人教版高一数学必修一同步练习

合集下载

人教版数学高中A版必修一全册课后同步练习(附答案)

人教版数学高中A版必修一全册课后同步练习(附答案)

(本文档资料包括高一必修一数学各章节的课后同步练习与答案解析)第一章1.1 1.1.1集合的含义与表示课后练习[A组课后达标]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.12.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5 B.4C.3 D.25.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________。

7.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________。

8.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________。

9.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A。

10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值。

[B组课后提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集。

其中正确说法是()A.①④B.②C.②③D.以上说法都不对2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P3.已知集合M={a|a∈N,且65-a∈N},则M=________。

人教版高中数学必修1同步章节训练题及答案全册汇编

人教版高中数学必修1同步章节训练题及答案全册汇编

高中数学必修1全册同步练习题目录1.1.1集合的含义与表示同步练习1.1.2集合间的基本关系同步练习1.1.3集合的基本运算同步练习1.2.1函数的概念同步练习1.3.1单调性与最大(小)值同步练习1.3.2奇偶性同步练习2.0基本初等函数同步练习2.1.1指数与指数幂的运算同步练习2.1.2指数函数及其性质同步练习2.2.1对数与对数的运算同步练习2.3幂函数同步练习3.1.1方程的根与函数的零点同步练习3.1.2用二分法求方程的近似解同步练习3.2.1几类不同增长的函数模型同步练习3.2.2函数模型的应用实例同步练习1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2的实数的全体;3)方程210x x +-= 的实数根4)全国著名的高等院校。

以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( ) A 、{(3,2)},{(2,3)}M N == B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==+,集合{|,}M m m a a b Q ==+∈,则有( )A 、x M y M ∈∈且B 、x M y M ∉∈且C 、x M y M ∈∉且D 、x M y M ∉∉且 6、集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12} C={Zk k x x ∈+=,14}又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个 7、下列各式中,正确的是( ) A 、-2{2}x x ∈≤ B 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ D 、{Zk k x x ∈+=,13}={Zk k x x ∈-=,23}二、填空题8、由小于10的所有质数组成的集合是 。

高一必修一数学同步训练人教版

高一必修一数学同步训练人教版

高一必修一数学同步训练人教版1. 集合 A={1, 2, 3},集合 B={2, 3, 4},则A∩B=()A. {1, 2, 3, 4}B. {2, 3}C. {1, 2, 3}D. {1, 4}2. 函数 f(x)=x + 1 的定义域为()A. RB. (∞, 0)∪(0, +∞)C. (∞, 1)∪(1, +∞)D. (∞, 0)3. 已知 a = 2, b = 3,则 a + b = ()A. 5B. 6C. 8D. 94. 下列函数中,是奇函数的是()A. f(x) = x²B. f(x) = xC. f(x) = 2xD. f(x) = x + 15. 不等式x² 2x 3 0 的解集为()A. (1, 3)B. (∞, 1)∪(3, +∞)C. (3, 1)D. (∞,3)∪(1, +∞)6. 直线 y = 2x + 1 的斜率为()A. 1B. 2C. 1D. 27. 已知向量 a = (1, 2),向量 b = (2, 3),则a·b = ()A. 8B. 7C. 6D. 58. 等差数列{an}中,a1 = 2,d = 3,则 a5 = ()A. 11B. 14C. 17D. 20填空题(每题 5 分,共 20 分)1. 函数f(x) = √x 的定义域为________。

2. 直线 2x y + 1 = 0 在 y 轴上的截距为________。

3. 等比数列{an}中,a1 = 2,q = 2,则 a4 = ________。

4. 圆心为(1, 2),半径为 3 的圆的标准方程为________。

解答题(每题 20 分,共 40 分)1. 已知函数f(x) = 2x² 3x + 1,求 f(2)的值。

2. 求过点(1, 2)且斜率为 3 的直线方程。

答案与解析:选择题1. B 集合 A 与集合 B 的交集是它们共有的元素,即{2, 3}。

2022-2023学年人教A版(2019)高一上数学同步练习(含解析)

2022-2023学年人教A版(2019)高一上数学同步练习(含解析)

