推理与证明(精)
_高中数学第二章推理与证明2
跟踪练习
(2014~2015·合肥一六八中高二期中)观察下题的解答过
程:
已知正实数 a、b 满足 a+b=1,求 2a+1+ 2b+1的最
大值.
解:∵
2a+1· 2≤
2a+12+ 2
22=a+32,
2b+1· 2
≤
2b+12+ 2
22=b+32,
相 加 得 2a+1 · 2 + 2b+1 · 2 = 2 ( 2a+1 + 2b+1)≤a+b+3=4.
综合法: ∵a、b、c∈R+,∴(a-b)2+(b-c)2+(c-a)2≥0, ∴2(a2+b2+c2)≥(ab+bc+ac), ∴3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac, ∴3(a2+b2+c2)≥(a+b+c)2, ∴ a2+b32+c2≥a+3b+c.
人教版 选修2-2
第二章 推理与证明
2.2 直接证明与间接证明
2.2.1 综合法和分析法
目标导航
• 了解综合法与分析法的特点,熟练应用分析法与综合法证明 命题.
重点难点
• 重点:综合法和分析法的概念及思考过程、特点. • 难点:综合法和分析法的应用.
新知导学
1.综合法证明不等式
• 1.定义 • 利用___已__知__条__件___和某些数学__定__义____、__定__理____、
、已知的重要不等式和逻辑推理的基本理论;
• (2)适用范围:对于一些条件复杂,结构简单的不等式的证明 ,经常用综合法.而对于一些条件简单、结论复杂的不等式 的证明,常用分析法;
• (3)思路方法:分析法证明不等式的思路是从要证的不等式出 发,逐步寻求使它成立的充分条件,最后得到的充分条件是 已知(或已证)的不等式;
命题逻辑的推理理论,证明方法
31
⑨p
前提引入
⑩ pp
⑧⑨合取
推理正确, q是有效结论
.
武汉大学国际软件学院
唐存琛 刘峰
32
课堂实训
应用实例1 分析下列事实“如果我有很高的收 入,那么我就能资助许多贫困学生;如果我能资 助许多贫困学生,那么我很高兴;但我不高兴, 所以我没有很高的收入。”试指明前提和结论, 并给予证明。
.
武汉大学国际软件学院
.
武汉大学国际软件学院
唐存琛 刘峰
20
归谬法(反证法)的说明
欲证明
前提:A1, A2, … , Ak 结论:B
将B加入前提, 若推出矛盾, 则得证推理正确.
理由: A1A2…AkB (A1A2…Ak)B (A1A2…AkB)
括号内部为矛盾式当且仅当 (A1A2…AkB)为重言式
.
武汉大学国际软件学院
12
一、自然推理系统P的定义(续)
3. 推理规则 (1) 前提引入规则 (2) 结论引入规则 (3) 置换规则 (4) 假言推理规则 (5) 附加规则 (6) 化简规则
(7) 拒取式规则 (8) 假言三段论规则 (9) 析取三段论规则 (10)构造性二难推理
规则 (11) 破坏性二难推理
规则 (12) 合取引入规则
.
武汉大学国际软件学院
唐存琛 刘峰
16
(5)分情况证明法
为了证明 A1 A2 An B , 只需证明对任意的 i (1 i n) ,均有 Ai B 。
(6)附加前提证明法
为了证明 A1 A2 An A B ,
只需证明 A1 A2 An A B
.
武汉大学国际软件学院
武汉大学国际软件学院唐存琛 刘峰
高二数学推理与证明试题答案及解析
高二数学推理与证明试题答案及解析1.下列推理合理的是()A.是增函数,则B.因为,则C.为锐角三角形,则D.直线,则【答案】C【解析】根据题意,由于是增函数,则或者f’(x)=0在个别点成立,故错误对于B,因为,则显然不成立,对于D直线,则,可能斜率都不存在,故错误,故选C.【考点】推理与证明点评:主要是考查了合情推理的运用,属于基础题。
2.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:正四面体的内切球切于四面都为正三角形的什么位置?()A.正三角形的顶点B.正三角形的中心C.正三角形各边的中点D.无法确定【答案】B【解析】根据题意,由于命题“正三角形的内切圆切于三边的中点”可类比猜想出:正四面体的内切球切于四面都为正三角形的中心,故可知答案为B.【考点】类比推理点评:主要是考查了类比推理的运用,属于基础题。
3.对大于或等于2的自然数的次方幂有如下分解方式:根据上述分解规律,若的分解中最小的数是73,则的值为 .【答案】9【解析】根据题意,可知,,,,那么可知的分解中最小的数是73,那么可知m的值为9.故答案为9.【考点】归纳推理点评:主要是考查了归纳推理的运用,属于基础题。
4.观察式子:1+<,1++<,1+++<,,则可归纳出一般式子为() A.1++++<(n≥2)B.1++++<(n≥2)C.1++++<(n≥2)D.1++++<(n≥2)【答案】C【解析】根据题意,由于观察式子:1+<,1++<,1+++<,左边是n 个自然数平方的倒数和,右边是项数分之项数的二倍减去1,那么可得到,推广到一般1++++<(n≥2),故选C.【考点】归纳推理点评:主要是考查了归纳推理的基本运用,属于基础题。
5.在平面上,若两个正三角形的边长比为,则它们的面积比为,类似地,在空间中若两个正四面体的棱长比为,则它们的体积比为____________。
(完整版)推理与证明知识点
第十二讲推理与证明数学推理与证明知识点总结:推理与证明:①推理是中学的主要内容,是重点考察的内容之一,题型为选择题、填空题或解答题,难度为中、低档题。
利用归纳和类比等方法进行简单的推理的选择题或填空题在近几年的中考中都有所体现。
②推理论证能力是中考考查的基本能力之一,它有机的渗透到初中课程的各个章节,对本节的学习,应先掌握其基本概念、基本原理,在此基础上通过其他章节的学习,逐步提高自己的推理论证能力。
第一讲推理与证明一、考纲解读:本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势。
新课标考试大纲将抽象概括作为一种能力提出,进一步强化了合情推理与演绎推理的要求,因此在复习中要重视合情推理与演绎推理。
高考对直接证明与间接证明的考查主要以直接证明中的综合法为主,结合不等式进行考查。
二、要点梳理:1.归纳推理的一般步骤:(1)通过观察个别事物,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题。
2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
3.演绎推理三段论及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出判断。
4.直接证明与间接证明①综合法:利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。
综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。
②分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。
_高中数学第二章推理与证明1
• 4.其他演绎推理形式 • (1)假言推理:“若p⇒q,p真,则q真”. • (2)关系推理:“若aRb,bRc,则aRc”R表示一种传递性关系
,如a∥b,b∥c⇒a∥c,a≥b,b≥c⇒a≥c等. • 注:假言推理、关系推理在新课标中未给定义,但这种推理
形式是经常见到的,为表述记忆方便,我们也一块给出,以 供学生扩展知识面.
第二章 推理与证明
2.1 合情推理与演绎推理
2.1.2 演绎推理
目标导航
• 理解演绎推理的概念,掌握演绎推理的形式,并能用它们进行 一些简单的推理,了解合情推理与演绎推理的联系与区别.
重点难点
• 重点:演绎推理的含义及演绎推理规则. • 难点:演绎推理的应用.
新知导学
1.演绎推理
• 日常生活中我们经常接触这样的推理形式:“所有金属都导 电,因为铁是金属,所以铁导电”,它是合情推理吗?这种 推理形式正确吗?
• (2)利用集合知识说明“三段论”:若集合M的所有元素都具有 性质P,S是M的一个子集,那么 __S_中__所__有__元__素__也__都__具__有__性__质__P__.
• (3)为了方便,在运用三段论推理时,常常采用省略大前提或 小前提的表述方式.对于复杂的论证,总是采用一连串的三段 论,把前一个三段论的___结__论___作为下一个三段论的前提.
