第十七届全国高中生物理竞赛复赛试题及答案
高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。
一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。
平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。
若让其继续作等温膨胀,使体积再次加倍。
试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。
假定空气和水蒸气均可以当作理想气体处理。
二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。
1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。
三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。
圆环处于超导状态,环内电流为100A 。
经过一年,经检测发现,圆环内电流的变化量小于610A -。
试估算该超导材料电阻率数量级的上限。
提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。
四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。
双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。
一般双星系统距离其他星体很远,可以当作孤立系统处理。
现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。
他们正绕两者连线的中点作圆周运动。
1. 试计算该双星系统的运动周期T 计算。
2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。
为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。
第十七届全国中学生物理竞赛复赛试题+答案-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
物理竞赛复赛试题

物理竞赛复赛试题一、选择题(每题3分,共30分)1. 一个物体在水平面上以恒定速度运动,其动能的变化情况是:A. 逐渐增加B. 逐渐减少C. 不变D. 先增加后减少2. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力可以是不同性质的力C. 作用力和反作用力作用在同一个物体上D. 作用力和反作用力可以同时消失3. 一个理想气体在等压过程中,其温度和体积的关系是:A. 温度和体积成正比B. 温度和体积成反比C. 温度和体积无关D. 温度随体积的增加而减少4. 根据麦克斯韦方程组,以下描述正确的是:A. 电场总是由电荷产生B. 磁场可以由变化的电场产生C. 电场和磁场总是相互独立D. 电荷的存在必然伴随着磁场5. 一个物体从静止开始自由下落,其下落过程中的加速度是:A. 恒定的B. 逐渐增加C. 逐渐减少D. 先增加后减少6. 光的双缝干涉实验中,相邻明条纹之间的距离与以下哪个因素无关?A. 双缝间距B. 光的波长C. 观察屏与双缝的距离D. 光源的强度7. 根据热力学第一定律,以下说法正确的是:A. 能量可以在不同形式之间转换,但总量不变B. 能量守恒定律只适用于封闭系统C. 能量守恒定律不适用于开放系统D. 能量可以被创造或消失8. 一个物体在斜面上下滑,摩擦力对其做功的情况是:A. 总是做正功B. 总是做负功C. 有时做正功,有时做负功D. 从不对外做功9. 根据相对论,以下说法正确的是:A. 时间是绝对的B. 质量随着速度的增加而增加C. 长度随着速度的增加而增加D. 光速在所有惯性参考系中都是相同的10. 在电路中,欧姆定律描述的是:A. 电流与电压成正比,与电阻成反比B. 电流与电阻成正比,与电压成反比C. 电压与电流成正比,与电阻无关D. 电阻与电流成正比,与电压无关二、填空题(每题2分,共20分)11. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的________成反比。
第十七届全国中学生物理竞赛复赛试题+答案

第十七届全国中学生物理竞赛复赛试题一、在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度l=76cm,管内封闭有n=1.0×10-3mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1,普适气体常量R=8.31J·(mol·K)-1图1二、如图1所示,在真空中有一个折射率为n(n>n0,n0为真空的折射率),半径为r的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC传播,直线BC与小球球心O的距离为l(l<r),光束于小球体表面的点C经折射进入小球(小球成为光传播的介质),并于小球表面的点D又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小.三、1995年,美国费米国家实验室CDF实验组和DO实验组在质子反质子对撞机TEVATRON的实验中,观察到了顶夸克,测得它的静止质量m1=1.75×1011eV/c2=3.1×10-25kg,寿命τ=0.4×10-24s,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为U(r)=-k(4as/3r),式中r是正、反顶夸克之间的距离,as=0.12是强相互作用耦合常数,k是与单位制有关的常数,在国际单位制中k=0.319×10-25J·m.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离r0.已知处于束缚态的正、反夸克粒子满足量子化条件,即2mv(r0/2)=n(h/2π),n=1,2,3……式中mv(r0/2)为一个粒子的动量mv与其轨道半径r0/2的乘积,n为量子数,h=6.63×10-34J·s为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T.你认为正、反顶夸克的这种束缚态能存在吗?四、宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为v0,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:(1)当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,已使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;(2)飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;(3)小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为E1.如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,已使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用E2表示,问E1/E2为多少?图2五、如图2所示,在真空中建立一坐标系,以水平向右为x轴正方向,竖直向下为y轴正方向,z轴垂直纸面向里.在0≤y≤L的区域内有匀强磁场,L=0.80m,磁场的磁感强度的方向沿z轴的正方向,其大小B=0.10T.今把一荷质比q/m=50C·kg-1的带正电质点在x=0,y=-0.20m,z=0处静止释放,将带电质点过原点的时刻定为t=0时刻,求带电质点在磁场中任一时刻t的位置坐标.并求它刚离开磁场时的位置和速度.(取重力加速度g=10m·s-2)六、普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A和包层B组成,B的折射率小于A的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A和包层B的分界面上发生多次全反射.现在利用普通光纤测量流体F的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O,经端面折射进入光纤,在光纤中传播.由点O出发的光束为圆锥形,已知其边缘光线和轴的夹角为α0,如图3甲所示.最后光从另一端面出射进入流体F.在距出射端面h1处放置一垂直于光纤轴的毛玻璃屏D,在D上出现一圆形光斑,测出其直径为d1,然后移动光屏D至距光纤出射端面h2处,再测出圆形光斑的直径d2,如图3乙所示.图31.若已知A和B的折射率分别为nA与nB,求被测流体F的折射率nF的表达式.2.若nA、nB和α0均为未知量,如何通过进一步的实验以测出nF的值?参考答案一、解:设玻璃管内空气柱的长度为h,大气压强为p0,管内空气的压强为p,水银密度为ρ,重力加速度为g,由图4知p+(l-h)ρg=p0,①根据题给的数据,可知p0=lρg,得p=ρgh,②若玻璃管的横截面积为S,则管内空气的体积为V=Sh,③由②、③式,得p=(V/S)ρg,④即管内空气的压强与其体积成正比,由克拉珀龙方程pV=nRT,得ρg(V2/S)=nRT,⑤由⑤式可知,随着温度降低,管内空气的体积变小,根据④式可知管内空气的压强也变小,压强随体积的变化关系为p-V图上过原点的直线,如图5所示.在管内气体的温度由T1降到T2的过程中,气体的体积由V1变到V2,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有图4 图5W=(1/2)ρg((V1/S)+(V2/S))(V1-V2)=ρg(V12-V22)/2S,⑥管内空气内能的变化为ΔU=nCV(T2-T1),⑦设Q为外界传给气体的热量,则由热力学第一定律W+Q=ΔU,有Q=ΔU-W,⑧由⑤、⑥、⑦、⑧式代入得Q=n(T2-T1)(CV+(1/2)R),⑨代入有关数据得Q=-0.247J,Q<0,表示管内空气放出热量,故空气放出的热量为Q′=-Q=0.247J.