(完整版)高数中需要掌握证明过程的定理(二)
高数二定理、公式
![高数二定理、公式](https://img.taocdn.com/s3/m/e61e41532b160b4e767fcf65.png)
1、数列极限的存在准则定理1.3(两面夹准则)若数列{x n},{y n},{z n}满足以下条件:(1),(2),则定理1.4 若数列{x n}单调有界,则它必有极限。
2、数列极限的四则运算定理。
(1)(2),(3)当时,3、当x→x0时,函数f(x)的极限等于A的必要充分条件是这就是说:如果当x→x0时,函数f(x)的极限等于A,则必定有左、右极限都等于A。
反之,如果左、右极限都等于A,则必有。
4、函数极限的定理定理1.7(惟一性定理)如果存在,则极限值必定惟一。
定理1.8(两面夹定理)设函数在点的某个邻域内(可除外)满足条件:(1),(2),则有。
推论:(1)(2),(3)5、无穷小量的基本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。
性质3有限个无穷小量的乘积是无穷小量。
性质4无穷小量除以极限不为零的变量所得的商是无穷小量。
6、等价无穷小量代换定理:如果当时,均为无穷小量,又有且存在,则。
7、重要极限Ⅰ8、重要极限Ⅱ是指下面的公式:9、(2)(3)(4)10、函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。
定理1.12(四则运算)设函数f(x),g(x)在x0处均连续,则(1)f(x)±g(x)在x0处连续,(2)f(x)·g(x)在x0处连续(3)若g(x0)≠0,则在x0处连续。
定理1.13(复合函数的连续性)设函数u=g(x)在x= x0处连续,y=f(u)在u0=g(x0)处连续,则复合函数y=f[g(x)]在x= x0处连续。
定理1.14(反函数的连续性)设函数y=f(x)在某区间上连续,且严格单调增加(或严格单调减少),则它的反函数x=f-1(y)也在对应区间上连续,且严格单调增加(或严格单调减少)闭区间上连续函数的性质在闭区间[a,b]上连续的函数f(x),有以下几个基本性质,这些性质以后都要用到。
高中数学二级结论大全和推导过程
![高中数学二级结论大全和推导过程](https://img.taocdn.com/s3/m/6af07c46f02d2af90242a8956bec0975f465a406.png)
高中数学二级结论大全和推导过程高中数学二级结论是指高中数学中一些重要的结论或定理,这些结论和定理是学习和理解高中数学知识的基础,也是解题的重要工具。
本文将给出一些常见的数学二级结论,并对其推导过程进行简要介绍。
(一)代数运算法则1.加法运算的交换律:对于任意两个实数a和b,有a + b = b + a。
推导过程:根据实数加法的定义,a + b = b + a。
2.加法运算的结合律:对于任意三个实数a、b和c,有(a + b) +c = a + (b + c)。
推导过程:将(a + b) + c按照加法运算定义进行展开,得(a + b) + c = ((a + b) + c)。
将a + (b + c)按照加法运算定义进行展开,得a + (b + c) =(a + (b + c))。
3.加法运算的存在零元:对于任意实数a,有a + 0 = a。
推导过程:根据实数加法的定义,a + 0 = a。
4.加法运算的存在负元:对于任意实数a,存在一个实数-b,使得a + (-b) = 0。
推导过程:根据实数加法的定义,a + (-a) = 0。
5.乘法运算的交换律:对于任意两个实数a和b,有a · b =b · a。
推导过程:根据实数乘法的定义,a · b = b · a。
6.乘法运算的结合律:对于任意三个实数a、b和c,有(a · b) · c = a · (b · c)。
推导过程:将(a · b) · c按照乘法运算定义进行展开,得(a · b) · c = ((a · b) · c)。
将a · (b · c)按照乘法运算定义进行展开,得a ·(b · c) = (a · (b · c))。
7.乘法运算的存在单位元:对于任意实数a,有a · 1 = a。
(word完整版)高等数学公式定理整理
![(word完整版)高等数学公式定理整理](https://img.taocdn.com/s3/m/4e324dfab9f67c1cfad6195f312b3169a451eabd.png)
(word完整版)⾼等数学公式定理整理⾼等数学公式定理整理1.01版本定理,公式整理仅⽤于参考,具体学习请多做题⽬以增进对知识的掌握。
蓝⾊为定理红⾊为公式三⾓函数恒等公式:两⾓和差tan αanα·ta+tan βanβ)-(tan α=β)-tan(αtan αanα·ta-(1tan βa +(tan α=β)+tan(αcos αosα·s±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(?-?=+和差化积]2β)-(α]sin[2β)+(α-2sin[=cos β-cos α]2β)-(α]cos[2β)+(α2cos[=cos β+cos α]2β)-(α]sin[2β)+(α2cos[=sin β-sin α]2β)-(α]cos[2β)+(α2sin[=sin β+sin α积化和差β)]-cos(α-β)+[cos(α21-=sin αinα·s β)]-cos(α+β)+[cos(α21=cos αosα·c β)]-sin(α-β)+[sin(α21=cos αosα·s β)]-sin(α+β)+[sin(α21=sin αinα·c倍⾓公式(部分):很重要!αtan -1αtan 2=tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α22sin αsinα·=sin2α22222⼀、函数函数的特性: 1.有界性:假设函数在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满⾜|f(x)|≤M 。
则称f (x )是D 的有界函数。
如果正数M 不存在,则称这个函数是D 上的⽆界函数。
数学高数定理定义总结
![数学高数定理定义总结](https://img.taocdn.com/s3/m/e82be108ce84b9d528ea81c758f5f61fb7362827.png)
数学高数定理定义总结高中数学中的高数定理是指一套基本定理和公式,包括中值定理、洛必达法则、微分学基本定理、积分学基本定理、拉格朗日中值定理、罗尔中值定理、柯西中值定理等,这些定理和公式可以帮助我们简化和解决复杂的数学问题。
下面将对这些定理进行定义和总结。
1.中值定理:中值定理是微分学中的一个重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理。
这些定理都与函数在一些区间内取得特定值或通过其中一点的斜率有关。
-拉格朗日中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,则在(a,b)内至少存在一点c,使得f'(c)等于[f(b)-f(a)]/(b-a)。
-柯西中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g'(x)不为零,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。
-罗尔中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。
2.洛必达法则:洛必达法则是一种求极限的方法,用于计算形如[0/0]、[∞/∞]、[0*∞]、[∞-∞]等不定型的极限。
- 洛必达法则:设函数f(x)和g(x)在特定点x=a附近都可导,且g'(x)不为零,若lim[x→a]f(x) = lim[x→a]g(x) = 0或∞,则lim[x→a]f(x)/g(x) = lim[x→a]f'(x)/g'(x)。
