 2+=10a 2b 2b +a =(+)ab =−30a 3b 3a 2b 2。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.2.1 有理数)
1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)02.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,________,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{___________…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14∙∙51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括________和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B答案:5.1.8,-42,+0.01,-512,0,-3.1415926,1112,1 整数集合{_________________…};分数集合{_________________…}; 正数集合{_________________…}; 负数集合{_________________…}; 自然数集合{___________________…}; 非负数集合{___________________…}思路解析:利用集合的意义来判别数的分类. 答案:整数集合{-42,0,1,…};分数集合{1.8,+0.01,-512,-3.1415926,1112,…}; 正数集合{1.8,+0.01,1112,1,…};负数集合{-42,-512,-3.1415926,…};自然数集合{0,1,…};非负数集合{1.8,+0.01,0,1112,1,…} 6.计算:13+16+110+115+121+128+136+145.思路解析:若通分相加,本题难以计算,仔细观察各分母,可发现能写成13+123⨯+125⨯+111113537474959++++⨯⨯⨯⨯⨯,而每两个顺次相加可得11111111111(1)()()()32523734945+++++++,进一步可得1111261220+++,又可分成1111111(1)()()()2233445-+++-+-,最后算出结果.解:(1)1111111136101521283645+++++++=11111111323253537474959+++++++⨯⨯⨯⨯⨯⨯⨯=131517193256712920⨯⨯⨯⨯⨯+⨯ =1111261220+++=1111 12233445 +++⨯⨯⨯⨯=1111111 (1)()()()2233445 -+-+-+-=14155-=如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
新人教版数学七年级上册同步练习(分章节全册)含答案
1.1 正数和负数知识点 1 正数和负数的概念 1.下列各数中,是负数的是( ) A .2B.12C .0D .-0.22.在-2,-3,0,1四个数中,既不是正数也不是负数的是( ) A .-3 B .-2C .0D .13.在数-1,0,0.2,17,3中,正数一共有________个.知识点 2 用正数和负数描述相反意义的量 4.2018·绍兴 若向东走2 m 记为+2 m ,则向西走3 m 可记为( ) A .+3 m B .+2 m C .-3 mD .-2 m5.2017·太和县一模 中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果盈利50元记作+50元,那么亏损30元记作( )A .-30元B .-50元C .+50元D .+30元6.在下列横线上填上适当的词,使前后构成具有相反意义的量: (1)收入1500元,________5000元; (2)________60 米,下降24米; (3)减少60 kg ,________80 kg.7.如果运进大米40千克记为+40千克,那么-45千克表示__________________.8.用正数和负数表示下列问题中的数据:(1)节约水10 m3,浪费水0.5 m3;(2)向油罐车里注入汽油4 t,放出汽油1.8 t;(3)赤道地区的年平均气温是零上32 °C,南极大陆中部某地的年平均气温是零下56 °C.9.在体育课的跳远比赛中,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作()A.-0.15米B.+0.22米C.+0.15米D.-0.22米10.如图1-1-1是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()图1-1-1A.45.02B.C.44.98D.45.0111.下表是某年5月的11—20日我国50个城市主要食品平均价格变动情况:12.体育课上,某学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的个数记为正,不足的个数记为负,其中8名男生的成绩(单位:个)如下:2,-1,0,3,-2,-3,1,0.(1)求这8名男生引体向上测试成绩的达标率;(2)他们共做了多少个引体向上?详解详析1.D 2.C3.3 [解析] 正数有0.2,17,3,共3个.4.C 5.A6.(1)支出 (2)上升 (3)增加 7.运出大米45千克8.解:(1)若节约为正,浪费为负,则节约水10 m 3记作+10 m 3,浪费水0.5 m 3记作-0.5 m 3.(2)若注入为正,放出为负,则注入汽油4 t 记作+4 t ,放出汽油1.8 t 记作-1.8 t. (3)若零上为正,零下为负,则零上32 ℃记作+32 ℃,零下56 °C 记作-56 °C. 9.A [解析] 根据高于标准记为正,可得低于标准记为负,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作-0.15米.10.B [解析] 因为45+0.03=45.03(mm),45-0.04=44.96(mm), 所以零件的直径的合格范围是44.96 mm ≤零件的直径≤45.03 mm. 因为44.9 mm 不在该范围之内,所以不合格的是B.11.解:大米平均价格与上期相比没有变化;面粉平均价格比上期跌了0.2%;豆制品平均价格比上期涨了0.3%;花生油平均价格比上期跌了0.4%.12.解:(1)因为8名男生中有5名引体向上的成绩为正数或0,所以达标率为58×100%=62.5%.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个), 所以他们共做了56个引体向上.1.2.1 有理数知识点 1 有理数的有关概念1.下列各数中,不是有理数的是( ) A .-3.14B .0C.73D .π2.下列既是分数又是负数的是( ) A .-3.1B .-13C .0D .2.43.有下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1,其中正数有________个,负数有________个,正分数有________个,负分数有________个.4.在适当的空格里打上“√”号.5.下列说法错误的是( ) A .负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数6.给出一个有理数-1.2及下列判断:(1)这个数不是分数,但是有理数;(2)这个数是负数,也是分数;(3)这个数与π一样,不是有理数;(4)这个数是一个负小数,也是负分数.其中正确的个数是()A.1 B.2 C.3 D.47.已知数:-13,0.2·51·,260,-2019,56,-53%,0.将它们填到下面相应的集合圈内.(1)图1-2-1(2)图1-2-2(3)图1-2-38.请用两种不同的分类标准将下列各数分类: -15,+6,-2,-0.9,1,35,0,314,0.63,-4.95.9.将一串有理数按下列规律排列,回答下列问题:图1-2-4(1)在A 位置的数是正数还是负数? (2)A ,B ,C ,D 中哪个位置的数是负数?