(完整版)高数中需要掌握证明过程的定理(二)

合集下载

高数二定理、公式

高数二定理、公式

1、数列极限的存在准则定理1.3(两面夹准则)若数列{x n},{y n},{z n}满足以下条件:(1),(2),则定理1.4 若数列{x n}单调有界,则它必有极限。

2、数列极限的四则运算定理。

(1)(2),(3)当时,3、当x→x0时,函数f(x)的极限等于A的必要充分条件是这就是说:如果当x→x0时,函数f(x)的极限等于A,则必定有左、右极限都等于A。

反之,如果左、右极限都等于A,则必有。

4、函数极限的定理定理1.7(惟一性定理)如果存在,则极限值必定惟一。

定理1.8(两面夹定理)设函数在点的某个邻域内(可除外)满足条件:(1),(2),则有。

推论:(1)(2),(3)5、无穷小量的基本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。

性质3有限个无穷小量的乘积是无穷小量。

性质4无穷小量除以极限不为零的变量所得的商是无穷小量。

6、等价无穷小量代换定理:如果当时,均为无穷小量,又有且存在,则。

7、重要极限Ⅰ8、重要极限Ⅱ是指下面的公式:9、(2)(3)(4)10、函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。

定理1.12(四则运算)设函数f(x),g(x)在x0处均连续,则(1)f(x)±g(x)在x0处连续,(2)f(x)·g(x)在x0处连续(3)若g(x0)≠0,则在x0处连续。

定理1.13(复合函数的连续性)设函数u=g(x)在x= x0处连续,y=f(u)在u0=g(x0)处连续,则复合函数y=f[g(x)]在x= x0处连续。

定理1.14(反函数的连续性)设函数y=f(x)在某区间上连续,且严格单调增加(或严格单调减少),则它的反函数x=f-1(y)也在对应区间上连续,且严格单调增加(或严格单调减少)闭区间上连续函数的性质在闭区间[a,b]上连续的函数f(x),有以下几个基本性质,这些性质以后都要用到。