- 微分学基本定理:设函数f(x)在[a, b]上连续,则函数F(x) = ∫[a,x]f(t)dt在(a, b)内可导且F'(x) = f(x),其中[a,x]表示对f(t)在区间[a,x]上的积分。
- 积分学基本定理:设函数f(x)在[a, b]上连续,则该区间上的定积分∫[a,b]f(x)dx可以通过求该函数的一个原函数F(x)在区间[a, b]上的差F(b) - F(a)来求得。
25个高数定理证明
![25个高数定理证明](https://img.taocdn.com/s3/m/1c84874cbed5b9f3f90f1cef.png)
a
0
=
2
a 0
f ( x)dx,若f ( x)是偶函数
0 , 若f ( x)是偶函数
17 .设f(x)是以T为周期的连续函数,
证明对a,
a+T
f(x)dx =
T
f(x)dx =
a
0
T
2 -T
f(x)dx
2
18.设D是由y=f ( x)( f 0), x a, b和x a, x b, y 0
14.设yoz坐标面内的曲线L的方程为 F(y, z)=0,求其绕z轴旋转一周所得到 的旋转曲面的方程为F( x2+y2 , z)=0
15.设单连通区域D内P,Q 连续, y x
且满足 P Q,证明曲线积分 y x
L Pdx Qdy在D内与路径无关
16.设f ( x)在a, a上连续,
证明 a f ( x)dx a f ( x) f ( x) dx
3、 利用最大值,最小值证明不等式.
如,当x 0, )时,e x (1 x) 1
4、 常值不等式的证明转化成函数的单调性, 或函数不等式. 如,比较e , e的大小
二、等式的证明思路
1、如果结论是不带导数的等式,一般用零点定理考虑 如,F(x0)=0
2、已知结论中含导数: (A)是一个点的导数,如f( )=0,用罗尔定理考虑 (B)是二个点的导数,如f( )+g( )=0,用两次拉 格朗日中值定理或一 次 拉 格 朗 日 中 值 定 理, 一次柯西中值定理
3、 如果结论是函数值与某点的二阶导数的等式,
要用泰勒公式考虑.
如,结论是f
(b)
2
f
a
2
b
(b a)2 f (a)
高中高考数学所有二级结论《完整版》
![高中高考数学所有二级结论《完整版》](https://img.taocdn.com/s3/m/0acb477b5bcfa1c7aa00b52acfc789eb172d9ed8.png)
高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx①过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-by y a x x①抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=①二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =- 10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线 23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n )25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的①ABC 在平面α内的射影为①ABO ,分别记①ABC 的面积和①ABO 的面积为S 和S′ ,记①ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n,即是公比为的等比数列.定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则(这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则:①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin 41cos cos cos CB AC B A +=++③2sin 2sin 2sin 212sin 2sin 2sin 222C B A C B A -=++④4sin4sin 4sin 412sin 2sin 2sin C B A C B A ---+=++πππ ⑤2sin 2sin 2sin 4sin sin sin CB AC B A =++⑥2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑦12tan 2tan 2tan 2tan 2tan 2tan =++A C C B B A⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意①ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A )(1p a a p a n n -=--}{p a n -a )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++②8332cos 2cos 2cos ≤⋅⋅C B A③232sin 2sin 2sin ≤++C B A④2332cos 2cos 2cos ≤++C B A⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin 222≥++C B A⑩12tan 2tan 2tan 222≥++C B A⑪32tan 2tan 2tan≥++CB A ⑫932tan 2tan 2tan ≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角①ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A ③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2Hh =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积 33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么①OAC ,①BAC ,①OAB 三角的余弦关系为:cos①OAC=cos①BAC ·cos①OAB (①BAC 和①OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=- 立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长) 42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M n X D49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 (4)三角形的外心是它的中点三角形的垂心 (5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅55.m >n 时,22nm nm n m e nm e e e e +>-->+个人车位租赁合同范本 出租方(甲方):xxx 身份证号:xxxxxxxxx承租方(乙方):xxx 身份证号:xxxxxxxxx甲、乙双方经充分协商,现将甲方位于xxxxxxxxx 私家车位租给乙方作为车辆(车牌号:xxxxx )停放使用,并签订如下车位租赁合同条款,甲、乙双方共同遵守和执行。
高数重要定理(高数上下)汇编
![高数重要定理(高数上下)汇编](https://img.taocdn.com/s3/m/82a1c411aa00b52acec7ca40.png)
( x→∞)
则
lim
f (x) =
lim
f ′( x).
x→a F ( x) x→a F ′( x)
( x→∞)
( x→∞)
等价无穷小量替换(代换)定理: 在同一个极限过程,若α ∼α′, β ∼β′,则
limαβ
=limα β
′′=limαβ′=limβα′.