(3)第50个数是正数还是负数?排在对应A ,B ,C ,D 中的哪个位置?详解详析1.D [解析] 有理数是指分数和整数,π既不是整数,也不能化成分数,所以π不是有理数.2.A3.7 4 2 2 [解析] 根据有理数的有关概念进行判断,其中3,2,0.97,9,23,85,1是正数,共7个;-5,-12,-0.21,-6是负数,共4个;0.97,23是正分数,共2个;-12,-0.21是负分数,共2个. 4.为正有理数、0和负有理数.C 中缺少了0,所以C 的说法是错误的.6.B 7.解:(1)(2)(3)8.解:分类一:⎩⎪⎨⎪⎧整数:-15,+6,-2,1,0;分数:-0.9,35,314,0.63,-4.95. 分类二:⎩⎪⎨⎪⎧正数:+6,1,35,314,0.63;0;负数:-15,-2,-0.9,-4.95.说明:若按其他分类标准分类,只要分类正确也可. 9.解:(1)在A 位置的数是正数. (2)B 和D 位置的数是负数. (3)第50个数是正数,排在C 位置.1.2.2数轴知识点 1数轴的概念及画法1.关于数轴,下列说法最准确的是()A.是一条直线B.是有原点、正方向的一条直线C.是有单位长度的一条直线D.是规定了原点、正方向、单位长度的一条直线2.下列各语句中,正确的是()A.数轴上的单位长度可以不一样长B.数轴的单位长度必须是1厘米C.数轴的正方向必须向右D.数轴上原点的位置可以是任意的3.图1-2-5中,所画数轴正确的是()图1-2-5知识点 2读出数轴上表示的数4.如图1-2-6,数轴上点M表示的数可能是()图1-2-6 A.-4.5 B.-2.5 C.-3.5 D.3.55.有理数a ,b ,c 在数轴上对应的点的位置如图1-2-7所示,则下列说法正确的是( )图1-2-7A .a ,b ,c 是负数B .a ,b ,c 是正数C .a ,b 是负数,c 是正数D .a 是负数,b ,c 是正数6.指出如图1-2-8所示的数轴上A ,B ,C ,D ,O 各点分别表示什么数.图1-2-8知识点 3 在数轴上表示数7.(1)数轴上表示4的点在原点的________边,与原点的距离是________个单位长度; (2)数轴上表示-4的点在原点的________边,与原点的距离是________个单位长度; (3)与原点的距离是4个单位长度的点有______个,它们分别表示数________和________.8.如图1-2-9,在数轴上表示-2的点是( )图1-2-9A .点AB .点BC .点CD .点D9.在数轴上表示数-2,0,6.3,15的点中,在原点右边的点有( )A. 0个B. 1个C. 2个D. 3个10.数轴上,在原点的左侧,距原点6个单位长度的点表示的数为________. 11.如图1-2-10,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P′,则点P′表示的数是________.图1-2-1012.在数轴上画出表示下列各数的点: -2,212,3.5,0,-0.5,+74.图1-2-1113.下列说法中正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上两个不同的点可以表示同一个有理数C .有的有理数不能表示在数轴上,如-0.00005D .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点14.如图1-2-12,数轴上有A ,B ,C 三个点,若点C 表示的数是2,点B 表示的数是4,则点A 表示的数是________.图1-2-1215.已知点A在数轴上的位置如图1-2-13所示,点B也在数轴上,且A,B两点之间的距离是2,则点B表示的数是________.图1-2-1316.如图1-2-14,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为________.图1-2-1417.A,B,C,D四名同学的家和学校在同一条街上,以学校为原点,四名同学的家与学校之间的位置分别记作210米,-700米,300米,-450米.(1)画一条数轴,并把四名同学家的位置标在数轴上;(2)指出谁家离学校最近,谁家离学校最远.18.超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店在书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.19.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是________________________________________________________________________;②从-2到2有5个整数,分别是________________________________________________________________________;③从-3到3有7个整数,分别是________________________________________________________________________;④从-200到200有________个整数;⑤从-n到n有________个整数(n≥1,且n为整数).(2)根据以上规律,直接写出从-2.9到2.9有________个整数,从-10.1到10.1有________个整数.(3)在单位长度是1 cm的数轴上随意画一条长为1000 cm的线段AB,则线段AB盖住的整数点有____________个.20.2017·吴兴区期中操作探究:已知在纸面上有一条数轴(如图1-2-15所示).操作一:(1)折叠纸面,使表示数1的点与表示数-1的点重合,则表示数-3的点与表示数________的点重合.操作二:(2)折叠纸面,使表示数-1的点与表示数3的点重合,回答以下问题:①表示数5的点与表示数________的点重合;②若数轴上A,B两点之间的距离为11(点A在点B的左侧),且A,B两点经折叠后重合,求A,B两点表示的数分别是多少.图1-2-15详解详析1.D 2.D3.D [解析] A 选项没有指明正方向,所以不正确;B 选项漏掉了原点,所以不正确;C 选项负数排列错误,所以不正确;D 选项正确.4.C 5.D6.解:点A 表示的数为-2.5,点B 表示的数为-0.5,点C 表示的数为2,点D 表示的数为2.5,点O 表示的数为0.7.(1)右 4 (2)左 4 (3)2 4 -4 8.A9.C [解析] 原点右边的点表示的数是正数,在-2,0,6.3,15中,6.3和15是正数.10.-6 [解析] 在原点的左侧,说明这个点表示的数是一个负数,距原点6个单位长度,则这样的点表示的数为-6.11.212.解:如图所示:13.D [解析] 所有的有理数都可以在数轴上找到唯一的一个点与之对应,在同一条数轴上,不同的点不能表示同一个有理数.14.-2 [解析] 因为点C 表示的数是2,点B 表示的数是4,所以数轴上每两个相邻刻度线之间的线段长为一个单位长度.因为点C 往左两个单位长度处是原点,而点A 距点C 四个单位长度,所以点A 表示的数是-2.15.-5或-116.5 [解析] 刻度尺上的8 cm 到数轴上原点的距离是5,所以x 的值是5. 17.解:(1)画数轴如下:(2)A同学的家离学校最近,B同学的家离学校最远.18.[解析] 以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长,然后根据数轴表示数的方法在数轴上分别表示出超市、书店、玩具店和小明最后的位置.解:(数轴画法不唯一)以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长.由于小明从书店出来沿街向东走了50米,接着又向东走了-80米,则小明最后的位置在书店西边30米处,如图所示.19.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④401⑤(2n+1)(2)521(3)1000或100120.解:(1)因为表示数1的点与表示数-1的点重合,所以折痕过原点.所以表示数-3的点与表示数3的点重合.故答案为3.