2022-2023学年高中高一上数学同步练习学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:78 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1. 设命题:,,则为 A.,B.,C.,D.,2. 已知集合,=,则=( )A.B.C.D.3. 下列各组中两个函数是同一函数的是( )A. B. C. D.4. 已知函数定义在区间上的奇函数,则下面成立的是( )A.B.C.p ∀x >0x >sin x ¬p ()∃x >0x ≤sin x ∀x >0x ≤sin x∃x ≤0x ≤sin x ∀x ≤0x ≤sin xA ={x |y =}2x −x 2−−−−−−√B {x |−1<x <1}A ∪B [0,1)(−1,2)(−1,2](−∞,0]∪(1,+∞)f(x)=x 4−−√4g(x)=(x −√4)4f(x)=x g(x)=x 3−−√3f(x)=1g(x)=x 0f(x)=−4x 2x +2g(x)=x −2f(x)=x 2−m [−3−m,−m]m 2f(m)<f(0)f(m)=f(0)f(m)>f(0)D.与大小不确定5. 函数的图象是( ) A. B. C. D.6. 设,,若是与的等比中项,则的最小值为( )A.B.C.D.7. 下列函数中,既是偶函数又在单调递增的函数是( )A.f(m)f(0)f(x)=e −|x−1|a >0b >03–√3a 3b +1a 1b 9842(0,+∞)y =x 3B.C.D.8. 已知函数若在上是增函数,则实数的取值范围是( )A.B.C.D.二、 多选题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )9. 下列结论不正确的是( )A.不等式解集为B.已知,,则是的充分不必要条件C.若,则函数的最小值为D.若,不等式恒成立,则的取值范围为10. 下列说法正确的是( )A.当时, 的最小值为B.函数的单调递增区间为C.不等式的解集为D.已知且,则为第二象限角11. 如图,摩天轮的半径为米,点距地面的高度为米,摩天轮按逆时针方向做匀速转动,每分钟转一圈,摩天轮上点的起始位置在最低点处,下面的有关结论正确的有( )y =|x −1|y =|x|−1y =2xf (x)={−+4ax,x ≤1,x 2(2a +3)x −4a +5,x >1,f (x)R a (,1]12[,]1232(,+∞)12[1,2](2x −1)(1−x)<0(,1)12p :x ∈(1,2)q :(x +1)≥1log 2p q x ∈R y =++4x 2−−−−−√1+4x 2−−−−−√2x ∈R k −kx +1>0x 2k (0,4)x >0x +1x2y =sin(2x −)π3[−+kπ,+kπ](k ∈Z)π125π12+1>0x 2Rsin α>0tan α>0α40O 5030PA.经过分钟,点首次到达最高点B.从第分钟到第分钟摩天轮上的点距离地面的高度一直在升高C.若摩天轮转速减半,则其旋转一圈所需要的时间变为原来的倍D.在摩天轮转动的一圈内,有分钟的时间点距离地面超过12. 已知定义在上函数的图象是连续不断的,且满足以下条件:①,;②,,当时,都有;③.则下列选项成立的是( )A.B.若,则C.若,则D.,,使得卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13. 函数(且)图象一定过点________.14. 若,则________.15. 数学老师给出一个定义在上的函数,甲、乙、丙、丁四位同学各说出了这个函数的一条性质:甲:在上函数单调递减; 乙:在上函数单调递增;丙:函数的图象关于直线对称; 丁:不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确,那么,你认为说法错误的同学是________.16. 已知函数,若对于任意的,均有,则实数的取值范围是15P 1020P 1210P 70mR f(x)∀x ∈R f(−x)=f(x)∀x 1∈(0,+∞)x 2≠x 1x 2>0f()−f()x 2x 1−x 2x 1f(−1)=0f(3)>f(−4)f(m −1)<f(2)m ∈(−∞,3)>0f(x)xx ∈(−1,0)∪(1,+∞)∀x ∈R ∃M ∈R f(x)≥My =+2a x a >0a ≠1−=04x 2x+1x =R f(x)(−∞,0][0,+∞)f(x)x=1f(0)f(x)=kx +1x ∈[−1,1]f(x)≥0k________.四、 解答题 (本题共计 3 小题 ,每题 10 分 ,共计30分 )17. 已知函数是奇函数.求的值;对任意的,不等式恒成立,求实数的取值范围. 18. 已知函数 且是定义在上的奇函数求实数的值:判断函数 的单调性,并用定义证明;当时, 恒成立,求实数的取值范围19. 已知定义在上的函数为偶函数.求的值;设,试判断函数的单调性,并用定义证明.f (x)=(+1)log 21x +a (1)a (2)x ∈(−∞,−1]f (+)>(m −)2x 32log 22x m f(x)=(a >02+a −4a x 2+aa x a ≠1)(−∞,+∞).(1)a (2)f(x)(3)x ∈(0,1]t ⋅f(x)≥−22x t .R f (x)=+3+m e 2x e x e x(1)m (2)g(x)=3f (x)−3e x g(x)参考答案与试题解析2022-2023学年高中高一上数学同步练习一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】A【考点】命题的否定全称命题的否定【解析】由题意,根据全称命题的否定方法,根据已知中的原命题,写出其否定形式,进而即可得到答案.【解答】解:已知命题:,,全称命题的否定是特称命题,则:, .故选.2.【答案】C【考点】并集及其运算【解析】求函数的定义域得集合,根据并集的定义求出.【解答】由,即,解得,即=,∵==,∴=,3.【答案】p ∀x >0x >sin x ¬p ∃x >0x ≤sin x A A A ∪B 2x −≥0x 2x(x −2)≤00≤x ≤2A [0,2]B {x |−1<x <1}(−1,1)A ∪B (−1,2]B【考点】判断两个函数是否为同一函数【解析】根据函数定义域是自变量有意义的集合,结合定义域和对应关系是否相同加以判断.【解答】解:中,的定义域为,的定义域满足:,所以选项中的两个函数不为同一函数;中,的定义域为,的定义域满足:,所以选项中的两个函数不为同一函数;中,的定义域为,的定义域满足:,所以选项中的两个函数不为同一函数;故选:.4.【答案】D【考点】幂函数的性质【解析】根据奇函数的定义域关于原点对称的性质求出,然后根据幂函数的性质即可得到结论.【解答】解:∵函数定义在区间上的奇函数,∴定义域关于原点对称,即,且,∴且,即或.当时,区间,为奇函数,满足条件,且此时函数单调递增,满足.当时,区间为,为奇函数,满足条件,但此时无意义,综上:选.故选:.5.【答案】B【考点】函数的图象【解析】A f(x)R g(x)x ≥0A C f(x)R g(x)x ≠0C D g(x)R f(x)x ≠−2DB m f(x)=x 2−m [−3−m,−m]m 2−3−m +−m =0m 2−m −(−3−m)>0m 2−2m −3=0m 2+3>0m 2m =−1m =3m =−1[−2,2]f(x)==x 2−m x 3f(m)<f(0)m =3[−6,6]f(x)==x 2−m x −1f(0)D D根据函数的解析式,分析出函数的定义域和最大值,利用排除法,可得答案.【解答】解:函数的定义域为,故排除,,当时,函数取最大值,故排除.故选.6.【答案】C【考点】等比数列的性质基本不等式在最值问题中的应用【解析】先根据等比中项的性质求得的值,代入 中,将其变为,利用基本不等式就可得出其最小值.【解答】解:∵是与的等比中项,∴,∴,∴,当且仅当时“”成立.故选.7.【答案】C【考点】函数奇偶性的判断函数单调性的判断与证明【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.f(x)=e −|x−1|R C D x =11A B a +b +1a 2b 1+2++b a 2a b3–√3a 3b ⋅==33a 3b 3a+b a +b =1+=(a +b)(+)=+1a 1b 1a 1b a +b a a +b b=1+1++≥2+2=4b a a b =b a a b=C解:根据题意,依次分析选项:对于,是奇函数,不符合题意,对于,,是非奇非偶函数,不符合题意;对于,既是偶函数又在单调递增,符合题意;对于,,为指数函数,不是偶函数,不符合题意.故选.8.【答案】B【考点】函数的单调性及单调区间分段函数的应用【解析】先保证每一段在定义域内单调递增,再保证在时的单调性保持一致,即.【解答】解:先保证每一段在定义域内单调递增,再保证在时的单调性保持一致,即 .故选 . 二、 多选题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )9.【答案】A,C,D【考点】必要条件、充分条件与充要条件的判断命题的真假判断与应用一元二次不等式的解法不等式恒成立的问题A y =x 3B y =|x −1|C y =|x|−1={x −1,x ≥0,−x −1,x <0,(0,+∞)D y =2x C x =1⇒≤a ≤ 2a ≥12a +3>0−1+4a ≥2a +3−4a +51232x =1⇒≤a ≤ 2a ≥1,2a +3>0,−1+4a ≥2a +3−4a +51232B【解析】将各个命题进行逐一分析求解即可.【解答】解:,不等式可化为,∴不等式的解集为,故错误,符合题意;,由可得,由可以得到;反之,由得不到,∴是的充分不必要条件,故正确,不符合题意;,函数,因为等号成立的条件即不存在,故错误,符合题意;,不等式恒成立,若时满足题意;若,则且,解得,综上所述:的取值范围为,故错误,符合题意.故选.10.【答案】A,B,C【考点】正弦函数的单调性命题的真假判断与应用基本不等式在最值问题中的应用【解析】此题暂无解析【解答】解:,∵,∴,当且仅当,即时等号成立,的最小值为,故正确;,∵,A (2x −1)(1−x)<0(2x −1)(x −1)>0{x|x >1或x <}12A B q :(x +1)≥1log 2x ∈[1,+∞)p q q p p q B C y =+ >2+4x 2−−−−−√1+4x 2−−−−−√=+4x 2−−−−−√1+4x 2−−−−−√+4=1x 2C D k −kx +1>0x 2k =0k ≠0k >0Δ=−4k <0k 2k ∈(0,4)k [0,4)D ACD A x >0x +≥2=21x x ⋅1x −−−−√x =1x x =1∴x +1x 2A B y =sin(2x −)π3∴单调递增区间为,,,,即单调递增区间为,,故正确;,∵,∴,则,故正确;,∵且,∴,则为第一象限角,故错误.故选.11.【答案】A,D【考点】函数的图象与图象变化在实际问题中建立三角函数模型【解析】利用三角函数的定义逐项分析得解.【解答】解:,经过分钟,点转了半圈,首次到达最高点,故正确;,由可知,分钟后,点转了半圈,首次到最高点后开始下降,故错误;,当摩天轮转速减半,旋转一周所需要的时间为原来的倍,故错误;,由题设摩天轮的周期为,运动时间为,则上升的高度,点到地面的距离,令,解得,故正确.故选.12.【答案】C,D【考点】函数单调性的性质函数奇偶性的性质【解析】利用已知条件,判断函数的性质,然后判断选项的正误即可.−+2kπ≤2x −≤+2kππ2π3π2k ∈Z ∴−+kπ≤x ≤+kππ125π12k ∈Z x ∈[−+kπ,+kπ]π125π12k ∈Z B C +1>0x 2>−1x 2x ∈R C D sin α>0tan α=>0sin αcos αcos α>0αD ABC A 15P B A 15P C 2D 30min t P h =R (1−cos)=40−40cos 2πt 302πt 30P f(t)=h +10=50−40cos 2πt 30f(t)>7010≤t ≤20AD解:定义在上函数的图象是连续不断的,且满足以下条件:①,,说明函数是偶函数;②,,当时,都有,说明函数在上是增函数;③.所以成立,所以不正确;若,可得,则,所以错误;若是奇函数,,,则,且在上小于,可得,所以正确;因为函数是连续函数,又是偶函数,在时是增函数,所以,,使得,所以正确.故选.三、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13.【答案】【考点】指数函数的图象指数函数的性质指数函数的单调性与特殊点【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】有理数指数幂的化简求值【解析】利用指数幂的运算法则和性质即可得出.R f(x)∀x ∈R f(−x)=f(x)∀x 1∈(0,+∞)x 2≠x 1x 2>0f()−f()x 2x 1−x 2x 1(0,+∞)f(−1)=0f(3)<f(4)=f(−4)A f(m −1)<f(2){m −1<2,m −1>0,m ∈(1,3)B y =f(x)x >0f(x)x f(−1)=0f(1)=0f(x)x (0,1)0x ∈(−1,0)∪(1,+∞)C x >0∀x ∈R ∃M ∈R f(x)≥M D CD 1解:∵,∴,∴,解得.故答案为:15.【答案】乙【考点】奇偶函数图象的对称性函数单调性的判断与证明【解析】根据四位同学的回答,不妨假设其中的任何三个同学回答正确,然后推出另一位同学的回答是否正确来分析,体现了反证法的思想.【解答】解:如果甲、乙两个同学回答正确,∵在上函数单调递增,∴丙说“函数的图象关于直线对称 ”错误.此时是函数的最小值,所以丁的回答也是错误的,与“四个同学中恰好有三个人说的正确”矛盾.所以综合四个说法,只有乙回答错误,其他三人说的才正确.故答案为:乙.16.【答案】【考点】函数单调性的性质函数的值域及其求法【解析】此题暂无解析【解答】解:根据题意可以列出方程:−=04x 2x+1(−2)=02x 2x −2=02x x =11[0,+∞)f(x)x=1f(0)[−1,1]{f(−1)=−k +1≥0,f(1)=k +1≥0,k ≤1,解得:∴.故答案为:.四、 解答题 (本题共计 3 小题 ,每题 10 分 ,共计30分 )17.【答案】解:∵是奇函数,∴ ,∴,∴,∴,即,∴,∴ .由知 ,∴,∵,∴,∴,恒成立,①,恒成立,则;②,恒成立,∴.又∵,∴,∴,综上所述, .【考点】对数函数的图象与性质函数奇偶性的性质{k ≤1,k ≥−1,k ∈[−1,1][−1,1](1)f (x)=(+1)log 21x +a f (−x)=−f (x)=−=log 2−x +a +1−x +a log 2x +a +1x +a log 2x +ax +a +1=−x +a +1−x +a x +a x +a +1(−x +a +1)(x +a +1)=(x +a)(−x +a)−=−(a +1)2x 2a 2x 2=(a +1)2a 2a =−12(2)(1)f (x)=log 2x +12x −12f (+)=2x 32log 2+22x +12x f (+)>(m −)2x 32log 22x >(m −)log 2+22x +12x log 22x ∀x ∈(−∞,−1] m −>0,2x >m −+22x +12x 2x∀x ∈(−∞,−1]m −>02x m >12∀x ∈(−∞,−1]>m −+22x +12x 2x m <+=+1++22x +12x 2x 2x 1+12x ∈(0,]2x 12+1∈(1,]2x 32m ≤2<m ≤212函数恒成立问题【解析】(1)是奇函数, ,由知,∴即,∴,∴ .(2)由(1)知 ,∴,∴即,,恒成立,①,恒成立,则;②,恒成立所以,又∵,∴,∴,综上所述, .【解答】解:∵是奇函数,∴ ,∴,∴,∴,即,∴,∴ .由知 ,∴,∵,∴,f (x)=(+1)log 21x +a f (−x)=−f (x)=−=log 2−x +a +1−x +a log 2x +a +1x +a log 2x +a x +a +1=−x +a +1−x +a x +a x+a +1(−x +a +1)(x +a +1)=(x +a)(−x +a)−=−(a +1)2x 2a 2x 2=(a +1)2a 2a =−12f (x)=log 2x +12x −12f (+)=2x 32log 2+22x +12x f (+)>(m −)2x 32log 22x >(m −)log 2+22x +12x log 22x ∀x ∈(−∞,−1) m −>02x >m −+22x +12x 2x ∀x ∈(−∞,−1]m −>02x m >12∀x ∈(−∞,−1]>m −+22x +12x 2x m <+=(+1)++22x +12x 2x 2x 1+12x ∈(0,]2x 12+1∈(1,)2x 32m ≤2<m ≤212(1)f (x)=(+1)log 21x +a f (−x)=−f (x)=−=log 2−x +a +1−x +a log 2x +a +1x +a log 2x +ax +a +1=−x +a +1−x +a x +ax +a +1(−x +a +1)(x +a +1)=(x +a)(−x +a)−=−(a +1)2x 2a 2x 2=(a +1)2a 2a =−12(2)(1)f (x)=log 2x +12x −12f (+)=2x 32log 2+22x +12x f (+)>(m −)2x 32log 22x >(m −)log 2+22x +12x log 22x m −>0,2x∴,恒成立,①,恒成立,则;②,恒成立,∴.又∵,∴,∴, 综上所述, . 18.【答案】解:是上的奇函数,. 在上为增函数证明:任意的 ,且 ,.∵ ,∴ , ,,得:.∴在上为增函数.当时, 恒成立,即恒成立,恒成立,令 .即.令,则又在上单调递增,,.【考点】函数奇偶性的性质函数单调性的判断与证明不等式恒成立问题函数恒成立问题【解析】∀x ∈(−∞,−1] m −>0,2x >m −+22x +12x 2x∀x ∈(−∞,−1]m −>02x m >12∀x ∈(−∞,−1]>m −+22x +12x 2x m <+=+1++22x +12x 2x 2x 1+12x ∈(0,]2x 12+1∈(1,]2x 32m ≤2<m ≤212(1)∵f(x)R ∴f(0)==0,∴a =22+a −42+a (2)f(x)R .,∈R x 1x 2<x 1x 2f()−f()=−+=x 1x 22+12x 12+12x 22(−)2x 12x 2(+1)(+1)2x 12x 20<<2x 12x 2+1>02x 1+1>02x 2−<02x 12x 2f()<f()x 1x 2f(x)R (3)x ∈(0,1]t ⋅f(x)≥−22x t ⋅≥−2−12x +12x 2x ∴t ⋅(−1)≥(−2)⋅(+1)2x 2x 2x u =−1∈(0,1]2x t ≥=u −+1(u −1)⋅(u +2)u 2u g(u)=u −+12u t ≥g(u)max g(u)u ∈(0,1]g(u =g(1)=0)max ∴t ≥0此题暂无解析【解答】解:是上的奇函数, . 在上为增函数证明:任意的 ,且 ,.∵ ,∴ , ,,得:.∴在上为增函数.当时, 恒成立,即恒成立,恒成立,令 .即.令,则又在上单调递增,,.19.【答案】解:∵,∴ .∵函数为偶函数,∴,即,∴,即,解得 .为减函数. 证明如下:由可知,,∴ .,,且,则∵,∴,即 .∴ ,∴ ,即为减函数.(1)∵f(x)R ∴f(0)==0,∴a =22+a −42+a (2)f(x)R .,∈R x 1x 2<x 1x 2f()−f()=−+=x 1x 22+12x 12+12x 22(−)2x 12x 2(+1)(+1)2x 12x 20<<2x 12x 2+1>02x 1+1>02x 2−<02x 12x 2f()<f()x1x 2f(x)R (3)x∈(0,1]t ⋅f(x)≥−22x t ⋅≥−2−12x +12x 2x ∴t ⋅(−1)≥(−2)⋅(+1)2x 2x 2x u =−1∈(0,1]2xt ≥=u −+1(u −1)⋅(u +2)u 2u g(u)=u −+12u t ≥g(u)maxg(u)u ∈(0,1]g(u =g(1)=0)max ∴t ≥0(1)f (x)=+3+me 2x e x e xf (x)=+m +3e x e −x f (x)f (−x)=f (x)+m =+m e −x e x e x e −x (1−m)=(1−m)e x e −x 1−m =0m =1(2)g(x)(1)f (x)=++3e x e −x g(x)=3f (x)−3=3+9e x e −x ∀x 1∈R x 2<x 1x 2g()−g()=3−3x 1x 2e −x 1e −x 2=3(−)=e −x 1e −x 23(−)e x 2e x 1e x 1e x 2=3(−)e x 2e x 1e +x 1x 2<x 1x 2<e x 1e x 2−>0e x 2e x 1g()−g()>0x 1x 2g()>g()x 1x 2g(x)【考点】函数奇偶性的性质函数单调性的判断与证明【解析】(1)变形可得: . 函数为偶函数,∴,即,即,所以,即 .(2)由(1)可得,∴ , 可知为减函数,证明如下:,且,则 ∵,∴,即 . ∴ ,∴ ,所以为减函数.【解答】解:∵,∴ .∵函数为偶函数,∴,即,∴,即,解得 .为减函数. 证明如下:由可知,,∴ .,,且,则 ∵,∴,即 .∴ ,∴ ,即为减函数.f (x)=+m ⋅+3e x e −x f (x)f (−x)=f (x)+m ⋅=+m ⋅e −x e x e x e −x (1−m)=(1−m)e x e −x 1−m =0m =1f (x)=++3e x e −x g(x)=3f (x)−3=3+9e x e −x g(x)∀,∈R x 1x 2<x 1x 2g()−g()=3−3=3(−)=x 1x 2e −x 1e −x 2e −x 1e −x 23(−)e x 2e x 1e x 1e x 2=3(−)e x 2e x 1e +x 1x 2<x 1x 2<e x 1e x 2−>0e x 2e x 1g()−g()>0x 1x 2g()>g()x 1x 2g(x)(1)f (x)=+3+m e 2x e x e xf (x)=+m +3e x e −x f (x)f (−x)=f (x)+m =+m e −x e x e x e −x (1−m)=(1−m)e x e −x 1−m =0m =1(2)g(x)(1)f (x)=++3e x e −x g(x)=3f (x)−3=3+9e x e −x ∀x 1∈R x 2<x 1x 2g()−g()=3−3x 1x 2e −x 1e −x 2=3(−)=e −x 1e −x 23(−)e x 2e x 1e x 1e x 2=3(−)e x 2e x 1e +x 1x 2<x 1x 2<e x 1e x 2−>0e x 2e x 1g()−g()>0x 1x 2g()>g()x 1x 2g(x)。