(10)二、解:在由直线BC与小球球心O所确定的平面中,激光光束两次折射的光路BCDE如图6所示,图中入射光线BC与出射光线DE的延长线交于点G,按照光的折射定律有图6n0sinα=nsinβ,①式中α与β分别是相应的入射角和折射角,由几何关系还可知sinα=l/r.②激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p和p′相等,即p=hν/c=p′,③式中c为真空中的光速,h为普朗克常量.因射入小球的光束中光子的动量p沿BC方向,射出小球的光束中光子的动量p′沿DE方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知2θ=2(α-β).④若取线段GN1的长度正比于光子动量p,GN2的长度正比于光子动量p′,则线段N1N2的长度正比于光子动量的改变量Δp,由几何关系得Δp=2psinθ=2(hν/c)sinθ,⑤△GN1N2为等腰三角形,其底边上的高GH与CD平行,故光子动量的改变量Δp的方向沿垂直CD的方向,且由G指向球心O.光子与小球作用的时间可认为是光束在小球内的传播时间,即Δt=2rcosβ/(cn0/n),⑥式中cn0/n是光在小球内的传播速率,按照牛顿第二定律,光子所受小球平均作用力的大小为f=Δp/Δt=n0hνsinθ/nrcosβ,⑦按照牛顿第三定律,光子对小球的平均作用力大小F=f,即F=n0hνsinθ/nrcosβ,⑧力的方向由点O指向点G.由①、②、④及⑧式,经过三角函数关系运算,最后可得F=(n0lhν/nr2)(1-).⑨三、解:1.相距为r的电量为Q1与Q2的两点电荷之间的库仑力FQ与电势能UQ公式为FQ=k(Q1Q2/r2),UQ=-k(Q1Q2/r),①现在已知正反顶夸克之间的强相互作用势能为U(r)=-k(4as/3r),根据直接类比可知,正反顶夸克之间的强相互作用力为F(r)=-k(4as/3r2),②设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v,因二者相距r0,二者所受的向心力均为F(r0),二者的运动方程均为m1v2/(r0/2)=k(4as/3r02).③由题给的量子化条件,粒子处于基态时,取量子数n=1,得2m1v(r0/2)=h/2π.④由③与④两式,解得r0=3h2/8π2m1ask,⑤代入数据得r0=1.4×10-17m.⑥2.由③、④两式,可得v=(π/h)(k4as/3),⑦由v和r0可算出正反顶夸克做匀速圆周运动的周期T为T=2π(r0/2)/v=h3/2π2m1(k4as/3)2,⑧代入数值得T=1.8×10-24s,⑨由此可知τ/T=0.22.(10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.四、解:1.设太阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R.根据所设计的方案,可知飞行器是从其原来的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的,该椭圆既与飞行器原来的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短的时间内,由v0变为某一值u0.设飞行器椭圆轨道达小行星轨道到时的速度为u,因大小为u0和u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律,得u0R=6uR,①由能量关系,有(1/2)mu02-G(M0m/R)=(1/2)mu2-G(M0m/6R),②由牛顿万有引力定律,有G(M0m/R2)=m(v02/R),或v0=.③解①、②、③式,得u0=v0,④u=v0.⑤设小行星绕太阳运动的速度为v,小行星的质量M,由牛顿万有引力定律,有GM0M/(6R)2=Mv2/6R,得v=v0,⑥可以看出v>u.⑦由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道外时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击.可以把小行星看做是相对静止的,飞行器以相对速度为v-u射向小行星,由于小行星的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速率v-u弹离,即碰撞后,飞行器相对小行星的速度的大小为v-u,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为u1=v+v-u=2v-u,或将⑤、⑥式代入得u1=(v0.⑧如果飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,则有(1/2)mu22-G(M0m/6R)=0,得u2=v0,⑨可以看出u1=v0=u2.(10)飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系.2.为使飞行器能进入椭圆轨道,发动机应使飞行器的速度由v0增加到u0,飞行器从发动机取得的能量E1=(1/2)mu02-(1/2)mv02=(1/2)m(12/7)v02-(1/2)mv02=(5/14)mv02.(11)若飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有的最小速度为u3,则有(1/2)mu32-G(M0m/R)=0,由此得u3=v0.(12)飞行器的速度由v0增加到u3,应从发动机获取的能量为E2=(1/2)mu32-(1/2)mv02=(1/2)mv02,(13)所以E1/E2=(5/14)mv22/(1/2)mv22=0.71.(14)五、解法一:带电质点静止释放时,受重力作用做自由落体运动,当它到达坐标原点时,速度为v1==2.0m·s-1,①方向竖直向下.带电质点进入磁场后,除受重力作用外,还受到洛伦兹力作用,质点速度的大小和方向都将变化,洛伦兹力的大小和方向亦随之变化.我们可以设想,在带电质点到达原点时,给质点附加上沿x轴正方向和负方向两个大小都是v0的初速度,由于这两个方向相反的速度的合速度为零,因而不影响带电质点以后的运动.在t=0时刻,带电质点因具有沿x轴正方向的初速度v0而受洛伦兹力f1的作用,即f1=qv0B,②其方向与重力的方向相反.适当选择v0的大小,使f1等于重力,即qv0B=mg,③v0=g/(q/m)B=2.0m·s-1,④只要带电质点保持④式决定的v0沿x轴正方向运动,f1与重力的合力永远等于零.但此时,位于坐标原点的带电质点还具有竖直向下的速度v1和沿x轴负方向的速度v0,二者的合成速度大小为v==2.8m·s-1,⑤方向指向左下方,设它与x轴的负方向的夹角为α,如图7所示,则tgα=v1/v0=1,α=π/4,⑥图7因而带电质点从t=0时刻起的运动可以看做是速率为v0,沿x轴的正方向的匀速直线运动和在xOy平面内速率为v的匀速圆周运动的合成.圆周半径为R=mv/qB=0.56m.⑦带电质点进入磁场瞬间所对应的圆周运动的圆心O′位于垂直于质点此时速度v的直线上,由图7可知,其坐标为xO′=Rsinα=0.40m,⑧yO′=Rcosα=0.40m.圆周运动的角速度为ω=v/R=5.0rad·s-1.⑨由图7可知,在带电质点离开磁场区域前的任何时刻t,质点位置的坐标为x=v0t-[Rsin(ωt+α)-xO′],(10)y=yO′-Rcos(ωt+α),(11)式中v0、R、ω、α、xO′、yO′已分别由④、⑦、⑨、⑥、⑧各式给出.带电质点到达磁场区域下边界时,y=L=0.80m,代入(11)式,再代入有关数值,解得t=0.31s,(12)将(12)式代入(10)式,再代入有关数值,得x=0.63m,(13)所以带电质点离开磁场下边界时的位置的坐标为x=0.63m,y=0.80m,z=0.(14)带电质点在磁场内的运动可分解成一个速率为v的匀速圆周运动和一个速率为v0的沿x轴正方向的匀速直线运动,任何时刻t,带电质点的速度v′便是匀速圆周运动速度v与匀速直线运动的速度v0的合速度.若圆周运动的速度在x方向和y方向的分量为vx′、vy′,则质点合速度在x方向的分速度分别为vx′=vx+v0,(15)vy′=vy.(16)虽然=v,v由⑤式决定,其大小是恒定不变的,v0由④式决定,也是恒定不变的,但在质点运动过程中因v的方向不断变化,它在x方向和y方向的分量vx和vy都随时间变化,因此vx′和vy′也随时间变化,取决于所考察时刻质点做圆周运动速度的方向,由于圆周运动的圆心的y坐标恰为磁场区域宽度的一半,由对称性可知,带电质点离开磁场下边缘时,圆周运动的速度方向应指向右下方,与x轴正方向夹角α′=π/4,故代入数值得vx=vcosα′=2.0m·s-1,vy=vsinα′=2.0m·s-1,将以上两式及⑤式代入(15)、(16)式,便得带电质点刚离开磁场区域时的速度分量,它们分别为vx′=4.0m·s-1,(17)vy′=2.0m·s-1,(18)速度大小为v′==4.5m·s-1,(19)设v′的方向与x轴的夹角为β,如图8所示,则tgβ=vy′/vx′=1/2,得β=27°.(20)图8解法二:若以带电质点到达坐标原点O的时刻作为起始时刻(t=0),则质点的初速度为v1==2.0m·s-1,①方向沿y轴正方向.进入磁场区后,带电质点将受到洛伦兹力作用,洛伦兹力在x方向的分力取决于质点在y方向的分速度,因此质点动量在x方向的分量的增量为mΔvx=qvyBΔt=qΔyB,②Δy是带电质点在Δt时间内沿y方向的位移,质点在磁场中运动的整个过程中,此式对每一段Δt时间都成立,所以在t=0到t=t时间内x方向的分量的改变为mvx-mv0x=qB(y-y0),因初始时刻(t=0),带电质点在x轴方向的动量mv0x为零,其位置在原点,y0=0,因而得mvx=qyB,即vx=(qB/m)y.③当带电质点具有x方向的速度后,便立即受到沿y负方向的洛伦兹力的作用.