(2)①因为表示数-1的点与表示数3的点重合,所以折痕过表示数1的点.所以表示数5的点与表示数-3的点重合.故答案为-3.②由题意可得A,B两点到折痕所在直线的距离均为11÷2=5.5.因为折痕过表示数1的点,所以A ,B 两点表示的数分别是-4.5,6.5.1.2.3 相反数知识点 1 相反数的意义1.如图1-2-16,数轴上表示3的点是点________,表示-3的点是点________,它们到原点O 的距离________(填“相等”或“不相等”),所以3与-3互为__________.图1-2-162.2018·绥化 -32的相反数是( )A .1.5B.23C .-1.5D .-233.一个数a 的相反数是5,则a 的值为( ) A.15B .5C .-15D .-54.2017·贵阳 在1,-1,3,-2这四个数中,互为相反数的是( ) A .1与-1 B .1与-2 C .3与-2D .-1与-25.如图1-2-17,数轴上表示数-2的相反数的点是( )图1-2-17A .点PB .点QC .点MD .点N6.如图1-2-18,表示互为相反数的两个数在数轴上的对应点是____________.图1-2-187.写出下列各数的相反数: 11.2,9,0,-58,423.8.写出5,4,-3的相反数,并在如图1-2-19所示的数轴上表示出各数及它们的相反数.图1-2-19知识点 2 利用相反数的意义化简符号9.-(+5)表示________的相反数,即-(+5)=________;-(-5)表示________的相反数,即-(-5)=________.10.化简-(-6)的结果为( )A .6B .-6C.16 D .-1611.下列各式中,化简正确的是( ) A .+(-7)=7B .+(+7)=-7C .-(+7)=-7D .-(-7)=-712.下列四组数中,互为相反数的一组是( ) A .+2与-3B .-8与+8C .-(-2)与2D .+(-1)与-(+1)13.化简:(1)-(+8); (2)-(+2.7);(3)-(-3); (4)-⎝⎛⎭⎫-34.14.若一个数的相反数不是正数,则这个数一定是( ) A .正数 B .正数或零 C .负数 D .负数或零 15.下列说法正确的有( )①-x 一定是负数;②任何一个有理数都有相反数;③只有正数和负数才能互为相反数;④互为相反数的数是指两个不同的数;⑤符号不同的两个数互为相反数.A .1个B .2个C .3个D .4个16.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6个单位长度,那么这个数是()A.6或-6 B.3或-3C.6或-3 D.-6或317.如图1-2-20,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()图1-2-20A.-2 B.3 C.-3 D.218. 若x-1与-5互为相反数,则x的值为________.19.化简下列各式的符号,并回答问题:-[-(-4)]=________;-[-(+3.5)]=________;-{-[-(-5)]}=________;-{-[-(+5)]}=________.(1)当+5前面有2020个负号时,化简后的结果是多少?(2)当-5前面有2019个负号时,化简后的结果是多少?你能总结出什么规律?20.在数轴上点A表示7,点B,C表示的数互为相反数,且点C与点A的距离为2,求点B,C表示的数分别是什么.21.小李在做题时,画一条数轴,数轴上原有一点A,其表示的数是-3,由于一时粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置.想一想:要把这条数轴画正确,原点应向哪个方向移动几个单位长度?22.已知表示数a的点在数轴上的位置如图1-2-21所示.图1-2-21(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b 是多少.详解详析1.A B相等相反数2.A3.D[解析] -5的相反数是5,故a=-5.故选D.4.A5.A[解析] 因为-2的相反数是2,数2在数轴上的对应点为点P.故选A. 6.点B和点C7.解:11.2的相反数是-11.2,9的相反数是-9,0的相反数是0,-58的相反数是58,423的相反数是-423.8.解:5,4,-3的相反数分别是-5,-4,3.在数轴上表示如图所示.9.5-5-5 510.A11.C[解析] 看数字前面负号的个数,若有偶数个,则结果为正;若有奇数个,则结果为负.12.B[解析] 根据相反数的定义:A项,+2的相反数是-2,错误;B项,-8的相反数是+8,正确;C项,-(-2)的相反数是-2,错误;D项,+(-1)的相反数是1,错误.13.解:(1)因为+8的相反数是-8,所以-(+8)=-8.(2)类似地,-(+2.7)=-2.7.(3)因为-3的相反数是3,所以-(-3)=3. (4)类似地,-⎝⎛⎭⎫-34=34. 14.B [解析] 一个数的相反数不是正数,则这个数的相反数是负数或零,故这个数一定是正数或零.15.A [解析] 当x 是一个负数时,-x 就是正数,①错;0的相反数是0,③④错;只有符号不同,其余完全相同的两个数才互为相反数,⑤错.16.B [解析] 因为这两个互为相反数的数对应的点之间的距离为6个单位长度,并且它们到原点的距离相等,故这两个数为3和-3.17.D [解析] 点C 表示的数是1,向左移动5个单位长度到点B ,则点B 表示的数是-4,点B 向右移动2个单位长度到点A ,则点A 表示的数是-2,-2的相反数是2.18.6 [解析] 因为x -1与-5互为相反数,又-5的相反数是5,所以x -1=5,解得x =6.19.解:-4 3.5 5 -5(1)当+5前面有2020个负号时,化简后的结果是5. (2)当-5前面有2019个负号时,化简后的结果是5.规律:在一个数的前面有偶数个负号,化简结果是其本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.20.解:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9.因为点B ,C 表示的数互为相反数,所以数轴上点B 表示-5或-9. 所以点B ,C 表示的数分别是-5,5或-9,9.21.解:要把这条数轴画正确,原点应向右移动6个单位长度. 22.解:(1)如图:(2)a 是-10.(3)由(2)知-a =10.当表示数b 的点在表示数-a 的点的右边时,b =10+5=15; 当表示数b 的点在表示数-a 的点的左边时,b =10-5=5. 综上可得,b 是5或15.1.2.4 第1课时 绝对值知识点 1 绝对值的意义1.数轴上表示2的点到原点的距离是________,所以|2|=________;数轴上表示-2的点到原点的距离是________,所以|-2|=________;数轴上表示0的点到原点的距离是________,所以|0|=________.2.2017·株洲 如图1-2-22,数轴上点A 所表示的数的绝对值为( )图1-2-22A .2B .-2C .±2D .以上均不对3.|-2020|的意义是数轴上表示数________的点到原点的距离. 知识点 2 绝对值的性质 4.-2的绝对值是( ) A .-2 B .-12C.12D .25.⎪⎪⎪⎪-15等于( ) A .-15 B.15C .5D .-56.一个数的绝对值等于3,则这个数是( ) A .3B .-3C .±3D.137.下列说法正确的是( ) A .绝对值等于它本身的数只有0 B .绝对值等于它本身的数是正数 C .绝对值等于它本身的数有0和正数 D .绝对值等于它本身的数的相反数是负数 8.任何一个有理数的绝对值一定( ) A .大于0B .小于0C .不大于0D .不小于09.求-2,-13,7.2,0,8的绝对值.10.已知x =8,y =-2,求|x |-4|y |的值.知识点 3绝对值的应用11.某家企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.0021升的误差,现抽查6瓶食用调和油.