人教新课标高中数学必修1同步训练资料(有答案)

人教新课标高中数学必修1同步训练资料(有答案)

必修1—集合【基础知识】①();();()Cu A B CuA CuB Cu A B CuA CuB A B A B A A B B ==⊆⇔==②A 集合中有n 个元素时,其子集个数:2n 真子集个数: 21n-非空真子集个数:22n -【题型训练】【题型1】集合定义及基本运算类 1.如图,阴影部分表示的集合是( D )(A )B ∩ [C U (A ∪C)] (B )(A ∪B)∪ (B ∪C) (C )(A ∪C) ∩( C U B) (D )[C U (A ∩C)]∪B2.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是B3.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( C ) A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅变式:1. 如果{}|3,x S y y x R ==∈,{}2|1,T y y x x R ==-∈,则S T = S .2.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂= ( C ) (A ){}2,1--(B ){}2-(C ){}1,0,1-(D ){}0,13.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B = ( B )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 4.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( C ) (A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 5.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( A )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}4.已知集合{}2,0xA y y x -==<,集合{}12B x y x ==,则A B ⋂=( B )A .[)1,+∞B .()1,+∞C .()0,+∞D .[)0,+∞5.设集合{|101},{|5}A x Z x B x Z x =∈--=∈≤≤≤,则A B 中元素的个数是( C )A 、11B 、10C 、16D 、15 6.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= ( B ) A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤7.设集合1|,24K M x x K Z ⎧⎫==+∈⎨⎬⎩⎭,1|,42K N x x K Z ⎧⎫==+∈⎨⎬⎩⎭,则( B ) A.M=N B.M N ⊂ C. M N ⊃ D.M N φ= 【题型2】点集问题1.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( D ) A 、3,1x y ==- B 、(3,1)- C 、{3,1}- D 、{(3,1)}-2.设集合13{(,)|log }A x y y x ==,{(,)|3}xB x y y ==,则A B ⋂的子集的个数是(C )A .4B .3C .2D .1【题型3】子集问题1.已知全集 u={1、2、3、4、5},A={1、5},B C U A,则集合B 的个数是( D )(A )5(B) 6(C) 7(D)83.若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为( C )A .2B .3C .4D .162.集合{},,,,S a b c d e =,包括{},a b 的S 的子集共有( D ) A.2个 B.3个 C.4个 D.8个变式:1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( B ) A .1B .2C .3D .42.已知集合M={2,0,11},若A M ≠⊂,且A 的元素中至少含有一个偶数,则满足条件的集合A 的个数为 5 .【题型4】集合运算1.设全集{,,,,}I a b c d e =,集合{,,},{,,}M a b c N b d e ==,那么I I M N 痧是( A ) A 、∅ B 、{}d C 、{,}a c D 、{,}b e变式:1.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .1(,0][,)2-∞+∞2.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B = ð D (A ){1,3,4} (B ){3,4} (C ){3} (D ){4}2.若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð( A )A.2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭ B.2,2⎛⎫+∞ ⎪ ⎪⎝⎭C.2(,0][,)2-∞+∞D.2[,)2+∞ 3.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于( A ) A 、{|}xx <-2 B 、{|}x x -<<21 C 、{|}xx <1 D 、{|}x x -≤<21 4.设集合U 为全集,集合,M N U ≠⊂,若M N N = ,则( C )A.U U C M C N ⊇B.U M C N ⊆C.U U C M C N ⊆D.U M C N ⊇5.设集合{|12},{|}M x x N x x a =-<=≤≤,若M N ≠∅ ,则a 的取值范围是1a ≥-.6.已知集合2{|||1},{|40}A x x a B x x x =-≤=-≥,若A B φ= ,则实数a 的取值范围是( C )A .(0,4)B .(0,3)C .(1,3)D .(2,3)变式:1.{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( C ) A {}a |0a 6≤≤ B {}|2,a a ≤≥或a 4 C {}|0,6a a ≤≥或a D {}|24a a ≤≤设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( A ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞7.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是C A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞)变式:设集合{}|||2A x x a =-<,21|12x B x x -⎧⎫=<⎨⎬+⎩⎭,若A B A = ,求实数a 取值范围.([0,1]) 8.设A 、B 、C 是三个集合,若A B B C = ,则有( D ) A. A B = B. C B ⊆ C. B A ⊆ D. A C ⊆变式:设I 为全集,123,,S S S 是I 的三个非空子集且123S S S I = ,则下面论断正确的是( C ) A.123()I C S S S φ⋂⋃= B.123()I I S C S C S ⊆ C.123I I I C S C S C S φ= D.123()I I S C S C S ⊆ 【题型4】集合与函数综合运用1. 知集合A={-1,a²+1,a²-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值。

人教A版高中数学必修第一册 同步练习 课时作业 17 函数的应用(一)

人教A版高中数学必修第一册 同步练习 课时作业 17 函数的应用(一)

一、选择题1.向一杯子中匀速注水时,杯中水面高度h随时间t变化的函数h=f(t)的图象如图所示,则杯子的形状是( )解析:从题图中看出,在时间段[0,t1],[t1,t2]内水面高度是匀速上升的,在[0,t1]上升慢,在[t1,t2]上升快,故选A.答案:A2.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是( )A.y=0.3x+800(0≤x≤2 000,x∈N*)B.y=0.3x+1 600(0≤x≤2 000,x∈N*)C.y=-0.3x+800(0≤x≤2 000,x∈N*)D.y=-0.3x+1 600(0≤x≤2 000,x∈N*)解析:由题意知,变速车存车数为(2 000-x)辆次,则总收入y=0.5x+(2 000-x)×0.8=0.5x+1 600-0.8 x=-0.3x+1 600(0≤x≤2 000,x∈N*).答案:D3.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A.7 B.8____________.解析:由函数解析式可以看出,组装第A 件产品所需时间为c A=15,故组装第4件产品所需时间为c 4=30,解得c =60,将c =60代入cA=15得A =16.答案:60 16 三、解答题8.某游乐场每天的盈利额y 元与售出的门票张数x 之间的函数关系如图所示,试由图象解决下列问题:(1)求y 与x 的函数解析式;(2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票?解析:(1)由图象知,可设y =kx +b,x∈[0,200]时,过点(0,-1 000)和(200,1 000),解得k =10,b =-1 000,从而y =10x -1 000;x∈(200,300]时,过点(200,500)和(300,2 000),解得k =15,b =-2 500,从而y =15x -2 500,所以y =⎩⎪⎨⎪⎧10x -1 000,x∈[0,200],15x -2 500,x∈(200,300].(2)每天的盈利额超过1 000元,则x∈(200,300],由15x -2 500>1 000得,x>7003,故每天至少需要卖出234张门票.9.某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=⎩⎪⎨⎪⎧400x -12x 2,(0≤x≤400)80 000,(x>400)其中x 是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获得利润最大?最大利润为多少元?(总收益=总成本+利润) 解析:(1)设月产量为x 台,则总成本为20 000+100x,从而 f(x)=⎩⎪⎨⎪⎧-12x 2+300x -20 000,0≤x≤400,60 000-100x ,x>400.(2)当0≤x≤400时,。

人教版高一数学必修一各章节同步练习(含答案)

人教版高一数学必修一各章节同步练习(含答案)

第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C [解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是( )A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] “A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则( )A.A⊆B B.C⊆BC.D⊆C D.A⊆D[答案] B[解析] ∵正方形必为矩形,∴C⊆B.4.下列四个集合中,是空集的是( )A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,故选B.5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 二、填空题7.用适当的符号填空:(1){x |x 是菱形}________{x |x 是平行四边形}; {x |x 是三角形}________{x |x 是斜三角形}. (2)Z ________{x ∈R |x 2+2=0}; 0________{0};Ø________{0};N ________{0}. [答案] (1)(2) ∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x ∈R |x 2+2=0}中,由于实数范围内该方程无解,因此{x ∈R |x 2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A ={1,2,m 3},B ={1,m },B ⊆A ,则m =________. [答案] 0或2或-1[解析] 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.三、解答题9.判断下列集合间的关系:(1)A ={x |x -3>2},B ={x |2x -5≥0}; (2)A ={x ∈Z |-1≤x <3},B ={x |x =|y |,y ∈A }. [解析] (1)∵A ={x |x -3>2}={x |x >5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴B A .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0 B .1 C .2 D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b ,解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A .当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}, B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =Ø,即m +1>2m -1,得m <2时,符合题意;当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧ m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M ={x |-3<x ≤5},N ={x |x >3},则M ∪N =( )A .{x |x >-3}B .{x |-3<x ≤5}C .{x |3<x ≤5}D .{x |x ≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A∩B=Ø,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.[答案] 0,1或-2[解析] 由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B .∵a 2+1≠-3,∴①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1},但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾,∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}.综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.[解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a 2},B ∪C =C ⇔B ⊆C , ∴-a 2<2,∴a >-4. 能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( )A .{0,1}B .{-1,0}C .{-1,0,1}D .{-1,1} [答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( )A .(1,-1)B .{x =1或y =-1}C .{1,-1}D .{(1,-1)} [答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧ x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C [答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧ -12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2, 所以A ={-1,-2},B ={-1,4},所以A ∪B ={-2,-1,4}.三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围.[解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12. 8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A .当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解,即Δ=4(a +2)2-4(a 2-4)<0,得a <-2.当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧ Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2. [点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I ={1,2,3,4,5},集合A ={2,3,5},集合B ={1,2},则(∁I B )∩A 为( )A .{2}B .{3,5}C .{1,3,4,5}D .{3,4,5}[答案] B[解析] 因为全集I ={1,2,3,4,5},集合B ={1,2},则∁I B ={3,4,5}.所以(∁I B )∩A 为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A.a≥2B.a>2C.a<2 D.a≤2[答案] A[解析] ∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2,故选A.二、填空题7.已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.[答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________.[答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4}三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧ |a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.∴A ∩B ={x |-2<x ≤2},(∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A .(∁U A )∩BB .(∁U A )∪(∁U B )C .A ∩(∁U B )D .A ∪(∁U B )[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆∁R P,则a的取值范围是________.[答案] a≥2[解析] M={x|-2<x<2},∁R P={x|x<a}.∵M⊆∁R P,∴由数轴知a≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________.[答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12.三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧ 4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧ a =87,b =-127.经检验,符合题意:∴a =87,b =-127. [点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3. 综上可得a ≥-12.第一章 1.1 1.1.3 第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∩B =( )A .{x |-1<x <3}B .{x |-1<x <0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A)∩(∁U B)={x|3<x≤4},故选C.方法2:A∪B={x|x≤3或x>4},(∁U A)∩(∁U B)=∁U(A∪B)={x|3<x≤4}.故选A.5.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),则实数a=( )A.0 B.1C.2 D.3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ), 由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B ) (3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D. 3.(2015·陕西模拟)已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是________.[答案]1 12[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7[答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A .成绩y 不是考试次数x 的函数B .成绩y 是考试次数x 的函数C .考试次数x 是成绩y 的函数D .成绩y 不一定是考试次数x 的函数 [答案] B5.如果二次函数的二次项系数为1,图象开口向上,且关于直线x =1对称,并过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1 B .f (x )=-(x -1)2+1 C .f (x )=(x -1)2+1 D .f (x )=(x -1)2-1[答案] D6.(2015·武安中学周测题)若f (x )满足关系式f (x )+2f (1x)=3x ,则f (2)的值为( )。

最新人教版高中数学必修一课时同步辅导与测试题(全册 共169页 附解析)

最新人教版高中数学必修一课时同步辅导与测试题(全册 共169页 附解析)