注:等价无穷小量代换一般只能用在整体乘、 除关系,而不能用在局部乘、除关系和整体加、 减关系.
和最小值.
(2)有界性:若 f (x)在[a,b]上连续,则 f (x)在[a,b]上有界. (3)介值性:若 f (x)在[a,b]上连续, 则 f (x)在[a,b]上可取到介于 它在[a,b]上最小值与最大值之间的一切值. (4) 零 点 定 理 ( 或 根 的 存 在 定 理 ): 若 f (x) 在 [a,b] 连 续 , 且 f (a)⋅ f (b)<0,则必∃ξ∈(a,b),使 f (ξ )=0.
若C = 1,称α ( x), β ( x)是等价无穷小,记为α ( x) ∼ β ( x);
(4)无穷小量的阶:
若lim
α(x) [β ( x)]k
=C
≠ 0,称α ( x)是β ( x)
的k 阶无穷小量.
宝典公式: (1) limg(x)=0, lim gf ((xx))= A,则lim f (x)=0; (2) lim f (x)=0, lim f (x)= A≠0,则limg(x)=0;
α⎛
⎜⎜⎝
<β
⎞ ⎟⎟⎠
所围成的曲边扇形的面积
∫ A =
1 2
βr 2 (θ )dθ
α
.
高数中需要掌握证明过程的定理(二)
![高数中需要掌握证明过程的定理(二)](https://img.taocdn.com/s3/m/071cee35ff00bed5b9f31df3.png)
高数中的重要定理与公式及其证明(二)在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。
现将后半部分补上。
希望对大家有所帮助。
1)泰勒公式(皮亚诺余项)设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立()()()()200'''()00000()()()()...()2!!nnn x x x x f x f x x x f x f x f x o x x n --⎡⎤=+-++++-⎣⎦【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。
对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。
在复习的前期,如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。
但由于证明过程中所用到的方法还是很常用的。
因此把它写在这里。
证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦则我们要证明()0()nR x o x x ⎡⎤=-⎣⎦。
由高阶无穷小量的定义可知,需要证明()0()lim0nx x R x x x →=-。
这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得()()()()()1''''()00000100()()()...()1!()limlim n n nn x x x x x x f x f x x x f x f x n R x x x n x x --→→⎡⎤--+-++⎢⎥-⎢⎥⎣⎦=--再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。
高中数学定理证明
![高中数学定理证明](https://img.taocdn.com/s3/m/3ca536cffe4733687f21aa3e.png)
高中数学定理证明高中数学定理证明数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦-公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积”南宋秦九韶) | a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于来源网络搜集整理,仅作为学习参考,请按实际情况需要自行编辑。
高数中需要掌握证明过程的定理(二)
![高数中需要掌握证明过程的定理(二)](https://img.taocdn.com/s3/m/3e932bf704a1b0717fd5dd8c.png)
高数中的重要定理与公式及其证明(二)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。
如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。
但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。
而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。
因此,在这方面可以有所取舍。
现将高数中需要掌握证明过程的公式定理总结如下。
这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。
6)定积分比较定理如果在区间[,]a b 上恒有()0f x ≥,则有()0ba f x dx ≥∫推论:ⅰ如果在区间[,]a b 上恒有()()f x g x ≥,则有()()b baaf x dxg x dx ≥∫∫;ⅱ设M m 和是函数()f x 在区间[,]a b 上的最大值与最小值,则有:()()()ba mb a f x dx M b a −≤≤−∫【点评】:定积分比较定理在解题时应用比较广,定积分中值定理也是它的推论。
掌握其证明过程,对理解及应用该定理很有帮助。
具体的证明过程教材上有。
7)定积分中值定理设函数()f x 在区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ使得下式成立:()()()baf x dx f b a ξ=−∫【点评】:微积分的两大中值定理之一,定积分比较定理和闭区间上连续函数的推论,在证明题中有重要的作用。
考研真题中更是有直接用到该定理证明方法的题目,重要性不严而喻。
具体证明过程见教材。
8)变上限积分求导定理如果函数()f x 在区间[,]a b 上连续,则积分上限的函数()()xa x f x dx Φ=∫在[,]ab 上可导,并且它的导数是'()()(),xa d x f x dx f x a xb dx Φ==≤≤∫设函数()()()()u x v x F x f t dt =∫,则有'''()(())()(())()F x f u x u x f v x v x =−。