超过规定净含量的部分记作正数,不足规定净含量的部分记作负数,结果如下(单位:升):+0.0019,-0.0022,+0.0021,-0.0015,+0.0024,-0.0009.请用绝对值的知识说明这6瓶食用调和油中有几瓶符合要求.12.已知零件的标准直径是100 mm,超过标准直径的数量(mm)记作正数,不足标准直径的数量(mm)记作负数,检验员某次抽查了五件样品,检查结果如下:(1)(2)如果规定误差的绝对值在0.18 mm之内的是优品,误差的绝对值在0.18 mm~0.22 mm之间(包括0.18 mm和0.22 mm)的是次品,误差的绝对值超过0.22 mm的是废品,那么这五件样品分别属于哪类产品?13.⎪⎪⎪⎪-13的相反数是( ) A.13B .-13C .3D .-314.如图1-2-23,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )图1-2-23A .-4B .-2C .0D .415.一个数a 在数轴上的对应点在原点左边,且|a |=4,则a 的值为( ) A .4或-4B. 4C .-4D .以上都不对16.(1)-3的绝对值的相反数是________;(2)若一个数的相反数的绝对值是3,则这个数是________. 17.计算:(1)|-35|+|+21|+|-27|;(2)|-345|-|-45|+|-312|;(3)|-49|×|-21 7|.18.已知|x+2|+|y-3|=0.(1)求x,y的值;(2)求|x|+|y|的值.19.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午的行驶情况(单位:千米)如下:+15,-3,+14,-11,+10.若出租车耗油量为0.06升/千米,则这天下午出租车共耗油多少升?20.数学老师出了如下一道计算题,孙良看了看说:“这么多数怎么算啊?”请聪明的你来帮他解决吧!写出你的解题过程.计算:⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+|14-15|+…+⎪⎪⎪⎪12017-12018+⎪⎪⎪⎪12018-12019.详解详析1.2 2 2 2 0 0 2.A 3.-2020 4.D 5.B6.C [解析] 因为||a =3,所以a =±3.故选C. 7.C 8.D9.解:|-2|=2,⎪⎪⎪⎪-13=13,|7.2|=7.2,|0|=0,|8|=8. 10.解:当x =8,y =-2时,|x|-4|y|=|8|-4×|-2|=8-4×2=0. 11.解:因为|+0.0019|=0.0019<0.0021, |-0.0022|=0.0022>0.0021, |+0.0021|=0.0021, |-0.0015|=0.0015<0.0021, |+0.0024|=0.0024>0.0021, |-0.0009|=0.0009<0.0021,绝对值小于或等于0.0021的是符合要求的,所以这6瓶食用调和油中有4瓶符合要求. 12.解:(1)因为|0.1|=0.1,|-0.15|=0.15,|-0.2|=0.2,|-0.05|=0.05,|-0.25|=0.25,且0.05<0.1<0.15<0.2<0.25, 所以第4件样品的大小最接近标准.(2)因为|0.1|=0.1<0.18,|-0.15|=0.15<0.18,|-0.05|=0.05<0.18,所以第1,2,4件样品是优品;因为|-0.2|=0.2,0.18<0.2<0.22,所以第3件样品是次品; 因为|-0.25|=0.25>0.22,所以第5件样品是废品.13.B [解析] 因为⎪⎪⎪⎪-13=13,13的相反数是-13,所以⎪⎪⎪⎪-13的相反数是-13.故选B. 14.B 15.C16.(1)-3 (2)±317.[解析] 先根据绝对值的意义化去绝对值符号,再计算. 解:(1)原式=35+21+27=83. (2)原式=345-45+312=612.(3)原式=49×157=105.18.解:(1)由题意,得x +2=0,y -3=0, 解得x =-2,y =3.(2)|x|+|y|=|-2|+|3|=2+3=5.19.解:出租车共行驶:|+15|+|-3|+|+14|+|-11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升). 答:这天下午出租车共耗油3.18升.20.解:原式=1-12+12-13+13-14+14-15+…+12017-12018+12018-12019=1-12019=20182019.1.2.4 第2课时 有理数的大小比较知识点 1借助数轴比较有理数的大小1.冬季某天,我国三个城市的最高气温分别是-9 °C,1 °C,-4 °C,通过观察温度计,可以把它们从低到高排列为________________;若是在数轴上表示-9,1,-4这三个数,通过观察数轴,可以发现它们从左到右排列为________.由此我们发现,在数轴上左边的数总是________右边的数.2.已知有理数a,b,c在数轴上对应的点的位置如图1-2-24所示,则下列关系正确的是()A.a>b>c>0 B.b>c>0>aC.b>0>c>a D.b>0>a>c1-2-243.如图1-2-25,下列各点表示的数中,比1大的数对应的点是()1-2-25A.A B.B C.C D.D4.画出数轴,把下列各数在数轴上表示出来,并用“<”号把各数连接起来:-2.5,1,0,-2,3,-4,1.5.知识点 2运用法则比较有理数的大小5.2018·广东在有理数0,13,-3.14,2中,最小的数是()A .0B.13C .-3.14D .26.下列各数中,比-2小的数是( ) A .-3B .-1C .0D .17.2017·咸宁 下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )A.C .隐水洞D .三湖连江8.比较-12,-13,14的大小,结果正确的是( )A .-12<-13<14B .-12<14<-13C.14<-13<-12D .-13<-12<149.比较下列各组数的大小: (1)3与-7; (2)-5.3与-5.4;(3)-38与-58.10.下列有理数的大小关系正确的是( ) A .-0.2>-0.02 B .|-36|<0 C .-|10|>|-5| D .-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13 11.2018·攀枝花 如图1-2-26,有理数-3,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最小的数对应的点是( )图1-2-26A .MB .NC .PD .Q12.2017·红桥区一模 有理数a ,b 在数轴上的对应点的位置如图1-2-27所示,则a ,b ,-a ,|b |的大小关系正确的是( )图1-2-27A .|b |>a >-a >bB .|b |>b >a >-aC .a >|b |>b >-aD .a >|b |>-a >b13.下面各数的大小排列正确的是( ) A .0<-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12B .-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12<0<-⎝⎛⎭⎫-12C .-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<0<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12D .-⎝⎛⎭⎫+12<+⎝⎛⎭⎫-23<-⎪⎪⎪⎪-34<0<-⎝⎛⎭⎫-12 14.绝对值小于4的整数有________个,它们是________________.15.最大的负整数是______,绝对值最小的数是______,绝对值最小的正整数是______,绝对值最小的负整数是______.16.比较大小:(1)-(-2.75)与-(-2.67);(2)-(+3)与0;(3)-π与-|3.14|;(4)-(-5)与-|+6|.17.画一条数轴,在数轴上表示下列各数:3.5和它的相反数,-12,绝对值等于3的数,最大的负整数,并把这些数由大到小用“>”号连接起来.18.