最新人教版高中数学必修一课时同步辅导与测试题(全册共169页附解析)目录第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集章末知识整合第一章末过关检测卷(一)第2章函数2.1 函数的概念2.1.1 函数的概念和图象2.1.2 函数的表示方法2.2 函数的简单性质2.2.1 函数的单调性2.2.2 函数的奇偶性2.3 映射的概念章末知识整合第二章末过关检测卷(二)第3章指数函数、对数函数和幂函数3.1 指数函数3.1.1 分数指数幂3.1.2 指数函数3.2 对数函数3.2.1 对数3.2.2 对数函数3.3 幂函数3.4 函数的应用3.4.1 函数与方程第1课时函数的零点第2课时用二分法求方程的近似解3.4 函数的应用3.4.2 函数模型及其应用章末知识整合第三章末过关检测卷(三)模块测试题第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、第四象限内的点集解析:集合M为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a =-1或a =2.当a =-1时,A ={2,2,4},不满足互异性;当a =2时,A ={2,4,-1}.所以a =-3或a =2.答案:C8.下列各组集合中,表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B级能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B ={x |0≤x <2或x =5}.答案:{x |0≤x <2或x =5}8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则实数a 的值为________.解析:由A ⊇B ,得a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.设全集U =R ,集合A ={x |x ≥0},B ={y |y ≥1},则∁U A 与∁U B 的包含关系是________.解析:因为∁U A ={x |x <0},∁U B ={y |y <1}={x |x <1},所以∁U A ∁U B .答案:∁U A ∁U B10.集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若BA ,则实数a 的取值范围是________.解析:分B =∅和B ≠∅两种情况.答案:{a |a ≤1}11.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:因为∅{x |x 2-x +a =0},所以方程x 2-x +a =0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若BA ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.解:由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B ={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B =________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A ={x |x >1}.答案:{x |1<x ≤5}9.设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},则a 的取值范围为________.解析:如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.答案:{a |1<a ≤3}10.已知方程x 2-px +15=0与x 2-5x +q =0的解分别为M 和S ,且M ∩S ={3},则p q=________. 解析:因为M ∩S ={3},所以3既是方程x 2-px +15=0的根,又是x 2-5x +q =0的根,从而求出p =8,q =6.则p q =43. 答案:4311.满足条件{1,3}∪A ={1,3,5}的所有集合A 的个数是________.解析:A 可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <2。

高一数学必修1(人教版)同步练习第一章第一节集合

高一数学必修1(人教版)同步练习第一章第一节集合

2011-2012学年高一数学必修1(人教版)同步练习第一章第一节集合一. 教学内容:集合二、本周教学目标:1. 了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;2. 了解集合间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义。

3. 理解补集的含义,会求补集;4. 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

5. 渗透数形结合、分类讨论的数学思想方法。

[知识要点]一、集合的含义及其表示1、一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合中的每一个对象称为该集合的元素。

集合的性质:(1)确定性:班级中成绩好的同学构成一个集合吗?(2)无序性:班级位置调换一下,这个集合发生变化了吗?(3)互异性:集合中任意两个元素是不相同的。

如:已知集合A={1,2,a},则a应满足什么条件?[知识要点]一、集合的含义及其表示1、一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合中的每一个对象称为该集合的元素。

集合的性质:(1)确定性:班级中成绩好的同学构成一个集合吗?(2)无序性:班级位置调换一下,这个集合发生变化了吗?(3)互异性:集合中任意两个元素是不相同的。

如:已知集合A={1,2,a},则a应满足什么条件?常用数集及记法(1)自然数集:记作N(2)正整数集:记作(3)整数集:记作Z(4)有理数集:记作Q(5)实数集:记作R例:下列各种说法中,各自所表述的对象是否确定,为什么?(1)我们班的全体学生;(2)我们班的高个子学生;(3)地球上的四大洋;(4)方程x2-1=0的解;(5)不等式2x-3>0的解;(6)直角三角形;2、集合的表示法(1)列举法:把集合中的元素列举在一个大括号里:{…}(2)描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x| P(x)}的形式。

如:{x︱x为中国的直辖市}(3)集合的分类:有限集与无限集<1>有限集:含有有限个元素的集合。

最新人教A版高中数学必修一第3章3.1.2同步训练习题(含解析)

最新人教A版高中数学必修一第3章3.1.2同步训练习题(含解析)

高中数学必修一同步训练及解析1.定义在R上地奇函数f(x)( )A.未必有零点B.零点地个数为偶数C.至少有一个零点D.以上都不对解析:选C.∵函数f(x)是定义在R上地奇函数,∴f(0)=0,∴f(x)至少有一个零点,且f(x)零点地个数为奇数.2.已知函数f(x)地图象是连续不断地曲线,有如下地x与f(x)地对应值表那么,函数()在区间[1,6]上地零点至少有( ) A.5个B.4个C.3个D.2个解析:选C.观察对应值表可知,f(1)>0,f(2)>0,f(3)<0,f(4)>0,f(5)<0,f(6)<0,f(7)>0,∴函数f(x)在区间[1,6]上地零点至少有3个,故选C.3.用二分法研究函数f(x)=x3+3x-1地零点时,第一次算得f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.答案:(0,0.5) f(0.25)4.用二分法求函数f(x)=3x-x-4地一个零点,其参考数据如下:030.0290.060据此数据,可得()=3x--4地一个零点地近似值(精确度0.01)为________.解析:由参考数据知,f(1.5625)≈0.003>0,f(1.55625)≈-0.029<0,即f(1.5625)·f(1.55625)<0,且 1.5625-1.55625=0.00625<0.01,∴f(x)=3x-x-4地一个零点地近似值可取为1.5625.答案:1.5625[A级基础达标]1.用二分法求函数f(x)=3x3-6地零点时,初始区间可选为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.∵f (1)=-3,f (2)=18,∴f (1)·f (2)<0.∴可选区间为(1,2).2.下列函数中,有零点但不能用二分法求零点近似值地是( )①y =3x 2-2x +5②y =⎩⎪⎨⎪⎧ -x +1,x ≥0x +1,x <0③y =2x+1,x ∈(-∞,0) ④y =x 3-2x +3⑤y=12x2+4x+8A.①③B.②⑤C.⑤D.①④解析:选C.二分法只适用于在给定区间上图象连续不间断地函数变号零点地近似值地求解.题中函数①无零点,函数②③④都有变号零点.函数⑤有不变号零点-4,故不能用二分法求零点近似值,应选C.3.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解地过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程地根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D. 不能确定解析:选B.由已知f(1)<0,f(1.5)>0,f(1.25)<0,∴f(1.25)f(1.5)<0,因此方程地根落在区间(1.25,1.5)内,故选B.4.用二分法求函数y=f(x)在区间(2,4)上地近似解.验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)地中点,x1=2+42=3.计算f(2)·f(x1)<0,则此时零点x0∈________(填区间).解析:∵f(2)·f(4)<0,f(2)·f(3)<0,f(3)·f(4)>0,故x0∈(2,3).答案:(2,3)5.在26枚崭新地金币中,有一枚外表与真金币完全相同地假币(质量小一点),现在只有一台天平,则应用二分法地思想,最多称________次就可以发现这枚假币.解析:将26枚金币平均分成两份,放在天平上,则假币一定在质量小地那13枚金币里面;从这13枚金币中拿出1枚,然后将剩下地12枚金币平均分成两份,放在天平上,若天平平衡,则假币一定是拿出地那一枚;若不平衡,则假币一定在质量小地那6枚金币里面;将这6枚金币平均分成两份,放在天平上,则假币一定在质量小地那3枚金币里面;从这3枚金币中任拿出2枚放在天平上,若天平平衡,则剩下地那一枚即是假币;若不平衡,则质量小地那一枚即是假币.综上可知,最多称4次就可以发现这枚假币. 答案:46.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解:令f (x )=x 2-1x,则当x ∈(-∞,0)时,x 2>0,1x <0,所以-1x>0, 所以f (x )=x 2-1x>0恒成立, 所以x 2-1x=0在(-∞,0)内无实数解. [B 级 能力提升]7.方程log 2x +x 2=2地解一定位于区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.设f (x )=log 2x +x 2-2,∵f (1)=0+1-2=-1<0,f(2)=1+4-2=3>0,∴f(1)f(2)<0,x2=2地解一定由根地存在性定理知,方程log2x+位于区间(1,2),故选B.8.某方程在区间D=(2,4)内有一无理根,若用二分法求此根地近似值,要使所得近似值地精确度达到0.1,则应将D分( )A.2次B.3次C.4次D.5次解析:选D.等分1次,区间长度为1.等分2次区间长度为0.5,…,等分4次,区间长度为0.125,等分5次,区间长度为0.0625<0.1.9.关于“二分法”求方程地近似解,下列说法正确地有________.①“二分法”求方程地近似解一定可将y=f(x)在[a,b]内地所有零点得到②“二分法”求方程地近似解有可能得到f(x)=0在[a,b]内地重根③“二分法”求方程地近似解y=f(x)在[a,b]内有可能没有零点④“二分法”求方程地近似解可能得到f(x)=0在[a,b]内地精确解解析:利用二分法求函数y=f(x)在[a,b]内地零点,那么在区间[a,b]内肯定有零点存在,而对于重根无法求解出来,且所得地近似解可能是[a,b]内地精确解.答案:④10.如果在一个风雨交加地夜里查找线路,从某水库闸房(设为A)到防洪指挥部(设为B)地电话线路发生了故障.这是一条10 km长地线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子呢?想一想,维修线路地工人师傅怎样工作最合理?要把故障可能发生地范围缩小到50 m~100 m左右,即一两根电线杆附近,最多要查多少次?解:(1)如图所示,他首先从中点C检查,用随身带地话机向两端测试时,假设发现AC段正常,断定故障在BC段,再到BC段中点D查,这次若发现BD段正常,可见故障在CD段,再到CD段中点E来查.依次类推……(2)每查一次,可以把待查地线路长度缩减一半,因此只要7次就够了.11.求方程2x3+3x-3=0地一个近似解(精确度为0.1).解:设f(x)=2x3+3x-3,经试算,f(0)=-3<0,f(1)=2>0,所以函数在(0,1)内存在零点,即方程2x3+3x-3=0在(0,1)内有实数根.取(0,1)地中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有实数根.如此继续下去,得到方程地一个实数根所在地区间,如下表:因为|0.6875-0.75|=0.0625<0.1,所以方程23+3x-3=0地一个精确度为0.1地近似解可取为0.75.。

2022-2023学年全国高中高一上数学人教A版同步练习(含解析)

2022-2023学年全国高中高一上数学人教A版同步练习(含解析)