高中数学二级结论大全和推导过程

高中数学二级结论大全和推导过程

高中数学二级结论大全和推导过程高中数学二级结论是指高中数学中一些重要的结论或定理,这些结论和定理是学习和理解高中数学知识的基础,也是解题的重要工具。

本文将给出一些常见的数学二级结论,并对其推导过程进行简要介绍。

(一)代数运算法则1.加法运算的交换律:对于任意两个实数a和b,有a + b = b + a。

推导过程:根据实数加法的定义,a + b = b + a。

2.加法运算的结合律:对于任意三个实数a、b和c,有(a + b) +c = a + (b + c)。

推导过程:将(a + b) + c按照加法运算定义进行展开,得(a + b) + c = ((a + b) + c)。

将a + (b + c)按照加法运算定义进行展开,得a + (b + c) =(a + (b + c))。

3.加法运算的存在零元:对于任意实数a,有a + 0 = a。

推导过程:根据实数加法的定义,a + 0 = a。

4.加法运算的存在负元:对于任意实数a,存在一个实数-b,使得a + (-b) = 0。

推导过程:根据实数加法的定义,a + (-a) = 0。

5.乘法运算的交换律:对于任意两个实数a和b,有a · b =b · a。

推导过程:根据实数乘法的定义,a · b = b · a。

6.乘法运算的结合律:对于任意三个实数a、b和c,有(a · b) · c = a · (b · c)。

推导过程:将(a · b) · c按照乘法运算定义进行展开,得(a · b) · c = ((a · b) · c)。

将a · (b · c)按照乘法运算定义进行展开,得a ·(b · c) = (a · (b · c))。

7.乘法运算的存在单位元:对于任意实数a,有a · 1 = a。

(word完整版)高等数学公式定理整理

(word完整版)高等数学公式定理整理

(word完整版)⾼等数学公式定理整理⾼等数学公式定理整理1.01版本定理,公式整理仅⽤于参考,具体学习请多做题⽬以增进对知识的掌握。

蓝⾊为定理红⾊为公式三⾓函数恒等公式:两⾓和差tan αanα·ta+tan βanβ)-(tan α=β)-tan(αtan αanα·ta-(1tan βa +(tan α=β)+tan(αcos αosα·s±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(?-?=+和差化积]2β)-(α]sin[2β)+(α-2sin[=cos β-cos α]2β)-(α]cos[2β)+(α2cos[=cos β+cos α]2β)-(α]sin[2β)+(α2cos[=sin β-sin α]2β)-(α]cos[2β)+(α2sin[=sin β+sin α积化和差β)]-cos(α-β)+[cos(α21-=sin αinα·s β)]-cos(α+β)+[cos(α21=cos αosα·c β)]-sin(α-β)+[sin(α21=cos αosα·s β)]-sin(α+β)+[sin(α21=sin αinα·c倍⾓公式(部分):很重要!αtan -1αtan 2=tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α22sin αsinα·=sin2α22222⼀、函数函数的特性: 1.有界性:假设函数在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满⾜|f(x)|≤M 。

则称f (x )是D 的有界函数。

如果正数M 不存在,则称这个函数是D 上的⽆界函数。

数学高数定理定义总结

数学高数定理定义总结

数学高数定理定义总结高中数学中的高数定理是指一套基本定理和公式,包括中值定理、洛必达法则、微分学基本定理、积分学基本定理、拉格朗日中值定理、罗尔中值定理、柯西中值定理等,这些定理和公式可以帮助我们简化和解决复杂的数学问题。

下面将对这些定理进行定义和总结。

1.中值定理:中值定理是微分学中的一个重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理。

这些定理都与函数在一些区间内取得特定值或通过其中一点的斜率有关。

-拉格朗日中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,则在(a,b)内至少存在一点c,使得f'(c)等于[f(b)-f(a)]/(b-a)。

-柯西中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g'(x)不为零,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。

-罗尔中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。

2.洛必达法则:洛必达法则是一种求极限的方法,用于计算形如[0/0]、[∞/∞]、[0*∞]、[∞-∞]等不定型的极限。

- 洛必达法则:设函数f(x)和g(x)在特定点x=a附近都可导,且g'(x)不为零,若lim[x→a]f(x) = lim[x→a]g(x) = 0或∞,则lim[x→a]f(x)/g(x) = lim[x→a]f'(x)/g'(x)。

- 微分学基本定理:设函数f(x)在[a, b]上连续,则函数F(x) = ∫[a,x]f(t)dt在(a, b)内可导且F'(x) = f(x),其中[a,x]表示对f(t)在区间[a,x]上的积分。

- 积分学基本定理:设函数f(x)在[a, b]上连续,则该区间上的定积分∫[a,b]f(x)dx可以通过求该函数的一个原函数F(x)在区间[a, b]上的差F(b) - F(a)来求得。

25个高数定理证明

25个高数定理证明

a
0
=
2
a 0
f ( x)dx,若f ( x)是偶函数
0 , 若f ( x)是偶函数
17 .设f(x)是以T为周期的连续函数,
证明对a,
a+T
f(x)dx =
T
f(x)dx =
a
0
T
2 -T
f(x)dx
2
18.设D是由y=f ( x)( f 0), x a, b和x a, x b, y 0
14.设yoz坐标面内的曲线L的方程为 F(y, z)=0,求其绕z轴旋转一周所得到 的旋转曲面的方程为F( x2+y2 , z)=0
15.设单连通区域D内P,Q 连续, y x
且满足 P Q,证明曲线积分 y x
L Pdx Qdy在D内与路径无关
16.设f ( x)在a, a上连续,
证明 a f ( x)dx a f ( x) f ( x) dx
3、 利用最大值,最小值证明不等式.
如,当x 0, )时,e x (1 x) 1
4、 常值不等式的证明转化成函数的单调性, 或函数不等式. 如,比较e , e的大小
二、等式的证明思路
1、如果结论是不带导数的等式,一般用零点定理考虑 如,F(x0)=0
2、已知结论中含导数: (A)是一个点的导数,如f( )=0,用罗尔定理考虑 (B)是二个点的导数,如f( )+g( )=0,用两次拉 格朗日中值定理或一 次 拉 格 朗 日 中 值 定 理, 一次柯西中值定理
3、 如果结论是函数值与某点的二阶导数的等式,
要用泰勒公式考虑.
如,结论是f
(b)
2
f
a
2
b
(b a)2 f (a)