动物王国里举行了一场乌龟与兔子的竞走比赛,所走路线及方向如图1-2-28所示,在同一时间内,兔子向西走了20 m ,乌龟向东走了1 m ,狐狸宣布乌龟获胜,其理由是向西为负,向东为正,根据正数大于一切负数的原理,+1>-20,表明同一时间里乌龟走的路程大于兔子走的路程.你认为这样公平吗?图1-2-286 23,-417,-311,-1247的大小.19.比较-详解详析1.-9 °C ,-4 °C ,1 °C -9,-4,1 小于 2.D 3.D4.解:将各数在数轴上表示略.-4<-2.5<-2<0<1<1.5<3. 5.C 6.A7.C [解析] 因为-2<-1<0<2,所以隐水洞的气温最低.故选C.8.A [解析] 在-12,-13,14这三个数中,14是正数,-12和-13是负数,正数大于负数,所以14最大,⎪⎪⎪⎪-12>⎪⎪⎪⎪-13,所以-12<-13,所以选A. 9.解:(1)3>-7.(2)-5.3>-5.4. (3)-38>-58.10.D [解析] 因为|-0.2|=0.2,|-0.02|=0.02,而0.2>0.02,根据两个负数,绝对值大的反而小,所以-0.2<-0.02,故A 错误;因为|-36|=36>0,故B 错误;因为-|10|=-10,|-5|=5,根据负数小于正数,所以-|10|<|-5|,故C 错误;因为-⎝⎛⎭⎫-12=12,-⎪⎪⎪⎪-13=-13,根据正数大于负数,得12>-13,所以-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13,故D 正确.11.B [解析] 绝对值最小的数对应的点应该离原点的距离最近,在M ,N ,P ,Q 四个点中,点N 离原点的距离最近.故选B.12.A [解析] 因为a 是大于1的数,b 是负数,且|b|>|a|,所以|b|>a >-a >b.故选A. 13.B14.7 0,±1,±2,±3 15.-1 0 1 -116.解:(1)-(-2.75)>-(-2.67).(2)-(+3)<0. (3)-π<-|3.14|. (4)-(-5)>-|+6|.17.[解析] 在数轴上,原点左侧的点表示的数为负数,右侧的点表示的数为正数,表示3.5的点在原点右侧,表示-3.5的点在原点左侧,表示-12的点在原点左侧,绝对值为3的数有3和-3,表示3的点在原点右侧,表示-3的点在原点左侧,最大的负整数为-1,表示-1的点在原点左侧.解:如图所示:由大到小排列:3.5>3>-12>-1>-3>-3.5.18.解:不公平.因为路程为非负数,故应比较绝对值的大小,|+1|<|-20|,所以乌龟走的路程小于兔子走的路程.19.解:因为⎪⎪⎪⎪-623=623=1246,⎪⎪⎪⎪-417=417=1251,⎪⎪⎪⎪-311=311=1244,⎪⎪⎪⎪-1247=1247, 1244>1246>1247>1251, 所以-311<-623<-1247<-417.1.3.1 第1课时 有理数的加法法则知识点 1 有理数的加法法则1.计算:(1)(+3)+(+2)=+(|+3|________|+2|)=5,(-3)+(-2)=________(|-3|+|-2|)=________;(2)3+(-2)=________(|3|-|-2|)=________,(-3)+(+2)=-(|-3|________|+2|)=________.2.下列各式中,计算结果为正的是( ) A .4.1+(-5.5) B .(-6)+2 C .(-3)+5D .0+(-1)3.2017·颍州区校级月考 下面的数中,与-5的和为0的数是( ) A.15B .-15C .5D .-54.计算(-3)+(-9)的结果是( ) A .-12 B .-6C .+6D .125.下列各式中正确的是( ) A .-5+(-4)=9B .(-5)+6=-11C.⎝⎛⎭⎫-16+0=-16 D .3.6+()-5.6=-1.6 6.计算:(1)(-12)+12=________;(2)(-5)+0=________. 7.计算下列各题: (1)(-18)+(-7);(2)6.5+(-6.5);(3)⎝⎛⎭⎫-314+⎝⎛⎭⎫+213;(4)⎝⎛⎭⎫-514+(-3.5);(5)(-32.8)+(+51.76).8.列式计算:(1)比-18大-30的数;(2)75与-24的和.知识点 2有理数加法的应用9.2018·武汉温度由-4 ℃上升7 ℃后是()A.3 ℃B.-3 ℃C.11 ℃D.-11 ℃10.已知飞机的飞行高度为10000 m,上升-5000 m后,飞机的飞行高度是________m.11.篮球比赛分上半场、下半场进行,规定赢分记为“+”,输分记为“-”,不输不赢记为“0”. 下面是某校篮球队六场比赛的得分情况,请填表:12.-7的相反数加上-3,结果是()A.10 B.-10 C.4 D.-413.如果两个数的和为正数,那么这两个数()A.都是正数B.都是负数C.一正一负D.至少有一个是正数14.2017·滨州计算-(-1)+|-1|,其结果为()A.-2 B.2 C.0 D.-115.有理数a,b在数轴上的对应点的位置如图1-3-1所示,则a+b的值()图1-3-1A.大于0B.小于0C.大于a D.小于b16.在1,-1,-2这三个数中,任意两个数的和的最大值是()A.1 B.0 C.-1 D.-317.已知||a=15,||b=14,且a>b,则a+b的值为()A.29或1 B.-29或1C.-29或-1 D.29或-118.比-312大而比213小的所有整数的和为________.19.某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):(1)(2)产量最多的一天比产量最少的一天多生产多少辆?20.已知|x |=3,|y |=2. (1)x +y 的值为__________; (2)若|x +y |≠x +y ,求x +y 的值.21.将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入图1-3-2中的方格中,使得横、竖、斜对角的3个数相加都得0.图1-3-2详解详析1.(1)+--5(2)+1--12.C 3.C 4.A5.C[解析] -5+(-4)=-9,(-5)+6=1,3.6+()-5.6=-2.故选C. 6.(1)0(2)-57.(1)-25(2)0(3)-1112(4)-8.75(5)18.968.解:(1)(-18)+(-30)=-48.(2)75+(-24)=51.9.A[解析] (-4)+7=3(℃).故选A.10.5000[解析] 根据题意,得10000+(-5000)=5000(m).11.解:二:赢12分(+18)+(-6)=+12三:不输不赢(+18)+(-18)=0四:输4分(+10)+(-14)=-4五:输23分(-12)+(-11)=-23六:输13分(-13)+0=-1312.C[解析] 根据题意,得-(-7)+(-3)=7-3=4.13.D[解析] 根据有理数的加法法则进行逐一分析即可.A.不一定,例如:-1+2=1,错误.B.错误,两负数相加和必为负数.C.不一定,例如:2与6的和8为正数,但是2与6都是正数,并不是一正一负,错误.D.正确.故选D.14.B15.B16.B[解析] 1+(-1)=0,1+(-2)=-1,(-1)+(-2)=-3,故最大值为0.17.A[解析] 因为||a=15,||b=14,所以a=±15,b=±14.由于a>b,所以a=15,b=±14.所以a +b 的值为29或1.18.-3 [解析] 比-312大而比213小的整数有-3,-2,-1,0,1,2,-3+(-2)+(-1)+0+1+2=-3.19.解:(1)根据记录可知,前三天生产自行车的数量分别为:200+(+5)=205(辆); 200+(-2)=198(辆); 200+(-4)=196(辆).答:前三天生产的自行车依次为205辆,198辆,196辆.(2)产量最多的一天是星期六,生产自行车的数量为200+(+16)=216(辆); 产量最少的一天是星期五,生产自行车的数量为200+(-15)=185(辆). 216-185=31(辆).答:产量最多的一天比产量最少的一天多生产31辆. 20.解:(1)由题意知x =±3,y =±2. 