概率论(复旦三版) 习题三 答案

合集下载

第三版详细《概率论与数理统计》课后习题答案

第三版详细《概率论与数理统计》课后习题答案

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故:()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论和数理统计复旦大学课后题答案全

概率论和数理统计复旦大学课后题答案全

概率论和数理统计-复旦大学-课后题答案(全)1 概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC ∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C ∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P (A 1)=517=(17)5(亦可用独立性求解,下同)(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的; (2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=CC /C mn m n M N M N--(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN种,n 次抽取中有m 次为正品的组合数为C m n种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M种,从N -M 件次品中取n -m 件的排列数为P n m N M--种,故P (A )=C P P P m m n mn M N Mn N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为C m n种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m mn mnnP A M N M N -=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N ,则取得m 件正品的概率为()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案. 12.【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+= 14.(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3)2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止. (1) 问正好在第6次停止的概率; (2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) 223151115()()22232p C == (2)1342111C ()()22245/325p ==16.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-=18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A ===(2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求: (1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑3312321369968967333333151515151515C C C C C C C C C C C C C C =•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%. 26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作AA 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得 ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n-≥ 即为(0.8)0.1n ≤ 故 n≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B相互独立. 【证】 (|)(|)P A B P A B =即()()()()PAB P AB P B P B = 亦即()()()()P AB P B P AB P B = ()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1)3101100C (0.35)(0.65)0.5138k k k k p -===∑ (2)10102104C (0.25)(0.75)0.2241k k k k p -===∑ 36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1)111p n =- (2)23!(3)!,3(1)!n p n n -=>- (3)12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由 0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x +>--⎡⎢+-->⎢⎢+-->⎣构成的图形,即02022a x ay a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P(A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证 P (AB )+P (AC )-P (BC )≤P (A ).【证】()[()]()P A P A B C P ABAC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设iA ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =-44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率. 【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由(|)(|),P A C P B C ≥得 ()(),P AC P BC ≥故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n kn nn n n nn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()nn ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n==++1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m n m n m n m n+==++++50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

上海复旦实验中学必修三第三章《概率》检测题(答案解析)

上海复旦实验中学必修三第三章《概率》检测题(答案解析)

一、选择题1.在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数x,则cos xπ的值介于22与3之间的概率为()A.13B.14C.15D.162.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D.13.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率()A.110B.310C.12D.7104.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是()A.至少有一个白球;都是白球B.两个白球;至少有一个红球C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球5.如图所示,已知圆1C和2C的半径都为2,且1223C C=,若在圆1C或2C中任取一点,则该点取自阴影部分的概率为()A33533π+B33533π+C331033π+D331033π+6.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A.15B.13C.35D.237.已知三个村庄,,A B C所处的位置恰好位于三角形的三个顶点处,且6,8,10AB km BC km AC km===.现在ABC∆内任取一点M建一大型的超市,则M点到三个村庄,,A B C 的距离都不小于2km 的概率为( ) A .3324+ B .12πC .21324- D .1212π- 8.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4139.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( ) A .19B .164C .18D .11611.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为42,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2πC .3πD .2π12.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A .15B .625C .825D .25二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.疫情防控期间,口罩的需求量很大,某地区有A .B 两家小型口罩加工厂,A 厂每天生产口罩4万到6万只,B 厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.15.掷一颗骰子,向上的点数第一次记为x ,第二次记为y ,则()2log 3x y +=的概率________.16.若正方体1111ABCD A BC D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.17.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.18.马老师从课本上抄录一个随机变量的概率分布列如表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案_______ .19.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的,x y 的值; (2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[]90,100内的概率.22.一种疫苗在正式上市之前要进行多次人体临床试验接种,假设每次接种之间互不影响,每人每次接种成功的概率相等.某医学研究院研究团队研发了新冠疫苗,并率先开展了新冠疫苗Ⅰ期和Ⅱ期临床试验.Ⅰ期试验为了解疫苗接种剂量与接种成功之间的关系,选取了两种剂量接种方案(0.5ml/次剂量组(低剂量)与1ml/次剂量组(中剂量)),临床试验免疫结果对比如下:接种成功 接种不成功 总计(人) 0.5ml/次剂量组 28 8 36 1ml/次剂量组 33 3 36 总计(人)611172(1)根据数据说明哪种方案接种效果好?并判断是否有90%的把握认为该疫苗接种成功与两种剂量接种方案有关?(2)若以数据中的频率为概率,从两组不同剂量组中分别抽取1名试验者,以X 表示这2人中接种成功的人数,求X 的分布列和数学期望.参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++附表:23.某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表:(1)由以上统计数据完成下面的22⨯列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率.24.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11 107a<<综合得分k的范围节排器等级节排器利润率85k≥一级品a7585k≤<二级品25a7075k≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;(2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()Eξ;②从长期来看,骰子哪种型号的节排器平均利润较大?25.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据:零件数x(个)1020304050加工时间y(分钟)6268758288(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y 与零件数x 具有相关关系,求y 关于x 的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆniii ni i x x y y bx x ==--=-∑∑,^^a yb x =-)26.学校从参加高一年级期中考试的学生中抽出50名学生,并统计了她们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:[)[)[)[)[)[]60,75,2;75,90,3;90,105,14;105,120,15;120,135,12;135,150,4;样本频率分布表:(1)在给出的样本频率分布表中,求,,,A B C D 的值; (2)估计成绩在120分以上(含120分)学生的比例;(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[]135,150的学生中选两位同学,共同帮助成绩在[)60,75中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一小组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D根据余弦函数的图象和性质,求出cos x π的值介于2和2之间时,自变量x 的取值范围,代入几何概型概率计算公式,可得答案. 【详解】cos x π≤≤,11,22x ⎡⎤∈-⎢⎥⎣⎦ 则:1164x ≤≤或1146x -≤≤-在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数,cos x π的值介于211214611622P ⎛⎫⨯- ⎪⎝⎭==+ 故选:D. 【点睛】本题主要考查了余弦函数的图象与性质,几何概型,考查了分析问题的能力,属于中档题.2.B解析:B 【分析】由从共有15个球中任取2个球,共有215C 种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C 种不同的取法,再利用古典概型及其概率的计算公式,即可求解. 【详解】由题意,从共有15个除了颜色外完全相同的球,任取2个球,共有215C 种不同的取法, 其中所取的2个球中恰有1个白球,1个红球,共有11510C C 种不同的取法,所以概率为11510215501010521C C C ==,故选B. 【点睛】本题主要考查了排列、组合的应用,以及古典概型及其概率的应用,其中解答中认真审题,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.B解析:B 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.4.C解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论. 【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生, 对于A ,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B 两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合. 对于C 红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合. 对于D 红球、白球各一个;至少有一个白,不是互斥事件.故不符合. 故选:C . 【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.5.D解析:D 【分析】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,由已知的数据可得1AC B △为等边三角形,从而可求出阴影部分的面积,进而求出总面积,即可求出概率. 【详解】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,则11212C D C C ==190ADC ∠=︒,所以1113cosC DAC DAC∠==,所以130AC D∠=︒,则160AC B∠=︒,所以1AC B△为等边三角形,所以604342(4)233603Sππ⨯=-⨯=-阴,图形的总面积42024(23)2333Sπππ=⨯--=+总,所以求概率为4232333201033233ππππ--=++,故选:D【点睛】此题考查几何概型概率的求法,关键是求阴影部分的面积,属于中档题.6.A解析:A【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为15P=.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.7.D解析:D【分析】采用数形结合,计算ABCS∆,以及“M点到三个村庄,,A B C的距离都不小于2km”这部分区域的面积S,然后结合几何概型,可得结果.【详解】由题可知:222AB BC AC += 所以该三角形为直角三角形分别以,,A B C 作为圆心,作半径为2的圆 如图所以则 “M 点到三个村庄,,A B C 的距离都不小于2km ” 该部分即上图阴影部分,记该部分面积为S11682422ABC S AB BC ∆=⨯⨯=⨯⨯=又三角形内角和为π, 所以2122422ABC S S ππ∆=-⨯=- 设M 点到三个村庄,,A B C 的距离都不小于2km 的概率为P 所以242122412ABCS P S ππ∆--=== 故选:D 【点睛】本题考查面积型几何概型问题,重点在于计算面积,难点在于计算阴影部分面积,考验理解能力,属基础题.8.A解析:A 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF 的面积为1S ,ABC 的面积为2S 因为DEF 与ABC 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A 【点睛】1.本题考查的是几何概型中的面积型,较简单2.相似三角形的面积之比等于相似比的平方.9.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.C解析:C 【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可. 【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1, 所以向下数字为1和2的概率21168P ==, 故选:C 【点睛】本题主要考查随机事件概率的计算,难度较低.11.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.12.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.二、填空题13.174【分析】设甲在第一二三四局比赛中获胜分别为事件则所求概率为:再根据概率计算公式计算即可【详解】设甲在第一二三四局比赛中获胜分别为事件由题意甲要以取胜的可能是所以=故答案为:0174【点睛】本题解析:174 【分析】设甲在第一、二、三、四局比赛中获胜分别为事件1A 、2A 、3A、4A ,则所求概率为: 123412341234()()()P P A A A A P A A A A P A A A A =++,再根据概率计算公式计算即可.【详解】设甲在第一、二、三、四局比赛中获胜分别为事件1A 、2A 、3A、4A ,由题意,甲要以3:1取胜的可能是1234A A A A ,1234A A A A ,1234A A A A , 所以123412341234()()()P P A A A A P A A A A P A A A A =++=0.50.60.30.60.50.40.50.60.50.40.50.60.174⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=. 故答案为:0.174. 【点睛】本题考查独立事件和互斥事件的概率计算,考查逻辑思维能力和计算能力,属于常考题.14.【分析】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则画出可行域计算正方形与三角形面积利用几何概型求即可【详解】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则可行域面积为因为药店预计购进至少10解析:18【分析】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,画出可行域,计算正方形与三角形面积,利用几何概型求即可. 【详解】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只, 则4635x y ≤≤⎧⎨≤≤⎩,可行域面积为224⨯=,因为药店预计购进至少10万只,所以10x y +≥,满足条件的阴影部分面积为111122⨯⨯=, 所以可以去该地区购买到所需口罩的概率是11248=,故答案为:18.【点睛】本题主要考查几何概型求概率,考查了线性规划的应用,属于中档题.15.【分析】计算得到列举共有5种情况计算得到概率【详解】则故解有共5种情况故故答案为:【点睛】本题考查了概率的计算意在考查学生的计算能力和应用能力 解析:536【分析】计算得到8x y +=,列举共有5种情况,计算得到概率. 【详解】()2log 3x y +=,则8x y +=,故解有()()()()()2,6,3,5,4,4,5,3,6,2共5种情况,故556636p ==⨯. 故答案为:536. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础17.【分析】由题意从甲乙丙丁4位同学中选出2名代表参加学校的会议求得基本事件的总数再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中求得其包含的基本事件的个数即可求解【详解】由题意从甲乙丙丁4位解析:56【分析】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,求得基本事件的总数,再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,求得其包含的基本事件的个数,即可求解.【详解】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,则基本事件的总数为246n C==,又由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,其包含的基本事件的个数为221m C==,所以甲乙两人至少有一人被选中的概率为151166mpn=-=-=.故答案为56.【点睛】本题主要考查了古典概型及其概率的计算公式,以及对立事件的应用,其中解答中认真审题,合理选择方法,分别求得基本事件的总数和事件所包含的基本事件的个数是解答的关键,着重考查了推理与计算能力,属于基础题.18.2【解析】试题分析:令?的数字是x则!的数值是1-2x所以考点:数学期望点评:数学期望就是平均值要得到随机变量的数学期望则需先写出分布列解析:2【解析】试题分析:令?的数字是x,则!的数值是1-2x,所以考点:数学期望点评:数学期望就是平均值,要得到随机变量的数学期望,则需先写出分布列.19.【解析】【分析】先算出基本事件总数再求出甲被选上包含的基本事件个数即可求得甲被选上的概率【详解】从甲乙丙丁四人中选人当代表基本事件总数甲被选上包含的基本事件个数则甲被选上的概率为故答案为【点睛】本题解析:3 4【解析】【分析】先算出基本事件总数,再求出甲被选上包含的基本事件个数,即可求得甲被选上的概率【详解】从甲、乙、丙、丁四人中选3人当代表,基本事件总数344n C==甲被选上包含的基本事件个数12133m C C==则甲被选上的概率为34mpn==故答案为3 4【点睛】本题考查了古典概型及其概率计算公式的应用,属于基础题。