高二数学学科中的常用定理及证明
![高二数学学科中的常用定理及证明](https://img.taocdn.com/s3/m/e173626d3069a45177232f60ddccda38376be122.png)
高二数学学科中的常用定理及证明数学是一门理性思维与逻辑推理相结合的学科,其中各种定理起着重要的作用。
在高二数学学科中,有许多常用定理被广泛运用于解决数学问题。
本文将重点介绍高二数学学科中的常用定理及其证明。
一、边角关系定理边角关系定理是数学中最基础且广泛应用的定理之一。
该定理说明在任意三角形中,两条边的和大于第三边,任意两角的和小于180度。
这一定理不仅能够解决三角形的构造问题,还可以帮助我们判断三角形的形状及性质。
定理:在三角形ABC中,AB + BC > AC,AC + BC > AB,AB +AC > BC;∠A + ∠B < 180°,∠A + ∠C < 180°,∠B + ∠C < 180°。
证明:不妨设AB ≤ BC ≤ AC。
1. 若AB + BC = AC,则我们可以得到一个等腰三角形ABC,其中∠A = ∠C,∠B < 180°。
2. 若AB + BC > AC,则我们可以得到一个普通三角形ABC,其中∠A + ∠B < 180°,∠A + ∠C < 180°,∠B + ∠C < 180°。
3. 若AB + BC < AC,则无法构成一个三角形。
由此可见,边角关系定理在解决三角形问题中起着重要的作用。
二、勾股定理勾股定理是高二数学中最为经典的定理之一,它描述了一个直角三角形的边长关系。
勾股定理广泛应用于解决测量、定位和解析几何等问题中。
定理:在直角三角形ABC中,设边长分别为a、b、c(其中c为斜边),则有a^2 + b^2 = c^2。
证明:设∠C为直角。
根据三角形的相似性,我们可以得到下面的两个类似三角形:△ABC ~ △ADC△ABC ~ △BDC由此可得:AB/AD = BC/DC (由第一个类似三角形)AB/BD = BC/AC (由第二个类似三角形)联立以上两个等式,得到:(AB/AD) × (AB/BD) = (BC/DC) × (BC/AC)即:(AB/AD) × (BD/AB) = (BC/DC) × (AC/BC)化简后可得:AB × BD = AC × DC根据矩形面积公式可得:AB × BD + AD × DC = AD × DC + AC × BC即:AB × BC + AC × DC = AD × DC + AC × BC而AD × DC + AC × BC = AC × AC所以,AB × BC + AC × AC = AC × AC即:AB × BC = AC × AC - AC × AC = AC × AC即:AB × BC = AC × AC两边开根号并化简,可得:AB × BC = AC^2因此,我们得到了勾股定理。
数学高三重要定理与证明方法总结
![数学高三重要定理与证明方法总结](https://img.taocdn.com/s3/m/d63175854128915f804d2b160b4e767f5acf8002.png)
数学高三重要定理与证明方法总结高三阶段是数学学科中最为关键和关注的阶段之一,其中重要的定理和证明方法对学生的数学学习和应对高考非常重要。
本文将总结高三数学学科中的一些重要定理和证明方法,帮助同学们进行复习和备考。
一、数列与函数部分1. 等差数列的通项公式及求和公式等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为第n项。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn为前n项和。
2. 等比数列的通项公式及求和公式等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为第n项。
等比数列求和公式为Sn=a1(1-r^n)/(1-r),其中Sn为前n项和。
3. 函数的性质与图像函数的性质包括定义域、值域、奇偶性、单调性等。
根据函数式的不同形式,可以画出函数的图像,进一步帮助理解函数的性质。
例如:y=ax^2+bx+c的图像呈抛物线状,其开口方向取决于a的正负。
4. 三角函数的基本公式和性质三角函数的基本公式包括正弦定理、余弦定理和正切定理等。
利用这些公式可以求解各种三角形的边长和角度。
同时,需要了解三角函数的周期性、奇偶性等性质。
二、解析几何部分1. 二次函数的性质和图像二次函数的一般形式为y=ax^2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。
可以通过判别式来判断二次函数的图像类型(开口向上或向下),进而求解顶点坐标和轴线方程。
2. 圆的性质与方程圆的性质包括圆心、半径、圆上的切线等。
圆的标准方程为(x-h)^2+(y-k)^2=r^2,其中(h, k)为圆心坐标,r为半径长度。
根据圆的性质和方程,可以求解圆与直线或圆与圆的交点坐标。
3. 直线与平面的方程及其性质直线的一般方程为Ax+By+C=0,其中A、B、C为常数。
平面的一般方程为Ax+By+Cz+D=0,其中A、B、C、D为常数。
通过直线与平面的方程,可以求解它们的交点或判定它们的位置关系。
2022年高考数学必背的二级结论及解题技巧
![2022年高考数学必背的二级结论及解题技巧](https://img.taocdn.com/s3/m/d94c0ade580216fc710afdb7.png)
目条件最终解决问题,我们称这类问题为“隐零点问题”.
求解三步曲:
(1)用零点存在性定理判定导函数零点的存在性,列出零点方程 f′(x0)=0,并结合 f(x)的单
调性得到零点的取值范围.
(2)以零点为分界点,说明导函数 f′(x)的正负,进而得到 f(x)的最值表达式.
b2 − a2
x, 2
y0 。
则 AB 恒过定点 2
对于一个函数 f(x),我们把满足 f(m)=m 的值 x=m 称为函数 f(x)的“不动点”.利用“不
动点法”可以构造新数列,求数列的通项公式.
(1)若 f(x)=ax+b(a≠0,1),p 是 f(x)的不动点.数列{an}满足 an+1=f(an),则 an+1-p=a(an-
p),即{an-p}是公比为 a 的等比数列.