互动探究
1.演绎推理的基本形式——三段论
• 例题1 用三段论的形式写出下列演绎推理. • (1)菱形的对角线相互垂直,正方形是菱形,所以正方形的对
角线相互垂直. • (2)若两角是对顶角,则此两角相等,所以若两角不相等,则
此两角不是对顶角. • [分析] 即写出推理的大前提、小前提、结论.大前提可能
环小数,所以e是无理数. • [答案] (1)a=-8,(2)无限不循环小数都是无理数
新题展(推理与证明)
先做 两道题, 如 遇麻 烦 , 尽 可 能 再 理 一 ( 2 ) ① ( 判别式法) 联 立 直线 z 与椭 圆 C
理思路, 如 果 还不 能 解 决 问 题 , 看一看提示 , 的方 程 , 消 去 y得 到关 于 - z的一个 一 元二 次 验 证 这 个 方 程 的 判 别 式 是 否 为零 ; 若 做好 后 , 对一对答 案 , 最 后 结 合 命 题 者 的反 方 程 ,
① 若 点 P( x 。 , y 。 ) 在圆 0上, 则直线 z : 然后验证 这个方程 的判别式是 否小 于零 .
z 。 z + 。 y—R 是 圆 0在 点 P 处 的切 线 , 请
予 以证 明 ;
2 .( 1 )① 设 过 点 F。 作 F P F 的 外
角平 分线 的垂 线 交 F P 的延 长 线 于 点 F ,
满足 : 一 a・ + b・ , 得 到 方 程 ① 和
一
2
. 2
点, P 为椭 圆 C 上 的一 个 动 点 ( 异 于 长 轴 的 方程② ; 由点 M, N 在椭 圆c: +告一1 上,
“
两个 端 点) , 过点 F 作 F PF 的外 角平 分
看 一 看
中点 , 所以 O M=÷ F F 一n;
厶
1 .( 1 )① 利用 圆心 O与 切点 P 的连 线
处 的切 线 方程 ;
② 类 比问题 ( 1 ) ②, 列 出五 个 方程 , 再 从
方 程.
垂直在点 P 处 的切线 , 可求 得 圆 0在点 P 中消去 3 2 , , , , 便 可 得 到 点 P 的 轨迹
又 得 到方程 ③ 和 方程 ④ ; 再 由直 线 0 M 和 直
推理与证明 合情推理与演绎推理(解析版)
2019年高考数学(文)高频考点名师揭秘与仿真测试84 推理与证明合情推理与演绎推理【考点讲解】一、具本目标:了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.二、知识概述:一)合情推理主要包括归纳推理和类比推理。
1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)特征:由部分到整体,由个别到一般的推理.2.类比推理:(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.(2)特征:由特殊到特殊的推理.3.归纳推理与类比推理有何区别与联系区别:归纳推理是由特殊到一般的推理;而类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真可假.4.合情推理(1)定义:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.通俗地说,合情推理就是合乎情理的推理.(2)推理的过程从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想【温馨提示】(1)已知等式或不等式进行归纳推理的方法①要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;②要特别注意所给几个等式(或不等式)中结构形成的特征;③提炼出等式(或不等式)的综合特点;④运用归纳推理得出一般结论.(2)数列中的归纳推理:在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和.①通过已知条件求出数列的前几项或前n项和;②根据数列中的前几项或前n项和与对应序号之间的关系求解;③运用归纳推理写出数列的通项公式或前n项和公式.【规律与方法】1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想二)演绎推理三段论的基本模式演绎推理的概念理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.【规律与方法】1.应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略.2.合情推理是由部分到整体,由个别到一般的推理或是由特殊到特殊的推理;演绎推理是由一般到特殊的推理.3.合情推理与演绎推理是相辅相成的,数学结论、证明思路等的发现主要靠合情推理;数学结论、猜想的正确性必须通过演绎推理来证明.【真题分析】1.【2017新课标Ⅱ】甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我 还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道 自己的结果,丁看到甲的结果则知道自己的结果,故选D . 【答案】D2.【2018浙江】已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <. 若1q -≤,则212341(1)(10a a a a a q q+++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++>,与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .【答案】B3.【2016·北京卷】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多【解析】解法1:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B.解法2:设袋中共有2n 个球,最终放入甲盒中k 个红球,放入乙盒中s 个红球.依题意知,甲盒中有(n -k )个黑球,乙盒中共有k 个球,其中红球有s 个,黑球有(k -s )个,丙盒中共有(n -k )个球,其中红球有(n -k -s )个,黑球有(n -k )-(n -k -s )=s 个.所以乙盒中红球与丙盒中黑球一样多.故选B. 【答案】B4.【2017浙江】如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( )R QPABC DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【解析】设O 为三角形ABC 中心,底面如图2,过O 作OE RP ⊥,OF PQ ⊥,OG RQ ⊥,由题意可知tan DO OE α=,tan OD OF β=,tan ODOGγ=,GF EO DC BAPQR图1 图2由图2所示,以P 为原点建立直角坐标系,不妨设2AB =,则(1,0)A -,(1,0)B,C,(0,3O ,∵AP PB =,2BQ CRQC RA==,∴1(3Q,2(3R -,则直线RP的方程为y =,直线PQ的方程为y =,直线RQ的方程为y x =+,根据点到直线的距离公式,知21OE =,OF =,13OG =,∴OF OG OE <<,tan tan tan αγβ<<, 因为α,β,γ为锐角,所以αγβ<<.选B 【答案】B5.【2016·新课标全国卷Ⅱ】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相 同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【解析】丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3. 【答案】1和36.【2016山东】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;…… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_______. 【解析】根据已知,归纳可得结果为43n (n+1).7.(2015陕西)观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++……据此规律,第n 个等式可为______________________.【解析】观察等式知:第n 个等式的左边有2n 个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到2n 的连续正整数,等式的右边是111122n n n++⋅⋅⋅+++. 【答案】111111111234212122n n n n n-+-+⋅⋅⋅+-=++⋅⋅⋅+-++ 8.【2015山东】观察下列各式:0014C =;011334C C +=; 01225554C C C ++= 0123377774C C C C +++=……照此规律,当*N n ∈时,012121212121n n n n n C C C C -----+++⋅⋅⋅+= .【解析】 具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121211[()()()()]2n n n n nn n n n n n n n C C C C C C C C ------------=++++++++ 01212121121212121212111()2422n n n n n n n n n n n C C CC C C ----------=+++++++=⋅=. 【答案】14n -9.【2014安徽】如图,在等腰直角三角形ABC 中,斜边BC =A 作BC 的垂线,垂足为1A ; 过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12AA a =,123A A a =, (567)A a =,则7a =.13【解析】解法一 直接递推归纳;等腰直角三角形ABC中,斜边BC =1122,AB AC a AA a ====,1231A A a==,⋅⋅⋅,65671124A A a a ==⨯=. 解法二求通项:等腰直角三角形ABC 中,斜边BC =所以1122,AB AC a AA a ====⋅⋅⋅,11sin2()422n n n n n n A A a a a π-+==⋅==⨯,故672()2a =⨯=14【答案】1410.【2014陕西】观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________ 【解析】三棱柱中5 +6-9 =2;五棱锥中6+6 -10 =2;立方体中6+8 -12 =2,由此归纳可得2F V E +-=.【答案】2F V E +-=【模拟考场】1. 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”三种.