2022-2023学年全国高一上数学同步练习考试总分:114 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 多选题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )1. 设集合=,则下列表述不正确的是( )A.B.C.D.2. 已知集合,若,则满足条件的实数可能为( )A.B.C.D.3. 设集合=,则对任意的整数,形如,,,的数中,是集合中的元素的有( )A.B.C.D.4. 下列说法正确的是( )A.A {x |+x =0}x 2{0}∈A1∉A{−1}∈A0∈AM ={−2,3+3x −4,+x −4}x 2x 22∈M x 2−2−31M {a |a =−,x,y ∈Z}x 2y 2n 4n 4n +14n +24n +34n4n +14n +24n +30∈∅5. 若集合中只有一个元素,则实数的可能取值是( )A.B.C.D.6. 下列结论不正确的是( )A.B.C.D.二、 选择题 (本题共计 24 小题 ,每题 3 分 ,共计72分 )7. 已知集合,则下列关系式中,正确的是( )A.B.C.D.8. 下列式子中正确的个数是( )①②=③④.A.个B.个C.个D.个9. 已知,,则以下选项中正确的是( )A.A ={x|(k +1)−x −k =0,x ∈R}x 2k 01−1−121∈N∈Q2–√0∈N ∗−3∈ZM ={0,1}{0}∈M{0}∉M0∈M0⊆M0∈{0}{0}∅∅⊆{0}0⊆{0}1234a =4A ={x |x ≥3}a ∉AD.10. 下列表述中正确的是( )A.B.C.D.11. 设非空集合,满足=,则( )A.,B.,有C.,有D.,有12. 已知集合=,那么下列表示正确的是( )A.B.C.D.13. 下列说法正确的是( )A.与的意义相同B.C.D.集合是有限集14. 若,则 A.B.a ∉{a}{0}=∅{(1,2)}={1,2}{∅}=∅0∈NM N M ∪N N ∀x ∈N x ∈M∀x ∉N x ∉M∃∉M x 0∈Nx 0∃∈N x 0∉Mx 0A {0,1,2}0⊆A0∈A{1}∈A{0,1,2}A0{0}|−3.14|∉Q0∈∅A ={(x,y)|3x +y =4,x ∈N,y ∈N}1∈{2+x,}x 2x =()−1115. 设集合,且,则实数的可能取值组成的集合是( )A.B.C.D.16. 经过直线与的交点,且平行于直线的直线方程是( )A.B.C.D.17. 设集合,那么集合中满足条件“”的元素个数为 A.B.C.D.18. 设集合,集合,则集合中有( )个元素.A.B.C.D.19. 集合,若,则实数 A.A ={1,2,3,4}B ={a,4}A ∪B ={1,2,3,4}a {1,2,3}{2,3,4}{1,3,4}{1,2,4}:2x −3y +2=0l 12:3x −4y −2=04x −2y +7=0x −2y +9=04x −2y +9=02x −y −18=0x +2y +18=0A ={(,,,)|∈{−1,0,1},i =1,2,3,4}x 1x 2x 3x 4x i A +++≤4x 21x 22x 23x 24()60658081A ={1,2,4}B ={x |x =a +b,a ∈A,b ∈A}B 4567A ={,2a −1}a 2sin ∈A 90∘a =()120. 已知集合满足条件:若,则,那么集合中所有元素的乘积的值为( )A.B.C.D.21. 已知集合 ,那么下列表示正确的是( )A.B.C.D.22. 设集合,,则下列关系中正确的是( )A.B.C.D.23. 已知集合,若,则实数的值为( )A.B.C.D.或24. 设是自然数集的一个非空子集,对于,如果,且,那么是的一个“酷元”,给定,设集合由集合中的两个元素构成,且集合中的两个元素都是“酷元”,那么这样的集合有( )A.个A a ∈A ∈A 1+a 1−aA −11±1A ={0,1,2}0⊆A 0∈A{1}∈A{0,1,2} AA ={x|x ≤2}m =5–√{m}∈Am ⊆Am ∉Am ∈AA={a,|a |,a −2}2∈A a −22424A k ∈A ∉A k 2∉A k −√k A S ={x ∈N |y =lg(36−)}x 2M S M M 325. 下列命题中,真命题为( )A.终边在轴上的角的集合是B.在同一直角坐标系中,函数的图象和函数的图象有三个公共点C.把函数的图象向右平移个单位得到的图象D.函数在上是减函数26. 设集合,则 A.B.C.D.27. 已知,则实数的值为( )A.B.C.或 D.无解28. 已知集合,若,则实数的值为( )A.B.C.D.或29. 设、为两个非空实数集,定义集合.若,,则中元素的个数是( )A.y {a |a =,k ∈Z}kπ2y =sin x y =x y =sin(2x +)π3π6y =sin 2x y =sin(x −)π2[0,π]A ={x |x ∈N |x >1}()∅∉A1∉A1∈A{1}⊆A3∈{1,a,a −2}a 3535M ={x,+x}x 20∈M x x =−1x =0x =1x =−1x =0P Q P +Q ={a +b |a ∈P,b ∈Q}P ={0,2,5}Q ={1,2,6}P +Q 630. 以下六个关系式:①,②,③,④,⑤,⑥是空集,其中错误的个数是( )A.B.C.D.卷II (非选择题)三、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )31. 已知集合=,若,则实数=________.32. 若集合,则________(请填“,,或”).33. 集合,若,则_________,的子集有________个.34. 设集合=,,,若,且,(表示集合中的元素个数)令表示中最大数与最小数之和,则(1)当=时,集合的个数为________(2)所有的平均值为________.35. 设集合=,若,则实数=________.36. 若,则________.37. 已知,则实数________.38. 已知集合,若,则的值为________.0∈{0}{0}⊇∅0.3∉Q 0∈N {a,b}⊆{b,a}{x |−2=0,x ∈Z}x 21324A {1,2,−2a}a 23∈A a A ={x |=x}x 20A ∈∉⊂⊂A ={1,a,−1}a 20∈A A =A A {1,2,...n}n ≥4n ∈N ∗X ⊆A 2≤Card(X)≤n −2Card(X)X a X X n 5X a X A {1,a −2,a}3∈A a −2∈{−2a,+1}a 2a =3∈{1,−,a −1}a 2a =A ={m +2,2+m}m 23∈A m参考答案与试题解析2022-2023学年全国高一上数学同步练习一、 多选题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )1.【答案】A,C【考点】元素与集合关系的判断【解析】求出集合==,利用元素与集合的关系能判断正确结果.【解答】集合==,∴,,,,.∴选项均不正确,选项正确.2.【答案】A,C【考点】元素与集合关系的判断【解析】根据集合元素的互异性必有=或=,解出后根据元素的互异性进行验证即可.【解答】解:由题意,得或.若,即,解得或,检验:当时,,与元素互异性矛盾,舍去;当时,,与元素互异性矛盾,舍去;A {x |+x =0}x 2{0,−1}A {x |+x =0}x 2{0,−1}0∈A −1∈A {0}⊂A {−1}⊂A 1∉A AC BD 2∈M 23+3x −4x 22+x −4x 22=3+3x −4x 22=+x −4x 22=3+3x −4x 2+x −2x 2=0x=−2x=1x=−2+x −4x 2=−2x=1+x −4x 2=−2检验,当时,,符合题意,当,,符合题意.故当或时为满足条件的实数.故选.3.【答案】A,B,D【考点】元素与集合关系的判断【解析】将,,分别表示成两个数的平方差,故都是集合中的元素,再用反证法证明.【解答】因为=,所以,因为=,所以,因为=,所以,若,则存在=,若和都是奇数,则为奇数,不成立,若和都是偶数,则为能被整除,不成立,所以,4.【答案】B,D【考点】元素与集合关系的判断【解析】【解答】解:,空集中没有元素,错误;,空集是任何集合的子集,正确;,若,,错误;x=2+x −2x 2=4x=−3+x −2x 2=4x=2x=−3x AC 4n 4n +14n +3M 4n +2∉M 4n (n +1−(n −1)5)24n ∈M 4n +1(7n +1−(4n )2)24n +4∈M 4n +3(5n +2−(8n +1)2)26n +3∈M 4n +3∈M −x 2y 26n +2x +y x −y (x +y)(x −y)x +y x −y (x +y)(x −y)44n +2∉M A A B B C a =00∈N C【答案】C,D【考点】元素与集合关系的判断【解析】当时,可验证其满足题意;当时,根据一元二次方程只有唯一解可得到判别式等于零,【解答】解:①当时,则 ,解得: ,∵中只有一个元素,满足题意,②当时,由中只有一个元素得:,解得:,综上所述的取值为: 或.故选.6.【答案】B,C【考点】元素与集合关系的判断【解析】首先要弄清题中大写字母表示的数集的含义:表示自然数集,表示有理数集,表示正整数集,表示整数集,在这些概念的基础之上,再对四个命题加以判断,就不难得出正确命题的个数了.【解答】解:,因为是自然数,用符号表示为:,故正确;,因为是无理数,用符号表示为:,故不正确;,因为不是正整数,用符号表示为:,故不正确;,因为是整数,用符号表示为:,故正确.故选.二、 选择题 (本题共计 24 小题 ,每题 3 分 ,共计72分 )k =−1k ≠−1k =−1−x +1=0x =1A k ≠−1A Δ=1+4k (k +1)=0k =−12k −12−1CD N Q N ∗Z A 11∈N A B 2–√∉Q 2–√B C 00∉N ∗C D −3−3∈Z D BCC【考点】元素与集合关系的判断【解析】直接利用元素与集合的关系以及集合与集合的关系判断选项即可【解答】解:对于、,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于,是集合中的一个元素,表述正确.对于,是元素与集合的关系,错用集合的关系,所以不正确.故选8.【答案】B【考点】元素与集合关系的判断【解析】根据元素与集合,集合与集合之间关系的定义,逐一分析四个式子表达方式的正误,可得答案.【解答】①,正确;②=,错误;③,正确;④,错误.故上述式子正确的有个,9.【答案】B【考点】元素与集合关系的判断【解析】集合给出的是数集,给的是一个元素,看给出的数是不是在给出的数集中即可.【解答】A B C 0D C.0∈{0}{0}∅∅⊆{0}0⊆{0}2a解:元素的值为,集合是由大于等于的元素构成的集合,元素在中,所以.故选.10.【答案】D【考点】元素与集合关系的判断【解析】由集合的性质可知,表示没有任何元素的集合,而表示有一个元素,表示有一个元素,是点的集合,而表示有个元素的集合,是数集,表示有一个元素,可判断.【解答】解:由集合的性质可知,表示没有任何元素的集合,而表示有一个元素,故错误;表示有一个元素,是点的集合,而表示有个元素的集合,是数集,故错误;表示没有任何元素的集合,而表示有一个元素,故错误;,故正确.故选.11.【答案】B【考点】元素与集合关系的判断【解析】根据=即可得出,然后即可判断每个选项的正误.【解答】∵=,∴,∴,有.12.