π
|a·u|
设直线 l 与平面 α 的夹角为 θ0≤θ≤2,则 sin θ=
|a||u|
(3)二面角
|u·v|
设 α-a-β 的平面角为 θ(0≤θ≤π),则|cos θ|=
,观察图象得出结论。
|u||v|
17.外接球与内切球
√6
,则外接球的半径
3
①设正四面体的棱长为 ,则高为
√6
,
4
R=
√6
。
12
内切球的半径 r=
2
②正棱锥外接球的半径公式: = 2ℎ, 其中为锥体的侧棱长,ℎ为高。
③两个面垂直的几何体,其外接球半径的平方等于这两个面外接圆半径的平方减去交线平方
1
的4。
④锥体的内切球半径: =
高中数学的解析数学证明中的定理与证明方法
![高中数学的解析数学证明中的定理与证明方法](https://img.taocdn.com/s3/m/a4b912f01b37f111f18583d049649b6649d7094f.png)
高中数学的解析数学证明中的定理与证明方法数学中的定理与证明是数学学科中的重要内容,解析数学作为高中数学的一部分,也包含了许多重要的定理和证明方法。
本文将介绍一些常见的解析数学定理以及它们的证明方法。
一、三角函数的基本性质定理与证明方法1. 余弦定理余弦定理是解析几何中三角形的重要定理,它表示三角形中的任意一边的平方等于另外两边平方和的两倍减去这两边乘积的余弦的两倍。
其表达式为:c^2 = a^2 + b^2 - 2abcosC,其中a、b、c分别表示三角形的边长,C表示两边夹角的余弦值。
证明方法:根据三角形的边长关系和余弦的定义,可以通过展开和化简的方式得到余弦定理的推导过程。
2. 正弦定理正弦定理是解析三角学中的重要定理,它表示三角形中任意两边的比值等于对应两个角的正弦的比值。
其表达式为:a/sinA = b/sinB =c/sinC,其中a、b、c分别表示三角形的边长,A、B、C分别表示对应的角度。
证明方法:通过分析三角形的面积和底边的关系,可以推导出正弦定理。
二、导数和微分定理的证明方法1. 极限定义导数的定义是解析数学中重要的基础概念,它表示函数在某一点上的变化率。
导数的定义可以通过极限的概念进行证明,即通过求函数在某一点上的左侧和右侧的极限来确定函数的导数。
2. 微分中值定理微分中值定理是解析数学中的重要定理,它表示如果函数在闭区间[a, b]上连续且在开区间 (a, b)上可导,那么它在开区间(a, b)上至少存在一点c,使得该点处的导数等于函数在区间端点处的斜率。
该定理有三种形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
三、进一步的数学证明方法1. 数学归纳法数学归纳法是解析数学中的一种常见的证明方法,它常用于证明具有递归性质的数学命题。
数学归纳法的基本思想是通过证明一个命题在某个特定条件下成立,然后再证明在该条件的基础上,它在下一个条件也成立。
2. 反证法反证法是解析数学中一种常见的证明方法,它通过假设命题不成立,然后推导出矛盾的结论,从而证明原命题的正确性。
高中高考数学所有二级结论《完整版》
![高中高考数学所有二级结论《完整版》](https://img.taocdn.com/s3/m/3cf5633830b765ce0508763231126edb6e1a7674.png)
高中高考数学所有二级结论《完整版》-高中高考数学是高中学习的重点科目之一,也是考生们备战高考的重点科目之一。
在数学学习中,二级结论是非常重要的知识点,掌握好二级结论可以帮助我们更好地解题和理解数学知识。
下面是高中高考数学所有二级结论的完整版。
一、数列及数列的通项公式1. 等差数列的通项公式:an = a1 + (n-1)d2. 等差数列的前n项和公式:Sn = (a1 + an)n/23. 等比数列的通项公式:an = a1 * q^(n-1)4. 等比数列的前n项和公式:Sn = a1 * (q^n - 1)/(q - 1)二、平面几何1. 相似三角形的性质:对应角相等,对应边成比例2. 相似三角形的边长比例关系:ab/cd = ac/bd = bc/ad3. 相似三角形的高比例关系:ha/hb = ca/cb4. 相似三角形的面积比例关系:S1/S2 = a1^2/a2^25. 平行线与三角形的性质:平行线分割三角形的边,得到的线段成比例三、立体几何1. 圆柱的侧面积:S = 2πrh2. 圆柱的体积:V = πr^2h3. 圆锥的侧面积:S = πrl4. 圆锥的体积:V = 1/3πr^2h5. 球的表面积:S = 4πr^26. 球的体积:V = 4/3πr^3四、函数1. 一次函数的图像:直线2. 一次函数的性质:线性增长3. 一次函数的斜率:k = △y/△x = (y2 - y1)/(x2 - x1)4. 二次函数的图像:抛物线5. 二次函数的性质:开口方向,顶点坐标6. 二次函数的判别式:△ = b^2 - 4ac,△ > 0 有两个不相等的实根,△ = 0 有两个相等的实根,△ < 0 无实根7. 二次函数的顶点坐标:(h, k)8. 二次函数的对称轴:x = h9. 二次函数的最值:最大值 h = -b/2a,最小值 h = -b/2a五、概率统计1. 随机事件的概率:P(A) = n(A)/n(S)2. 互斥事件的概率:P(A∪B) = P(A) + P(B)3. 独立事件的概率:P(A∩B) = P(A) * P(B)4. 全概率公式:P(A) = P(A∩B1) + P(A∩B2) + . + P(A∩Bn)5. 条件概率公式:P(B|A) = P(A∩B)/P(A)六、解析几何1. 直线的斜率:k = △y/△x = (y2 - y1)/(x2 - x1)2. 直线的点斜式方程:y - y1 = k(x - x1)3. 直线的一般式方程:Ax + By + C = 04. 直线的截距式方程:x/a + y/b = 15. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2以上就是高中高考数学所有二级结论的完整版。