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

概率论与数理统计习题答案详解版(廖茂新复旦版)习题一1. 设A,B,C 为三个事件,用A,B,C 的运算式表示下列事件:(1)A 发生而B与 C 都不发生;(2)A,B,C 至少有一个事件发生;(3)A,B,C 至少有两个事件发生;(4)A,B,C 恰好有两个事件发生;(5)A,B至少有一个发生而 C 不发生;(6)A,B,C 都不发生.解:(1)A BC或 A B C或 A (B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C )∪(AC B )∪(BC A).(5)(A∪B)C.(6) A B C 或ABC.2. 对于任意事件A,B,C,证明下列关系式:(1)(A+B)(A+B )( A + B)( A + B )= ;(2)AB+A B +A B+A B AB= AB;(3)A-(B+C)= (A-B)-C. 证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发生但B不发生的概率;(2)A,B 都不发生的概率;(3)至少有一个事件不发生的概率.解(1)P(A B )=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(AB)=P( A B)=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB )=1-P(AB)=1-0.1=0.9.4.调查某单位得知。

购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。

求下列事件的概率。

(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10 把钥匙中有 3 把能打开门,今任意取两把,求能打开门的概率。

解:8/156. 任意将10 本书放在书架上。

其中有两套书,一套 3 本,另一套4 本。

《概率论与数理统计》第三版--课后习题答案.-

《概率论与数理统计》第三版--课后习题答案.-

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与统计(第三版)复旦大学版第一章课后习题答案

概率论与统计(第三版)复旦大学版第一章课后习题答案

概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1--A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59.略.见教材习题参考答案.N 件,其中Mn 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --P n N 种,n 次抽取中有m 次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N MnN-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B AB P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作AA 与B 传递的频繁程度为2∶A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,iB ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑××××××0.7)0.2+ ××××××××35.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =-44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当nP (A )+P (B )=1得P (A )=P (B (2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ). 【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i n i S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n n nn --=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr m m m n m n m n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有Nr 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