根据牛顿第二定律,在y方向上有加速度ay,则may=mg-qvxB,④将③式代入④式,得may=-[(qB)2/m](y-(m2/q2B2)g),⑤令y′=y-D,⑥式中D=m2g/(qB)2=g/(q/m)2B2=0.40m,⑦即在y方向作用于带电质点的合力Fy=-ky′,其中k=q2B2/m,Fy是准弹性力,在Fy作用下,带电质点在y′方向的运动是简谐运动,其振动的圆频率为ω==5.0rad·s-1,⑧y′随时间变化的规律为y′=Acos(ωt+φ0),⑨或y=Acos(ωt+φ0)+D,(10)图9A与φ0是待求的常量,质点的简谐运动可以用参考圆来描写,以所考察的简谐运动的振幅A为半径作一圆,过圆心O1作一直角坐标x′O1y′.若有质点M沿此圆周做匀速率圆周运动,运动的角速度等于所考察简谐运动的角频率ω,且按逆时针方向转动,在t=0时刻,点M的在圆周上的位置恰使连线O1M与y′轴的夹角等于⑨式中的常量φ0,则在任意时刻t,点O1与点M的连线与y′轴的夹角等于ωt+φ0,于是连线O1M在y′轴上的投影即为⑨式所示的简谐运动,将x′轴平行下移D=0.40m,连线O1M在y轴的投影即如(10)式所示(参看图9所示),点M做圆周运动的速度大小v=Aω,方向与O1M垂直,速度v的y分量就是带电质点沿y轴做简谐运动的速度,即vy=-Aωsin(ωt+φ0),(11)(10)和(11)两式中的A和φ0可由下面的方法求得:因为已知在t=0时,带电质点位于y=0处,速度vy=v1,把这个条件代入(10)式与(11)式,得Acosφ0+D=0,v1=-Aωsinφ0.解上面两式,结合①、⑧式,注意到振幅A总是正的,故得φ0=5π/4,(12)A=0.56m.(13)把(10)式代入③式,便得带电质点沿x轴运动的速度为vx=ωD+Aωcos(ωt+φ0),(14)(14)式表示带电质点在x方向上的速度是由两个速度合成的,即沿x方向的匀速运动速度ωD和x方向的简谐运动速度Aωcos(ωt+φ0)的合成,带电质点沿x方向的简谐运动匀速运动的位移为x′=ωDt.(15)由沿x方向的简谐振动速度Aωcos(ωt+φ0)可知,沿x方向振动位移的振幅等于速度的最大值与角频率的比值(参看图8),即等于A.由参考圆方法可知,沿x方向的振动的位移x″具有如下的形式,即Acos(ωt+φ0-(π/2))=Asin(ωt+φ0),它可能是x″=Asin(ωt+φ0),亦可能是x″-b=Asin(ωt+φ0).在本题中,t=0时刻,x应为零,故前一表示不符合题意.后一表示式中,b应取的值为b=-Asinφ0,故有x″=-Asinφ0+Asin(ωt+φ0).(16)带电质点在x方向的合位移x=x′+x″,由(15)、(16)式,得x=ωDt-Asinφ0+Asin(ωt+φ0).(17)(17)、(10)、(14)和(11)式分别给出了带电质点在离开磁场区域前任何时刻t的位置坐标和速度的x分量和y分量,式中常量ω、A、φ0、D已分别由⑧、(13)、(12)和⑦式给出.当带电质点达到磁场的下边界时,有y=L=0.80m,(18)将与(10)式有关的数据代入,可解得t=0.31s,(19)代入(17)式,得x≈0.63m,(20)将(19)式分别代入(14)、(11)式,得vx=4.0m·s-1,vy=2.0m·s-1,速度大小为v==4.5m·s-1,(21)速度方向为α=arctg(vy/vx)=27°.(22)图10六、1.由于光纤内所有光线都从轴上的点O出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图10为纵剖面内的光路图,设由点O发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i.该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α.若该光线折射后的折射角为θ,则由几何关系和折射定律可得i+α=90°,①nAsinα=nFsinθ.②当i大于全反射临界角iC时将发生全反射,没有光能损失,相应的光线将以不变的光强射向出射端面,而i<iC的光线则因在发生反射时有部分光线通过折射进入B,反射光强随着反射次数的增大而越来越弱,以致在未到达出射端面之前就已经衰减为零了.因而能射向出射端面的光线的i的数值一定大于或等于iC,iC的值由下式决定,即nAsiniC=nB,③与iC对应的α值为αC=90°-iC,④当α0>αC时,即sinα0>sinαC=cosiC=时,或nAsinα0>时,由点O发出的光束中,只有α≤αC的光线才满足i≥iC的条件,才能射向端面,此时出射端面处α的最大值为αmax=αC=90°-iC.⑤若α0<αC,即nAsinα0<时,则由点O发出的光线都能满足i>iC的条件,因而都能射向端面,此时出射端面处α的最大值为αmax=α0.⑥端面处入射角α最大时,折射角θ也达最大值,设为θmax,由②式可知nFsinθmax=nAsinαmax.⑦由⑥、⑦式可得,当α0<αC时,有nF=nAsinα0/sinθmax,⑧当α0≥αC时,由③至⑦式可得,nF=nAcosiC/sinθmax=/sinθmax,⑨θmax的数值可由图11上的几何关系求得sinθmax=((d2-d1)/2)/.(10)图11于是当α0<αC时,nF的表达式应为nF=nAsinα0(/((d2-d1)/2),(11)当α0≥αC时,有nF=(/((d2-d1)/2).(12)2.可将输出端介质改为空气,光源保持不变,按同样手续再做一次测量,可测得h1′、h2′、d1′、d2′,这里打撇的量与前面未打撇的量意义相同.已知空气的折射率等于1,故有当α0<αC时,有1=nAsinα0/((d2′-d1′)/2),(13)当α0≥αC时,有1=(/((d2′-d1′)/2),(14)将(11)、(12)两式分别与(13)、(14)式相除,均得nF=((d2′-d1′)/(d2-d1))(/).(15)此结果适用于α0为任何值的情况.。
第17届全国中学生物理竞赛预赛试卷含答案

第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。
一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。
与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。
图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。
2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。
二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为0 2.0N T =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚 3.0 cm ,折射率 1.5n =。
第17届全国中学生物理竞赛预赛试卷含答案

第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。
一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。
与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。
图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。
2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。
二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为0 2.0N T =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚 3.0 cm ,折射率 1.5n =。
最新武汉第17届全国中学生物理竞赛决赛试题及答案资料

第十七届全国中学生物理竞赛决 赛 试 题一、(30分)近来一种新型的定点起重设备“平衡吊”被广泛应用于几十到几百千克工件的频繁吊运,其结构的示意图如图决17-1所示。
平衡吊主要由传动、杆系、回转座和立柱组成。
杆系是由ABD 、DEF 、BC 、CE 四杆铰接组成的四连杆机构,DECB 在任何情况下都是一个平行四边形。
杆系的A 处是一水平的转轴,通过电机可控制转轴,使之固定的竖直槽内的不同位置,从而调节挂在绞接于F 处吊钩上的重物的高度。
杆ABD 可绕转轴A 在竖直平面内无摩擦地转动。
杆系的C 点是能在光滑的水平槽上滑动的铰链,杆BC 和EC 都可绕C 点在竖直平面内转动。
绕铰链转动的摩擦均忽略不计。
下面用l 1表示AD 的长度,l 2表示AB 的长度,l 3表示DF 的长度,l 4表示BC 的长度。
(1)若将各杆都视为轻质(无自重)刚体,且无图中配重物时,试论证l 1、l 2、l 3、l 4应满足什么关系才能使平衡吊的吊钩(包括所吊的重物)位于同一水平面上的不同位置时平衡吊都能处于平衡状态。
(2)若考虑各杆的自重,为使平衡吊的吊钩(包括所吊的重物)位于同一水平面上不同位置时平衡吊都能处于平衡状态,必须在杆ABD 的另一端P 处加上配重物,P 点距A 轴的距离为l P 。
设配重物受到的重力大小为GP ,杆的AD 段、DF 段、BC 段、CE 段受到的重力的大小分别为G 1、G 3、G 4和G 5,不计杆的AP 段所受的重力。
问当杆长l 1、l 2、l 3、l 4和l P 已知,且取l 1= l 3、l 2=l 4时配重的大小G P 为多少?二、(共30分)太阳风是从太阳大气外层(称为日冕)不断向星际空间发射的稳定的、由相同数目的质子和电子构成的带电粒子流,它使太阳每年减少的质量相对于太阳质量M S 可忽略不计。
观测表明,太阳风的速度的大小v 随着与太阳中心的距离r 的增加而增大。
现提出一简单的模型来解释太阳风的速度变化的机制:假定日冕中的大量电子可视为理想气体;日冕中的电子气是等温(温度为T )的、各向同性的,以球对称的速率v (r )(太阳风的速率)向外膨胀;太阳风中质子的定向运动速度比电子的小得多,太阳风的速度其实是电子定向运动的速度,太阳风可解释为日冕中的电子气向外的等温膨胀。
第17届全国中学生物理竞赛复赛题参考解答