若学生甲的语文、 数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”,如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两个学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人【解析】学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙,一组学生 中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语 文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B . 【答案】B2.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行; ③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行. 则其中正确的结论是( ) A .①② B .②③ C .③④D .①④【解析】是类比推理的应用.根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论. 【答案】B3.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体A -BCD 的体积为V ,则R 等于( ) A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4【解析】本题是平面几何与立体几何之间的类比 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.【答案】 C4.指数函数y =a x (a >1)是R 上的增函数,y =2|x |是指数函数,所以y =2|x |是R 上的增函数.以上推理( )A .大前提错误B .小前提错误C .推理形式错误D .正确【解析】本题是演绎推理中三段论的具体应用.此推理形式正确,但是,函数y =2|x |不是指数函数,所以小前提错误,故选B. 【答案】 B5.正整数按下表的规律排列,则上起第2 017行,左起第2 018列的数应为( )A .2 016×2 017B .2 017×2 018C .2 018×2 019D .2 019×2 020【解析】本题是归纳推理的具本应用.由给出的排列规律可知,第一列的每个数为所在行数的平方,而第一行的数则满足列数减1的平方再加1,根据题意,左起第2 018列的第一个数为2 0172+1,由连线规律可知,上起第2 017行,左起第2 018列的数应为2 0172+2 017=2 017×2 018. 【答案】B6.如图,将边长分别为1,2,3的正八边形叠放在一起,同一边上相邻珠子之间的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是_______________ _________________________________________________________.【解析】边长为1,2,3,…,10的正八边形叠放在一起,则各个正八边形上的珠子数分别为8,2×8,3×8,…,10×8,其中,有3个珠子被重复计算了10次,有2个珠子被重复计算了9次,有2个珠子被重复计算了8次,有2个珠子被重复计算了7次,有2个珠子被重复计算了6次,…,有2个珠子被重复计算了1次,故不同的珠子总数为(8+2×8+3×8+…+10×8)-(3×9+2×8+2×7+2×6+…+2×1)=440-(27+2×8×92)=341,故所求总数为341. 【答案】3417.如图,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,DE ∥BA ,求证:ED =AF ,写出三段论形式的演绎推理.证明 因为同位角相等,两直线平行, 大前提 ∠BFD 与∠A 是同位角,且∠BFD =∠A , 小前提 所以FD ∥AE .结论因为两组对边分别平行的四边形是平行四边形, 大前提 DE ∥BA ,且FD ∥AE ,小前提 所以四边形AFDE 为平行四边形. 结论 因为平行四边形的对边相等,大前提 ED 和AF 为平行四边形AFDE 的对边, 小前提 所以ED =AF .结论8.已知函数f (x )=a x +x -2x +1(a >1),证明:函数f (x )在(-1,+∞)上为增函数.证明 方法一 (定义法) :任取x 1,x 2∈(-1,+∞),且x 1<x 2, f (x 2)-f (x 1)=2x a +x 2-2x 2+1-1x a -x 1-2x 1+1=2x a -1xa +x 2-2x 2+1-x 1-2x 1+1=1xa (21x x a--1)+(x 1+1)(x 2-2)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=1x a (21x xa --1)+3(x 2-x 1)(x 2+1)(x 1+1).因为x 2-x 1>0,且a >1,所以21x x a->1,而-1<x 1<x 2,所以x 1+1>0,x 2+1>0,所以f (x 2)-f (x 1)>0,所以f (x )在(-1,+∞)上为增函数. 方法二 (导数法):f (x )=a x +x +1-3x +1=a x +1-3x +1.所以f ′(x )=a x ln a +3(x +1)2.因为x >-1,所以(x +1)2>0,所以3(x +1)2>0.又因为a >1,所以ln a >0,a x>0, 所以a x ln a >0,所以f ′(x )>0.所以f (x )=a x +x -2x +1在(-1,+∞)上是增函数.9.设m 为实数,利用三段论证明方程x 2-2mx +m -1=0有两个相异实根.证明 因为如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两个相异实根.大前提方程x 2-2mx +m -1=0的判别式Δ=4m 2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,小前提所以方程x2-2mx+m-1=0有两个相异实根.结论。
第14章 推理与证明(习思用.数学文)
第十四章 推理与证明考点1合情推理与演绎推理1.[2017宁夏银川市、吴忠市部分重点中学3月联考]“杨辉三角” 是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图14-1是杨辉三角数阵,记a n 为图中第n 行各个数之和,则a 5+a 11的值为 ( )图14-1A.528B.1 020C.1 038D.1 0402.[2017太原市高三三模][数学文化题]我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无限次重复,但原式却是个定值,它可以11+11+…通过方程1+=x (x>0)求得x=.类比上述过程,则= ( ) 1x 5+123+23+2…A.3 B. C.6 D.213+1223.甲、乙、丙、丁四位同学被问到是否游览过西岳华山时,甲说:我没有游览过;乙说:丙游览过;丙说:丁游览过;丁说:我没游览过.在以上的回答中只有一人回答正确且只有一人游览过华山.根据以上条件,可以判断游览过华山的人是 .考点2直接证明与间接证明4.“设a>b>c ,且a+b+c=0,求证:<a ”,若用分析法证明,索的因应是( )b 2-ac 3A .a-b>0 B .a-c>0 C .(a-b )(a-c )>0 D .(a-b )(a-c )<05.[2014山东,4,5分][文]用反证法证明命题“设a ,b 为实数,则方程x 3+ax+b=0至少有一个实根”时,要做的假设是( ) A.方程x 3+ax+b=0没有实根B.方程x 3+ax+b=0至多有一个实根C.方程x 3+ax+b=0至多有两个实根D.方程x 3+ax+b=0恰好有两个实根6.设f (x )=ax 2+bx+c (a ≠0),若函数f (x+1)与f (x )的图象关于y 轴对称,求证:f (x+)为偶函数.127.是否存在常数C ,使不等式+≤C ≤+对任意正数x ,y 恒成立?试证明你的结x 2x +y y x +2y x x +2y y 2x +y 论.答案1.D a 1=1,a 2=2,a 3=4=22,a 4=8=23,a 5=16=24,…,所以a n =2n-1,a 5+a 11=24+210=1 040,故选D .2.A 令=x (x>0),两边平方,得3+2=x 2,即3+2x=x 2,解得3+23+2…3+2…x=3,x=-1(舍去),故=3,选A .3+23+2…3.甲 假设甲游览过华山,则甲、乙、丙说的都是假话,丁说的是真话,符合题意.4.C <a ⇔b 2-ac<3a 2 ⇔(a+c )2-ac<3a 2 ⇔a 2+2ac+c 2-ac-3a 2<0 ⇔-2a 2+ac+c 2<0 b 2-ac 3⇔2a 2-ac-c 2>0 ⇔(a-c )(2a+c )>0⇔(a-c )(a-b )>0.故选C .5.A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax+b=0没有实根”.故选A .6.由函数f (x+1)与f (x )的图象关于y 轴对称,可知f (x+1)=f (-x ).将x 换成x-代入上式可得f (x-1212+1)=f [-(x-)],即f (x+)=f (-x+),由偶函数的定义可知f (x+)为偶函数.121212127.令x=y=1,得≤C ≤,2323∴若存在满足题意的常数C ,则C=.23下面证明当C=时,题设不等式恒成立.23∵x>0,y>0,∴要证+≤,x 2x +y y x +2y 23只需证3x (x+2y )+3y (2x+y )≤2(2x+y )(x+2y ),即证x 2+y 2≥2xy ,此式显然成立.∴+≤.x 2x +y y x +2y 23再证+≥.x x +2y y 2x +y 23同理,只需证3x (2x+y )+3y (x+2y )≥2(x+2y )(2x+y ), 即证x 2+y 2≥2xy ,此式显然成立. ∴+≥.x x +2y y 2x +y 23综上所述,存在常数C=,使得不等式+≤C ≤+对任意正数x ,y 恒成立. 23x 2x +y y x +2y x x +2y y 2x +y。
数学一轮复习:推理与证明(苏教版)
3 αcos β= .也可直接写 4 2α+cos2(α+30°)+sin αcos(α+30°)= 3 . 成:sin 4 1 cos 2α 1 cos(2α 60)
β=30°+α,sin2α+cos2β+sin
4
证明:左边=
2 2 = 1 cos 2α 1 cos2αcos 60 sin 2αsin 60 + 2 2 sin α(cos α· cos 30°-sin αsin 30°)
b a ab 224 8 ab 2 a b ( ) 2 1 当且仅当a=b= 时“=”成立. 2 22
题型二
类比推理
【例2】类比实数的加法和向量的加法,列出它们相似的运算性质.