复旦大学概率论基础第三章答案

复旦大学概率论基础第三章答案

复旦大学《概率论基础》习题答案(第一版)第三章 随机变量与分布函数1、 解:令n ξ表在n 次移动中向右移动的次数,则n ξ服从二项分布,n k p p C k P k n kk n n ,1,0,)1(}{=-==-ξ以n S 表时刻时质点的位置,则n n S n n n n -=--=ξξξ2)(。

n ξ的分布列为⎪⎪⎭⎫⎝⎛-----n n n n n n p p p C p p C p n22211)1()1()1(210。

n S 的分布列为⎪⎪⎭⎫⎝⎛---+-+----n n n n n n p p p C p p C p n n n n22211)1()1()1(42。

2、 解:qp pq P P P +=+==}{}{}1{成失失成ξ,,}{}{}2{22p q q p qqp ppq P P P +=+=+==成成失失失成ξ所以ξ的概率分布为,2,1,}{2=+==k p q q p k p k 。

3、 解: (1)∑=⋅==Nk N Nck f 1)(1, 1=∴c 。

(2)∑∞=-==1)1(!1k ke c k c λλ, 1)1(--=∴λe c 。

4、 证:0)(≥x f ,且∞-∞∞---∞∞-∞∞--==-⎰⎰⎰0||||21)(x x x e dx e dx e dx x f)(x f ∴是一个密度函数。

5、 解:(1)⎭⎬⎫⎩⎨⎧-<-<-=<<)109(21)10(21)106(21)96(ξξP P 285788.0)2(2121)10(211=-Φ-⎪⎭⎫⎝⎛Φ=⎭⎬⎫⎩⎨⎧<-<-=ξP(2)⎭⎬⎫⎩⎨⎧-<-<-=<<)1012(21)10(21)107(21)127(ξξP P ()774538.0)211(11)10(21211=-Φ-Φ=⎭⎬⎫⎩⎨⎧<-<-=ξP(3)⎭⎬⎫⎩⎨⎧-<-<-=<<)1015(21)10(21)1013(21)1513(ξξP P 060597.0)211(212212)10(21211=Φ-⎪⎭⎫⎝⎛Φ=⎭⎬⎫⎩⎨⎧<-<=ξP6、 解:7+24+38+24+7=100,93.0100/)7100(}{4=-=<x P ξ,=<}{3x P ξ100/)38247(}{3++=<x P ξ69.0=,查表得69.0)5.0(,93.0)5.1(≈Φ≈Φ。

《概率论》数学3章课后习题详解

《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论与数理统计》复习资料一、填空题(15分)题型一:概率分布的考察 【相关公式】(P379)【相关例题】 1、设(,)XU a b ,()2E X =,1()3D Z =,则求a ,b 的值。

《概率论与数理统计》第三版__课后习题答案._

《概率论与数理统计》第三版__课后习题答案._

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;- 2 -(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论第三版答案详解

概率论第三版答案详解

百度文库-让每个人平等地提升自我第二章作业题解:掷一颗匀称的骰子两次,以X表示前后两次出现的点数之和,求X的概率分布,并验证其满足式•解:设离散型随机变量的概率分布为P{X k} ae k,k 1,2 ,试确定常数a .1解:根据P(X k) 1,得ae k 1,即1。

k 0 k 0 1 e\ 故a e 1甲、乙两人投篮时,命中率分别为和,今甲、乙各投篮两次,求下列事件的概率:(1) 两人投中的次数相同;(2) 甲比乙投中的次数多•解:分别用A j,B j(i 1,2)表示甲乙第一、二次投中,则P(AJ P(A2)0.7, P(A1) P(A2)0.3,P(BJ P®?) 0.4,P(Bj P($2)0.6,两人两次都未投中的概率为:P(A^A2瓦瓦)0.3 0.3 0.6 0.6 0.0324,两人各投中一次的概率为:0.2016 P(A1A2B1 B2) P(A1 A2 B2B1) P(A2AB1B2)P(A1A2 B2B1) 4 0.7 0.3 0.4 0.6两人各投中两次的概率为:P(A1A2B1B2) 0.0784。

所以:(1) 两人投中次数相同的概率为0.0324 0.2016 0.07840.3124(2) 甲比乙投中的次数多的概率为:百度文库-让每个人平等地提升自我P (A1A2 B1B2) P( A1A2 B2 Bi) P( A1A2 B1B2)2 0.49 0.4 0.6 0.49 0.36 2 0.21 设离散型随机变量X的概率分布为P{X P (A1A2 Bi B2) P (A1A2 B1B2) 0.36 0.5628kk} —,k 1,2,3,4,5,求15(1) P(1 X 3) (2) P(0.5 X 2.5)解:⑴P(1 X 3)15 15 15P(0.5 2.5) P(X 1) P(X 2)丄15215设离散型随机变量X的概率分布为P{ X k}(1) P{X 2,4,6 };⑵P{X 3}2k,k1,2,3,,,求解:(1)P{X 2,4,61 1 24 26(2) P{X 3}1 P{X 1} P{X122设事件A在每次试验中发生的概率均为,求下列事件的概率:进行4次独立试验,指示灯发出信号当A发生3次或3次以上时,指示灯发出信号(1) ;(2) 进行5次独立试验,指示灯发出信号解: (1) P(X 3) P(X 3) P(X 4)C:0.430.6 0.440.1792⑵ P(X 3) P(X 3) P(X 4) P(X 5)C〕0.430.62 Cs0.440.6 0.450.31744某城市在长度为t (单位:小时)松分布,且与时间间隔的起点无关(1) ⑵某天中午12某天中午12的时间间隔内发生火灾的次数,求下列事件的概率:时至下午15时未发生火灾;时至下午16时至少发生两次火灾.X服从参数为的泊解: (1) P(X k)ke ,由题意,k!0.5 3 1.5,kP(X 2)e 0! 1!件的概率为1 3e 2. ,由题意,1 50 ,所求事件的概率为 e .0.5 4 1.5,所求事为保证设备的正常运行,必须配备一定数量的设备维修人员 •现有同类设备180台,且各台设备工作相互独立,任一时刻发生故障的概率都是,假设一台设备的故障由一人进行 修理,问至少应配备多少名修理人员 ,才能保证设备发生故障后能得到及时修理的概率不小于?解:设应配备 m 名设备维修人员。

概率论基础(复旦版)复旦李贤平

概率论基础(复旦版)复旦李贤平

则这n个事件总体相互独立,简称相互独立。 则这 个事件总体相互独立,简称相互独立。 个事件总体相互独立
推论: 推论
设n个事件 A, A2,L, An 是相互独 个事件 1
立的,则其中任意 个事件 立的,则其中任意m个事件 A i A i L A i 也 1 2 m 是相互独立的,其中 是相互独立的,其中1≤m≤n,i1, i2 …im是 , 1,2, …,n的一个选排列. …,n的一个选排列 的一个选排列. 注:1. 对于对立事件也成立 称无穷多个事件相互独立, 2. 称无穷多个事件相互独立,如果其中 任意有限多个事件都相互独立。 任意有限多个事件都相互独立。

从而A, 不相互独立。 从而 B, C不相互独立。 不相互独立
若一个均匀的正八面体,其第1,2,3,4面 例 若一个均匀的正八面体,其第 面 染成红色, 面染成白色, 染成红色,第1,2,3,5面染成白色,第1,6,7,8 面染成白色 面染成黑色,现在以A, 面染成黑色,现在以 B, C分别表示投一次 分别表示投一次 正八面体出现红、白、黑颜色朝下的事件, 正八面体出现红 黑颜色朝下的事件, 则 4 1 P ( A) = P ( B ) = P (C ) = = 8 2 1 P ( ABC ) = = P ( A) P ( B ) P (C ) 8 3 1 但 P ( AB ) = ≠ = P ( A) P ( B ) 8 4
事件的独立性有 只黑球, 只白 例1:袋中事件的独立性有a只黑球,b只白 :袋中事件的独立性 只黑球 每次从中取出一球,取后放回. 球.每次从中取出一球,取后放回. 令: A={ 第一次取出白球 }, , B={ 第二次取出白球 }. 在已知第一次摸得黑球的条件下, 求:1. 在已知第一次摸得黑球的条件下, 第二次摸出黑球的概率。 第二次摸出黑球的概率。 2. 第二次摸出黑球的概率。 第二次摸出黑球的概率。