1第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管内空气柱的长度为h ,大气压强为0p ,管内空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知0()p l h g p ρ+-= (1)根据题给的数据,可知0p l g ρ=,得p gh ρ= (2)若玻璃管的横截面积为S ,则管内空气的体积为V Sh = (3)由(2)、(3)式得V p g S ρ= (4) 即管内空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管内空气的体积变小,根据(4)式可知管内空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管内气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)1管内空气内能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9) 代入有关数据得0.247J Q =-0Q <表示管内空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10)评分标准:本题20分(1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。
二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1)式中α与β分别是相应的入射角和折射角,由几何关系还可知sin l rα= (2)1激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p c ν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4) 若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球内的传播时间,即02cos /r t cn nβ∆= (6) 式中0/cn n 是光在小球内的传播速率。
第十七届全国中学生物理竞赛

第十七届全国中学生物理竞赛复 赛 试 卷全卷共六题,总分为140分。
一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口。
已知槽中水银液面以上的那部分玻璃管的长度l = 76 cm ,管内封闭有n = 1.0×310-mol 的空气。
保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能U = V C T ,其中T 为绝对温度,常量V C = 20.5 J ·1)K mol (-⋅,普适气体恒量R = 8.31 J ·1)K mol (-⋅二、(20分)如图复17-2所示,在真空中有一个折射率为n (n >0n ,0n 为真空的折射率)、半径为r 的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l ( l <r ),光束于小球体表面的C 点经折射进入小球(小球成为光传播的媒质),并于小球表面的D 点又经折射进入真空。
设激光束的频率在上述两次折射后保持不变。
求在两次折射过程中激光束中一个光子对小球作用的平均力的大小。
三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV ATRON 的实验中,观察到了顶夸克,测得它的静止质量τm = 1.75×1110eV/2c = 3.1×2510-kg ,寿命τ= 0.4×2410-s ,这是近十几年来粒子物理研究最重要的实验进展之一。
1、正反顶夸克之间的强相互作用势能可写为V (r )= - K r3a4s ,式中r 是正反顶夸克之间的距离,s a = 0.12是强相互作用耦合常数,K 是与单位制有关的常数,在国际单位制中K = 0.319×2510-J ·m 。
为估算正反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用于下绕它们连线的中点做匀速圆周运动。
全国高中生物理竞赛复赛试题含答案

全国中学生物理竞赛复赛试卷、参考答案全卷共六题,总分140分。
一、(22分)有一放在空气中的玻璃棒,折射率n= 1.5 ,中心轴线长L= 45cm,一端是半径为R1= 10cm的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度φ1时,从棒射出的平行光束与主光轴成小角度φ2,求φ2/φ1(此比值等于此玻璃棒望远系统的视角放大率).解:1.对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图18-2-6所示,图中C1为左端球面的球心.图18-2-6由正弦定理、折射定律和小角度近似得(-R1)/R1=sinr1/sin(i1-r1)≈r1/(i1-r1)=1/((i1/r1)-1)≈1/(n-1),...①即..(/R1)-1=1/(n-1)....②光线PF1射到另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心C2一定在端面顶点B的左方,C2B等于球面的半径R2,如图18-2-6所示.仿照上面对左端球面上折射的关系可得(/R2)-1=1/(n-1),...③又有=L-,④由②、③、④式并代入数值可得R2=5cm.则右端为半径等于5cm的向外凸的球面.图18-2-7.设从无限远处物点射入的平行光线用①、②表示,令①过C1,②过A,如图18-2-7所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点.现在求M点的位置,在△AC1M中,有/sin(π-φ1)=/sinφ1=R1/sin(φ1-φ1′),又..nsinφ1′=sinφ1,已知φ1、φ1′均为小角度,则有/φ1=R1/φ1(1-(1/n)).与②式比较可知,≈,即M位于过F1垂直于主光轴的平面上.上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线.容易看出,从M射出C2的光线将沿原方向射出,这也就是过M点的任意光线(包括光线①、②)从玻璃棒射出的平行光线的方向,此方向与主光轴的夹角即为φ2,由图18-2-7可得/φ1=/=(-R1)/(-R2),由②、③式可得(-R1)/(-R2)=R1/R2,则φ2/φ1=R1/R2=2.二、(22分)正确使用压力锅的方法是:将已盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气已全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度).现有一压力锅,在海平面处加热能达到的预期温度为120℃,某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀,此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.已知:水的饱和蒸气压pW(t)与温度t的关系图线如图18-2-2所示.大气压强p(z)与高度z的关系的简化图线如图18-2-3所示.当t=27℃时,pW(27°)=3.6×103Pa;z= 0处,p(0)= 1.013×105Pa.解:1.由图18-2-8知在海平面处,大气压强p(0)=101.3×103Pa.在z=5000m时,大气压强为p(5000)=53×103Pa.图18-2-8图18-2-9此处水沸腾时的饱和蒸气压pW应等于此值.由图18-2-9可知,对应的温度即沸点为t2=82℃.达到此温度时,锅内水开始沸腾,温度不再升高,故在5000m高山上,若不加盖压力锅,锅内温度最高可达82℃..由图18-2-9可知,在t=120℃时,水的饱和蒸气压pW(120°)=198×103Pa,而在海平面处,大气压强p(0)=101×103Pa.可见压力阀的附加压强为pS=pW(120°)-p(0)=(198×103-101.3×103)Pa=96.7×103Pa.在5000m高山上,大气压强与压力阀的附加压强之和为p′=pS+p(5000)=(96.7×103+53×103)Pa=149.7×103Pa.若在t=t2时阀被顶起,则此时的pW应等于p′,即pW=p′,由图18-2-9可知t2=112℃.此时锅内水开始沸腾,温度不再升高,故按正确方法使用此压力锅,在5000m高山上锅内水的温度最高可达112℃..在未按正确方法使用压力锅时,锅内有空气,设加压力阀时,内部水蒸汽已饱和.由图18-2-9可知,在t=27℃时,题中已给出水的饱和蒸气压pW(27°)=3.6×103Pa,这时锅内空气的压强(用pa表示)为pa(27°)=p(5000)-pW(27°)=(53×103-3.6×103)Pa=49.4×103Pa.当温度升高时,锅内空气的压强也随之升高,设在温度为t(℃)时,锅内空气压强为pa(t),则有pa(t)/(273+t)=pa(27℃)/(273+27),pa(t)=(164.7t+45.0×103)Pa.若在t=t′时压力阀刚好开始被顶起,则有pW(t′)+pa(t′)=p′,由此得pW(t′)=p′-pa(t′)=(105×103-164.7t′)Pa,画出函数p′-pa(t′)的图线,取t=0℃,有..p′-pa(0℃)=105×103Pa,取t=100℃,有.p′-pa(100℃)=88.6×103Pa.由此二点便可在图18-2-9上画出此直线,此直线与图18-2-9中的pW(t)-t曲线的交点为A,A即为所求的满足上式的点,由图可看出与A点对应的温度为t′=97℃.即在压力阀刚开始被顶起时,锅内水的温度是97℃,若继续加热,压力阀被顶起后,锅内空气随水蒸汽一起被排出,最终空气排净,锅内水温仍可达112℃.三、(22分)有两个处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.已知:碰撞后二者的速度vA和vB在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度v0至少需要多大(以m/s表示)?已知电子电量e= 1.602×10-19C,质子质量为mp= 1.673×10-27kg,电子质量为me= 0.911×10-31kg,氢原子的基态能量为E1=-13.58eV.解:为使氢原子从基态跃迁到激发态,需要能量最小的激发态是n=2的第一激发态.