分析 实数的加法所具有的性质,如结合律、交换律等,都可以
和向量加以比较. 解 (1)两实数相加后,结果是一个实数,两向量相加后,结 果仍是向量; (2)从运算律的角度考虑,它们都满足交换律和结合律, 即a+b=b+a,a+b=b+a, (a+b)+c=a+(b+c),(a+b)+c=a+(b+c); (3)从逆运算的角度考虑,二者都有逆运算,即减法运算,即 a+x=0与a+x=0都有惟一解,x=-a与x=-a;
解析: 由题意知: 2 x 2 1 1 1 2 f(x)+f(1-x)= x 1x x x2 2 2 2 2 2 2 2 2 2 ≨f(-5)+…+f(0)+…+f(6)=[f(-5)+f(6)]+[f(-4)+f(5)]+[f(3)+f(4)]+[f(-2)+f(3)]+[f(-1)+f(2)]+[f(0)+f(1)]=6 2 3 .2 2
艺术生高考数学专题讲义:考点59 推理与证明
考点五十九 推理与证明知识梳理1.推理(1)定义:是根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理⎩⎪⎨⎪⎧合情推理演绎推理2.合情推理合情推理包括归纳推理和类比推理.(1)归纳推理:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理(简称类比).简言之,类比推理是两类事物特征之间的推理.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确. 3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理. (3)模式:三段论⎩⎪⎨⎪⎧①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做出的判断.4.归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:①通过观察个别情况发现某些相同特征;②从已知的相同性质中推出一个明确表述的一般性命题. (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想). 5.合情推理与演绎推理的区别:归纳和类比是常用的合情推理.从推理形式上看,归纳推理是由部分到整体、由个别到一般的推理,类比推理是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.6.平面到空间中的常见类比7.直接证明有两种基本方法:综合法和分析法.(1) 综合法:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法.(2) 分析法:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.8.间接证明间接证明的一种基本方法是反证法.(1)反证法:我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.(2)反证法的证题步骤是:①反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;(否定结论)②归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)③立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)典例剖析题型一 归纳推理 例1 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第五个等式应为_________________________________. 答案 5+6+7+8+9+10+11+12+13=81 解析 由于1=12, 2+3+4=9=32, 3+4+5+6+7=25=52, 4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81. 变式训练 (2015陕西文)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …,据此规律,第n 个等式可为_______________________________. 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .解题要点 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围;(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的; (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用. 题型二 类比推理例2 在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. 答案 1∶8解析 V 1V 2=13S 1h 113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18. 变式训练 在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d , 于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.解题要点 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. 题型三 演绎推理例3 如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值是________. 答案332解析 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n ,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.题型四 综合法和分析法的应用例4 在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .变式训练 设a 、b 、c 均为大于1的正数,且ab =10,求证:log a c +log b c ≥4lgc.证明:(分析法)由于a>1,b>1,c>1,故要证明log a c +log b c ≥4lgc ,只要证明lgc lga +lgclgb ≥4lgc ,即lga +lgb lga ·lgb≥4,因为ab =10,故lga +lgb =1.只要证明1lgalgb ≥4,由于a>1,b>1,故lga>0,lgb>0,所以0<lgalgb ≤⎝⎛⎭⎫lga +lgb 22=⎝⎛⎭⎫122=14,即1lgalgb ≥4成立.所以原不等式成立.解题要点 1.综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.分析法是“由果执因”,先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证。
1.5推理规则和证明方法
离散数学Discrete Mathematics数理逻辑 1.5 推理规则与证明方法张晓 西北工业大学计算机学院 zhangxiao@ 2011-1-10引言什么时候数学论证是正确的? 用什么方法来构造数学论证? 数理逻辑的主要任务是用数学的方法来研究推理过 程。
所谓推理是指从前提出发推出结论的思维过程 前提是已知命题公式集合,结论是从前提出发应用 推理规则推出的命题公式。
要研究推理就应该给出推理的形式结构,为此,首 先应该明确什么样的推理是有效的或正确的。
2011-1-10离散数学21.5.1推理规则前几节所讲的命题演算, 本质上和简单的开 关代数一样, 简单的开关代数是命题演算的 一种应用。
现在, 我们从另一角度研究命题演算, 即从 逻辑推理角度来理解命题演算。
2011-1-10离散数学34个推理的例子设x属于实数, P: x是偶数, Q: x2是偶数。
例1 如果x是偶数, 则x2是偶数。
前提 x是偶数。
x2是偶数。
例2 如果x是偶数, 则x2是偶数。
x2是偶数。
2011-1-10P→Q P结论∴Q在每一例子中, 横线上的是前提, 横线下的是结论。
右侧是例子的 逻辑符表示。
P→Q Qx是偶数。
离散数学∴P4例3 如果x是偶数, 则x2是偶数。
x不是偶数。
x2不是偶数。
例4 如果x是偶数, 则x2是偶数。
x2不是偶数。
x不是偶数。
2011-1-10 离散数学P→Q P ∴ QP→Q Q ∴ P5例 1 中, 若不管命题的具体涵义, 那么它所应用的推理规则 就是 左侧规则的另一P →Q P ∴ Q种写法所对应的永真蕴 含式。
P ,P → Q 推得 QP∧(P→Q) ⇒ Q从这个永真蕴含式可看出, 它正是代表“如果 P 并且 P→Q 是真, 则 Q是 真”的意义, 这里P和Q表示任意命题。
它恰好代表左侧的推理规则。
这条推理规则叫假言推理, 从形式上看 结论Q是从P→Q中分离出来的, 所以又叫分离规则。
高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2
第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。
是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。
2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。
(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。
(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。
2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。
3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。
2014年人教A版选修1-2课件 第二章小结(推理与证明)
7. 反证法 假设原命题不成立, 经过正确推理, 最后 得出矛盾, 从而否定假设, 而得原命题成立.
反证法就是对原命题的逆否命题的证明.
反证法是间接证明的一种基本方法. 要点: (1) 假设命题不成立要作为条件应用. (2) 推证的结论不能与反证过程中已用的条 件相矛盾.
返回目录
例1. 观察 (x2)=2x, (x4)=4x3, (cosx)= -sinx, 由 归纳推理可得: 若定义在 R 上的函数, f(x) 满足 f(-x) =f(x). 记 g(x) 为 f(x) 的导函数, 则 g(-x)= ( D ) (A) f(x) (B) -f(x) (C) g(x) (D) -g(x) 分析: x2, x4, cosx 都是偶函数, 满足 f(x)=f(-x). 它们的导函数 g(x) 为 2x, 4x3, -sinx, 都是奇函数, ∴g(-x)= -g(x). (由部分对象的相同特征归纳)
2.1 合情推理与演绎推理 2.2 直接证明与间接证明
ቤተ መጻሕፍቲ ባይዱ第二 章小结
本章小结
知识要点 例题选讲
复习参考题 自我检测题
1. 归纳推理
由某事物的部分对象具有某些特征, 推出该 类事物的全部对象都具有这些特征的推理, 或者 由个别事实概括出一般结论的推理, 即由部分到 整体, 由个别到一般.
(1) 在部分对象中寻找相同特征, 推出所有对 象都有这样的特征.