概率论与数理统计复旦大学出版社第三章课后规范标准答案

概率论与数理统计复旦大学出版社第三章课后规范标准答案

概率论与数理统计 习题三 答案1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2.3.设二维随机变量(,)X Y 的联合分布函数为ππsin sin ,0,0(,)220,x y x y F x y ⎧≤≤≤≤⎪=⎨⎪⎩ 其它求二维随机变量(,)X Y 在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(,)X Y 的分布密度(34)e ,0,0(,)0,x y A x y f x y -+⎧>>=⎨⎩ 其他求:(1) 常数A ;(2) 随机变量(,)X Y 的分布函数;(3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(,)X Y 的概率密度为(6),02,24(,)0,k x y x y f x y --<<<<⎧=⎨⎩ 其它(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18k =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它求:(1) X 与Y 的联合分布密度;(2) {}P Y X ≤.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的概率密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其它 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它 所以(,),()*()X Y f x y X Y f x f y 独立5515e 25e ,00.2,00.20,y yx y --⎧⨯=<<>⎪=⎨⎪⎩ 其它(2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(,)X Y 的联合分布函数为42(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧-->>=⎨⎩其他 求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(,)X Y 的概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -≤≤≤≤⎧=⎨⎩其他 求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01y x y x x x ⎧-=-≤≤⎪=⎨⎪⎩⎰ 0, 其它 Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01y x x y y y y ⎧-=-+≤≤⎪=⎨⎪⎩⎰ 0, 其它题8图题9图9.设二维随机变量(,)X Y 的概率密度为e ,0(,)0y x yf x y -⎧<<=⎨⎩, 其它求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰e d e ,00,y x x y x +∞--⎧=>⎪=⎨⎪⎩⎰ 其它Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰0e d e ,00,yy x x y y --⎧=>⎪=⎨⎪⎩⎰ 其它题10图10.设二维随机变量(,)X Y 的概率密度为22,1(,)0cx y x y f x y ⎧≤≤=⎨⎩, 其它(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212242121=(1),11480,x x ydy x x x ⎧--≤≤⎪=⎨⎪⎩⎰ 其它()(,)d Y f y f x y x +∞-∞=⎰522217d ,01420,x y x y y ⎧=≤≤⎪=⎨⎪⎩ 其它 11.设随机变量(,)X Y 的概率密度为1,,01(,)0,y x x f x y ⎧<<<⎪=⎨⎪⎩ 其它求条件概率密度()Y X f y x ,()X Y f x y .题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 的可能取值为:1,2,3;Y 的可能取值为3,4,5. X 与Y 的联合分布律及边缘分布律如下表:3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量的联合分布律为 2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXY XY故X 与Y 不独立.14.设X 与Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为/21e ,0,()20,.y Y y f y -⎧>⎪=⎨⎪⎩其他(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥即 2X Y ≥, 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰22211/2200121d e d 1e d 212d 12[(1)(0)]20.1445.xx y x x y xx πππ---==-==Φ-Φ=⎰⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求/Z X Y =的概率密度.【解】因为X 和Y 相互独立,所以X 与Y 的联合概率密度为62210,1000,1000(,)0,x y f x y x y ⎧>>⎪=⎨⎪⎩ 其它如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()(,)d d d d d d yz Z zx x y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰ 33610231010=d 2z zy y zy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()(,)d d d d d d zy Z xx y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zF z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设取到的四只电子元件寿命为i X (i =1,2,3,4),则2~(160,20)i X N ,从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为()(),0,1,2,3,P X k p k k ===L()(),0,1,2,3,P Y r q r r ===L证明随机变量Z =X +Y 的分布律为()()()ik P Z i p k q i k ===-∑,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,}ik P Z i P X k Y i k =====-∑,{}{}ik X Y P X k P Y i k ===-∑g 相互独立0()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑002200(){}2)ki ki n i k i n k ii kk n k k n ki ki P X i P Y k i n n p q p qi k i n n n p qp q i k i k n m m n i k i k =---+=--=====-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑g (提示:组合计数公式方法二:参见第四章。

概率论与数理统计(第三版)课后答案习题3

概率论与数理统计(第三版)课后答案习题3

第三章 多维随机变量及其分布1.设二维随机变量(ξ,η)只能取下列数组中的值: (0,0),(-1,1),(-1,1/3),(2,0)。

且取这些组值的概率依次为1/6,1/3,1/12,5/12,求表示这二维随机变量的联合分布律的矩形表格。

2.再从袋中任取一球。

设每次取球时,袋中各个球被取到的可能性相同。

以ξ,η分别记第一次、第二次取得的球上标有的数字,求(ξ,η)的联合分布律。

解:(ξ,η)的可能性取值为数对(1,2)、(2,1)、(2,2),先计算取每一数对的概率: P {(ξ,η)=(1,2)}=(1/3)⨯1=1/3;P {(ξ,η)=(2,1)}=(2/3)⨯(1/2)=1/3; P {(ξ,η)=(2,2)}=(2/3)⨯(1/2)=1/3; 3.一整数n ξ=ξ(n )是能整除n 的正整数的个数,η=η (n )是能整除n 的素数的个数(注意:1不是素数),试写出ξ和η联合分布律。

解:依题意有:n :1 2 3 4 5 6 7 8 9 10 ξ(n ):1 2 2 3 2 4 2 4 3 4 η(n ):0 1 1 1 1 2 1 1 1 2因此ξ=1,2,3,44.设随机变量(⎪⎪⎩⎪⎪⎨⎧≤-===⎰⎰---∞+∞-.,0,1,121),()(21122其它x x dy dy y x f x f x x ππξ(1)确定常数k ; (2)求}3,1{<<ηξP ; (3)求}5.1{<ξP ; (4)求}4{≤+ηξP 。

解:(1) 由概率密度的性质知:⎰⎰=--20421)6(dy y x k dx ,即 8k =1 ∴ k =1/8;(2) }3,1{<<ηξP 8/38/)6(1032=--=⎰⎰dy y x dx ; (3) }5.1{<ξP 32/278/)6(5.1042=--=⎰⎰dy y x dx ;(4)dxdy y x f P G ⎰⎰=≤+),(}4{ηξ32)6(814220=--=⎰⎰-dy y x dx x。