当x =3,y =2时,x +y =5;当x =3,y =-2时,x +y =3+(-2)=1; 当x =-3,y =2时,x +y =-3+2=-1; 当x =-3,y =-2时,x +y =(-3)+(-2)=-5. 故答案为±5或±1. (2)因为|x|=3,|y|=2, 所以x =±3,y =±2.当x =3,y =2时,|x +y|=x +y ,不合题意; 当x =3,y =-2时,|x +y|=x +y ,不合题意; 当x =-3,y =2时,|x +y|≠x +y , 此时x +y =-3+2=-1;当x=-3,y=-2时,|x+y|≠x+y,此时x+y=-3+(-2)=-5.综上可得,x+y的值为-1或-5.21.解:如图所示(答案不唯一):1.3.1第2课时有理数的加法运算律知识点 1利用运算律简化计算1.(1)3+(-2)=________+3,即a+b=________;(2)(-5)+(-31)+(+31)=(-5)+[______+____],即(a+b)+c=__________. 2.在答题线上填上这一步所依据的运算律.(+7)+(-22)+(-7)=(-22)+(+7)+(-7)________________=(-22)+[(+7)+(-7)]________________=(-22)+0=-22.3.小磊解题时,将式子(-15)+4+(-45)变成4+[(-15)+(-45)]再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断4.下列变形,运用加法运算律正确的是( ) A .3+(-2)=2+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+⎝⎛⎭⎫+56=⎝⎛⎭⎫16+56+(+1) 5.计算:(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+3.6;(3)16+⎝⎛⎭⎫-27+⎝⎛⎭⎫-56+⎝⎛⎭⎫+57.。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)104230
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列解方程变形正确的是( )①3x +6=0变形为3x =6,②2x =x −1变形为2x −x =−1,③−2+7x =8x 变形为8x −7x =−2,④−4x =2x +5变形为2x +4x =5.A.①②③B.②③④C.①④D.②③2. 下列变形错误的是( )A.若a =b ,则−2a +c =−2b +cB.若6a =5a +4,则5a −6a =−4C.若ab =ac ,则b =cD.若ac =bc ,则a =b 3. 小明在解方程3a −2x =11(x 是未知数)时,误将−2x 看成了+2x ,得到的解为x =−2,请聪明的你帮小明算一算,方程的正确解为( )A.x =1B.x =2C.x =0D.x =−34. 下列方程中,解为x =4的方程是( )A.8x =2B.4x =1C.x −1=43x+6=03x =62x =x−12x−x =−1−2+7x =8x 8x−7x =−2−4x =2x+52x+4x =5a =b −2a +c =−2b +c6a =5a +45a −6a =−4ab =ac b =c=a c b ca =b 3a −2x =11x −2x +2x x =−2x =1x =2x =0x =−3x =4=28x 4x =15. 下列方程中以1为根的方程是( )A.2x −1=2B.3x +3=x C.x =−2x +4D.2x =−2x +46. 若a =b ,则下列式子正确的有( )①a −2=b −2;②13a =12b ;③−34a =−34b ;④5a −1=5b −1.A.1个B.2个C.3个D.4个7. x =−1是下列哪个方程的解()A.x −5=6B.12x +6=6C.3x +1=4D.4x +4=08. 下列说法中,正确的是( )A.x =−1是方程4x +3=0的解B.m =−1是方程9m+4m =13的解C.x =1是方程3x −2=3的解D.x =0是方程0.5(x +3)=1.5的解二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 若x −5=3,则x =_________.10. 已知3a =2b(b ≠0),那么ab =________.512x−1=23x+3=xx =−2x+42x =−2x+4a =b a −2=b −2a =b 1312−a =−b 34345a −1=5b −11234x =−1()x−5=6x+6=6123x+1=44x+4=0()x =−14x+3=0m=−19m+4m=13x =13x−2=3x =00.5(x+3)=1.5x−5=3x =11. 已知关于x 的方程2x +a −4=0的解是x =1,则a 的值是________.12. 如果x =3是关于x 的方程2x +m =7的解,那么m 的值为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 解方程:(1)2(a +1)=3a ;(2)x2−x +16=1. 14. 解方程: 4x +33−5+x2=1. 15.(1)解一元一次方程:1−x3=3−x +24.(2)解方程组{x −y =1,2x +y =2.(3)解不等式组{2x −7<3(x −1),①5−12(x +4) x,②,并将解集在数轴上表示出来.16. 检验下列方程后面括号内所列各数是否为相应方程的解:(1)5x +18=x −1;(−32,3)(2)2(y −2)−9(1−y)=3(4y −1).(−10,10)x 2x+a −40x 1a x =3x 2x+m=7m (1)2(a +1)=3a(2)−=1x 2x+16−=14x+335+x 2(1)=3−1−x 3x+24(2)参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】D【考点】解一元一次方程【解析】分别利用等式的基本性质判断得出即可.【解答】解:①3x+6=0变形为3x=−6,故错误;②2x=x−1变形为2x−x=−1,故正确;③−2+7x=8x变形为8x−7x=−2,故正确;④−4x=2x+5变形为2x+4x=−5,故错误.故选D.2.【答案】C【考点】等式的性质【解析】根据等式的性质,可得答案.【解答】解:A、两边都乘以−2,两边都加c,故A正确;B、两边都减6a,加4,故B正确;故选:C.3.【答案】B【考点】一元一次方程的解【解析】先根据题意得出a的值,再代入原方程求出x的值即可.【解答】解:∵方程3a+2x=11的解为x=−2,∴3a−4=11,解得a=5,∴原方程可化为15−2x=11,解得x=2.故选B.4.【答案】A【考点】方程的解【解析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、把x=4代入,左边=2,左边=右边,因而x=4是方程的解.B、把x=4代入,左边=16,左边≠右边;因而x=4不是方程的解;C、把x=4代入得到,左边=3,左边≠右边,因而x=4不是方程的解;D、把x=4,代入方程,左边=35,左边≠右边,因而x=4不是方程的解;故选:A.5.【答案】D解一元一次方程【解析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A,把x=1代入方程,左边=2−1=1≠右边,故A错误;B,把x=1代入方程,左边=3+3=6≠右边,故B错误;C,把x=1代入方程,左边=1,右边=−2+4=2,则左边≠右边,故C错误;D,把x=1代入方程,左边=2,右边=−2+4=2,则左边=右边,故是方程的解,故D正确.故选D.6.【答案】C【考点】等式的性质【解析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:①根据等式的性质,两边都减2,a−2=b−2,故①正确;②等式的两边乘以不同的数,故②错误;③等式的两边同时乘以−34,故③正确;④等式的两边都乘以5,等式的两边都减1,故④正确;故正确的有3个.故选C.7.【答案】D【考点】一元一次方程的解方程的解把x=−1代入方程,看看方程两边是否相等即可.