高中高考数学所有二级结论《完整版》

高中高考数学所有二级结论《完整版》

高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx①过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=①二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n )25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的①ABC 在平面α内的射影为①ABO ,分别记①ABC 的面积和①ABO 的面积为S 和S′ ,记①ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意①ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++②8332cos 2cos 2cos ≤⋅⋅C B A③232sin 2sin 2sin ≤++C B A④2332cos 2cos 2cos ≤++C B A⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A⑪32tan 2tan 2tan≥++CB A ⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角①ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么①OAC ,①BAC ,①OAB 三角的余弦关系为:cos①OAC=cos①BAC ·cos①OAB (①BAC 和①OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+个人车位租赁合同范本 出租方(甲方):xxx 身份证号:xxxxxxxxx承租方(乙方):xxx 身份证号:xxxxxxxxx甲、乙双方经充分协商,现将甲方位于xxxxxxxxx 私家车位租给乙方作为车辆(车牌号:xxxxx )停放使用,并签订如下车位租赁合同条款,甲、乙双方共同遵守和执行。

高数重要定理(高数上下)汇编

高数重要定理(高数上下)汇编
x→a F ′( x)
( x→∞)

lim
f (x) =
lim
f ′( x).
x→a F ( x) x→a F ′( x)
( x→∞)
( x→∞)
等价无穷小量替换(代换)定理: 在同一个极限过程,若α ∼α′, β ∼β′,则
limαβ
=limα β
′′=limαβ′=limβα′.
注:等价无穷小量代换一般只能用在整体乘、 除关系,而不能用在局部乘、除关系和整体加、 减关系.
和最小值.
(2)有界性:若 f (x)在[a,b]上连续,则 f (x)在[a,b]上有界. (3)介值性:若 f (x)在[a,b]上连续, 则 f (x)在[a,b]上可取到介于 它在[a,b]上最小值与最大值之间的一切值. (4) 零 点 定 理 ( 或 根 的 存 在 定 理 ): 若 f (x) 在 [a,b] 连 续 , 且 f (a)⋅ f (b)<0,则必∃ξ∈(a,b),使 f (ξ )=0.
若C = 1,称α ( x), β ( x)是等价无穷小,记为α ( x) ∼ β ( x);
(4)无穷小量的阶:
若lim
α(x) [β ( x)]k
=C
≠ 0,称α ( x)是β ( x)
的k 阶无穷小量.
宝典公式: (1) limg(x)=0, lim gf ((xx))= A,则lim f (x)=0; (2) lim f (x)=0, lim f (x)= A≠0,则limg(x)=0;
α⎛
⎜⎜⎝

⎞ ⎟⎟⎠
所围成的曲边扇形的面积
∫ A =
1 2
βr 2 (θ )dθ
α
.

高数中需要掌握证明过程的定理(二)

高数中需要掌握证明过程的定理(二)

高数中的重要定理与公式及其证明(二)在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。

现将后半部分补上。

希望对大家有所帮助。

1)泰勒公式(皮亚诺余项)设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立()()()()200'''()00000()()()()...()2!!nnn x x x x f x f x x x f x f x f x o x x n --⎡⎤=+-++++-⎣⎦【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。

对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。

在复习的前期,如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。

但由于证明过程中所用到的方法还是很常用的。

因此把它写在这里。

证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦则我们要证明()0()nR x o x x ⎡⎤=-⎣⎦。

由高阶无穷小量的定义可知,需要证明()0()lim0nx x R x x x →=-。

这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得()()()()()1''''()00000100()()()...()1!()limlim n n nn x x x x x x f x f x x x f x f x n R x x x n x x --→→⎡⎤--+-++⎢⎥-⎢⎥⎣⎦=--再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数中的重要定理与公式及其证明(二)在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。