概率论和数理统计 复旦版课后答案

概率论和数理统计 复旦版课后答案

习题四1.设随机变量X 的分布律为X -1 0 1 2 P1/8 1/2 1/8 1/4求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 X 0 12345P5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C =故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X 的分布律为X -1 0 1Pp 1 p 2 p 3且已知E (X )=0.1,E (X 2)=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-= ……②,222212313()(1)010.9E X P P P P P =-++=+= ……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑ 全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因11(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =2 1()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值12()2d ,3E X xx x ==⎰ 5(5)5()e d5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩ 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2e d [e]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y y y +∞+∞--∞==⎰⎰ 22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯= 11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d ed 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2ed k x E X xf x x x k x x +∞+∞--∞==⎰⎰22220π2e d .2k x kx x k+∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故 222221π4π()()[()].24D X E X E X k k k⎛⎫-=-=-= ⎪ ⎪⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯= 于是,得到X 的概率分布表如下: X 0 1 2 3 P0.7500.2040.0410.005由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元/41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=- 故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nn i i i i i i i D X D X D X X DX n nn ===⎛⎫== ⎪⎝⎭∑∑∑ 之间相互独立 2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+ 同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3). 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0. 而 C o v (,)[()][()](,X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,22121112()d 1.ππx X x f x y x ---=-⎰当|y |≤1时,22121112()d 1ππy Y y f y x y ---=-⎰. 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为-1 0 1-1 0 11/8 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表X -1 01 P38 28 38Y -11P38 28 38XY -11P28 48 28由期望定义易得E (X )=E (Y )=E (XY )=0. 从而E (XY )=E (X )·E (Y ),再由相关系数性质知ρXY =0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他. XY()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3x x x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=- . 从而1Cov(,)1362()()111818XY X Y D X D Y ρ-===-⨯19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XY X Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故121212Cov(,)5513.26()()134Z Z Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5.依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k = Z =k 0 1 2 3P k120 920 920120因此,19913()0123.202020202E Z =⨯+⨯+⨯+⨯= (2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有3(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大?【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u uu u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()125(12)(1)21(10)(1)0(()e ),d 2x E T u u x u ϕϕϕπ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u =10.9毫米时,平均利润最大.25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.(2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯=2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=26.两台同样的自动记录仪,每台无故障工作的时间T i (i =1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T (t ),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T 1,T 2独立,所以f T (t )=f 1(t )*f 2(t ).当t <0时,f T (t )=0;当t ≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x t T f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于T i ~E (5),故知E (T i )=15,D (T i )=125 (i =1,2) 因此,有E (T )=E (T 1+T 2)=25.又因T 1,T 2独立,所以D (T )=D (T 1+T 2)=225.27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y |的方差.【解】设Z =X -Y ,由于2211~0,,~0,,22X N Y N ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭且X 和Y 相互独立,故Z ~N (0,1).因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/21()()1,(||)||e d 2πz E Z D Z E Z z z +∞--∞===⎰ 2/2022e d π2πz z z +∞-==⎰, 所以 2(||)1πD X Y -=-. 28.某流水生产线上每个产品不合格的概率为p (0<p <1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ).【解】记q =1 -p ,X 的概率分布为P {X =i }=q i -1p ,i =1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i qp i i q p iq p ∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以 22222211()()[()].p pD XE X E X p p p--=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U =X +Y 的方差. 【解】D (U )=D (X +Y )=D (X )+D (Y )+2Cov(X ,Y )=D (X )+D (Y )+2[E (XY ) -E (X )·E (Y )]. 由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,G x y x y x y =≤≤≤≤+≥从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D XE X E X =-=-=同理可得 31(),().218E Y D Y ==1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是 1121()().18183618D U D X Y =+=+-= 30.设随机变量U 在区间[ -2,2]上服从均匀分布,随机变量X =⎩⎨⎧->-≤-,U ,U 1,11,1若若 Y =⎩⎨⎧>≤-.1,11,1U ,U 若若试求(1)X 和Y 的联合概率分布;(2)D (X +Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值( -1, -1),( -1,1),(1, -1)及(1,1)的概率.P {x = -1,Y = -1}=P {U ≤ -1,U ≤1} 112d d 1{1}444x x P U ---∞-=≤-===⎰⎰P {X = -1,Y =1}=P {U ≤ -1,U >1}=P {∅}=0, P {X =1,Y = -1}=P {U > -1,U ≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰. 故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦. (2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X +Y 及(X +Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+= 31.设随机变量X 的概率密度为f (x )=x-e21,( -∞<x <+∞)(1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立,为什么?【解】(1)||1()e d 0.2x E X x x +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x xD X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-=||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域-∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY = -1/2,设Z =23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么? 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯= (2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=- 所以Cov(,)0.()()XZ X Z D X D Z ρ==(3) 由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X +Y =n ,则有D (X +Y )=D (n )=0.再由X ~B (n ,p ),Y ~B (n ,q ),且p =q =12, 从而有 ()()4nD X npq D Y ===所以 0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++ 2,24XY n nρ=+ 故XY ρ= -1. 34.设随机变量X 和Y 的联合概率分布为-1 0 10 10.07 0.18 0.15 0.08 0.32 0.20试求X 和Y 的相关系数ρ.【解】由已知知E (X )=0.6,E (Y )=0.2,而XY 的概率分布为YX -1 0 1 P 0.080.720.2所以E (XY )= -0.08+0.2=0.12Cov(X ,Y )=E (XY ) -E (X )·E (Y )=0.12 -0.6×0.2=0 从而XY ρ=035.对于任意两事件A 和B ,0<P (A )<1,0<P (B )<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0;(2) |ρ|≤1. 【证】(1)由ρ的定义知,ρ=0当且仅当P (AB ) -P (A )·P (B )=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生;1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从0 -1分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E (X )=P (A ),E (Y )=P (B ),D (X )=P (A )·P (A ),D (Y )=P (B )·P (B ),Cov(X ,Y )=P (AB ) -P (A )·P (B )所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为YXf X (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y =X 2,F (x ,y )为二维随机变量(X ,Y )的分布函数,求:(1) Y 的概率密度f Y (y ); (2) Cov(X ,Y ); (3)1(,4)2F -. 