例2. 观察下列各式: 55=3125, 56=15625, 57=78125, … 则 52013的末四位数字为 ( A ) (A) 3125 (B) 5625 (C) 0625 (D) 8125 分析: 56 与 55 的末四位之差为 5625-3125=2500, 57 与 56 的末四位之差为 8125-5625=2500. 猜测: 5n+1 比 5n 末四位多 2500. 而 4 个2500 等于 10000,
专题16:推理与证明(解析版)-备战高考数学(理)三轮复习查缺补漏特色专题
专题16:推理与证明知识点和精选提升题(解析版)一、推理1.推理:前提、结论2.合情推理:合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。
简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。
重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明题型1 用归纳推理发现规律1;….对于任意正实数,a b≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+ba2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n表示第n幅图的蜂巢总数.则(4)f=_____;()f n=___________.推理与证明知识结构【解题思路】找出)1()(--n f n f 的关系式[解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f133)1(6181261)(2+-=-+++++=∴n n n n f【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是______.【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=⇒⨯==,类比问题的解法应为等体积法, h r Sr Sh V 4131431=⇒⨯==即正四面体的内切球的半径是高41 【名师指引】(1)不仅要注意形式的类比,还要注意方法的类比(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等二、直接证明与间接证明三种证明方法:综合法、分析法、反证法反证法:它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:(1) 假设命题的结论不成立;(2) 根据假设进行推理,直到推理中导出矛盾为止 (3) 断言假设不成立(4) 肯定原命题的结论成立重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并运用三种证明方法分析问题或证明数学命题 考点1 综合法在锐角三角形ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++ [解析]ABC ∆ 为锐角三角形,B A B A ->∴>+∴22ππ,x y sin = 在)2,0(π上是增函数,B B A cos )2sin(sin =->∴π同理可得C B cos sin >,A C cos sin >C B A C B A cos cos cos sin sin sin ++>++∴考点2 分析法已知0>>b a ,求证b a b a -<-[解析]要证b a b a -<-,只需证22)()(b a b a -<- 即b a ab b a -<-+2,只需证ab b <,即证a b <显然a b <成立,因此b a b a -<-成立【名师指引】注意分析法的“格式”是“要证---只需证---”,而不是“因为---所以---” 考点3 反证法 已知)1(12)(>+-+=a x x a x f x,证明方程0)(=x f 没有负数根 【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾 [解析]假设0x 是0)(=x f 的负数根,则00<x 且10-≠x 且12000+--=x x ax 112010000<+--<⇒<<∴x x a x ,解得2210<<x ,这与00<x 矛盾,故方程0)(=x f 没有负数根【名师指引】否定性命题从正面突破往往比较困难,故用反证法比较多三、数学归纳法一般地,当要证明一个命题对于不小于某正整数N 的所有正整数n 都成立时,可以用以下两个步骤:(1)证明当n=n 0时命题成立; (2)假设当n=k ()时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立.这种证明方法称为数学归纳法.考点1 数学归纳法题型:对数学归纳法的两个步骤的认识[例1 ] 已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题为真,,则还需证明( )A.n=k+1时命题成立B. n=k+2时命题成立C. n=2k+2时命题成立D. n=2(k+2)时命题成立[解析] 因n 是正偶数,故只需证等式对所有偶数都成立,因k 的下一个偶数是k+2,故选B【名师指引】用数学归纳法证明时,要注意观察几个方面:(1)n 的范围以及递推的起点(2)观察首末两项的次数(或其它),确定n=k 时命题的形式)(k f (3)从)1(+k f 和)(k f 的差异,寻找由k 到k+1递推中,左边要加(乘)上的式子 考点2 数学归纳法的应用题型1:用数学归纳法证明数学命题用数学归纳法证明不等式2)1(21)1(3221+<+++⋅+⋅n n n[解析](1)当n=1时,左=,右=2,不等式成立(2)假设当n=k 时等式成立,即2)1(21)1(3221+<+++⋅+⋅k k k 则)2)(1()1(21)2)(1()1(32212++++<++++++⋅+⋅k k k k k k k 02)2()1()2)(1(2)2()2)(1()1(2122<+++-++=+-++++k k k k k k k k 2]1)1[(21)2)(1()1(3221++<++++++⋅+⋅∴k k k k k∴当n=k+1时, 不等式也成立综合(1)(2),等式对所有正整数都成立【名师指引】(1)数学归纳法证明命题,格式严谨,必须严格按步骤进行; (2)归纳递推是证明的难点,应看准“目标”进行变形;(3)由k 推导到k+1时,有时可以“套”用其它证明方法,如:比较法、分析法等,表现出数学归纳法“灵活”的一面一、单选题1.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得200的所有正约数之和为( ) A .201 B .411 C .465 D .565【答案】C 【分析】这是一个类比推理的问题,在类比推理中,参照36的所有正约数之和的方法可得到200的所有正约数之和. 【详解】200的所有正约数之和可按如下方法得到: 因为200=23×52, 所以200的所有正约数之和为(1+2+22+23)·(1+5+52)=465, 所以200的所有正约数之和为465. 故选:C.2.用反证法证明“如果a b <,那么,假设的内容应为( )A .BC .D =>【答案】D 【分析】反证法是假设结论不成立,由此得出答案. 【详解】≥=>故选:D3.利用反证法证明“若3a b c ++=,则a ,b ,c 中至少有一个数不小于1”正确的假设为( )A .a ,b ,c 中至多有一个数大于1B .a ,b ,c 中至多有一个数小于1C .a ,b ,c 中至少有一个数大于1D .a ,b ,c 中都小于1 【答案】D 【分析】否定原命题的结论可得结果. 【详解】“若3a b c ++=,则a ,b ,c 中至少有一个数不小于1”的否定为:a ,b ,c 都小于1, 故选:D4.小王、小李、小杨的职业是律师、教师和医生,小李的年龄比律师大,小杨和医生不同岁,医生的年龄小于小王的年龄,则小杨的职业是( ) A .律师 B .教师C .医生D .不能判断【答案】A 【分析】依题意可得小李是医生,再利用假设法一一验证即可; 【详解】解:小李的年龄比律师大,故小李不是律师,小杨和医生不同岁,故小杨不是医生,医生的年龄小于小王的年龄,故小王不是医生;若小杨是教师,则小李是医生,小王是律师,此时,由小李的年龄比律师大,小李的年龄大于小王,由医生的年龄小于小王的年龄,所以小李的年龄小于小王的年龄,出现矛盾,故小杨是律师,小李是医生,小王是教师. 故选:A5.在数学课堂上,张老师给出一个定义在R 上的函数()f x ,甲、乙、丙、丁四位同学各说出了这个函数的一条性质: 甲:在(],0-∞上函数()f x 单调递减; 乙:在[)0,+∞上函数()f x 单调递增; 丙:函数()f x 的图像关于直线1x =对称; 丁:()0f 不是函数()f x 的最小值.张老师说:你们四位同学中恰好有三个人说的正确,那么,你认为说法错误的同学是( ) A .甲 B .乙C .丙D .丁【答案】B 【分析】 采用反证法判断. 【详解】假设甲,乙正确,则丙,丁错误,与题意矛盾 所以甲,乙中必有一个错误假设甲错误乙正确,则在[)0,+∞上函数()f x 单调递增;而函数()f x 的图像不可能关于直线1x =对称,则丙错误,与题意矛盾; 所以甲正确乙错误; 故选:B6.用反证法证明命题:“设a 、b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( )A .方程30x ax b ++=没有实根B .方程30x ax b ++=至多有一个实根C .方程30x ax b ++=至多有两个实根D .方程30x ax b ++=恰好有两个实根 【答案】A 【分析】依据反证法的要求,即至少有一个的反面是一个也没有,即可得出结论. 【详解】方程30x ax b ++=至少有一个实根的反面是方程30x ax b ++=没有实根, 因此,用反证法证明命题:“设a 、b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是“方程30x ax b ++=没有实根”. 故选:A.7.观察下列式子:213122+<,221151233++<,222111712344+++<,…,则可归纳出()2221111231n +++⋅⋅⋅++小于( ) A .1n n + B .211n n -+ C .211n n ++ D .21nn + 【答案】C 【分析】根据已知式子分子和分母的规律归纳出结论. 【详解】由已知式子可知所猜测分式的分母为1n +,分子第1n +个正奇数,即21n ,()2221112112311n n n ++++⋅⋅⋅+<++∴. 故选:C.8.观察下列各式:2318-=, 27148-=, 2111120-=,2151224-=,……据此规律.所得的结果都是8的倍数.由此推测可得( ) A .其中包含等式:2103110608-= B .其中包含等式:28517224-= C .其中包含等式:25312808-= D .其中包含等式:23311088-=【答案】A 【分析】先求出数列3,7,11,15,……的通项,再判断得解. 【详解】数列3,7,11,15,……的通项为=3+1)441n a n n -=-(, 当n=26时,26103a =,但是85,53,33都不是数列中的项, 故选A 【点睛】本题主要考查归纳推理,考查等差数列的通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.9.德国著名天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”现将底与腰之比或腰与底之比为512-的等腰三角形称为黄金三角形,它是一个顶角为36°或108°的等腰三角形如图,ABC ,BCD △,ADE 都是黄金三角形,若2AB =,则DE 的大小为( )A .51-B .512+ C .2 D .51【答案】C 【分析】根据题意可得===BC BC BD AB DC DC AD 然后根据=DE AD 可. 