现将后半部分补上。

希望对大家有所帮助。

1)泰勒公式(皮亚诺余项)设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立()()()()200'''()00000()()()()...()2!!nnn x x x x f x f x x x f x f x f x o x x n --⎡⎤=+-++++-⎣⎦【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。

对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)xax x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。

在复习的前期,如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。

但由于证明过程中所用到的方法还是很常用的。

因此把它写在这里。

证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦ 则我们要证明()0()nR x o x x ⎡⎤=-⎣⎦。

由高阶无穷小量的定义可知,需要证明()0()lim0nx x R x x x →=-。

这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得()()()()()1''''()00000100()()()...()1!()limlim n n nn x x x x x x f x f x x x f x f x n R x x x n x x --→→⎡⎤--+-++⎢⎥-⎢⎥⎣⎦=--再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。

不难验证该过程可以一直进行下去,运用过1n -次洛必达法则后我们可以得到()()()()000(1)(1)()00000(1)(1)()000()()()()limlim !()()()lim!!n n n nx x x x n n n x x f x f x x x f x R x n x x x x fx f x f x n x x n --→→--→---=---=--由于()f x 在点0x 处存在n 阶导数,由导数的定义可知()(1)(1)()000()()lim ()n n n x x f x f x f x x x --→-=-代入可得()0()lim0nx x R x x x →=-。

证毕注:这个定理很容易得到如下错误的证明:直接用n 次洛必达法则后得到()()()00()limlim ()()0n n nx x x x R x f x f x x x →→=-=-错误的原因在于定理条件中仅告知了()f x 在点0x 处存在n 阶导数,并没有说明在其它点处的n 阶导数是否存在。

就算其它点处的n 阶导数也存在,()()n fx 也不一定连续,()()0lim ()()0n n x x f x f x →-=也不一定成立。

希望大家注意。

2)泰勒公式(拉格朗日余项)设函数()f x 含有点0x 的某个开区间(,)a b 内有直到1n +阶导数,则对(,)a b 内任意一点x ,都成立()()()200'''()0000()()()()...()()2!!nn n x x x x f x f x x x f x f x f x R x n --=+-++++其中()10(1)()()(1)!n n nx x R x f n ξ++-=+,其中ξ介于x 和0x 之间。

【点评】:同上。

证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦()110()n n P x x x ++=-则我们需要证明(1)1()()()(1)!n n R x f P x n ξ++=+。

由于010()()0n R x P x +==,因此01110()()()()()()n n n R x R x R x P x P x P x +++-=-易知,1(),()n R x P x +满足柯西中值的条件。

因此,由柯西中值定理可知,在x 和0x 之间存在一点1ξ使得()''011'110111()()()()()()()1()n n n n R x R x R R P x P x P n P ξξξξ+++-==-+而()()10'''''()0000()()()()...()(1)!n n x x R x f x f x x x f x f x n -⎡⎤-=-+-++⎢⎥-⎢⎥⎣⎦ 因此,此时仍然有'00()()0n R x P x ==。

则()'''101110()()()11()(1)()()n n n R R x R n P n P P x ξξξξ-=++-。

易知,'(),()n R x P x 仍满足柯西中值的条件。

因此,由柯西中值定理可知,在1ξ和0x 之间存在一点2ξ使得()()''''''1022'10212()()()()111()()(1)()1()n n n n R R x R R n P P x n P n nP ξξξξξξ--==+-++。

由于1ξ在x 和0x 之间,因此2ξ也在x 和0x 之间。

容易检验,上述过程可以一直进行下去,使用过1n +次柯西公式后即可得到(1)1()()()(1)!n n R x f P x n ξ++=+。

证毕注:在计算极限或确定无穷小量的阶时,一般用到皮亚诺余项的泰勒公式;在做证明题时用拉格朗日余项比较多。

两种泰勒公式的条件是不同的,其中拉格朗日余项的条件更强,结论也更强。

这两个定理的证明,如果基础不太好一时接受不了的话可以先跳过,到下一阶段再看。

3)定积分中值定理设函数()f x 在区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ使得下式成立:()()()baf x dx f b a ξ=-⎰【点评】:积分中值定理是定积分比较定理和闭区间上连续函数的介值定理的推论,它在是证明微积分基本定理的基础,在整个微积分中具有极大的理论意义。