解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y ≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,3(){}{0}{0}4Y F y P y X y P y X P X y y =-≤≤=-≤<+≤≤=, 3()8Y f y y=;当1≤y <4时, 11(){10}{0}24Y F y P X P X y y =-≤<+≤≤=+ 1()8Y f y y=;当y ≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为3,01,81()0,14,80,.Y y y f y y y ⎧<<⎪⎪⎪=⎨≤<⎪⎪⎪⎩其他(2) 0210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--, 02222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--, 02233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y ) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤ 11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=.习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}. 【解】设i X 表每次掷的点数,则41ii X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯=从而 22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i ii i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8. 现要求n ,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即10.80.760.80.840.8{}0.90.80.20.80.20.80.2ni i X n n n n nP n n n =---≤≤≥⨯⨯⨯⨯⨯⨯∑由中心极限定理得0.840.80.760.80.9,0.160.16n n n n n n --⎛⎫⎛⎫Φ-Φ≥ ⎪ ⎪⎝⎭⎝⎭整理得0.95,10n ⎛⎫Φ≥⎪ ⎪⎝⎭查表 1.64,10n ≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==1400.95{0}().42m P X m P X m -⎛⎫=≤≤=≤=Φ⎪⎝⎭查表知1401.64,42m -= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k kV,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量201205205~(0,1).10010020201212kk VV Z N =-⨯-⨯==⨯⨯∑近似的于是205105205{105}1010020201212V P V P ⎧⎫⎪⎪-⨯-⨯⎪⎪>=>⎨⎬⎪⎪⨯⨯⎪⎪⎩⎭1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⨯⎪⎪⎩⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而301000.2{30}1{30}11000.20.8P X P X -⨯⎛⎫≥=-<≈-Φ ⎪⨯⨯⎝⎭1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少? (2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少? 【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩ 第人治愈其他令1001.ii X X ==∑(1) X ~B (100,0.8),1001751000.8{75}1{75}11000.80.2i i P X P X =-⨯⎛⎫>=-≤≈-Φ ⎪⨯⨯⎝⎭∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7),1001751000.7{75}1{75}11000.70.3i i P X P X =-⨯⎛⎫>=-≤≈-Φ ⎪⨯⨯⎝⎭∑ 51()1(1.09)0.1379.21=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故12050130{20} 6.895 6.89547.547.5P X ϕϕ-⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭ 6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T = 故3503005{350}111(0.913)0.1814.300030P T -⎛⎫⎛⎫>≈-Φ=-Φ=-Φ= ⎪ ⎪⎝⎭⎝⎭9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,ni i P T =≥⨯=∑即3068100.05.10n n ⨯-⎛⎫≈Φ ⎪⎝⎭故102448244.80.95,1.64,272.10n n n n n--⎛⎫=Φ=≈ ⎪⎝⎭所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率. 【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2 P0.05 0.80.15易知E (X i =1.1),D (X i )=0.19,i =1,2,…,400. 而400iiX X=∑,由中心极限定理得400400 1.1400 1.1~(0,1).4000.19419iiXX N -⨯-⨯=⨯⨯∑近似地于是450400 1.1{450}1{450}1419P X P X -⨯⎛⎫>=-≤≈-Φ⎪⨯⎝⎭1(1.147)0.13=-Φ= (2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -⨯⎛⎫≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入? (2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件90010000.9{}.10000.90.190nn S m m S --⨯⎛⎫≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:10000.9{}1{}10.95.10000.90.1n n m P m S P S m -⨯⎛⎫≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭从而 9000.05,90m -⎛⎫Φ≤⎪⎝⎭ 故9001.65,90m -=- 所以 m =900-15.65=884.35≈884人 (2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.900{}0.95.90n M P S M -⎛⎫≤≈Φ= ⎪⎝⎭查表知90090M -=1.65,M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”. 于是所求概率为1120100000.006{120}100000.0060.994100000.0060.994P X ϕ-⨯⎛⎫=≈⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.181116011e 59.6459.64259.640.0517e 0ϕπ--⎛⎫== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为60100000.0060100000.006{060}100000.0060.994100000.0060.994P X -⨯-⨯⎛⎫⎛⎫≤≤≈Φ-Φ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭60(0)0.5.59.64⎛⎫=Φ-Φ-≈ ⎪⎝⎭14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考) 【解】令Z =X -Y ,有()0,()()()()2()() 3.XP E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤==15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.kk k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得301000.2141000.2{1430}1000.20.81000.20.8P X -⨯-⨯⎛⎫⎛⎫≤≤≈Φ-Φ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知: ()50,i E X = ()5,i D X = ()50,n E T n = ()5.n D T n = 依中心极限定理,当n 较大时,50~(0,1)5n T n N n-近似地,故箱数n 取决于条件 50500050{5000}55n n T n n P T P nn --⎧⎫≤=≤⎨⎬⎩⎭1000100.977(2).n n -⎛⎫≈Φ>=Φ⎪⎝⎭因此可从1000102nn->解出n <98.0199, 即最多可装98箱.习题六1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100~(0,1)/X Z N nμσ-=即 60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】4~(0,1)5/X Z N n-=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<<2(0.4)10.95,n =Φ-=则Φ(0.4n )=0.975,故0.4n >1.96,即n >24.01,所以n 至少应取253.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=10021000~(8)100/3/X X t t S nμ--==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1)/X Z N nμσ-=,由P (|X -μ|>4)=0.02得P |Z |>4(σ/n )=0.02,故410210.02σ⎡⎤⎛⎫-Φ=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦,即4100.99.σ⎛⎫Φ=⎪ ⎪⎝⎭ 查表得4102.33,σ=所以 4105.43.2.33σ== 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本,S 2为其样本方差,且P (S 2>a )=0.1,求a 之值.【解】2222299~(9),()0.1.1616S a P S a P χχχ⎛⎫=>=>= ⎪⎝⎭查表得914.684,16a= 所以 14.6841626.105.9a ⨯== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量Y =∑∑==-ni ii i XX n 62512)15(,n >5服从何种分布? 【解】2522222211~(5),~(5)i nii i i XX X n χχχ====-∑∑且12χ与22χ相互独立. 所以2122/5~(5,5)/5X Y F n X n =--7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310),Y ~N (20,315),且X 与Y 相互独立. 则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),0.5X YZ N -= 所以0.3(||0.3)||2[1(0.424)]0.5P X Y P Z Φ⎛⎫->=>=- ⎪⎝⎭2(10.6628)0.6744.=-=8.设总体X ~N (0,σ2),X 1,…,X 10,…,X 15为总体的一个样本.则Y =()21521221121022212X X X X X X ++++++ 服从 分布,参数为 .【解】~(0,1),iX N σi =1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++ 所以Y ~F 分布,参数为(10,5).9.设总体X ~N (μ1,σ2),总体Y ~N (μ2,σ2),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = . 【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑ 则122222112211()(1),()(1),n n ij i j XX n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X ~N (μ,σ2),X 1,X 2,…,X 2n (n ≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y =∑=+-+ni i n iX X X12)2(,求EY .【解】令Z i =X i +X n +i , i =1,2,…,n .则Z i ~N (2μ,2σ2)(1≤i ≤n ),且Z 1,Z 2,…,Z n 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则 21111,222nn i ii i X X Z Z nn =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f (x )=x-e 21 (-∞<x <+∞),X 1,X 2,…,X n 为总体X 的简单随机样本,其样本方差为S 2,求E (S 2).解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xx x E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p的矩法估计.【解】1(),(),E X np E X A X ===因此np =X。