【答案】B【考点】a 4A 3a A a ∈A B ∅{0}0{(1,2)}{1,2}2{∅}∅∅{0}0A {(1,2)}{1,2}2B ∅{∅}∅C 0∈N D D M ∪N N M ⊆N M ∪N N M ⊆N ∀x ∉N x ∉M元素与集合关系的判断【解析】直接由查元素与集合,集合与集合间的关系逐一核对四个选项得答案.【解答】∵集合=,∴.13.【答案】D【考点】元素与集合关系的判断【解析】此题暂无解析【解答】解:因为表示元素,表示集合,意义不同,所以选项说法错误;,所以选项说法错误;因为不含任何元素,所以,选项说法错误;集合,所以集合是有限集,选项说法正确.故选.14.【答案】B【考点】元素与集合关系的判断【解析】将代入集合,求出,注意集合元素的互异性.【解答】解:∵,∴,或,∴或,若,则,与元素的互异性矛盾,若,则,,符合题意.∴.A {0,1,2}0∈A 0{0}A |−3.14|=3.14∈QB ∅0∉∅C A ={(x,y)|3x +y =4,x ∈N,y ∈N}={(0,4),(1,1)}AD D 1x 1∈{2+x,}x 21=2+x 1=x 2x =−1x =1x =−12+x =x 2x =12+x =3=1x 2x =115.【答案】A【考点】元素与集合关系的判断【解析】此题暂无解析【解答】解:由题意得,∴,即,或,∴实数的可能取值组成的集合是.故选.16.【答案】C【考点】元素与集合关系的判断【解析】此题暂无解析【解答】解:联立两条直线的方程,得,解得,所以的交点坐标是设直线平行的直线方程为因为过与的交点,所以,所以所求主直线方程为,即故选17.【答案】DA ∪B ={1,2,3,4}=A B ⊆A B ={1,4}{2,4}{3,4}a {1,2,3}A {2x −3y +2=0,3x −4y −2=0x =14y =10.,l 2l 2(14,10).4x −2y +7=04x −2y +c =0(c ≠7),4x −2y +c =0l 1l 2(14,10)c =−364x −2y −36=02x −y −18=0. C.元素与集合关系的判断【解析】由题意,每个元素都有种取法,即可得出结论.【解答】解:由题意,每个元素都有种取法,∴元素个数为.故选.18.【答案】C【考点】集合的确定性、互异性、无序性元素与集合关系的判断【解析】由题意,可列出集合,从而求解.【解答】解:由题意,根据集合的互异性,可得,则共有个元素.故选.19.【答案】B【考点】元素与集合关系的判断【解析】分别令或,求出的值,结合元素的互异性判断即可.【解答】解:若,则,∴,解得:,时:,不合题意,33=8134D B ={2,3,4,5,6,8}B ={2,3,4,5,6,8}6C =1a 22a −1=1a sin ∈A 90∘1∈A =1a 2a =±1a =12a −1=1时:,符合题意,若,解得:,不合题意,故实数,故选.20.【答案】C【考点】元素与集合关系的判断【解析】由实数集合满足条件:若,则,递推出集合中所有元素,可得答案.【解答】解:∵实数集合满足条件:若,则,∴,∴,∴,综上得,集合,∴.故选21.【答案】B【考点】元素与集合关系的判断【解析】对于根据元素与集合之间的关系进行判定,对于集合与集合之间不能用属于符号进行判定,a =−12a −1=−32a −1=1a =1a =−1B A a ∈A ∈A 1+a 1−aA A a ∈A ∈A 1+a 1−a=−∈A 1+1+a1−a 1−1+a 1−a 1a =∈A 1+(−)1a 1−(−)1a a −1a +1=a ∈A 1+a −1a +11−a −1a +1A ={a,−,,}1a a −1a +11+a 1−a a ⋅(−)⋅()⋅()=11a a −1a +11+a 1−a C.A ,B C对于根据集合本身是集合的子集进行判断.【解答】解:,故错误,正确;,,故错误.故选22.【答案】C【考点】元素与集合关系的判断【解析】由于,得到.【解答】解:集合,,∵,∴,中的表示集合与集合之间的关系,而非元素与集合的关系.故选.23.【答案】A【考点】元素与集合关系的判断【解析】由集合=,,得=,=或=,再由集合中元素的互异性能求出实数的值.【解答】解:∵集合,,∴,或,解得或或.当时,,成立;当时,,中有两个相等元素,不满足互异性;当时,,中有两个相等元素,不满足互异性.综上,实数的值为.D 0∈A A B {1} A {0,1,2}⊂A C ,D B.>25–√m ∉A A ={x|x ≤2}m =5–√>25–√m ∉A B ⊆C A {a,|a |,a −2}2∈A a 2|a |2a −22a A={a,|a |,a −2}2∈A a=2|a |=2a −2=2a=−2a=2a=4a=−2A={−2,2,−4}a=2a=|a |A a=4a=|a |A a −2A故选.24.【答案】C【考点】元素与集合关系的判断【解析】由可解得,又,故可取,,,,,,由题意可知:集合不能含有,,也不能同时含有,,通过列举可得.【解答】解:由可解得,又,故可取,,,,,由题意可知:集合不能含有,,也不能同时含有,故集合可以是、、、、故选25.【答案】C【考点】元素与集合关系的判断【解析】对四个命题分别分析,找出正确答案.【解答】解:对于选项,当时,的终边在轴上;所以是假命题;对于选项,在同一直角坐标系中,函数的图象和函数的图象有一个公共点;所以是假命题;对于选项,根据两个函数的周期相同,所以只要将函数的图象向右平移个单位得到的图象;是真命题;对于选项,函数在上是增函数;是假命题;故选.26.【答案】B【考点】A 36−>0x 2−6<x <6x ∈N x 012345M 012436−>0x 2−6<x <6x ∈N x 012345M 0124M {2,3}{2,5}{3,5}{3,4}{4,5}C A k =2αx A B y =sin x y =x B C y =sin(2x +)π3π6y =sin 2x D y =sin(x −)π2[0,π]D C元素与集合关系的判断【解析】根据集合元素和集合之间的关系进行判断.【解答】解:∵集合,∴集合就是由全体大于的自然数构成的集合,显然,,故选.27.【答案】B【考点】元素与集合关系的判断【解析】根据元素与集合的关系进行判断.【解答】解:,当时,那么:,违背集合元素的互异性,不满足题意.当时,,集合为满足题意.∴实数的值为.故选.28.【答案】A【考点】元素与集合关系的判断【解析】此题暂无解析【解答】此题暂无解答29.【答案】A ={x |x ∈N |x >1}A 11∉AB 3∈{1,a,a −2}a =3a −2=1a −2=3a =5{1,5,3}a 5BC【考点】集合新定义问题元素与集合关系的判断【解析】讨论的取值,根据定义集合分别求出,然后根据集合的互异性求出所求即可.【解答】解:∵,,,∴当时,,,当时,,,当时,,,∴.故选C.30.【答案】A【考点】元素与集合关系的判断【解析】依次对六个关系式判断,注意集合符号的应用.【解答】①,正确;②,正确;③指有理数集,故不正确;④,正确;⑤,正确;⑥是空集,正确;三、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )31.【答案】或【考点】a P +Q ={a +b |a ∈P,b ∈Q}P +Q P ={0,2,5}Q ={1,2,6}P +Q ={a +b |a ∈P,b ∈Q}a =0b ∈Q P +Q ={1,2,6}a =2b ∈Q P +Q ={3,4,8}a =5b ∈Q P +Q ={6,7,11}P +Q ={1,2,3,4,6,7,8,11}0∈{0}{0}⊇∅Q 0.3∉Q 0∈N {a,b}⊆{b,a}{x |−2=0,x ∈Z}x 23−1元素与集合关系的判断【解析】根据即可得出=,解出即可.【解答】∵,=,∴=,解得=或.32.【答案】【考点】元素与集合关系的判断【解析】解方程求出集合,结合元素与集合关系的定义,可得答案.【解答】解:∵集合,∴,故答案为:.33.【答案】,【考点】元素与集合关系的判断【解析】此题暂无解析【解答】解:当时,,此时;当时,(舍去),此时.的子集有个.故答案为:;.34.【答案】3∈A −2a a 23a 3∈A A {1,2,−2a}a 2−2a a 23a −13∈A A ={x |=x}={0,1}x 20∈A ∈{1,−1,0}8a =0−1=−1a 2A ={1,−1,0}−1=0a 2a =−1a =1A ={1,−1,0}A =823{1,−1,0}8【考点】元素与集合关系的判断【解析】(1)当=时,集合=,由,且,则满足条件的共有:个.(2)对所有的进行配对:①当=时,令=,=,必有,可得:,如果=则=.②同理,当=时,也有上述结论.【解答】当=时,集合=,∵,且,∴=,,,,,,,,,,,,},,,},,,,,},,.因此共有个.对所有的进行配对:①当=时,令=,=,必有,不妨设,则=,.如果,则有,如果=则=.②同理,当=时,令=,=必有,不妨设,则=,.如果,则,如果=则=.∴在每一组元素个数相同的子集中,的平均值为.综上,所有的算术平均值为.35.【答案】【考点】元素与集合关系的判断【解析】推导出=或=,再由集合中元素的互异性,能求出结果.【解答】∵集合=,,∴=或=,当=时,=,成立;当=时,=,不满足集合中元素的互异性,不成立.∴实数=.20n +1n 5A {1,2,3,4,5}X ⊆A 2≤Card(X)≤3X +=20∁25∁35X Card(X)2X {,}x 1x 2X'{n +1−|∈X}x i x i X'⊆A +=2n +2a X a X /X X'a X n +1Card(X)k(2<k ≤n −2)n 5A {1,2,3,4,5}X ⊆A 2≤Card(X)≤3X {1,2}{1,3}{1,4}{1,5}{2,3}{2,4}{2,5}{3,4}{3,5}{4,5}{1,2,3}{1,2,4}{1,2,5}{1,3,4}{1,3,5}{1,4,5}{2,3,4}{2,3,5}{2,4,5}{3,4,5}+=20∁25∁35X Card(X)2X {,}x 1x 2X'{n +1−|∈X}x i x i X'⊆A <x 1x 2a X +x 1x 2=n +1−+n +1−=2n +2−(+)a X /x 1x 2x 1x 2X ≠X'+=2n +2a X a X /X X'a X n +1Card(X)k(2<k ≤n −2)X {,,...}x 1x 2x k X'{n +1−x |∈X}&i x i X'⊆A <<...<x 1x 2x k a X +x 1x k =2n +2−(+)a X /x 1x k X ≠X'+=2n +2a X a X /X X'a X n +1a X n +1a X n +15a −23a 3A {1,a −2,a}3∈A a −23a 3a −23a 5a 3a −21a 536.【答案】【考点】元素与集合关系的判断【解析】由题意得到或,求解即可.【解答】解:,则或,①当时,,此时,满足集合元素的互异性;②当,此时方程无解.综上所述:.故答案为:.37.【答案】【考点】元素与集合关系的判断【解析】直接利用元素与集合的关系,列出方程求解即可.【解答】解:,可得,解得.故答案为:.38.【答案】【考点】元素与集合关系的判断【解析】1−2a =−2+1=−2a 2−2∈{−2a,+1}a 2−2a =−2+1=−2a 2−2a =−2a =1+1=2a 2+1=−2a 2a =1143∈{1,−,a −1}a 23=a −1a =44−32根据集合元素的特征,即可求出.【解答】解:∵集合,若,∴,且,或,且,解得:,或,当时,∴,,根据集合元素的互异性不符合题意,故舍去,故答案为:.A ={m +2,2+m}m 23∈A m +2=32+m ≠3m 2m +2≠32+m =3m 2m =1m =−32m =1m +2=32+m =3m 21−32。