【详解】由题可知:12===BC BC BD AB DC DC ,又2AB =所以2,1==DC BD ,则1=AD又12=DE AD ,所以2DE = 故选:C 【点睛】本题考查新定义的理解,审清题意,细心计算属基础题.10.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩【答案】D 【解析】 【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案 【详解】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了 故选:D . 【点睛】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.11.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330 C .220 D .110【答案】A 【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.12.设有下面四个命题1p :若复数z 满足1R z ∈,则z R ∈; 2p :若复数z 满足2z ∈R ,则z R ∈;3p :若复数12,z z 满足12z z R ∈,则12z z =;4p :若复数z R ∈,则z R ∈.其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 【答案】B【解析】 令i(,)z a b a b R =+∈,则由2211i i a b z a b a b-==∈++R 得0b =,所以z R ∈,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确,故选B.点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b R =+∈的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.二、填空题13.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市; 乙说:我没去过城市. 丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理14.甲、乙、丙、丁四位老师分别担任语文、数学、英语、物理四门课的教学,甲不是语文和英语老师,乙是数学老师,丙不是语文老师,则英语老师是_______【答案】丙【分析】利用推理判断.【详解】因为甲不是语文和英语老师,所以甲是数学老师或物理老师,因为乙是数学老师,所以甲是物理老师,则丙是语文老师或英语老师,又因为丙不是语文老师,则丙是英语老师,故答案为:丙15.已知甲、乙、丙三人恰好都去过北京、上海中的某一个城市,三人分别给出了以下说法:甲说:我去过北京,乙去过上海,丙去过北京;乙说:我去过上海,甲说的不完全对;丙说:我去过北京,乙说的对.若甲、乙、丙三人中恰好有1人说得不对,则去过北京的是_____.【答案】丙【分析】若甲说得不对,则乙、丙说得对,若乙或丙说得不对,则得出与”甲、乙、丙三人中恰有1人说得不对“矛盾,从而得到去过北京的是丙.【详解】若甲说得不对,则乙、丙说得对,即乙一定去过上海,丙一定去过北京,甲只去过上海,若乙或丙说得不对,则得出与”甲、乙、丙三人中恰有1人说得不对“矛盾,故去过北京的是丙.故答案为:丙.【点睛】本小题主要考查简单的合情推理,属于基础题.16.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某一品牌的图书共4本,其中数学、英语、物理、化学各一本.现将这4本书随机发给该班的甲、乙、丙、丁四个人,每人一本,并请这四个人在看自己得到的赠书之前进行预测,结果如下:甲说:乙或丙得到物理书;乙说:甲或丙得到英语书;丙说:数学书被甲得到;丁说:甲得到物理书.最终结果显示:甲、乙、丙、丁四个人的预测均不正确,那么甲得到的书是_____【答案】化学【分析】利用推理可得,乙、丙、丁均提到甲的信息,所以可以推得甲所获得的图书.【详解】因为甲、乙、丙、丁四个人的预测均不正确,乙不正确说明甲没有得到英语书;丙不正确说明甲没有得到数学书;丁不正确说明甲没有得到物理书,综上可知甲得到的是化学书.【点睛】本题主要考查合情推理,结合逻辑进行推理,属于简单题.17.数学老师给同学们出了一道证明题,A,B,C三名同学中只有一名同学写对了,当他们被问到谁写对了时,C说:“A没有写对”;B说:“我写对了”;A说:“C说得是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么说假话的同学是______.【答案】B【分析】利用反证法即可得出结论【详解】假如A说的是假话,则C说的也是假话,不成立;假如B说的是假话,即B没有写对,又A没有写对,故C写对了;假如C说的是假话,即A写对了,则B说的也是假话,不成立.故说假话的同学是B.故答案为:B【点睛】此题考查简单的合情推理,考查学生分析解决问题的能力,属于基础题18.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一人预测正确,则三人按成绩由高到低的次序为______.【答案】甲乙丙【分析】乙和丙真假相同,故全错,甲对,乙错则丙的成绩比我和甲的都低,即可得解.【详解】乙和丙真假相同,故全错,则甲对,则甲比乙高,乙错则丙的成绩比我和甲的都低,则丙比乙低,故顺序为:甲乙丙,故答案为:甲乙丙.【点睛】本题考查了命题及逻辑推理,本题逻辑相对简单,属于基础题.19.观察下列等式11=2349++=3456725++++=4567891049++++++=照此规律,第n 个等式为__________.【答案】()221n -【分析】根据式子的开始项和中间一项及右边结果的特点得出.【详解】根据题意,由于观察下列等式 11=++=2349++++=3456725++++++=4567891049照此规律,等式左边的第一个数就是第几行的行数,且相加的连续自然数的个数是中间数字,右边是最中间数字的平方,故第n个等式为()()()()2+++++⋯+-=-.n n n n n123221【点睛】本题考查了归纳推理,属于中档题.20.现有三张卡片每张卡片上分别写着广州、北京、上海三个城市中的两个且卡片不重复,甲、乙、丙各选一张去对应的两个城市参观.甲看了乙的卡片后说:“我和乙都去上海”.乙看了丙的卡片后说:“我和丙不都去北京”则甲、丙同去的城市为________.【答案】北京【分析】先确定三张卡片,再结合条件确定甲、乙、丙,即可得结果.【详解】三张卡片为:广州北京、广州上海、北京上海因为乙和丙不都去北京,所以甲必去北京;即甲为:北京上海由于乙去上海,所以乙为:广州上海因此丙为:广州北京故甲、丙同去的城市为:北京故答案为:北京【点睛】本题考查合情推理,考查基本分析判断能力,属基础题.21.甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”.成绩公布后,发现这四位同学中只有一位说的是正确的,则获得第一名的同学为_______【答案】甲【分析】分别假设第一名是甲、乙、丙、丁,然后分析四个人的话,能够求出结果.【详解】当甲获得第一名时,甲、乙、丙说的都是错的,丁说的是对的,符合条件;当乙获得第一名时,甲、丙、丁说的都是对的,乙说的是错的,不符合条件; 当丙获得第一名时,甲和丁说的是对的,乙和丙说的是错的,不符合条件; 当丁获得第一名时,甲、乙说的都是对的,乙、丁说的都是错的,不符合条件. 故答案为:甲.【点睛】本题主要考查了合情推理的应用,属于基础题.22.下列推理属于合情推理的是__________.①由平面三角形的性质推测空间三棱锥的性质②由“正方形面积为边长的平方”得出结论:正方体的体积为棱长的立方③两条直线平行,同位角相等,若A ∠与B 是两条平行直线的同位角,则A B ∠=∠ ④在数列{}n a 中,12a =,()1212n n a a n -=+≥,猜想{}n a 的通项公式【答案】①②④【分析】根据归纳推理,类比推理,演绎推理的定义可进行判断.【详解】①由平面三角形的性质推测空间三棱锥的性质,为类比推理,故正确②由正方形面积为边长的平方类比出正方体的体积为棱长立方,为类比推理,故正确 ③大前提为两直线平行,同位角相等,小前提为A ∠与B ∠是两条平行直线的同位角,结论为A B ∠=∠,符合三段论形式,属于演绎推理,故错误④由{}n a 的部分性质,猜想{}n a 的通项公式,属于归纳推理,故正确.故答案为①②④【点睛】本题主要考查推理的概念及判断.其中合情推理包含类比推理和归纳推理.演绎推理为三段论形式,包含大前提,小前提,结论.学生需明确推理的定义,再进行判断,属基础题.。
人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料
满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.1 直接证明讲义(含解析)苏教版选
直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法直接证明 定义推证过程综合法 从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法 结论⇐…⇐…⇐已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27]综合法的应用[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨]从已知条件出发,结合基本不等式,即可得出结论. [精解详析]∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通]综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面PAO ,PO ∩b =P ,∴a ⊥平面PAO .又c平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.分析法的应用[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨]本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析]要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b 成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通]在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥a+b.证明:要证ab+ba≥a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥a+b.综合法与分析法的综合应用[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨]因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析]∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通](1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c =1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bc b 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明:a 2+1a 2-2>a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(某某高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。
数学中的推理和证明 共77页
证明:先考虑特殊情形:
(1)当 n3 ,pqr1 时不等 a3b 式 3c3 即 3 a,b 是 不 c : 等 .