已知氢原子的能量与其主量子数的平方成反比.即En=k1/n2,...①又知基态(n=1)的能量为-13.58eV,即E1=k1/12=-13.58eV,所以..k=-13.58eV.n=2的第一激发态的能量为E2=k1/22=-13.58×(1/4)=-3.39eV....②为使基态的氢原子激发到第一激发态所需能量为E内=E2-E1=(-3.39+13.58)eV=10.19eV....③这就是氢原子从第一激发态跃迁到基态时发出的光子的能量,即hν=E内=10.19eV=10.19×1.602×10-19J=1.632×10-18J....④式中ν为光子的频率,从开始碰到发射出光子,根据动量和能量守恒定律有mv0=mvA+mvB+光子的动量,...⑤(1/2)mv02=(1/2)m(vA2+vB2)+hν,...⑥光子的动量pν=hν/c.由⑥式可推得mv0>2hν/v0,因为v0<<c,所以mv0>>hν/c,故⑤式中光子的动量与mv0相比较可忽略不计.⑤式变为mv0=mvA+mvB=m(vA+vB),⑦符合⑥、⑦两式的v0的最小值可推求如下:由⑥式及⑦式可推得(1/2)mv02=(1/2)m(vA+vB)2-mvAvB+hν=(1/2)mv02-mvA(v0-vA)+hν,mvA2-mvAv0+hν=0,经配方得m(vA-(1/2)v0)2-(1/4)mv02+hν=0,(1/4)mv02=hν+m(vA-(1/2)v0)2,...⑧由⑧式可看出,当vA=(1/2)v0时,v0达到最小值v0min,此时vA=vB,v0min=2,代入有关数值,得v0min=6.25×104m/s.答:B原子的速度至少应为6.25×104m/s.四、(22分)如图18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B随时间t变化,B=B0-kt(k为大于零的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内.圆环的半径为R,电阻为r,相交点的电接触良好,两个环的接触点A与C间的劣弧对圆心O的张角为60°,求t=t0时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.解:1.求网络各支路的电流.因磁感应强度大小随时间减少,考虑到电路的对称性,可设两环各支路的感应电流I1、I2的方向如图18-2-10所示,对左环电路ADCFA,有图18-2-10.E=I1rCFA+I2rADC,因..rCFA=5r/6,rADC=r/6,E=kπR2,故..kπR2=I1(5r/6)+I2(r/6)....①因回路ADCEA所围的面积为((2π-3)/12)R2,故对该回路有k[2((2π-3)/12)R2]=2I2(r/6),解得..I2=((2π-3)R2/2r)k,代入①式,得.I1=((10π+3)R2/10r)k..求每个圆环所受的力.图18-2-11先求左环所受的力,如图18-2-11所示,将圆环分割成很多小圆弧,由左手定则可知,每段圆弧所受的力的方向均为径向,根据对称性分析,因圆弧PMA与圆弧CNQ中的电流方向相反,所以在磁场中受的安培力相互抵消,而弧PQ与弧AC的电流相对x轴上下是对称的,因而每段载流导体所受的安培力在y方向的合力为零,以载流导体弧PQ上的线段Δl′为例,安培力ΔF为径向,其x分量的大小表示为|ΔFx|=I1BΔl′cosα,因..Δl′cosα=Δl,故..|ΔFx|=I1BΔl,|Fx|=ΣI1BΔl=I1B=I1BR.由于导体弧PQ在y方向的合力为零,所以在t0时刻所受安培力的合力F1仅有x分量,即F1=|Fx|=I1BR=((10π+3)R2/10r)kBR=((10π+3)R2/10r)k(B0-kt0)R,方向向左.同理,载流导体弧AC在t0时刻所受的安培力为F2=I2BR=((2π-3)R2/2r)kBR=((2π-3)R2/2r)k(B0-kt0)R,方向向右.左环所受的合力大小为F=F1-F2=(9/5r)k(B0-kt0)R3.方向向左.五、(25分)如图18-5所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压U= 90V的电池的正极相连,电池负极接地.在球壳外A点有一电量为q1=10×10-9C的点电荷,B点有一电量为q2=16×10-9C的点电荷.点O、A之间的距离d1= 20cm,点O、B之间的距离d2= 40cm.现设想球壳的半径从a= 10cm开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?已知静电力常量k=9×109N·m2/C2.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触..解:分以下几个阶段讨论:.由于球壳外空间点电荷q1、q2的存在,球壳外壁的电荷分布不均匀,用σ表示面电荷密度.设球壳半径a=10cm时球壳外壁带的电量为Q1,因为电荷q1、q2与球壳外壁的电量Q1在球壳内产生的合场强为零,球壳内为电势等于U的等势区,在导体表面上的面元ΔS所带的电量为σΔS,它在球壳的球心O处产生的电势为ΔU1=kσΔS/a,球壳外壁所有电荷在球心O产生的电势U1为U1=ΣΔU1=kΣσΔS/α=kQ1/a.点电荷q1、q2在球壳的球心O处产生的电势分别为kq1/d1与kq2/d2,因球心O处的电势等于球壳的电势,按电势叠加原理,即有(kq1/d1)+(kq2/d2)+(kQ1/a)=U,代入数值后可解得球壳外壁的电量Q1为Q1=(aU/k)-a((q1/d1)+(q2/d2))=-8×10-9C.因球壳内壁无电荷,所以球壳的电量QⅠ等于球壳外壁的电量Q1,即QⅠ=Q1=-8×10-9C..当球壳半径趋于d1时(点电荷仍在球壳外),设球壳外壁的电量变为Q2,球壳外的电荷q1、q2与球壳外壁的电量Q2在壳内产生的合场强仍为零,因球壳内仍无电荷,球壳内仍保持电势值为U的等势区,则有(kq1/d1)+(kq2/d2)+(kQ2/d1)=U,解得球壳外壁的电量Q2=(d1U/k)-(d1(q1/d1+q2/d2))=-16×10-9C.因为此时球壳内壁的电量仍为零,所以球壳的电量就等于球壳外壁的电量,即QⅡ=Q2=-16×10-9C,在a=10cm到趋于d1的过程中,大地流向球壳的电量为ΔQⅠ=QⅡ-Q1=-8×10-9C..当点电荷q1穿过球壳,刚进入球壳内(导体半径仍为d1),点电荷q1在球壳内壁感应出电量-q1,因球壳的静电屏蔽,球壳内电荷q1与球壳内壁电荷-q1在球壳外产生的合电场为零,表明球壳外电场仅由球壳外电荷q2与球壳外壁的电荷Q3所决定.由于球壳的静电屏蔽,球壳外电荷q2与球壳外壁的电荷Q3在球壳内产生的合电场为零,表明对电荷q2与Q3产生的合电场而言,球壳内空间是电势值为U的等势区.q2与Q3在球心O处产生的电势等于球壳的电势,即(kq2/d2)+(kQ3/d1)=U,解得球壳外壁电量Q3=(d1U/k)-(d1q2/d2)=-6×10-9C,球壳外壁和内壁带的总电量应为QⅢ=Q3+(-q1)=-16×10-9C,在这过程中,大地流向球壳的电量为ΔQⅡ=QⅢ-QⅡ=0.这个结果表明:电荷q1由球壳外极近处的位置进入壳内,只是将它在球壳外壁感应的电荷转至球壳内壁,整个球壳与大地没有电荷交换..当球壳半径趋于d2时(点电荷q2仍在球壳外),令Q4表示此时球壳外壁的电量,类似前面第3阶段中的分析,可得(kq2/d2)+(kQ4/d2)=U,由此得Q4=(d2U/k)-(d2(q2/d2))=-12×10-9C,球壳的电量QⅣ等于球壳内外壁电量的和,即QⅣ=Q4+(-q1)=-22×10-9C,大地流向球壳的电量为ΔQⅢ=QⅣ-QⅢ=-6×10-9C..当点电荷q2穿过球壳,刚进入球壳内时(球壳半径仍为d2),球壳内壁的感应电荷变为-(q1+q2),由于球壳的静电屏蔽,类似前面的分析可知,球壳外电场仅由球壳外壁的电量Q5决定,即kQ5/d2=U,可得..Q5=d2U/k=4×10-9C,球壳的总电量是QⅤ=Q5-(q1+q2)=-22×10-9C,..(15)在这个过程中,大地流向球壳的电量是ΔQⅣ=QⅤ-QⅣ=0...(16).当球壳的半径由d2增至a1=50cm时,令Q6表示此时球壳外壁的电量,有k(Q6/a1)=U,..(17)可得..Q6=a1(U/k)=5×10-9C,球壳的总电量为QⅥ=Q6-(q1+q2)=-21×10-9C,大地流向球壳的电量为ΔQⅤ=QⅥ-QⅤ=1×10-9C.六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分G1的质量为m1,下部分G2的质量为m2,弹簧夹在G1与G2之间,与二者接触而不固连.让G1、G2压紧弹簧,并将它们锁定,此时弹簧的弹性势能为已知的定值E0.通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这一释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分G1升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h的时刻解除锁定.1.在第一种方案中,玩具的上部分G1升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化而来的?2.在第二种方案中,玩具的上部分G1升空可能达到的最大高度(亦从井口算起)为多少?并定量讨论其能量可能是从何种形式的能量转化而来的.解:.1.在弹簧刚伸长至原长的时刻,设G1的速度的大小为v,方向向上,G2的速度大小为v1,方向向下,则有m1v1-m2v2=0,...①(1/2)m1v12+(1/2)m2v22=E0,...②解①、②两式,得v1=,...③v2=....④设G1升空到达的最高点到井口的距离为H1,则H1=v12/2g=((m2/m1g(m1+m2))E0,...⑤G1上升到最高点的重力势能为Ep1=m1gH1=(m2/(m1+m2))E0....⑥它来自弹簧的弹性势能,且仅为弹性势能的一部分..在玩具自井底反弹向上运动至离井口的深度为h时,玩具向上的速度为u=....⑦设解除锁定后,弹簧刚伸长至原长时,G1的速度大小为v1′,方向向上,G2的速度大小为v,方向向下,则有m1v1′-m2v2′=(m1+m2)u,...