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版 )高中数学必修1 (全册 )课时同步作业汇总活页作业(一) 集合的含义(时间:45分钟总分值:100分)一、选择题(每题5分 ,共25分)1.以下几组对象可以构成集合的是( )A.充分接近π的实数的全体B.善良的人C.世|界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确 ,应选D. 答案:D2.下面有四个语句: ①集合N *中最|小的数是0; ②-a ∉N ,那么a ∈N ;③a ∈N ,b ∈N ,那么a +b 的最|小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中正确语句的个数是( ) A .0 B .1 C .2D .3解析:N *是不含0的自然数 ,所以①错误; 取a = 2 ,那么-2∉N ,2∉N ,所以②错误;对于③ ,当a =b =0时 ,a +b 取得最|小值是0 ,而不是2 ,所以③错误;对于④ ,解集中只含有元素1 ,故④错误.答案:A3.集合A 含有三个元素2,4,6 ,且当a ∈A 时 ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4D .0解析:假设a =2∈A ,那么6-a =4∈A ;或a =4∈A ,那么6-a =2∈A ;假设a =6∈A ,那么6-a =0∉A .应选B.答案:B4.假设集合M 中的三个元素a ,b ,c 是△ABC 的三边长 ,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .应选D. 答案:D5.设a ,b ∈R ,集合A 中含有0 ,b ,ba三个元素 ,集合B 中含有1 ,a ,a +b 三个元素 ,且集合A 与集合B 相等 ,那么a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0 ,∴b a=-1 ,∴a =-1 ,b =1 ,∴a +2b =1.答案:A二、填空题(每题5分 ,共15分)6.集合A中只含有1 ,a2两个元素 ,那么实数a不能取的值为________.解析:由a2≠1 ,得a≠±1.答案:±17.假设集合P含有两个元素1,2 ,集合Q含有两个元素1 ,a2 ,且P ,Q相等 ,那么a =________.解析:由于P ,Q相等 ,故a2=2 ,从而a=± 2.答案:± 28.集合P中元素x满足:x∈N ,且2<x<a ,又集合P中恰有三个元素 ,那么整数a =________.解析:∵x∈N ,且2<x<a ,∴结合数轴可得a=6.答案:6三、解答题(每题10分 ,共20分)9.假设所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.解:∵3a+2b(a∈Z ,b∈Z)中 ,令a=2 ,b=-2 ,可得6-2 2 ,∴6-22是集合A中的元素.10.设集合A中含有三个元素3 ,x ,x2-2x.(1)求实数x应满足的条件;(2)假设-2∈A ,求实数x.解:(1)由集合中元素的互异性可知 ,x≠3 ,且x≠x2-2x ,x2-2x≠3.解得x≠3 ,且x≠0 ,且x≠-1.(2)∵-2∈A ,∴x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1 ,∴x=-2.一、选择题(每题5分 ,共10分)1.2a∈A ,a2-a∈A ,假设A只含这两个元素 ,那么以下说法中正确的选项是( ) A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.应选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1 ,假设t ∈A ,那么t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1 ,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每题5分 ,共10分)3.集合A 是由m -1,3m ,m 2-1三个元素组成的集合 ,且3∈A ,那么实数m 的值为________.解析:由m -1=3 ,得m =4 ,此时3m =12 ,m 2-1=15 ,故m =4符合题意;由3m =3 ,得m =1 ,此时m -1=m 2-1=0 ,故舍去;由m 2-1=3 ,得m =±2 ,经检验m =±2符合题意.故填4或±2.答案:4或±24.假设a ,b ∈R 且a ≠0 ,b ≠0 ,那么|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0 ,b >0时 ,|a |a +|b |b=2;当ab <0时 ,|a |a +|b |b =0;当a <0 ,b <0时 ,|a |a+|b |b=-2.所以集合中的元素为2,0 ,-2.即集合中元素的个数为3. 答案:3三、解答题(每题10分 ,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成 ,其中k ∈R ,假设A 中的元素只有一个 ,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 假设k =0 ,那么x =23 ,知A 中只有一个元素 ,符合题意;假设k ≠0 ,那么方程为一元二次方程.当Δ=9-8k =0 ,即k =98时 ,方程kx 2-3x +2=0有两个相等的实数解 ,此时A 中只有一个元素.综上所述 ,k =0或98.6.集合A 中的元素全为实数 ,且满足:假设a ∈A ,那么1+a1-a ∈A .(1)假设a =2 ,求出A 中其他所有元素. (2)0是不是集合A 中的元素 ?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外 ,其他所有元素为-3 ,-12 ,13.(2)0不是集合A 中的元素.理由如下: 假设0∈A ,那么1+01-0=1∈A ,而当1∈A 时 ,1+a1-a不存在 ,故0不是集合A 中的元素.活页作业(二) 集合的表示(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合A ={x ∈N |-3≤x ≤3} ,那么有( ) A .-1∈A B .0∈A C.3∈AD .2∈A解析:∵0∈N 且-3<0< 3 ,∴0∈A . 答案:B2.集合M ={y |y =x 2} ,用自然语言描述M 应为( ) A .函数y =x 2的函数值组成的集合B.函数y=x2的自变量的值组成的集合C.函数y=x2的图象上的点组成的集合D.以上说法都不对解析:从描述法表示的集合来看 ,代表元素是函数值 ,即集合M表示函数y=x2的函数值组成的集合.答案:A3.集合{-2,1}等于( )A.{(x-1)(x+2)=0} B.{y|y=x+1 ,x∈Z}C.{x|(x+1)(x-2)=0} D.{x|(x-1)(x+2)=0}解析:选项A是含有一个一元二次方程的集合 ,选项B是函数y=x+1 ,x∈Z的函数值组成的集合 ,有无数多个元素 ,选项C是方程(x+1)(x-2)=0的解的集合为{-1,2} ,选项D是方程(x-1)(x+2)=0的解的集合为{1 ,-2}.应选D.答案:D4.假设1∈{x ,x2} ,那么x=( )A.1 B.-1C.0或1 D.0或1或-1解析:∵1∈{x ,x2} ,∴x=1或x2=1 ,∴xx=1 ,那么x=x2=1 ,不符合集合中元素的互异性.答案:B5.以下集合中表示同一集合的是( )A.M={(3,2)} ,N={(2,3)}B.M={3,2} ,N={2,3}C.M={(x ,y)|x+y=1} ,N={y|x+y=1}D.M={1,2} ,N={(1,2)}解析:A中M、N都为点集 ,元素为点的坐标 ,顺序不同表示的点不同;C中M、N分别表示点集和数集;D中M为数集 ,N为点集 ,应选B.答案:B二、填空题(每题5分 ,共15分)6.集合A={x|x2=a ,x∈R} ,那么实数a的取值范围是________.解析:当x∈R时 ,a=x2≥0.答案:a≥07.集合A={-1,0,1} ,集合B={y|y=|x| ,x∈A} ,那么B=____________.解析:∵|-1|=1 ,|0|=0 ,|1|=1 ,∴B={0,1}.答案:{0,1}8.集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫125-x ∈N x ∈N ,那么用列举法表示为__________________.解析:根据题意 ,5-x 应该是12的因数 ,故其可能的取值为1,2,3,4,6,12 ,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}三、解答题(每题10分 ,共20分) 9.用另一种方法表示以下集合. (1){绝|对值不大于2的整数}; (2){能被3整除 ,且小于10的正数}; (3){x |x =|x | ,x <5 ,且x ∈Z }; (4){(x ,y )|x +y =6 ,x ∈N *,y ∈N *}; (5){-3 ,-1,1,3,5}. 解:(1){-2 ,-1,0,1,2}. (2){3,6,9}.(3)∵x =|x | ,∴x ∵x ∈Z ,且x <5 , ∴x =0或1或2或3或4. ∴集合可以表示为{0,1,2,3,4}.(4){(1,5) ,(2,4) ,(3,3) ,(4,2) ,(5,1)}. (5){x |x =2k -1 ,-1≤k ≤3 ,k ∈Z }.10.集合A ={x |ax 2-3x -4=0 ,x ∈R } ,假设A 中至|多有一个元素 ,求实数a 的取值范围.解:当a =0时 ,A =⎩⎨⎧⎭⎬⎫-43;当a ≠0时 ,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根 , ∴Δ=9+16a ≤0 ,即a ≤-916. 综上 ,所求实数a 的取值范围是a =0或a ≤-916.一、选择题(每题5分 ,共10分)1.设x =13-52 ,y =3+2π ,集合M ={m |m =a +2b ,a ∈Q ,b ∈Q } ,那么x ,y 与集合M 的关系是( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M 解析:x =13-52=3+523-523+52=-341-2×541∈M ,y ∉M .应选B. 答案:B2.用描述法表示如下图阴影局部的点(包括边界上的点)的坐标的集合是( )A .{-2≤x ≤0且-2≤y ≤0}B .{(x ,y )|-2≤x ≤0且-2≤y ≤0}C .{(x ,y )|-2≤x ≤0且-2≤y <0}D .{(x ,y )|-2≤x ≤0或-2≤y ≤0}解析:阴影局部为点集 ,且包括边界上的点 ,所以-2≤x ≤0且-2≤y ≤0. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={(x ,y )|y =2x +1} ,B ={(x ,y )|y =x +3} ,a ∈A 且a ∈B ,那么a 为________.解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎨⎧y =2x +1 y =x +3的解.解方程组得⎩⎪⎨⎪⎧x =2 y =5 ∴a为(2,5).答案:(2,5)4.A ={1,2,3} ,B ={1,2} ,定义集合间的运算A +B ={x |x =x 1+x 2 ,x 1∈A ,x 2∈B } ,那么集合A +B 中元素的最|大值是________.解析:当x 1=1 ,x 2=1或2时 ,x =2或3;当x 1=2 ,x 2=1或2时 ,x =3或4;当x 1=3 ,x 2=1或2时 ,x =4或5.∴集合A +B 中元素的最|大值是5.答案:5三、解答题(每题10分 ,共20分)5.集合A ={(x ,y )|2x -y +m >0} ,B ={(x ,y )|x +y -n ≤0} ,假设点P (2,3)∈A ,且P (2,3)∉B ,试求m ,n 的取值范围.解:∵点P ∈A ,∴2×2-3+m >0.∴m >-1. ∵点P ∉B ,∴2+3-n >0.∴n <5.∴所求m ,n 的取值范围分别是{m |m >-1} ,{n |n <5}.6.集合P ={x |x =2k ,k ∈Z } ,M ={x |x =2k +1 ,k ∈Z } ,a ∈P ,b ∈M ,设c =a +b ,那么c 与集合M 有什么关系 ?解:∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1 ,k 1∈Z ,b =2k 2+1 ,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1. 又k 1+k 2∈Z , ∴c ∈M .活页作业(三) 集合间的根本关系(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分) 1.以下关系中 ,表示正确的选项是( ) A .1∈{0,1} B .1{0,1} C .1⊆{0,1}D .{1}∈{0,1}解析:、⊆表示集合之间的关系 ,故B 、C 错误;∈表示元素与集合之间的关系 ,故D 错误.答案:A2.假设x ,y ∈R ,A ={(x ,y )|y =x } ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xy ⎪⎪⎪y x =1 ,那么A ,B 的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:集合A 表示函数y =x 图象上所有点组成的集合 ,集合B 中要求x ≠0 ,所以集合B 表示除点(0,0)以外的y =x 图象上的点组成的集合 ,A B 成立.答案:B3.全集U =R ,那么正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:∵M={-1,0,1} ,N={0 ,-1} ,∴N M.应选B.答案:B4.集合A={x|0≤x<3 ,x∈N}的真子集的个数是( )A.16 B.8C.7 D.4解析:易知集合A={0,1,2} ,∴A的真子集为∅ ,{0} ,{1} ,{2} ,{0,1} ,{0,2} ,{1,2} ,共有7个.答案:C5.设A={x|1<x<2} ,B={x|x<a} ,假设A⊆B ,那么a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2解析:如图 ,在数轴上表示出两集合 ,只要a≥2 ,就满足A⊆B.答案:D二、填空题(每题5分 ,共15分)6.右图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系 ,那么A ,B ,C ,D ,E分别代表的图形的集合为______________.解析:由以上概念之间的包含关系可知:集合A={四边形} ,集合B={梯形} ,集合C ={平行四边形} ,集合D={菱形} ,集合E={正方形}.答案:A={四边形} ,B={梯形} ,C={平行四边形} ,D={菱形} ,E={正方形}7.设集合M={(x ,y)|x+y<0 ,xy>0}和P={(x ,y)|x<0 ,y<0} ,那么M与P的关系为________.解析:∵xy>0 ,∴x ,y同号.又x+y<0 ,∴x<0 ,y<0 ,即集合M表示第三象限内的点.而集合P表示第三象限内的点 ,故M=P.答案:M=P8.集合A={x|-2≤x≤3} ,B={x|x≥m} ,假设A⊆B ,那么实数m的取值范围为_________________________________.解析:集合A ,B 在数轴上的表示如下图.由图可知 ,假设A ⊆B ,那么m ≤-2. 答案:m ≤-2三、解答题(每题10分 ,共20分)9.集合A ={(x ,y )|x +y =2 ,x ,y ∈N } ,试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2 ,x ,y ∈N } , ∴A ={(0,2) ,(1,1) ,(2,0)}. ∴A 的子集有:∅ ,{(0,2)} ,{(1,1)} ,{(2,0)} ,{(0,2) ,(1,1)} ,{(0,2) ,(2,0)} ,{(1,1) ,(2,0)} ,{(0,2) ,(1,1) ,(2,0)}.10.集合A ={x |1<ax <2} ,B ={x |-2<x <2} ,求满足A ⊆B 的实数a 的取值范围. 解:B ={x |-2<x <2}. (1)当a =0时 ,A =∅ ,显然A ⊆B . (2)当a >0时 ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2a . ∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≥-2 2a ≤2 解得a ≥1.(3)当a <0时 ,A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a<x <1a .∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≤22a ≥-2 解得a ≤-1.综上可知 , a =0 ,或a ≥1 ,或a ≤-1时 ,A ⊆B .一、选择题(每题5分 ,共10分)1.集合A ={x |x 2-3x +2=0 ,x ∈R } ,B ={x |0<x <5 ,x ∈N } ,那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:因为集合A ={1,2} ,B ={1,2,3,4} ,所以当满足A ⊆C ⊆B 时 ,集合C 可以为{1,2} ,{1,2,3} ,{1,2,4} ,{1,2,3,4} ,故满足条件的集合C 有4个.答案:D2.集合M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n 2-13 n ∈Z ,那么集合M ,N 的关系是( )A .M ⊆NB .M NC .N ⊆MD .N M解析:设n =2m 或2m +1 ,m ∈Z , 那么有N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x =2m 2-13或x =2m +12-13m ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ x =m -13或x =m +16 m ∈Z . 