高数公式定理大全
![高数公式定理大全](https://img.taocdn.com/s3/m/1ebfa9c5a1116c175f0e7cd184254b35eefd1afc.png)
高数公式定理大全一、导数和微分1.导数的定义:如果函数f(x)在点x0处可导,则函数f(x)在x0处的导数为:f'(x0) = lim(x→x0) (f(x) - f(x0))/(x - x0)。
2.常见函数的导数:(1)幂函数的导数:(x^n)' = nx^(n-1)。
(2)指数函数的导数:(a^x)' = a^x ln(a),其中a是一个正实数。
(3)对数函数的导数:(ln x)' = 1/x。
(4)三角函数的导数:- (sin x)' = cos x。
- (cos x)' = -sin x。
- (tan x)' = sec^2 x。
- (cot x)' = -csc^2 x。
- (sec x)' = sec x tan x。
- (csc x)' = -csc x cot x。
3.高阶导数:函数f(x)的n阶导数可表示为:f^(n)(x) 或 d^n f / dx^n。
4.微分的定义:函数f(x)在点x0处的微分为:df = f'(x0) dx。
5.微分的性质:(1)微分与导数的关系:df = f'(x) dx。
(2)微分的加法性质:d(u + v) = du + dv。
(3)微分的乘法性质:d(uv) = u dv + v du。
(4)微分的链式法则:如果 y = f(u) 和 u = g(x),则 dy/dx = dy/du * du/dx。
二、积分1.定积分的定义:如果函数f(x)在闭区间[a, b]上有定义,且在[a, b]上可积,则记作∫(a→b) f(x) dx,表示从a到b的f(x)在x轴正方向的面积。
2.基本积分公式:(1)幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。
(2)三角函数的积分:- ∫sin x dx = -cos x + C。
原题目:证明2023考研数学(二)大纲中的定理。
![原题目:证明2023考研数学(二)大纲中的定理。](https://img.taocdn.com/s3/m/c1f638faab00b52acfc789eb172ded630b1c9826.png)
原题目:证明2023考研数学(二)大纲中的定理。
原题目:证明2023考研数学(二)大纲中的定理概述:本文档旨在证明2023考研数学(二)大纲中的定理。
以下将提供证明过程。
1. 定理一证明定理一的过程如下:步骤一:根据题目给定条件,列出相关方程或不等式。
步骤二:对方程或不等式进行变形,运用数学定理和方法。
步骤三:推导出等式或不等式的解析表达式。
步骤四:对解析表达式进行证明,使用相关数学推理和逻辑推导。
步骤五:总结证明过程并得出结论。
2. 定理二证明定理二的过程如下:步骤一:根据题目给定条件,列出相关方程或不等式。
步骤二:对方程或不等式进行变形,运用数学定理和方法。
步骤三:推导出等式或不等式的解析表达式。
步骤四:对解析表达式进行证明,使用相关数学推理和逻辑推导。
步骤五:总结证明过程并得出结论。
3. 定理三证明定理三的过程如下:步骤一:根据题目给定条件,列出相关方程或不等式。
步骤二:对方程或不等式进行变形,运用数学定理和方法。
步骤三:推导出等式或不等式的解析表达式。
步骤四:对解析表达式进行证明,使用相关数学推理和逻辑推导。
步骤五:总结证明过程并得出结论。
总结:本文档提供了证明2023考研数学(二)大纲中的定理的步骤和过程。
每个定理都按照列出条件、变形方程或不等式、推导解析表达式、证明解析表达式和总结结论的顺序进行证明。
请根据具体题目的要求进行相应的证明过程。
注意:在证明过程中,需要使用相关数学定理和方法,并进行合理的推理和推导。
为确保准确性,请仔细核对计算过程和逻辑推理的正确性。
高数六大定理(下)
![高数六大定理(下)](https://img.taocdn.com/s3/m/485721e804a1b0717fd5ddd7.png)
f ( n1) ( ) 其中 Rn ( x) ( x x0 ) n1 , 是 x0 (n 1)!
与 x 之间的某个值.
2.带皮亚诺型余项
假设函数 f ( x) 在 x0 有 n 阶导数,则
f ( x0 ) f ( x) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 ) n o[( x x0 ) n ] n!
sin x x tan x
0 x
2
x arctan x c , 其中 c, k k x 0 x 为常数,且 c 0, 则( )
已知极限 lim
1 2 1 (C )k =3,c = 3 ( A) k = 2,c =
(B) k = 2,c =
1 2 1 (D) k =3,c = 3
1 3 x x arctan x lim lim 3 c 0 k x 0 x 0 x k x
所以 k 3, c .