概率论第三章答案.docx

概率论第三章答案.docx

习题3T1.而且戶{尤/=0} = 1・求&和及的联合分布律.解由P{X}X2 =0} = 1知P{X x X2 H 0} = 0.因此K和基的联合分布必形11Pi—— 122⑵注意到P{/ = 0, %. =()} =(),而戶{尤=()}・P{A\ = ()} = - ^ 0,所以X 和星 4不独立.2.-盒子中有3只黑球、2只红球和2只白球,在其中任取4只球.以X 表示取到黑球 的只数,以丫表示取到红球的只数.求/和丫的联合分布律.解 从7只球中取4球只有=35种取法.在4只球中,黑球有Z 只,红 球有丿只(余下为白球4 一,一 j 只)的取法为C ;C 扌 CjT, i = 0,1,2,3,丿=0,1,2,, + 丿 W 4.于是有C°c 2c 2 1P{X = 0y Y = 2}= 3 2 2 = — t P{X = l,Y = l}: 35 35p{x = i,y = 2} = CCG == 2,y =o}: 35 35F{X = 2,Y = 1}= WG =!£ p{x = 2,y = 2}: 35 35P{X = 3,Y = 0} =宝O, P{X = 3,Y = l]c\c\c\6-35 ■35' 广2 x^r() _ 3 「 35-35'gc ; 3 35 ~35' 厂 3「l 「0 c 3c 2c 2 2/(兀』)=^(6 -X- y),0<x<2,2< y <4,0,其它.求:⑴ 常数A ;(2) P{%<l,y<3};(3) P{%<1.5);(4) P{X + Y^4}.35 35 35 35 P{x = o,y = O } = P {X = O ,Y = I } = P {X = I ,Y = 0} = p{x = 3,y = 2} = o.xp(/f — x— 9)1 00 w p v T UH MX )V U Hm VX5:(D)」IOO IP r.—A 、—9) L r E JIC I m JI 一 r Ixp(\ Ix 19)1000=y v K=p「v i p x p (\H )/・=丄d v x sr Q )Z 20 i l A、—9)「T x p(亠— x— 9)亠T v 一・ I n(亠 — 寸)I 寸)1 Ie 〒 i i r r LZ二8 •s'尸(4—寸)T+(亠—寸)el 」Z二8ip 〔 M —寸)7 — (4 — 寸)(4— 9)1」r-—x (\ — 9)」l 00p(o w c r x )s7H (寸 w x + x s:M E l oo —en 剧 M G — 寸v/亠 V07V X V W O S-•£>黑*«匣(寸o x (z o ) w 凶论畏g O N E H )、m 逐凶心H-镒泗去皂床•寸H\ + X ®M 址(寸)4.二维随机变量(X, Y )的概率密度为/(X 』)=试确定并求P [(X,Y )E G},G:x2WyWx,0WxWl.解 由 1 = J j f (x, y)dxdy = drj , kxydy = — j 0 -^(1 - x 4)dx = — t o s 2 o 6解得k = 6. F{ (X, Y) w G} = J ; dr J : 6xydy = 3j\(x 25・设二维随机变量(X 丫)概率密度为求关于X 和丫边缘概率密度.解(儿Y )的概率密度/(x j )在区域G:OWxWl,OWyWx 外取零值•因而,图3-8第4题积分区域kxy,十0,其它.因而f(x 9y) =4.8 尹(2-x), 0, oWxWi, 0£尹£兀,其它.0<x< 1,其它.2.4(2-兀)x[ 0,0<x< 1,其它.=L •心'J'4.8j<2-x)dr,0,0<y<l,其它.2.4X3-4y + y), 0,Ovyvl,其它.4®(2 — x)4几试求:(i)x和丫的联合概率分布;(2)P{X + Y ^1}.解(1)见本章第三节三(4).(2)P{X + y Wl} = \-P{X + Y>\} = \-P{X = \,Y = \} =1-- = -.4 4解⑴由于P{X = 2} = 0.3 + 0 +0.1+ 0.2 = 0.6 以在条件x=2下Y的条件分布律为P{Y = 1\X = 2]P{^ = 2,y = l} 0.3 _£2或写成P[Y = 4\X = 2} =P{X = 2}'"0.6_P{X = 2,Y = 2} 0P{X = 2}_0.6P{X = 2,y = 3) 0.1P{X = 2}~0.6P{X = 2,r = 4} 0.20,丄61P{X = 2}0.6 3Y = k 1 2 3 4P{Y = k\X = 2}121613 若UW —1,右(7 > —1,若UW1,若u>\・习题3-21.设(X 丫)的分布律为下丫的条件分布律;(2) P{X22|yW2}.在条件於2P{Y = 2\X = 2}P{Y = 3\X = 2]到p (r ^2} = P{r = i}+P{y = 2} = o.i+o.3+o+o+o.2 = o.6.P[X^2,Y^2} = P[X = 2,Y = }} + P[X = 2J Y = 2}+ P{X = 3,Y = l} + P{X = 3y Y = 2} =0.3+ 0 + 0 +0.2 = 0.5 ・2.设平面区域D 由曲线_y =丄及直线y = 0,x = l,x = e 2所围成,二维随机变量3, X)X在区域Q 上服从均匀分布,求(X X)关于X 的边缘概率密度在x=2处的值・解 由题设知D 的面积为丄dx = lnx|" =2.—,(x, y)e D y 因此(XX)的密度为 /(x, y) = <2 0,其它.+8f(x.y)dy ・显然,当XW1或兀头2时,厶,(兀)= 0;当1 vjcvM 时,厶d) = F A (2)= ~-3.设二维随机变戢(X, K)的概率密度为1, 0 < x < 1,0 < j/ < 2x,0,其它.求:⑴区”的边缘概率密度f x MJr (y^(2)F{YW2 2解(1)当0vxvin 寸,f x (x) = f (x,y)dy = £ dy = 2x ; 当 xWO 时或x$l 时,/Y (X )= 0.2x, 0 v x v 1, 0, 其它.f(x 9y)dx= (ydx = l-^- 22f因此P{X^2\Y^2} =W2}P{Y W2}05 _5 0£~61 1—dy =—・故 ° 2「 2x fx M =当Ov 严2时,厶(刃=当y WO 吋或y $2时,/;(y) = O.y 亠I — —, 0 < v < 2,故fy (y) = 20, 其它.(2)当 zWO 时,巧(z) = o ; 当 z$2 时,巧(Z )= l;当()VV2 时,F 7(Z ) = P{2X-Y^Z }= JJ /(x, y)d.xdyz胡 dxfl.dy + 關仁 1.®2Z" =Z ----- ・4,1 — 9 0 < z < 2,厶⑵=FXz) =2 0, 其它.4.设G 是由直线尸X,尸3, x=\所围成的三角形区域,二维随机变fi(X,y )在Gt 服从二维均匀分布.求:(1)(X7)的联合概率密度;(2) P{Y-X^\}; (3)关于X 的边缘概率密度.解 ⑴由于三角形区域G 的面积等于2,所以(X,Y)的概率密度为⑵记区域D = {(x,y)\y-x^\]与G 的交集为G (),则其中S G °为Go 的面积.±4Z !I JJg}扌丄0,(x.y)电 G.⑶X 的边缘概率密度f x (X )=r +8J —oof(x, y)dy •所以,当X .1,3]时,几(x) =「:⑪J (3 - X).J x 2 2当x v 1 或x > 3 时,/丫(x) = 0. 因此./\ W = < 2(1_%),XE卩⑶’0, 其它.习题3-3设与柑互独立,且分布律分别为下表:求二维随机变最(儿的分布律.解由于X与丫相互独立,所以冇P{X = Xi,Y = y.} = P{X = x i}-P{Y = yj},i == 0,2,5,6.J因此可得二维随机变量Y)的联合分布律Pir A- 〃•丿(匸 12 丿二123)・2—G + # =匕故可得方程组31 1 z 1 _ = _•(□ + _)・19 3921解得 ex = —, 0 =—.9 92 1经检验,当CX = —, P =—吋,对于所有的匸1,2; 7=1,2,3均有Pij= Pi ,p.j bX.i2 1 a = _,p =—时.x 与y 相互独立••993.设随机变量Y 的概率密度为 \be (x+y \(1)试确定常数b ・9 118匚因此当0 < x < 1, j/ > 0,其它.问Q,0为何值时X 与Y 相互独立?/=](2) 求边缘概率密度f x (x)y f Y (y). (3) 问X 与Y 是否相互独立?解⑴由1 = j J f(x,y)dxdy = j ^e _<v+r>dydx e~'dye -'dr = b(l -e _,),l-e _, e~v,0<x<l, 宁 1-e" 0, e _y , _y>0,0, 其它.⑶ 由于f(x,y) = f x (x)* f Y (y) f 所以x 与Y 相互独立.设X 和Y 是两个相互独立的随机变量,X 在(0, 1)上服从均匀分布,Y 的概率密度为r了 /、 丄e 2, y >0,0,求X 和Y 的联合概率密度.设关于a 的二次方程为a 2 +2Xa + Y = 0t 试求。

概率论与数理统计课后习题答案(复旦大学 韩旭里)

概率论与数理统计课后习题答案(复旦大学 韩旭里)