(2)当 n3 ,p2 , q 1 , r0 时不等 a3b 3 式 c3 即 a2bb2 是 cc2a .:
下证不(等 2)成 式立 .
受1( )的启发,可以得到:
在a3b3c3 3ab中 c ,a令 c有:
2a3b3 3 a3a3b3 a2b,同理有 2b3: c3 b2c,2c3a3 c2a.
3
3
3
三式相加a3有 b3: c3 a2bb2cc2a成立 .
(3)一般的情形:由( 2),由于 n N , p 、 q 、 r都 是非负整数,且 p q r n. 根据类比有:
归纳法.
特殊
一般
归纳 不 法 完 完全 全归 归 — — 纳 纳 纳 属 法 法 法 于 ( 、 演 实 经 绎 验 — 数 验 — 推 归 学 归 属 理 归 纳 于 ( 纳 法 归 比
我们借助于归纳推理可以从大量的个别事例中发现数学 真理,引出新的数学命题.但此时的数学命题还只是一种猜想, 它往往是冒风险的、有争议的和暂时成立的。要使它成为真 正的普遍命题,还要借助于论证推理进行严格的证明.
学习合情推理的意义——还数学的 本来面目,把数学知识的学术形态 的“冰冷的美丽”转化为数学知识 的教育形态的“火热的思考”.
数学中的合情推理主要有:归纳推 理、类比推理、直觉、顿悟等.
这里主要谈谈归纳推理与类比推理.
2. 归纳推理
1)定义
Байду номын сангаас
把某类事物中个别事物所具有的规律 作为该类事物的普遍规律,这种思维进程 中由特殊到一般的推理称为归纳推理或称
人教A选修2-211-12学年高二数学:第二章 推理与证明章末归纳总结 课件(人教A版选修2-2)
1 1 由 an+ <an+1+ =c 得 an<α an an 10 当 2<c< 时,an<α≤3 3 10 c> 3 时,α>3,且 1≤an<α, 1 1 于是 α-an+1=a α(α-an)≤3(α-an), n 1 α-an+1≤3n(α-1) α-1 当 n>log3 时,α-an+1≤α-3,an+1≥3. α-3 10 10 因此 c> 3 不合要求,所以 c 的取值范围为2, 3 .
数学归纳法是专门证明与正整数有关的命题的 一种方法.它是一种完全归纳法,它的证明共 分两步,其中第一步是命题成立的基础,称为 “归纳基础”(或称特殊性).第二步解决的是延 续性(又称传递性)问题.运用数学归纳法证明有 关命题要注意以下几点: 1.两个步骤缺一不可. 2.第二步中,证明“当n=k+1时结论正确”的 过程里,必须利用“归纳假设”即必须用上 “当n=k时结论正确”这一结论.
-
4 的等比数列,
4n 1 1 2 1 n-1 bn+3=-3×4 ,即 bn=- 3 -3.
(2)a1=1,a2=c-1,由 a2>a1 得 c>2 用数学归纳法证明:当 c>2 时,an<an+1 1 ①当 n=1,a2=c-a >a1,命题成立; 1 ②设当 n=k 时,ak<ak+1,则当 n=k+1 时,ak+2 1 =c- >c-a =ak+1, ak+1 k 故由①②知当 c>2 时,an<an+1 c+ c2-4 当 c>2 时,令 α= , 2 1
[例 3]
若定义在区间 D 上函数 f(x)对于 D 上的几个
1 值 x1 , x2 , „ , xn 总 满 足 n [f(x1) + f(x2) + „ +
高中数学选修1-2《推理与证明》教学内容
高中数学选修1-2《推理与证明》第二章 推理与证明一、合情推理12→⎫⎬→⎭、归纳推理:个别一般(结论不一定正确)、类比推理:特殊特殊例1、推导等差数列通项公式。
解:33332123________.n ++++=例、求 解:二、演绎推理()()()()123⎧⎪→⎨⎪⎩大前提:M 是P 三段论小前提:S 是M 一般特殊结论正确结论:S 是P例:“自然数是整数,4是自然数,所以4是整数”。
233243123(1)n a a d a a da a d a a n d =+⎫⎪=+⎪⎪=+↓⎬⎪⎪=+-⎪⎭个别一般32332333233332221111293123=36=++11+2+3++(123)(1)4n n n n ⎫==⎪⎪+==⎪⎪++↓⎬⎪⎪⎪=++++=+⎪⎭特殊(123)一般三、直接证明1→→、综合法:条件结论2、分析法:结论条件()(),,,0,+=+,12,a b c d a b c d ab cd a b c d >>>-<->例:设且证明:若若()221,,,a b c d a b c d ab cd ab cd ab cd ⎫>⎪⎪>⎪⎪+>+⎬+=+>⎪⎪>⎪⎪>>⎭证明:只要证,即,分析法因为所以只要证,只要证因为成立.()22222,()()()4()4,a b c d a b c d a b ab c d cd a b c d ab cd ⎫-<--<-⎪+-<+-⎪⎬+=+>⎪⎪>⎭若,即,综合法因为所以,由(1四、间接证明反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立。
210.x m n x mn x m x n ++≠≠≠例、若-(),则且2==0x m x n x m x n x m x n x m n x mn x m x n ≠≠--++≠∴≠≠证:假设且不成立,则且,所以()()=0与-()矛盾,故假设不成立,且成立.22例、证明是无理数.2222222222=,=24,2,2q p q pp q q q q k k p k p k p p p q ∴=∴∴∴=∴=∴∴∴证明:假设是有理数,则(、互质的整数),2是偶数,是偶数,可设(为整数),2是偶数,也是偶数,与、互质矛盾,则假设不成立,是无理数.五、数学归纳法*00*0()=(,)1n an n N n k k n k N n k ∈≥∈=+步骤:①:(归纳奠基)证明当取第一个值时命题成立.②:(归纳递推)假设时命题成立,证明当时命题成立.例1、例2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它也可以是齿形的. 这个推理过程是归纳推理吗?