1 3
1 3 猪 0, 猪 sin 猪 猪 o(猪3 ) 3 [sin x sinsin x]sin x . 求极限 lim 4 x 0
在该区间内 f ( x) 内调递增, 因此 f ( x) 在该区间 内至多有一个实根.
f (a) ) 上满足拉格朗 由题设知 f ( x) 在 (a, a k f (a) 日中值定理,故至少存在 (a, a ), k
f (a) f (a) ) f (a) f ( ) 使得 f (a , k k 由于 f ( x) k 0,所以
f (a) f (a) f (a ) f (a) f ( ) k k f (a) f (a) k 0. k
高中数学相关定理及证明
![高中数学相关定理及证明](https://img.taocdn.com/s3/m/9d225c10915f804d2a16c11d.png)
高中数学相关定理、公式及结论证明汉阴中学正弦定理证明内容:在ABC ∆中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin Cc Bb Aa ==证明: 1.利用三角形的高证明正弦定理(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。
由此,得 sin sin abAB=,同理可得sin sin cbCB=,故有 sin sin abAB=sincC=.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC故有=∠sin sin abAABCsin cC =.(3)在ABC Rt ∆中,,sin ,sin cbB c a A ==∴c BbA a ==sin sin , .1sin ,90=︒=C C .sin sin sin Cc B b A a ==∴由(1)(2)(3)可知,在∆ABC 中,sin sin abAB=sin cC=成立.2.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=Rc B C 2sin sin ='=. R Cc2sin =.同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===.3.向量法证明正弦定理a b DAB CAB Cba'cos(90)sin OC AC A b A =-='sin sin OC BC B a B==sin sin a B b A = sin sin a b A B = 同理 sin sin c bC B =故有 sin sin a b A B =sin cC =.余弦定理证明内容:在ABC ∆中,c b a ,,分别为角C B A ,,的对边,则⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 证明:如图在ABC ∆中,))((222a --===cos 22A +∙-=+∙-=A bc c b cos 222-+=同理可证:⎪⎩⎪⎨⎧-+=-+=C ab b a c A bc c b a cos 2cos 2222222 所以⎪⎩⎪⎨⎧-+=-+=-+=Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222222 数列部分内容:{}n a 是等差数列,公差为d ,首项为1a ,n S 为其n 前项和,则2)(2)1(11n n a a n d n n n a S +=-+= 证明:由题意, ))1((.......)2()(1111d n a d a d a a S n -+++++++=① 反过来可写为:))1((.......)2()(d n a d a d a a S n n n n n --++-+-+=②①+②得:2n S个n n a n a n a +++++=111.......所以,2)(1n n a a n S +=③,把d n a a n )1(1-+=代入③中,得2)(2)1(11n n a a n d n n n a S +=-+= 内容:{}n a 是等比数列,公比为q ,首项为1a ,n S 为其n 前项和,则n S =⎪⎩⎪⎨⎧≠--=--=)1(,1)1(1)1(,111q q q a q q a a q na n n证明:112111.......-++++=n n q a q a q a a S ① nn q a q a q a q a qS 131211.......++++=②①—②得:nn q a a S q 11)1(-=-, 当1≠q 时,n S qq a q q a a n n --=--=1)1(1111③把11-=n n q a a 代入③中,得n S qqa a n --=11 当1=q 时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数中的重要定理与公式及其证明(二)在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。
现将后半部分补上。
希望对大家有所帮助。
1)泰勒公式(皮亚诺余项)设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立()()()()200'''()00000()()()()...()2!!nnn x x x x f x f x x x f x f x f x o x x n --⎡⎤=+-++++-⎣⎦【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。
对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)xax x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。
在复习的前期,如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。
但由于证明过程中所用到的方法还是很常用的。
因此把它写在这里。
证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦ 则我们要证明()0()nR x o x x ⎡⎤=-⎣⎦。
由高阶无穷小量的定义可知,需要证明()0()lim0nx x R x x x →=-。
这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得()()()()()1''''()00000100()()()...()1!()limlim n n nn x x x x x x f x f x x x f x f x n R x x x n x x --→→⎡⎤--+-++⎢⎥-⎢⎥⎣⎦=--再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。
不难验证该过程可以一直进行下去,运用过1n -次洛必达法则后我们可以得到()()()()000(1)(1)()00000(1)(1)()000()()()()limlim !()()()lim!!n n n nx x x x n n n x x f x f x x x f x R x n x x x x fx f x f x n x x n --→→--→---=---=--由于()f x 在点0x 处存在n 阶导数,由导数的定义可知()(1)(1)()000()()lim ()n n n x x f x f x f x x x --→-=-代入可得()0()lim0nx x R x x x →=-。