同时,证明题中对该定理的应用也比较常见,通常会和微分中值定理结合使用,考生首先应该熟记该定理的条件和结论。

另外,考试中还出现过与该定理证明方法类似的证明题。

因此,该定理的证明过程也是需要掌握的。

该定理的证明过程教材上有,因为比较重要,也为了方便大家,在这里写一下我的证明过程 证明:由于()f x 在区间[,]a b 上连续,由闭区间上连续函数的最值定理可知:()f x 在区间[,]a b 上可以取到最大与最小值。

设最大值为M ,最小值为m 。

则有[](),,m f x M x a b ≤≤∈。

则有()bb b aaamdx f x dx Mdx ≤≤⎰⎰⎰,也即()()()bam b a f x dx M b a -≤≤-⎰两边同时除以()b a -可得()baf x dx m M b a≤≤-⎰。

可知()b af x dx b a-⎰是介于函数()f x 在区间[,]a b 上的最大值M 和最小值为m 之间的一个数。

由闭区间上连续函数的介值定理可知,()f x 能取到[],m M 上的一切数。

因此在积分区间[,]a b 上存在一点ξ使得:()()baf x dx f b aξ=-⎰。

也即()()()baf x dx f b a ξ=-⎰。

证毕 附:下面是02年数三的一道证明题,证明方法与本定理很类似,大家可以试一试。

【02年数三 6分】: 设函数(),()f x g x 在[],a b 上连续,且()0g x >。

试利用闭区间上连续函数的性质,证明存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰。

4)积分上限函数的导数如果函数()f x 在区间[,]a b 上连续,则变积分上限函数()()xax f t dt Φ=⎰在[,]a b 上可导,并且它的导数是'()()(),xa d x f t dt f x a xb dxΦ==<<⎰ 【点评】:这个定理的重要性不用强调了,考试中也直接考到过它的证明。

由于是对定理的证明,因此要证明()x Φ的导数等于()f x 只能用定义,对于大家强化导数的定义是一个很好的训练。

证明:(),x a b ∀∈由导数的定义可知,本定理等价于证明0()()lim()x x x x f x x∆→Φ+∆-Φ=∆。

而000()()()()()limlim limx xx x xa axx x x f t dt f t dtf t dtx x x xxx+∆+∆∆→∆→∆→-Φ+∆-Φ==∆∆∆⎰⎰⎰由于()f x 在区间[,]a b 上连续,因此由定积分中值定理可知:存在介于x 与x x +∆之间的ξ使得()()x xxf t dt xf ξ+∆=∆⎰,则00()()limlim ()x x x x x f xξ∆→∆→Φ+∆-Φ=∆。

由于ξ介于x 与x x +∆之间,因此当0x ∆→时,x ξ→。

又由于()f x 在区间[,]a b 上连续,可知0lim ()lim ()()x f f f x ξξξ∆→→==。

也即0()()lim()x x x x f x x∆→Φ+∆-Φ=∆。

由导数的定义可知'()()(),x a d x f t dt f x a x b dxΦ==<<⎰。

证毕5)牛顿—莱布尼兹公式如果函数()F x 是连续函数()f x 在区间[,]a b 上的一个原函数,则()()()baf x dx F b F a =-⎰【点评】:牛顿-莱布尼兹公式又名微积分基本定理,是因为它用一个简单的公式就成功地联系起了微积分中最重要的两个概念:微分和积分,极大地简化了定积分的计算。

它是微积分最核心的定理之一,其简洁明了的形式也使它被认为是微积分几百年研究历史中最漂亮的结论之一!该定理和上一个定理实际上是等价的,只需要用到一个函数在同一区间上的不同原函数间仅相差一个常数。

相关文档
最新文档