⑧(1/2)m1v1′+(1/2)m2v2′=(1/2)(m1+m2)u2+E0,...⑨消去⑧、⑨两式中的v2′,得v1′的方程式为m1(1+(m1/m2))v1′-2m1(1+(m1/m2))uv1′+m1(1+m1/m2)u2-2E0=0,由此可求得弹簧刚伸长至原长时,G1和G2的速度分别为v1′=u+,v2′=-u+,设G1从解除锁定处向上运动到达的最大高度为H2′,则有H2′=v1′/2g=(1/2g)(u+)2=h+(m2E0/m1g(m1+m2))+2,从井口算起,G1上升的最大高度为H2=H2′-h=(m2E0/m1g(m1+m2))+2.讨论:可以看出,在第二方案中,G1上升的最大高度H2大于第一方案中的最大高度H1,超出的高度与解除锁定处到井口的深度h有关.到达H2时,其重力势能为Ep2=m1gH2=(m2E0/(m1+m2))+2,(i)若Ep2<E0,即..2<m1E0/(m1+m2),这要求..h<E0m1/4m2g(m1+m2).这时,G1升至最高处的重力势能来自压紧的弹性势能,但仅是弹性势能的一部分.在这一条件下上升的最大高度为H2<E0/m1g.(ii)若Ep2=E0,2=m1E0/(m1+m2),这要求..h=E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能来自压紧的弹簧的弹性势能,且等于全部弹性势能.在这一条件下,G1上升的高度为H2=E0/m1g.(iii)若Ep2>E0,2>m1E0/(m1+m2),这要求..h>E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能大于压紧的弹簧的弹性势能,超出部分的能量只能来自G2的机械能.在这个条件下,G1上升的最大高度为H2>E0/m1g.。
第17届全国中学生物理竞赛预赛题参考解答

第十七届全国中学生物理竞赛预赛题参考解答一、参考解答 1.1,22.神船,载人飞行 二、参考解答1.因桌面是光滑的,轻绳是不可伸长的和柔软的,且在断开前绳根基上被拉紧的,故在绳断开前,物块在沿桌面运动的过程中,其速度始终与绳垂直,绳的张力对物块不做功,物块速度的大小维持不变。
设在绳刚要断开时绳的伸直局部的长度为x ,假设现在物块速度的大小为x v ,那么有0x v v =〔1〕绳对物块的拉力仅改变物块速度的方向,是作用于物块的向心力,故有2200xmv mv T x x ==〔2〕 由此得200mv x T =〔3〕代进数据得0.60m x =〔4〕2.设在绳刚要断开时,物块位于桌面上的P 点,BP 是绳的伸直局部,物块速度0v 的方向如图预解17-2所示.由题意可知,OB BP ⊥.因物块离开桌面时的速度仍为0v ,物块离开桌面后便做初速度为0v 的平抛运动,设平抛运动经历的时刻为t ,那么有212H gt =〔5〕 物块做平抛运动的水平射程为 10s v t =〔6〕由几何关系,物块落地地点与桌面圆心O 的水平距离s 为22221s s R x x ⎡⎤=+-+⎢⎥⎣⎦〔7〕 解〔5〕、〔6〕、〔7〕式,得222202H s v R x x g ⎡⎤=+-+⎢⎥⎣⎦(8)代人数据得 2.5m s =三、参考解答物体S 通过平行玻璃板及透镜成三次像才能被瞧瞧到。
设透镜的主轴与玻璃板下外表和上外表的交点分不为A 和B ,S作为物,通过玻璃板H 的下外表折射成像于点1S 处,由图预解17-3,依据折射定律,有 式中 1.0n '=是空气的折射率,对傍轴光线,i 、r 特别小,sin tan i i ≈,sin tan r r ≈,那么 式中SA 为物距,1S A 为像距,有1S A nSA =〔1〕将1S 作为物,再通过玻璃板H 的上外表折射成像于点2S 处,这时物距为11S B S A AB =+.同样依据折射定律可得像距12S BS B n=〔2〕 将2S 作为物,通过透镜L 成像,设透镜与H 上外表的距离为x ,那么物距2u x S B =+.依据题意知最后所成像的像距()v x SA AB =-++,代进透镜成像公式,有2111fx S B x SA AB -=+++〔3〕由〔1〕、〔2〕、〔3〕式代进数据可求得 1.0cm x =〔4〕即L 应置于距玻璃板H 上外表1.0cm 处。
第十七届全国中学生物理竞赛复赛试题参考答案

第十七届全国中学生物理竞赛复赛试题参考答案一、解:设玻璃管内空气柱的长度为h,大气压强为p0,管内空气的压强为p,水银密度为ρ,重力加速度为g,由图4知p+(l-h)ρg=p0,①根据题给的数据,可知p0=lρg,得p=ρgh,②若玻璃管的横截面积为S,则管内空气的体积为V=Sh,③由②、③式,得p=(V/S)ρg,④即管内空气的压强与其体积成正比,由克拉珀龙方程pV=nRT,得ρg(V2/S)=nRT,⑤由⑤式可知,随着温度降低,管内空气的体积变小,根据④式可知管内空气的压强也变小,压强随体积的变化关系为p-V图上过原点的直线,如图5所示.在管内气体的温度由T1降到T2的过程中,气体的体积由V1变到V2,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有图4 图5W=(1/2)ρg((V1/S)+(V2/S))(V1-V2)=ρg(V12-V22)/2S,⑥管内空气内能的变化为ΔU=nCV(T2-T1),⑦设Q为外界传给气体的热量,则由热力学第一定律W+Q=ΔU,有Q=ΔU-W,⑧由⑤、⑥、⑦、⑧式代入得Q=n(T2-T1)(CV+(1/2)R),⑨代入有关数据得Q=-0.247J,Q<0,表示管内空气放出热量,故空气放出的热量为Q′=-Q=0.247J.(10)二、解:在由直线BC与小球球心O所确定的平面中,激光光束两次折射的光路BCDE如图6所示,图中入射光线BC与出射光线DE的延长线交于点G,按照光的折射定律有图6n0sinα=nsinβ,①式中α与β分别是相应的入射角与折射角,由几何关系还可知sinα=l/r.②激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p与p′相等,即p=hν/c=p′,③式中c为真空中的光速,h为普朗克常量.因射入小球的光束中光子的动量p沿BC方向,射出小球的光束中光子的动量p′沿DE方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知2θ=2(α-β).④若取线段GN1的长度正比于光子动量p,GN2的长度正比于光子动量p′,则线段N1N2的长度正比于光子动量的改变量Δp,由几何关系得Δp=2psinθ=2(hν/c)sinθ,⑤△GN1N2为等腰三角形,其底边上的高GH与CD平行,故光子动量的改变量Δp的方向沿垂直CD的方向,且由G指向球心O.光子与小球作用的时间可认为是光束在小球内的传播时间,即Δt=2rcosβ/(cn0/n),⑥式中cn0/n是光在小球内的传播速率,按照牛顿第二定律,光子所受小球平均作用力的大小为f=Δp/Δt=n0hνsinθ/nrcosβ,⑦按照牛顿第三定律,光子对小球的平均作用力大小F=f,即F=n0hνsinθ/nrcosβ,⑧力的方向由点O指向点G.由①、②、④及⑧式,通过三角函数关系运算,最后可得F=(n0lhν/nr2)(1-).⑨三、解:1.相距为r的电量为Q1与Q2的两点电荷之间的库仑力FQ与电势能UQ公式为FQ=k(Q1Q2/r2),UQ=-k(Q1Q2/r),①现在已知正反顶夸克之间的强相互作用势能为U(r)=-k(4as/3r),根据直接类比可知,正反顶夸克之间的强相互作用力为F(r)=-k(4as/3r2),②设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v,因二者相距r0,二者所受的向心力均为F(r0),二者的运动方程均为m1v2/(r0/2)=k(4as/3r02).③由题给的量子化条件,粒子处于基态时,取量子数n=1,得2m1v(r0/2)=h/2π.④由③与④两式,解得r0=3h2/8π2m1ask,⑤代入数据得r0=1.4×10-17m.⑥2.由③、④两式,可得v=(π/h)(k4as/3),⑦由v与r0可算出正反顶夸克做匀速圆周运动的周期T为T=2π(r0/2)/v=h3/2π2m1(k4as/3)2,⑧代入数值得T=1.8×10-24s,⑨由此可知τ/T=0.22.(10)因正反顶夸克的寿命只有它们构成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.四、解:1.设太阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R.根据所设计的方案,可知飞行器是从其原先的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的,该椭圆既与飞行器原先的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短的时间内,由v0变为某一值u0.设飞行器椭圆轨道达小行星轨道到时的速度为u,因大小为u0与u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律,得u0R=6uR,①由能量关系,有(1/2)mu02-G(M0m/R)=(1/2)mu2-G(M0m/6R),②由牛顿万有引力定律,有G(M0m/R2)=m(v02/R),或者v0=.③解①、②、③式,得u0=v0,④u=v0.⑤设小行星绕太阳运动的速度为v,小行星的质量M,由牛顿万有引力定律,有GM0M/(6R)2=Mv2/6R,得v=v0,⑥能够看出v>u.⑦由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道外时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击.能够把小行星看做是相对静止的,飞行器以相对速度为v-u射向小行星,由于小行星的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速率v-u弹离,即碰撞后,飞行器相对小行星的速度的大小为v-u,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为u1=v+v-u=2v-u,或者将⑤、⑥式代入得u1=(v0.