证毕注:这个定理很容易得到如下错误的证明:直接用n 次洛必达法则后得到()()()00()limlim ()()0n n nx x x x R x f x f x x x →→=-=-错误的原因在于定理条件中仅告知了()f x 在点0x 处存在n 阶导数,并没有说明在其它点处的n 阶导数是否存在。
就算其它点处的n 阶导数也存在,()()n fx 也不一定连续,()()0lim ()()0n n x x f x f x →-=也不一定成立。
希望大家注意。
2)泰勒公式(拉格朗日余项)设函数()f x 含有点0x 的某个开区间(,)a b 内有直到1n +阶导数,则对(,)a b 内任意一点x ,都成立()()()200'''()0000()()()()...()()2!!nn n x x x x f x f x x x f x f x f x R x n --=+-++++其中()10(1)()()(1)!n n nx x R x f n ξ++-=+,其中ξ介于x 和0x 之间。
【点评】:同上。
证明:令()()()200'''()00000()()()()()...()2!!nn x x x x R x f x f x x x f x f x f x n ⎡⎤--=-+-+++⎢⎥⎢⎥⎣⎦()110()n n P x x x ++=-则我们需要证明(1)1()()()(1)!n n R x f P x n ξ++=+。
由于010()()0n R x P x +==,因此01110()()()()()()n n n R x R x R x P x P x P x +++-=-易知,1(),()n R x P x +满足柯西中值的条件。
因此,由柯西中值定理可知,在x 和0x 之间存在一点1ξ使得()''011'110111()()()()()()()1()n n n n R x R x R R P x P x P n P ξξξξ+++-==-+而()()10'''''()0000()()()()...()(1)!n n x x R x f x f x x x f x f x n -⎡⎤-=-+-++⎢⎥-⎢⎥⎣⎦ 因此,此时仍然有'00()()0n R x P x ==。
则()'''101110()()()11()(1)()()n n n R R x R n P n P P x ξξξξ-=++-。
易知,'(),()n R x P x 仍满足柯西中值的条件。
因此,由柯西中值定理可知,在1ξ和0x 之间存在一点2ξ使得()()''''''1022'10212()()()()111()()(1)()1()n n n n R R x R R n P P x n P n nP ξξξξξξ--==+-++。
由于1ξ在x 和0x 之间,因此2ξ也在x 和0x 之间。
容易检验,上述过程可以一直进行下去,使用过1n +次柯西公式后即可得到(1)1()()()(1)!n n R x f P x n ξ++=+。
证毕注:在计算极限或确定无穷小量的阶时,一般用到皮亚诺余项的泰勒公式;在做证明题时用拉格朗日余项比较多。
两种泰勒公式的条件是不同的,其中拉格朗日余项的条件更强,结论也更强。
这两个定理的证明,如果基础不太好一时接受不了的话可以先跳过,到下一阶段再看。
3)定积分中值定理设函数()f x 在区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ使得下式成立:()()()baf x dx f b a ξ=-⎰【点评】:积分中值定理是定积分比较定理和闭区间上连续函数的介值定理的推论,它在是证明微积分基本定理的基础,在整个微积分中具有极大的理论意义。
同时,证明题中对该定理的应用也比较常见,通常会和微分中值定理结合使用,考生首先应该熟记该定理的条件和结论。
另外,考试中还出现过与该定理证明方法类似的证明题。
因此,该定理的证明过程也是需要掌握的。
该定理的证明过程教材上有,因为比较重要,也为了方便大家,在这里写一下我的证明过程 证明:由于()f x 在区间[,]a b 上连续,由闭区间上连续函数的最值定理可知:()f x 在区间[,]a b 上可以取到最大与最小值。
设最大值为M ,最小值为m 。
则有[](),,m f x M x a b ≤≤∈。
则有()bb b aaamdx f x dx Mdx ≤≤⎰⎰⎰,也即()()()bam b a f x dx M b a -≤≤-⎰两边同时除以()b a -可得()baf x dx m M b a≤≤-⎰。
可知()b af x dx b a-⎰是介于函数()f x 在区间[,]a b 上的最大值M 和最小值为m 之间的一个数。
由闭区间上连续函数的介值定理可知,()f x 能取到[],m M 上的一切数。
因此在积分区间[,]a b 上存在一点ξ使得:()()baf x dx f b aξ=-⎰。
也即()()()baf x dx f b a ξ=-⎰。
证毕 附:下面是02年数三的一道证明题,证明方法与本定理很类似,大家可以试一试。
【02年数三 6分】: 设函数(),()f x g x 在[],a b 上连续,且()0g x >。
试利用闭区间上连续函数的性质,证明存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰。
4)积分上限函数的导数如果函数()f x 在区间[,]a b 上连续,则变积分上限函数()()xax f t dt Φ=⎰在[,]a b 上可导,并且它的导数是'()()(),xa d x f t dt f x a xb dxΦ==<<⎰ 【点评】:这个定理的重要性不用强调了,考试中也直接考到过它的证明。
由于是对定理的证明,因此要证明()x Φ的导数等于()f x 只能用定义,对于大家强化导数的定义是一个很好的训练。
证明:(),x a b ∀∈由导数的定义可知,本定理等价于证明0()()lim()x x x x f x x∆→Φ+∆-Φ=∆。
而000()()()()()limlim limx xx x xa axx x x f t dt f t dtf t dtx x x xxx+∆+∆∆→∆→∆→-Φ+∆-Φ==∆∆∆⎰⎰⎰由于()f x 在区间[,]a b 上连续,因此由定积分中值定理可知:存在介于x 与x x +∆之间的ξ使得()()x xxf t dt xf ξ+∆=∆⎰,则00()()limlim ()x x x x x f xξ∆→∆→Φ+∆-Φ=∆。
由于ξ介于x 与x x +∆之间,因此当0x ∆→时,x ξ→。
又由于()f x 在区间[,]a b 上连续,可知0lim ()lim ()()x f f f x ξξξ∆→→==。
也即0()()lim()x x x x f x x∆→Φ+∆-Φ=∆。
由导数的定义可知'()()(),x a d x f t dt f x a x b dxΦ==<<⎰。
证毕5)牛顿—莱布尼兹公式如果函数()F x 是连续函数()f x 在区间[,]a b 上的一个原函数,则()()()baf x dx F b F a =-⎰【点评】:牛顿-莱布尼兹公式又名微积分基本定理,是因为它用一个简单的公式就成功地联系起了微积分中最重要的两个概念:微分和积分,极大地简化了定积分的计算。
它是微积分最核心的定理之一,其简洁明了的形式也使它被认为是微积分几百年研究历史中最漂亮的结论之一!该定理和上一个定理实际上是等价的,只需要用到一个函数在同一区间上的不同原函数间仅相差一个常数。