【解答】解:A,把x=−1代入方程,左边=−6,右边=6,左边≠右边,所以x=−1不是方程x−5=6的解,故本选项错误;B,把x=−1代入方程,左边=512,右边=6,左边≠右边,所以x=−1不是方程12x+6=6的解,故本选项错误;C,把x=−1代入方程,左边=−2,右边=4,左边≠右边,所以x=−1不是方程3x+1=4的解,故本选项错误;D,把x=−1代入方程,左边=0,右边=0,左边=右边,所以x=−1是方程4x+4=0的解,故本选项正确;故选D.8.【答案】D【考点】一元一次方程的解方程的解【解析】将各项中x的值代入方程检验即可.【解答】解:A,把x=−1代入方程得:左边=−4+3=−1,右边=0,左边≠右边,不符合题意;B,把m=−1代入方程得:左边=−9−4=−13,右边=13,左边≠右边,不符合题意;C,把x=1代入方程得:左边=3−2=1,右边=3,左边≠右边,不符合题意;D,把x=0代入方程得:左边=1.5,右边=1.5,左边=右边,符合题意.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】8【考点】解一元一次方程移项,合并同类项可得答案【解答】解:x−5=3,移项得x=3+5,合并同类项得x=8.故答案为:8.10.【答案】23【考点】等式的性质【解析】利用等式的性质2即可解决问题.【解答】解:根据等式性质2,等式的两边同除以3b,则ab=23.故填:23.11.【答案】2【考点】一元一次方程的解【解析】把x=1代入方程计算即可求出a的值.【解答】把x=1代入方程得:2+a−4=0,解得:a=2,12.【答案】【考点】方程的解【解析】直接利用一元一次方程的解的意义将x的值代入得出m的值.【解答】解:∵x=3是关于x的方程2x+m=7的解,∴2×3+m=7,解得:m=1,故m的值是1.故答案为:1.三、解答题(本题共计 4 小题,每题 10 分,共计40分)13.【答案】解:(1)2(a+1)=3a,去括号,得2a+2=3a,移项,得2a−3a=−2,合并同类项,得−a=−2,系数化1得a=2.(2)x2−x+16=1,去分母,得3x−(x+1)=6,去括号,得3x−x−1=6,移项,得3x−x=6+1,合并同类项,得2x=7,系数化1得x=72.【考点】解一元一次方程【解析】左侧图片未给出解析.左侧图片未给出解析.【解答】解:(1)2(a+1)=3a,去括号,得2a+2=3a,移项,得2a−3a=−2,合并同类项,得−a=−2,去分母,得3x−(x+1)=6,去括号,得3x−x−1=6,移项,得3x−x=6+1,合并同类项,得2x=7,系数化1得x=72.14.【答案】解: 2(4x+3)−3(5+x)=6,8x+6−15−3x=6,8x−3x=6−6+15,5x=15,x=3.【考点】解一元一次方程【解析】左侧图片未给解析【解答】解: 2(4x+3)−3(5+x)=6,8x+6−15−3x=6,8x−3x=6−6+15,5x=15,x=3.15.【答案】解:(1)去分母,得:4(1−x)=36−3(x+2),去括号,得:4−4x=36−3x−6,移项,合并同类项,得:−x=26,系数化为1,得:x=−26.(2){x−y=1,①2x+y=2.②①+②得:3x=3,∴x=1.把x=1代入①得1−y=1,∴y=0.所以原方程组的解为{x =1,y =0.(3)解不等式①,得x >−4,解不等式②,得x ≤2,将不等式①②的解集在数轴上表示如图,∴原不等式组的解集为−4<x ≤2.【考点】加减消元法解二元一次方程组解一元一次不等式组在数轴上表示不等式的解集解一元一次方程【解析】先将方程去分母,然后去括号,移项,合并同类项,系数化为1,即可求解.【解答】解:(1)去分母,得:4(1−x)=36−3(x +2),去括号,得:4−4x =36−3x −6,移项,合并同类项,得:−x =26,系数化为1,得:x =−26.(2){x −y =1,①2x +y =2.②①+②得:3x =3,∴x =1.把x =1代入①得1−y =1,∴y =0.所以原方程组的解为{x =1,y =0.(3)解不等式①,得x >−4,解不等式②,得x ≤2,将不等式①②的解集在数轴上表示如图,∴原不等式组的解集为−4<x ≤2.16.【答案】解:(1)把x =−32代入原方程;左边=5×(−32)+18=−1316,右边=−32−1=−52.∵左边≠右边,∴x =−32不是该方程的解.把x =3代入方程,得左边=5×3+18=2,右边=3−1=2.∵左边=右边,∴x =3是该方程的解;(2)把y =−10代入原方程.左边=2(−10−2)−9(1+10)=−123,右边=3×[4×(−10)−1]=−123,∵左边=右边,∴y =−10是原方程的解;把y =10代入原方程.左边=2(10−2)−9(1−10)=97,右边=3×(4×10−1)=117,∵左边≠右边,∴y =10不是原方程的解.【考点】方程的解【解析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.所以把括号内的数分别代入已知方程,进行一一验证.【解答】解:(1)把x =−32代入原方程;左边=5×(−32)+18=−1316,右边=−32−1=−52.∵左边≠右边,∴x =−32不是该方程的解.把x =3代入方程,得左边=5×3+18=2,右边=3−1=2.∵左边=右边,∴x =3是该方程的解;(2)把y =−10代入原方程.左边=2(−10−2)−9(1+10)=−123,右边=3×[4×(−10)−1]=−123,∵左边=右边,∴y=−10是原方程的解;把y=10代入原方程.左边=2(10−2)−9(1−10)=97,右边=3×(4×10−1)=117,∵左边≠右边,∴y=10不是原方程的解.。
2022-2023学年全国初中七年级上数学人教版同步练习(含答案解析)050907
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列说法正确的是( )A.的平方根是B.的平方根是C.的算术平方根是D.的平方根是2. 下列说法正确的是( )A.的相反数是B.C.的算术平方根是D.是无理数3. 已知,则的值是( )A.B.C.D.4. 若一个正数的平方根是与,则的值是( )A.B.C.或D.5. 的算术平方根是( )4216−−√±4−36625±500=2(−1)24−213+(b −1=0a +2−−−−√)2(a +b)20201−12015−20152m−43m−1m −31−31−19–√A.B.C.D. 6.已知实数,在数轴上对应的点如图所示,则下列式子正确的是A.B.C.D.7. 下列各数没有平方根的是( )A.B.C.D.8. 数的算术平方根是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 的算数平方根是________.10. 若,则________.11. 若 ,则 的化简结果是________.±33±3–√3–√a b ()a ⋅b >0a −b >0a <−b|a |<|b |64(−2)3(−3)41684±4216+(x+2=0y−1−−−−√)2x+y =(2)x <3(x−3)2−−−−−−−√12. ________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.先观察下列等式及其验证过程,再回答问题:,,….验证:;.(1)按照上述两个等式及其验证过程的基本思路直接写出的变形结果;(2)根据上述等式反映出的规律,请你写出用正整数表示一般规律的等式并验证. 14. 已知,.若,求的值;若的值与的取值无关,求的值.15. 已知的平方根是,的算术平方根是,求的平方根.16. 计算: .=4–√A =2+xy+3y−1x 2B =−xy x 2(1)(x+2+|y−3|=0)2A−2B (2)A−2B y x 2a −1±17−−√3a +b −16a +4b +|−3|−30()13−1参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】平方根算术平方根【解析】根据平方根和算术平方根的定义判断即可.