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕 轴自转 轴自转 有大气层 有大气层 一年中有四季的变更 一年中有四季的变更 大部分时间的温度适合地 球上某些已知生物的生存
温度适合生物的生存
有生命存在
可能有生命存在
火星与地球类比的思维过程:
存在类似特征
0 0 0
猜想:任意所有 n 边形的
外角和是 360
0
已知数列{an}的第一项 a1 =1, an 且 an 1 ( n =1,2,3,· · · ), 1 an
1 an n 请归纳出这个数列的通项公式为________.
例2观察下列式子,归纳结论: (以下a、b均为正数)
a b 2ab
合情推理的应用
数学研究中,得到一个新结论之前,合情推 理常常能帮助我们猜测和发现结论。 证明一个数学结论之前,合情推理常常能为 我们提供证明的思路和方向
传说在古老的印度有一座神庙,神庙中有三根针和套在一 根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则, 把圆环从一根针上全部移到另一根针上,第三根针起“过渡” 的作用. 1.每次只能移动1个圆环; 2.较大的圆环不能放在较小的圆环上面. 如果有一天,僧侣们将这64个圆环全部移到另一根针上, 那么世界末日就来临了. 请你试着推测:把 n个圆环从1号针移到3号针,最少需要移 动多少次?
n=1时,
2
1
3
f (1) 1 f (2) 3 f (3) 7 f (2) 1 f (2) n=4时, f (4) f (3) 1 f (3) 15
n=1时, n=2时, n=3时,
2
1
3
f (1) 1 f (2) 3 f (3) 7 f (2) 1 f (2) n=4时, f (4) 15 f (3) 1 f (3)
陈氏定理
(Chen‘s Theorem)
任何充分大的偶数都 是一个质数与一个自然 数之和,而后者仅仅是 两个质数的乘积, 简称为 “1 + 2 ” 。
归纳推理的过程: 哥德巴赫猜想的过程:
具体的材料 观察分析 猜想出一般性的结论
归纳推理 归纳推理的基础 归纳推理的作用 注意
由部分到整体、 个别到一般的推理 观察、分析 发现新事实、 获得新结论
2、根据我所给出的数列的前几项,请你猜猜这 个数列的通项公式可能是什么?
1, 2 ,4 , 8 , …… , 2n-1 个别项 一般项
3、
1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52
个别的 式子
……
一般的 式子
1+3+5+…+(2n-1)=n2
2 2 3 3 2
a b a b ab
4 4 3
2
a b a b ab a b 2a b
4 4 2 2
3
a b a
n n
n k
b a b
k k
n k
(n N , n 2)
*
类比推理
春秋时代鲁国的公输班(后人称鲁班,被认为 是木匠业的祖师)一次去林中砍树时被一株齿 形的茅草割破了手,这桩倒霉事却使他发明了 锯子. 他的思路是这样的: 茅草是齿形的; 茅草能割破手. 我需要一种能割断木头的工具;
由两类对象具有某些类似特征和其中
一类对象的某些已知特征,推出另一类对 象也具有这些特征的推理称为类比推理. (简称类比).简言之,类比推理是由特 殊到特殊的推理.
类比推理
由特殊到特殊的推理
类比推理
以旧的知识为基础,推测新 的结果,具有发现的功能
注意 类比推理的结论不一定成立
例题2:类比平面内直角三角形的勾股定理, 试给出空间中四面体的性质的猜想
合情推理 推理
演绎推理 推理与证明
直接证明 证明 间接证明
推理:根据一个或几个已知的判断来确定
一个新的判断的思维过程。
推理
合情推理
归纳推理
演绎推理
该类事物的 部分对象
部分对象具有 的共同特征
1、铜、铁、铝、金、银等金属都能导电, 则一切金属都具有怎样的特性?
导电
该类事物 的整体
全部对象都 具有的特征
1、铜、铁、铝、金、银等金属都能导电, 则一切金属都能导电。 2、 1,2,4,8,……,2n-1 2 3、 1=1 ……
1+3=4=22 1+3+5=9=32 1+3+5+…+(2n-1)=n2
归纳推理
部分对象 由某类事物的部分对象具有某些特征,推出 该类事物的全部对象都具有这些特征的推理 , 全部对象 个别事实 一般结论 或者由个别事实概括出一般结论的推理。
2
1
3
n=1时,
f (1) 1
2
1
3
f (1) 1 n=2时, f (2) 3
n=1时,
2
1
3
f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
n=1时,
2
1
3
f (1) 1 n=2时, f (2) 3 n=3时, f (3) 3 1 3 f (2) 1 f (2)
数学皇冠上璀璨的明珠——哥德巴赫猜想
3+7=10 3+17=20 13+17=30
10= 3+7 20= 3+17 30= 13+17
一个规律: 偶数=奇质数+奇质数
6=3+3, 8=3+5, 10=5+5, …… 1000=29+971, 1002=139+863, ……
猜想任何一个不小于6的 偶数都等于两个奇质数的和.
n=1时, n=2时, n=3时, 归纳:
f (n) 2 1
n
n1 1, f (n) 2 f (n 1) 1, n 2
归纳的风险
费马猜想:
1640年,法国数学家费马观察到: 21
2 +1=5 2 2 2 +1=17 都是质数, 3 2 2 +1=257 4 2 2 +1=65537
于是他归纳推理提出猜想: n 2 形如 2 1 的数都是在质数。
1732年,欧拉发现:
2n
但归纳推理可以发现 新事实,获得新结论, 可以为我们的研究提 供一种方向!
5 2 2 +1=4294967297=641×6700417,
新的猜想: 形如 2 1( n 5 ) 的数都是合数。
2
发现部分规 律特征
猜测一般性结论
1 3
(2n 1) n
.
统计初步中的用样本估计总体 通过从总体中抽取部分对象进 行观测或试验,进而对整体做出推断. 成语“一叶知秋”
意思是从一片树叶的凋落,知道秋
天将要来到.比喻由细微的迹象看出整体 形势的变化,由部分推知全体.
猜想:
三角形的外角和是 360 , 四边形的外角和是 360 , 五边形的外角和是 360 , ………
B
P S1 S2 D S3 F
C
A
E
概括
☞
归纳推理和类比推理的过程
从具体问 题出发 观察、分析、 比较、联想 归纳、 类比 提出 猜想
合情推理
归纳推理和类比推理都是根据已有的事实,经过 观察、分析、比较、联想,再进行归纳、类比,然后 提出猜想的推理,我们把它们统称为合情推理。
通俗地说,合情推理是指“合乎情理”的推 理。
地球
火星
地球上有生命存在
猜测火星上也可能有生命存在
.
.
圆的概念和性质
球的类ห้องสมุดไป่ตู้概念和性质
圆心与弦(非直径)中点连线垂直 球心与截面圆(不经过球心的截面圆) 圆心连线垂直于截面圆. 于弦. 与圆心距离相等的两弦相等;与圆 与球心距离相等的两截面圆面 心距离不等的两弦不等,距圆心较 积相等;与球心距离不等的两 截面圆面积不等,距球心较近 近的弦较长. 的截面圆面积较大. 以点P(x0,y0)为圆心,r为半径的圆 以点P(x0,y0,z0)为球心,r为半径 的球的方程为 的方程为(x-x0)2+(y-y0)2=r2. (x-x0)2+(y-y0)2+(z-z0)2=r2.
归纳推理的结论不一定成立
例1:填空:观察下图,可以发现:
观察图象 发现奥秘
1 12
1 3 4 22
1 3 5 9 32
实验、观察
1 2 3 4 5
1 3 5 7 16 4
2
1 3 5 7 9 25 52
由上述具体事实能得出的结论是: 前n个连续的正奇数相加 n的平方