概率论与数理统计复旦大学习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B CU U (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A−B)=0.3,求P(AB).【解】P(AB)=1−P(AB)=1−[P(A)−P(A−B)]=1−[0.7−0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )−P (AB )−P (BC )−P (AC )+P (ABC )=14+14+13−112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8. 对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同)(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1−P (A 1)=1−(17)59. 略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的. 【解】(1) P (A )=C C /C mn mnM N M N−−(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N −M 件次品中取n −m 件的排列数为P n mN M −−种,故P (A )=C P P P m m n m n M N MnN −−由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N−−可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n −m 次取得次品,每次都有N −M 种取法,共有(N −M )n −m 种取法,故()C ()/m m n mn n P A M N M N −=−此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N −=− ÷ ÷11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=U 14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率;(2) 至少有一粒发芽的概率;(3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==×=(2) 12()0.70.80.70.80.94P A A =+−×=U (3) 2112()0.80.30.20.70.38P A A A A =×+×=U 15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p ==16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+××+U 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)×=0.3207617.从 5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =−=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A ===(2) ()()()()0.30.50.10.7p A B P A P B P AB =+−=+−=U 19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521×==×+×21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x−y| >30.如图阴影部分所示.22301604P==22.从(0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=−==(2) xy=<14.1111244111d d ln242xp x y=−=+÷∫∫23.设P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB−==+−UU0.70.510.70.60.54−==+−24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑ 33123213336996896796333333331515151515151515C C C C C C C C C CC C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137×===×+×即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913×===×+×即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01×==×+×27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11110()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑2/31/311/31/32/31/311/33×==×+×+×28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05×==×+×29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3×==×+×+×30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==−U 12341()()()()P A P A P A P A =− 10.980.970.950.970.124=−×××=31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n −≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B −=−因此 ()()()P AB P A P B =故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==−=−U 42310.6534=−××=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 310110C(0.35)(0.65)0.5138k k k k p −===∑(2) 10102104C(0.25)(0.75)0.2241k k k k p −===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =−=−37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =−(2) 23!(3)!,3(1)!n p n n −=>−(3) 12(1)!13!(2)!;,3!!n n p p n n n n −−′′===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a −x −y .则基本事件集为由0<x <a ,0<y <a ,0<a −x −y <a 所构成的图形,有利事件集为由()()x y a x yx a x y y y a x y x+>−− +−−> +−−> 构成的图形,即02022a x a y ax y a <<<< <+< 如图阴影部分所示,故所求概率为14p =.39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k nn−−===L 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000−(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )−P (BC )≤P (A ). 【证】 ()[()]()P A P A B C P AB AC ≥=U U ()()()P AB P AC P ABC =+− ()()()P AB P AC P BC ≥+−42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =−−=−−=或 12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A −=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C = 故 2211()[1C ]22nn n P A =−44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =−45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有>正正(甲乙)=(甲正≤乙正)=(n +1−甲反≤n −乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反)因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure −thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥同理由 (|)(|),P A C P B C ≥得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A nn P A A A n−−==−=−−=−LL 其中i 1,i 2,…,i n −1是1,2,…,n 中的任n −1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j n n kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S −−=≤<≤−−≤<<≤+===−=−==−−==−==−+−+−∑∑∑L L L U L 121121C (1)C (1)(1)C (1)k k n n kn n n n nnn−−=−−−++−−L故所求概率为121121()1C (1)C (1)nk i i n n i P A n n =−=−−+−−+U L 111(1)C (1)n n k nn n+−−−−48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε−−→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知 (),()m nP B P B m n m n==++1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212rrr m m m n m n m n m n m n+==++++g g g 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n −r 次,设n 次取自B 1盒(已空),n −r 次取自B 2盒,第2n −r +1次拿起B 1,发现已空。

《概率论和数理统计》第三版-课后习题及答案解析.

《概率论和数理统计》第三版-课后习题及答案解析.

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计(复旦第三版)习题三 答案1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1. 222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2. 247C 3C 35= 247C 2C 35= 2247C C 6C 35=112247C C 12C 35=1247C 2C 35= 247C 1C 35= 212247C C 6C 35=2247C 3C 35=3.设二维随机变量(,)X Y 的联合分布函数为ππsin sin ,0,0(,)220,x y x y F x y ⎧≤≤≤≤⎪=⎨⎪⎩ 其它求二维随机变量(,)X Y 在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin 4346361).=--+=题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(,)X Y 的分布密度(34)e ,0,0(,)0,x y A x y f x y -+⎧>>=⎨⎩ 其他求:(1) 常数A ;(2) 随机变量(,)X Y 的分布函数;(3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112xy Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y xu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<(34)380102{01,02}12e d d (1e )(1e )0.9499.x y x y P X Y x y -+--<≤<≤=<≤<≤==--≈⎰⎰5.设随机变量(,)X Y 的概率密度为(6),02,24(,)0,k x y x y f x y --<<<<⎧=⎨⎩ 其它 (1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5};(4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18k =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它求:(1) X 与Y 的联合分布密度;(2) {}P Y X ≤.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的概率密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其它 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它所以(,),()*()X Y f x y X Y f x f y 独立 5515e 25e ,00.2,00.20,y y x y --⎧⨯=<<>⎪=⎨⎪⎩ 其它(2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.x y x x y x-==-+≈⎰⎰⎰7.设二维随机变量(,)X Y 的联合分布函数为42(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧-->>=⎨⎩其他 求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(,)X Y 的概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -≤≤≤≤⎧=⎨⎩其他 求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01y x y x x x ⎧-=-≤≤⎪=⎨⎪⎩⎰ 0, 其它 Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01y x x y y y y ⎧-=-+≤≤⎪=⎨⎪⎩⎰ 0, 其它题8图 题9图9.设二维随机变量(,)X Y 的概率密度为e ,0(,)0y x yf x y -⎧<<=⎨⎩, 其它求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰e d e ,00,y x x y x +∞--⎧=>⎪=⎨⎪⎩⎰ 其它Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰0e d e ,00,yy x x y y --⎧=>⎪=⎨⎪⎩⎰ 其它题10图10.设二维随机变量(,)X Y 的概率密度为22,1(,)0cx y x y f x y ⎧≤≤=⎨⎩, 其它(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212242121=(1),11480,x x ydy x x x ⎧--≤≤⎪=⎨⎪⎩⎰ 其它()(,)d Y f y f x y x +∞-∞=⎰522217d ,01420,x y x y y ⎧=≤≤⎪=⎨⎪⎩ 其它 11.设随机变量(,)X Y 的概率密度为1,,01(,)0,y x x f x y ⎧<<<⎪=⎨⎪⎩ 其它求条件概率密度()Y X f y x ,()X Y f x y .题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 的可能取值为:1,2,3;Y 的可能取值为3,4,5. X 与Y 的联合分布律及边缘分布律如下表:(2) 因{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量的联合分布律为【解】(1)X 和Y 的边缘分布如下表故X 与Y 不独立14.设X 与Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为/21e ,0,()20,.y Y y f y -⎧>⎪=⎨⎪⎩其他(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥即 2X Y ≥, 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰22211/2200121d e d 1e d 21d 1(1)(0)]0.1445.xx y x x y xx ---==-==Φ-Φ=⎰⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求/Z X Y =的概率密度.【解】因为X 和Y 相互独立,所以X 与Y 的联合概率密度为62210,1000,1000(,)0,x y f x y x y ⎧>>⎪=⎨⎪⎩ 其它如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()(,)d d d d d d yz Z zx x y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()(,)d d d d d d zy Z xx y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zF z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设取到的四只电子元件寿命为i X (i =1,2,3,4),则2~(160,20)i X N ,从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-< 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为()(),0,1,2,3,P X k p k k === ()(),0,1,2,3,P Y r q r r ===证明随机变量Z =X +Y 的分布律为()()()ik P Z i p k q i k ===-∑,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是{}{,}ik P Z i P X k Y i k =====-∑,{}{}ik X Y P X k P Y i k ===-∑相互独立0()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑002200(){}2)ki ki n i k i n k ii kk n k k n ki ki P X i P Y k i n n p q p qi k i n n n p q p q i k i k n m m n i k i k =---+=--=====-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑(提示:组合计数公式方法二:参见第四章。

相关文档
最新文档