【解答】解:,的平方根是,故错误,不符合题意;,的平方根是,故错误,不符合题意;,没有算术平方根,故错误,不符合题意;,的平方根是,故正确,符合题意.故选.2.【答案】A【考点】有理数的概念及分类算术平方根有理数的乘方相反数【解析】本题考查了相反数、有理数的乘方、算术平方根,有理数等知识,解题关键是掌握这些概念并能熟A 4±2B 16−−√±2C −36D 25±5D练运用.根据这些概念来解答即可.【解答】解:.的相反数是,故正确;. ,故错误;.的算术平方根是 ,故错误;.是有理数,故错误.故选.3.【答案】A【考点】非负数的性质:算术平方根非负数的性质:偶次方【解析】根据非负数的性质列式求出、的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,,解得,,所以.故选.4.【答案】B【考点】平方根【解析】根据正数的两个平方根互为相反数列式计算即可得解.【解答】解:∵一个正数的平方根是与,∴,∴.A 00AB =1(−1)2BC 42CD 13D A a b a +2=0b −1=0a =−2b =1(a +b =(−2+1=(−1=1)2020)2020)2020A 2m−43m−12m−4+3m−1=0m=1故选.5.【答案】D【考点】算术平方根【解析】此题暂无解析【解答】解:,的算术平方根是,∴的算术平方根是.故选.6.【答案】B【考点】数轴【解析】根据点、在数轴上的位置可判断出、的取值范围,然后即可作出判断.【解答】解:根据点,在数轴上的位置可知,,,∴,,,.故选.7.【答案】C【考点】平方根B =39–√33–√9–√3–√D a b a b a b 1<a <2−1<b <0a ⋅b <0a −b >0a >−b |a |>|b |B【解析】由于负数没有平方根,找出其中哪个数是负数的即可解决问题.【解答】解:,,有两个平方根,故选项不符合题意;,的平方根是它本身,故选项不符合题意;, ,没有平方根,故选项符合题意;,,有两个平方根,故选项不符合题意.故选.8.【答案】B【考点】算术平方根【解析】此题暂无解析【解答】解:.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】算术平方根非负数的性质:算术平方根【解析】本题考查算术平方根,的算术平方根为.【解答】解:的算术平方根为.A 64>0A B 0B C =−8<0(−2)3C D =81>0(−3)4D C =416−−√B 4164164故答案为:.10.【答案】【考点】非负数的性质:偶次方非负数的性质:算术平方根【解析】首先根据已知条件推出,,推出,,即可求得的值.【解答】解:,,,,,.故答案为:.11.【答案】【考点】平方根【解析】此题暂无解析【解答】解:∵ ,∴∴故答案为:.12.【答案】【考点】4−1y−1=0x+2=0y =1x =−2x+y ∵+=0y−1−−−−√(x+2)2∴y−1=0x+2=0∴y =1x =−2∴x+y =−2+1=−1−13−xx <3x−3<0,=|x−3|=3−x.(x−3)2−−−−−−−√3−x 2算术平方根【解析】此题暂无解析【解答】解:.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】;,验证过程如下:左式==右式.【考点】算术平方根【解析】此题暂无解析【解答】此题暂无解答14.【答案】解:∵,,∴,∵,∴,,∴,,∴原式;由,与值无关,得到,解得:.【考点】=24–√2(1)A =2+xy+3y−1x 2B =−xy x 2A−2B =2+xy+3y−1−2+2xy =3xy+3y−1x 2x 2(x+2+|y−3|=0)2x+2=0y−3=0x =−2y =3=3×(−2)×3+3×3−1=−10(2)A−2B =y(3x+3)−1y 3x+3=0x =−1非负数的性质:偶次方非负数的性质:绝对值整式的加减——化简求值【解析】(1)把与代入中,去括号合并得到最简结果,利用非负数的性质求出与的值,代入计算即可求出值;(2)由结果与值无关,确定出的值即可.【解答】解:∵,,∴,∵,∴,,∴,,∴原式;由,与值无关,得到,解得:.15.【答案】解:由题意,得解得∴.答: 的平方根是.【考点】平方根算术平方根【解析】此题暂无解析【解答】解:由题意,得解得∴.答: 的平方根是.16.A B A−2B x y A−2B y x (1)A =2+xy+3y−1x 2B =−xy x 2A−2B =2+xy+3y−1−2+2xy =3xy+3y−1x 2x 2(x+2+|y−3|=0)2x+2=0y−3=0x =−2y =3=3×(−2)×3+3×3−1=−10(2)A−2B =y(3x+3)−1y 3x+3=0x =−1{2a −1=17,3a +b −1=36,{a =9,b =10,±=±=±=±7a +4b −−−−−√9+4×10−−−−−−−−√49−−√a +4b ±7{2a −1=17,3a +b −1=36,{a =9,b =10,±=±=±=±7a +4b −−−−−√9+4×10−−−−−−−−√49−−√a +4b ±7【答案】解:原式.【考点】实数的运算绝对值【解析】此题暂无解析【解答】解:原式.=1+3−3=1=1+3−3=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册同步练习题及答案全套(课课练)下载
人教版七年级数学上册同步练习题及答案全套(课
名称
课练)
学科数学
类型试题|试卷
大小0.57 MB
年级初一|七年级
教材新课标人教版
添加审核admin
时间2012-08-26 11:53
点击20393
评价☆☆☆☆☆
第三章一元一次方程
3.11一元一次方程(1)
知识检测
1.若4x m-1-2=0是一元一次方程,则m=______.
2.某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,•则长方形长为______cm.3.已知(2m-3)x2-(2-3m)x=1是关于x的一元一次方程,则m=______.
4.下列方程中是一元一次方程的是()
A.3x+2y=5 B.y2-6y+5=0C.x-3=D.4x-3=0
5.已知长方形的长与宽之比为2:1•周长为20cm,•设宽为xcm,得方程:________.
6.)利润问题:利润率=.如某产品进价是400元,•标价为600元,销售利润为5%,设该商品x折销售,得方程()-400=5%×400.
7.某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x-2)6人,(x+2)4,得方程_______.
8.某农户2006年种植稻谷x亩,2007•年比2006增加10%,2008年比2006年减少5%,三年共种植稻谷120亩,得方程_______.
9.一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为______.10.某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4•元,•买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把?•若设中型椅子买了x把,则可列方程为______.11.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税).设到期后银行向储户支付现金x元,则所列方程正确的是()
A.x-5000=5000×3.06%
B.x+5000×5%=5000×(1+3.06%)
C.x+5000×3.06%×5%=5000×(1+3.06%)
D.x+5000×3.06%×5%=5000×3.06%
12.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程()
A.3x+9-x=19 B.2(9-x)+x=19
C.x(9-x)=19 D.3(9-x)+x=19
13.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,求m的值,•并写出其方程.
拓展提高
14.小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料?。