⑧假如飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,则有(1/2)mu22-G(M0m/6R)=0,得u2=v0,⑨能够看出u1=v0=u2.(10)飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系.2.为使飞行器能进入椭圆轨道,发动机应使飞行器的速度由v0增加到u0,飞行器从发动机取得的能量E1=(1/2)mu02-(1/2)mv02=(1/2)m(12/7)v02-(1/2)mv02=(5/14)mv02.(11)若飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有的最小速度为u3,则有(1/2)mu32-G(M0m/R)=0,由此得u3=v0.(12)飞行器的速度由v0增加到u3,应从发动机获取的能量为E2=(1/2)mu32-(1/2)mv02=(1/2)mv02,(13)因此E1/E2=(5/14)mv22/(1/2)mv22=0.71.(14)五、解法一:带电质点静止释放时,受重力作用做自由落体运动,当它到达坐标原点时,速度为v1==2.0m·s-1,①方向竖直向下.带电质点进入磁场后,除受重力作用外,还受到洛伦兹力作用,质点速度的大小与方向都将变化,洛伦兹力的大小与方向亦随之变化.我们能够设想,在带电质点到达原点时,给质点附加上沿x轴正方向与负方向两个大小都是v0的初速度,由于这两个方向相反的速度的合速度为零,因而不影响带电质点以后的运动.在t=0时刻,带电质点因具有沿x轴正方向的初速度v0而受洛伦兹力f1的作用,即f1=qv0B,②其方向与重力的方向相反.适当选择v0的大小,使f1等于重力,即qv0B=mg,③v0=g/(q/m)B=2.0m·s-1,④只要带电质点保持④式决定的v0沿x轴正方向运动,f1与重力的合力永远等于零.但如今,位于坐标原点的带电质点还具有竖直向下的速度v1与沿x轴负方向的速度v0,二者的合成速度大小为v==2.8m·s-1,⑤方向指向左下方,设它与x轴的负方向的夹角为α,如图7所示,则tgα=v1/v0=1,α=π/4,⑥图7因而带电质点从t=0时刻起的运动能够看做是速率为v0,沿x轴的正方向的匀速直线运动与在xOy平面内速率为v的匀速圆周运动的合成.圆周半径为R=mv/qB=0.56m.⑦带电质点进入磁场瞬间所对应的圆周运动的圆心O′位于垂直于质点如今速度v的直线上,由图7可知,其坐标为xO′=Rsinα=0.40m,⑧yO′=Rcosα=0.40m.圆周运动的角速度为ω=v/R=5.0rad·s-1.⑨由图7可知,在带电质点离开磁场区域前的任何时刻t,质点位置的坐标为x=v0t-[Rsin(ωt+α)-xO′],(10)y=yO′-Rcos(ωt+α),(11)式中v0、R、ω、α、xO′、yO′已分别由④、⑦、⑨、⑥、⑧各式给出.带电质点到达磁场区域下边界时,y=L=0.80m,代入(11)式,再代入有关数值,解得t=0.31s,(12)将(12)式代入(10)式,再代入有关数值,得x=0.63m,(13)因此带电质点离开磁场下边界时的位置的坐标为x=0.63m,y=0.80m,z=0.(14)带电质点在磁场内的运动可分解成一个速率为v的匀速圆周运动与一个速率为v0的沿x轴正方向的匀速直线运动,任何时刻t,带电质点的速度v′便是匀速圆周运动速度v与匀速直线运动的速度v0的合速度.若圆周运动的速度在x方向与y方向的分量为vx′、vy′,则质点合速度在x方向的分速度分别为vx′=vx+v0,(15)vy′=vy.(16)尽管=v,v由⑤式决定,其大小是恒定不变的,v0由④式决定,也是恒定不变的,但在质点运动过程中因v的方向不断变化,它在x方向与y方向的分量vx与vy都随时间变化,因此vx′与vy′也随时间变化,取决于所考察时刻质点做圆周运动速度的方向,由于圆周运动的圆心的y坐标恰为磁场区域宽度的一半,由对称性可知,带电质点离开磁场下边缘时,圆周运动的速度方向应指向右下方,与x轴正方向夹角α′=π/4,故代入数值得vx=vcosα′=2.0m·s-1,vy=vsinα′=2.0m·s-1,将以上两式及⑤式代入(15)、(16)式,便得带电质点刚离开磁场区域时的速度分量,它们分别为vx′=4.0m·s-1,(17)vy′=2.0m·s-1,(18)速度大小为v′==4.5m·s-1,(19)设v′的方向与x轴的夹角为β,如图8所示,则tgβ=vy′/vx′=1/2,得β=27°.(20)图8解法二:若以带电质点到达坐标原点O的时刻作为起始时刻(t=0),则质点的初速度为v1==2.0m·s-1,①方向沿y轴正方向.进入磁场区后,带电质点将受到洛伦兹力作用,洛伦兹力在x方向的分力取决于质点在y方向的分速度,因此质点动量在x方向的分量的增量为mΔvx=qvyBΔt=qΔyB,②Δy是带电质点在Δt时间内沿y方向的位移,质点在磁场中运动的整个过程中,此式对每一段Δt时间都成立,因此在t=0到t=t时间内x方向的分量的改变为mvx-mv0x=qB(y-y0),因初始时刻(t=0),带电质点在x轴方向的动量mv0x为零,其位置在原点,y0=0,因而得mvx=qyB,即vx=(qB/m)y.③当带电质点具有x方向的速度后,便立即受到沿y负方向的洛伦兹力的作用.根据牛顿第二定律,在y方向上有加速度ay,则may=mg-qvxB,④将③式代入④式,得may=-[(qB)2/m](y-(m2/q2B2)g),⑤令y′=y-D,⑥式中D=m2g/(qB)2=g/(q/m)2B2=0.40m,⑦即在y方向作用于带电质点的合力Fy=-ky′,其中k=q2B2/m,Fy是准弹性力,在Fy作用下,带电质点在y′方向的运动是简谐运动,其振动的圆频率为ω==5.0rad·s-1,⑧y′随时间变化的规律为y′=Acos(ωt+φ0),⑨或者y=Acos(ωt+φ0)+D,(10)图9A与φ0是待求的常量,质点的简谐运动能够用参考圆来描写,以所考察的简谐运动的振幅A为半径作一圆,过圆心O1作一直角坐标x′O1y′.若有质点M沿此圆周做匀速率圆周运动,运动的角速度等于所考察简谐运动的角频率ω,且按逆时针方向转动,在t=0时刻,点M的在圆周上的位置恰使连线O1M与y′轴的夹角等于⑨式中的常量φ0,则在任意时刻t,点O1与点M的连线与y′轴的夹角等于ωt+φ0,因此连线O1M在y′轴上的投影即为⑨式所示的简谐运动,将x′轴平行下移D=0.40m,连线O1M在y轴的投影即如(10)式所示(参看图9所示),点M做圆周运动的速度大小v=Aω,方向与O1M垂直,速度v的y分量就是带电质点沿y轴做简谐运动的速度,即vy=-Aωsin(ωt+φ0),(11)(10)与(11)两式中的A与φ0可由下面的方法求得:由于已知在t=0时,带电质点位于y=0处,速度vy=v1,把这个条件代入(10)式与(11)式,得Acosφ0+D=0,v1=-Aωsinφ0.解上面两式,结合①、⑧式,注意到振幅A总是正的,故得φ0=5π/4,(12)A=0.56m.(13)把(10)式代入③式,便得带电质点沿x轴运动的速度为vx=ωD+Aωcos(ωt+φ0),(14)(14)式表示带电质点在x方向上的速度是由两个速度合成的,即沿x方向的匀速运动速度ωD与x方向的简谐运动速度Aωcos(ωt+φ0)的合成,带电质点沿x方向的简谐运动匀速运动的位移为x′=ωDt.(15)由沿x方向的简谐振动速度Aωcos(ωt+φ0)可知,沿x方向振动位移的振幅等于速度的最大值与角频率的比值(参看图8),即等于A.由参考圆方法可知,沿x方向的振动的位移x″具有如下的形式,即Acos(ωt+φ0-(π/2))=Asin(ωt+φ0),它可能是x″=Asin(ωt+φ0),亦可能是x″-b=Asin(ωt+φ0).在本题中,t=0时刻,x应为零,故前一表示不符合题意.后一表示式中,b应取的值为b=-Asinφ0,故有x″=-Asinφ0+Asin(ωt+φ0).(16)带电质点在x方向的合位移x=x′+x″,由(15)、(16)式,得x=ωDt-Asinφ0+Asin(ωt+φ0).(17)(17)、(10)、(14)与(11)式分别给出了带电质点在离开磁场区域前任何时刻t的位置坐标与速度的x分量与y分量,式中常量ω、A、φ0、D已分别由⑧、(13)、(12)与⑦式给出.当带电质点达到磁场的下边界时,有y=L=0.80m,(18)将与(10)式有关的数据代入,可解得t=0.31s,(19)代入(17)式,得x≈0.63m,(20)将(19)式分别代入(14)、(11)式,得vx=4.0m·s-1,vy=2.0m·s-1,速度大小为v==4.5m·s-1,(21)速度方向为α=arctg(vy/vx)=27°.(22)图10六、1.由于光纤内所有光线都从轴上的点O出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图10为纵剖面内的光路图,设由点O发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i.该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α.若该光线折射后的折射角为θ,则由几何关系与折射定律可得i+α=90°,①nAsinα=nFsinθ.②当i大于全反射临界角iC时将发生全反射,没有光能缺失,相应的光线将以不变的光强射向出射端面,而i<iC的光线则因在发生反射时有部分光线通过折射进入B,反射光强随着反射次数的增大而越来越弱,以致在未到达出射端面之前就已经衰减为零了.因而能射向出射端面的光线的i的数值一定大于或者等于iC,iC的值由下式决定,即nAsiniC=nB,③与iC对应的α值为αC=90°-iC,④当α0>αC时,即sinα0>sinαC=cosiC=时,或者nAsinα0>时,由点O发出的光束中,只有α≤αC的光线才满足i≥iC的条件,才能射向端面,如今出射端面处α的最大值为αmax=αC=90°-iC.⑤若α0<αC,即nAsinα0<时,则由点O发出的光线都能满足i>iC的条件,因而都能射向端面,如今出射端面处α的最大值为αmax=α0.⑥端面处入射角α最大时,折射角θ也达最大值,设为θmax,由②式可知nFsinθmax=nAsinαmax.⑦由⑥、⑦式可得,当α0<αC时,有nF=nAsinα0/sinθmax,⑧当α0≥αC时,由③至⑦式可得,nF=nAcosiC/sinθmax=/sinθmax,⑨θmax的数值可由图11上的几何关系求得sinθmax=((d2-d1)/2)/.(10)图11因此当α0<αC时,nF的表达式应为nF=nAsinα0(/((d2-d1)/2),(11)当α0≥αC时,有nF=(/((d2-d1)/2).(12)2.可将输出端介质改为空气,光源保持不变,按同样手续再做一次测量,可测得h1′、h2′、d1′、d2′,这里打撇的量与前面未打撇的量意义相同.已知空气的折射率等于1,故有当α0<αC时,有1=nAsinα0/((d2′-d1′)/2),(13)当α0≥αC时,有1=(/((d2′-d1′)/2),(14)将(11)、(12)两式分别与(13)、(14)式相除,均得nF=((d2′-d1′)/(d2-d1))(/).(15)此结果适用于α0为任何值的情况.。
2000年第17届物理竞赛复赛试题及答案

第17届全国中学生物理竞赛复赛试卷全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (m o l K )C =⋅⋅-,普适气体常量18.31J (m o l K )R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV A TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命 240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J s h =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
第17届全国中学生物理竞赛预复赛试题及答案

第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。
一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。
与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。
图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A、B、C和D、E、F三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。
2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。
二、(15分)一半径为 1.00mR=的水平光滑圆桌面,圆心为O,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kgm=⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为04.0m/sv=的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为02.0NT=时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O的水平距离为多少?已知桌面高度0.80mH=.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s.三、(15分)有一水平放置的平行平面玻璃板H,厚,折射率 1.5n=。
在其下表面下处有一小物S;在玻璃扳上方有一薄凸透镜L,其焦距30cmf=,透镜的主轴与玻璃板面垂直;S位于透镜的主轴上,如图预17-3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七届全国中学生物理竞赛复赛试题题 号 一 二 三 四 五 六 总 计全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管空气的温度缓慢地降低10℃,问在此过程中管空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEVATRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J sh =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量. 1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
六、(25分)普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A 和包层B 组成,B 的折射率小于A 的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A 和包层B 的分界面上发生多次全反射.现在利用普通光纤测量流体F 的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F 中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O ,经端面折射进入光纤,在光纤中传播.由点O 出发的光束为圆锥形,已知其边缘光线和轴的夹角为0α,如图复17-6-1所示.最后光从另一端面出射进入流体F .在距出射端面1h 处放置一垂直于光纤轴的毛玻璃屏D ,在D 上出现一圆形光斑,测出其直径为1d ,然后移动光屏D 至距光纤出射端面2h 处,再测出圆形光斑的直径2d ,如图复17-6-2所示.1.若已知A 和B 的折射率分别为A n 与B n ,求被测流体F 的折射率F n 的表达式.2.若A n 、B n 和0α均为未知量,如何通过进一步的实验以测出F n 的值?第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管空气柱的长度为h ,大气压强为0p ,管空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知 0()p l h g p ρ+-= (1) 根据题给的数据,可知0p l g ρ=,得p gh ρ= (2) 若玻璃管的横截面积为S ,则管空气的体积为V Sh = (3)由(2)、(3)式得Vp g Sρ= (4)即管空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得 2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管空气的体积变小,根据(4)式可知管空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)管空气能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9)代入有关数据得0.247J Q =-0Q <表示管空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10) 评分标准:本题20分 (1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。
二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1) 式中α与β分别是相应的入射角和折射角,由几何关系还可知sin lrα=(2) 激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p cν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4)若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得 2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球的传播时间,即02cos /r t cn nβ∆=(6)式中0/cn n 是光在小球的传播速率。
按照牛顿第二定律,光子所受小球的平均作用力的大小为 0sin cos n h p f t nr νθβ∆==∆ (7) 按照牛顿第三定律,光子对小球的平均作用力大小F f =,即 0sin cos n h F nr νθβ=(8)力的方向由点O 指向点G .由(1)、(2)、(4)及(8)式,经过三角函数关系运算,最后可得021n lh F nrν⎡=⎢⎢⎣ (9) 评分标准:本题20分(1)式1分,(5)式8分,(6)式4分,(8)式3分,得到(9)式再给4分。
三、参考解答1.相距为r 的电量为1Q 与2Q 的两点电荷之间的库仑力Q F 与电势能Q U 公式为122Q QQ Q F k r = 12Q QQ Q U k r =- (1) 现在已知正反顶夸克之间的强相互作用势能为4()3S aU r k r=-根据直接类比可知,正反顶夸克之间的强相互作用力为24()3Sa F r k r=- (2)设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v ,因二者相距0r ,二者所受的向心力均为0()F r ,二者的运动方程均为22004/23t S a m v k r r = (3) 由题给的量子化条件,粒子处于基态时,取量子数1n =,得0222t r hm v π⎛⎫- ⎪⎝⎭(4)由(3)、(4)两式解得20238S t h r m a kπ= (5)代入数值得170 1.410m r =⨯- (6)2. 由(3)与(4)两式得 43S a v kh π⎛⎫=⎪⎝⎭(7)由v 和0r 可算出正反顶夸克做匀速圆周运动的周期T30222(/2)2(4/3)t S r h T v m k a ππ== (8) 代入数值得241.810s T =⨯- (9) 由此可得 /0.2T τ= (10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.评分标准:本题25分1. 15分。
(2)式4分,(5)式9分,求得(6)式再给2分。
2. 10分。
(8)式3分。
(9)式1分,正确求得(10)式并由此指出正反顶夸克不能形成束缚态给6分。