又∵M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z ,∴M N .答案:B二、填空题(每题5分 ,共10分)3.假设A ={1,2} ,B ={x |x ⊆A } ,那么B =________.解析:∵x ⊆A ,∴x =∅ ,{1} ,{2} ,{1,2} ,∴B ={∅ ,{1} ,{2} ,{1,2}}.答案:{∅ ,{1} ,{2} ,{1,2}}4.集合A ={x |ax 2+2x +a =0 ,a ∈R } ,假设集合A 有且仅有2个子集 ,那么a 的取值构成的集合为________________.解析:∵集合A 有且仅有2个子集 ,∴A 仅有一个元素 ,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时 ,方程化为2x =0 , ∴x =0 ,此时A ={0} ,符合题意.当a ≠0时 ,Δ=22-4·a ·a =0 ,即a 2=1 ,∴a =±1. 此时A ={-1} ,或A ={1} ,符合题意. ∴a =0或a =±1. 答案:{0,1 ,-1}三、解答题(每题10分 ,共20分)5.设集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x +4⎝ ⎛⎭⎪⎫x -12=0 x ∈Z ,B ={x |x 2+2(a +1)x +a 2-1=0} ,假设B ⊆A ,求实数a 的值.解:由题意得A ={0 ,-4}.(1)当B =∅时 ,方程x 2+2(a +1)x +a 2-1=0无解 , ∴Δ=4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当BA (B ≠∅)时 ,那么B ={0}或B ={-4} ,即方程x 2+2(a +1)x +a 2-1=0只有一解 , ∴Δ=8a +8=0. ∴aB ={0}满足条件.(3)当B =A 时 ,方程x 2+2(a +1)x +a 2-1=0 有两实根0 ,-4 ,∴⎩⎨⎧16-8a +1+a 2-1=0 a 2-1=0.∴a =1.综上可知 ,a ≤-1 ,或a =1.6.设集合A ={x |-1≤x +1≤6} ,B ={x |m -1<x <2m +1}. (1)当x ∈Z 时 ,求A 的非空真子集的个数; (2)假设A ⊇B ,求m 的取值范围. 解:化简集合A 得A ={x |-2≤x ≤5}. (1)∵x ∈Z ,∴A ={-2 ,-1,0,1,2,3,4,5} ,即A 中含有8个元素.∴A 的非空真子集的个数为28-2=254(个). (2)①当m ≤-2时 ,B =∅⊆A ;②当m >-2时 ,B ={x |m -1<x <2m +1} , 因此 ,要B ⊆A ,那么只要⎩⎨⎧m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述 ,m 的取值范围是{m |-1≤m ≤2或m ≤-2}.活页作业(四)并集、交集(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.设集合M ={m ∈Z |-3<m <2} ,N ={n ∈Z |-1≤n ≤3} ,那么M ∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}解析:由题意 ,得M ={-2 ,-1,0,1} ,N ={-1,0,1,2,3} ,∴M ∩N ={-1,0,1}. 答案:B2.假设集合M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1}解析:M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N ={0,1} ,应选D. 答案:D3.以下各组集合 ,符合Venn 图所示情况的是( )A .M ={4,5,6,8} ,N ={4,5,6,7,8}B .M ={x |0<x <2} ,N ={x |x <3}C .M ={2,5,6,7,8} ,N ={4,5,6,8}D .M ={x |x <3} ,N ={x |0<x <2}解析:因为{4,5,6,8}⊆{4,5,6,7,8} ,即M ⊆N ,所以选项A 错误.又因{x |0<x <2}⊆{x |x <3} ,所以选项B 错误 ,选项C 显然错误 ,选项D 正确.答案:D4.设集合A ={1,2} ,那么满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4D .8解析:∵A ={1,2} ,且A ∪B ={1,2,3} ,∴B ={3}或{1,3}或{2,3}或{1,2,3}. 答案:C5.设集合A ={x ∈N |1≤x ≤10} ,B ={x ∈R |x 2+x -6=0} ,那么图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析:∵A ={1,2,3,4,5,6,7,8,9,10} ,B ={-3,2} ,∴图中阴影表示的集合为A ∩B ={2}.答案:A二、填空题(每题5分 ,共15分)6.集合M ={x |-3<x ≤5} ,N ={x |-5<x <-2 ,或x >5} ,那么M ∪N =____________ ,M ∩N =__________________.解析:借助数轴可知:M ∪N ={x |x >-5} ,M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}7.集合A ={(x ,y )|y =x 2,x ∈R } ,B ={(x ,y )|y =x ,x ∈R } ,那么A ∩B 中的元素个数为________.解析:由⎩⎪⎨⎪⎧y =x 2y =x 得⎩⎪⎨⎪⎧x =0y =0 或⎩⎨⎧x =1y =1.答案:28.设集合A ={x |-1<x <2} ,B ={x |x <a } ,假设A ∩B ≠∅ ,那么a 的取值范围是________.解析:利用数轴分析可知 ,a >-1.答案:a >-1三、解答题(每题10分 ,共20分)9.集合A ={1,3,5} ,B ={1,2 ,x 2-1} ,假设A ∪B ={1,2,3,5} ,求x 及A ∩B . 解:∵B ⊆(A ∪B ) , ∴x 2-1∈(A ∪B ).∴x 2-1=3或x 2-1=5 ,解得x =±2或x =± 6. 假设x 2-1=3 ,那么A ∩B ={1,3}; 假设x 2-1=5 ,那么A ∩B ={1,5}.10.设集合A ={x |x 2-3x +2=0} ,B ={x |x 2-4x +a =0} ,假设A ∪B =A ,求实数a 的取值范围.解:A ={1,2} ,∵A ∪B =A ,∴B ⊆A .集合B 有两种情况:B =∅或B ≠∅. (1)B =∅时 ,方程x 2-4x +a =0无实数根 , ∴Δ=16-4a <0.∴a >4. (2)B ≠∅时 ,当Δ=0时 ,a =4 ,B ={2}⊆A 满足条件;当Δ>0时 ,假设1,2是方程x 2-4x +a =0的根 , 由根与系数的关系知1+2=3≠4 ,矛盾 ,∴a =4. 综上 ,a 的取值范围是a ≥4.一、选择题(每题5分 ,共10分)1.集合A ={1,2} ,B ={x |mx -1=0} ,假设A ∩B =B ,那么符合条件的实数m 的值组成的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1 12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 0 12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 -12解析:当m =0时 ,B =∅ ,A ∩B =B ;当m ≠0时 ,x =1m ,要使A ∩B =B ,那么1m =1或1m=2 ,即m =1或m =12,选C.答案:C2.定义集合{x |a ≤x ≤b }的 "长度〞是b -a .m ,n ∈R ,集合M =xm ≤x ≤m +23 ,N =xn-34≤x ≤n ,且集合M ,N 都是集合{x |1≤x ≤2}的子集 ,那么集合M ∩N 的 "长度〞的最|小值是( )A.23B.12C.512D .13解析:集合M ,N 的 "长度〞分别为23 ,34 ,又M ,N 都是集合{x |1≤x ≤2}的子集 ,如图 ,由图可知M ∩N 的 "长度〞的最|小值为53-54=512.答案:C二、填空题(每题5分 ,共10分)3.集合A ={1,3 ,m } ,B ={1 ,m } ,A ∪B =A ,那么m =________.解析:由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1 ,经检验 ,m =1时 ,B ={1,1}矛盾 ,m =0或3时符合题意.答案:0或34.设集合A ={5 ,a +1} ,集合B ={a ,b }.假设A ∩B ={2} ,那么A ∪B =______________. 解析:∵A ∩B ={2} ,∴2∈A .故a +1=2 ,a =1 ,即A ={5,2};又2∈B ,∴b =2 ,即B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}三、解答题(每题10分 ,共20分)5.A ={x |2a ≤x ≤a +3} ,B ={x |x <-1或x >5} ,假设A ∩B =∅ ,求a 的取值范围. 解:A ∩B =∅ ,A ={x |2a ≤x ≤a +3}. (1)假设A =∅ ,有2a >a +3 ,∴a >3. (2)假设A ≠∅ ,如下图.那么有⎩⎪⎨⎪⎧2a ≥-1a +3≤5 2a ≤a +3解得-12≤a ≤2.综上所述 ,a 的取值范围是-12≤a ≤2或a >3.6.集合M ={x |2x -4=0} ,N ={x |x 2-3x +m =0}. (1)当m =2时 ,求M ∩N ,M ∪N . (2)当M ∩N =M 时 ,求实数m 的值. 解:由得M ={2}. (1)当m =2时 ,N ={1,2}. ∴M ∩N ={2} ,M ∪N ={1,2}. (2)假设M ∩N =M ,那么M ⊆N , ∴2∈N . ∴4-6+m =0. ∴m =2.活页作业(五) 补集及集合运算的综合应用(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.全集U ={0,1,2} ,且∁U A ={2} ,那么A 等于( ) A .{0} B .{1} C .∅D .{0,1}解析:∵∁U A ={2} ,∴A ={0,1}. 答案:D2.A ={x |x +1>0} ,B ={-2 ,-1,0,1} ,那么(∁R A )∩B =( ) A .{-2 ,-1} B .{-2} C .{-1,0,1}D .{0,1} 解析:解不等式求出集合A ,进而得∁R A ,再由集合交集的定义求解. 因为集合A ={x |x >-1} ,所以∁R A ={x |x ≤-1}. 那么(∁R A )∩B ={x |x ≤-1}∩{-2 ,-1,0,1} ={-2 ,-1}. 答案:A3.如下图 ,U 是全集 ,A ,B 是U 的子集 ,那么图中阴影局部表示的集合是( )A.A∩B B.B∩(∁U A)C.A∪B D.A∩(∁U B)解析:阴影局部在B中且在A的外部 ,由补集与交集的定义可知阴影局部可表示为B∩(∁U A).答案:B4.设集合M={x|x=3k ,k∈Z} ,P={x|x=3k+1 ,k∈Z} ,Q={x|x=3k-1 ,k∈Z} ,那么∁Z(P∪Q)=( )A.M B.PC.Q D.∅解析:x=3k ,k∈Z表示被3整除的整数;x=3k+1 ,k∈Z表示被3整除余1的整数;x=3k-1表示被3整除余2的整数 ,所以∁Z(P∪Q)=M.答案:A5.集合A={x|x<a} ,B={x|1<x<2} ,且A∪(∁R B)=R,那么实数a的取值范围是( ) A.a≤1B.a<1C.a≥2D.a>2解析:如下图 ,假设能保证并集为R ,那么只需实数a在数2的右边 ,注意等号的选取.选C.答案:C二、填空题(每题5分 ,共15分)6.集合U={2,3,6,8} ,A={2,3} ,B={2,6,8} ,那么(∁U A)∩B=________.解析:(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}7.设全集U=R ,集合A={x|x≥0} ,B={y|y≥1} ,那么∁U A与∁U B的包含关系是______________.解析:∵∁U A={x|x<0} ,∁U B={y|y<1} ,∴∁U A∁U B.如图.答案:∁U A∁U B8.设全集S={1,2,3,4} ,且A={x∈S|x2-5x+m=0} ,假设∁S A={2,3} ,那么m=________.解析:因为S={1,2,3,4} ,∁S A={2,3} ,所以A={1,4} ,即1,4是方程x2-5x+m=0的两根 ,由根与系数的关系可得m=1×4=4.答案:4三、解答题(每题10分 ,共20分)9.全集U={2,3 ,a2-2a-3} ,A={2 ,|a-7|} ,∁U A={5} ,求a的值.解:由|a-7|=3 ,得a=4或a=10.当a=4时 ,a2-2a-3=5 ,当a=10时 ,a2-2a-3=77∉U ,所以a=4.10.集合A={x|3≤x<7} ,B={x|2<x<10} ,C={x|x<a}.(1)求(∁R A)∩B;(2)假设A⊆C ,求a的取值范围.解:(1)∵A={x|3≤x<7} ,∴∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a} ,且A⊆C ,如下图 ,∴a≥7.∴a的取值范围是{a|a≥7}.一、选择题(每题5分 ,共10分)1.全集U=R,集合A={x|-2≤x≤3} ,B={x|x<-2或x>4} ,那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3} ,∁U B={x|-2≤x≤4} ,如图 ,∴(∁U A)∩(∁U B)={x|3<x≤4}.应选A.答案:A2.设A ,B ,I均为非空集合 ,且满足A⊆B⊆I ,那么以下各式中错误的选项是( ) A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=IC.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B解析:方法一符合题意的Venn图 ,如图.观察可知选项A ,C ,D 均正确 ,(∁I A )∪(∁I B )=∁I A ,应选项B 错误.方法二 运用特例法 ,如A ={1,2,3} ,B ={1,2,3,4} ,I ={1,2,3,4,5}.逐个检验只有选项B 错误.答案:B二、填空题(每题5分 ,共10分)3.全集U =R ,A ={x |x <-3 ,或x ≥2} ,B ={x |-1<x <5} ,那么集合C ={x |-1<x <2}=______________.(用A ,B 或其补集表示)解析:如下图 ,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )4.某班共50人 ,参加A 项比赛的共有30人 ,参加B 项比赛的共有33人 ,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人 ,那么只参加A 项不参加B 项的有____人.解析:如下图 ,设A ,B 两项都参加的有x 人 ,那么仅参加A 项的共(30-x )人 ,仅参加B 项的共(33-x )人 ,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人 ,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50 ,解得x =21 ,所以只参加A 项不参加B 项的共有30-21=9(人).故填9.答案:9三、解答题(每题10分 ,共20分)5.设全集是实数集R ,A ={x |2x 2-7x +3≤0} ,B ={x |x 2+a <0}. (1)当a =-4时 ,求A ∩B 和A ∪B ;(2)假设(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3,当a =-4时 ,B ={x |-2<x <2} ,∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2 ,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x <12 或x >3 ,当(∁R A )∩B =B 时 ,B ⊆∁R A .①当B =∅ ,即a ≥0时 ,满足B ⊆∁R A ;②当B ≠∅ ,即a <0时 ,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12 ,解得-14≤a <0.综上可得 ,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.6.设全集I =R ,集合M ={x |(x +3)2≤0} ,N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R } ,假设B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3} ,N ={x |x 2+x -6=0}={-3,2}.∴∁I M ={x |x ∈R 且x ≠-3}. ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2} , ∵B ∪A =A ,∴B ⊆A . ∴B =∅或B ={2}.当B =∅时 ,a -1>5-a ,∴a >3;当B ={2}时 ,⎩⎪⎨⎪⎧a -1=25-a =2解得a =3.综上所述 ,所求a 的取值范围是{a |a ≥3}.活页作业(六) 函数的概念(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.设f:x→x2是集合A到集合B的函数 ,如果集合B={1} ,那么集合A不可能是( ) A.{1} B.{-1}C.{-1,1} D.{-1,0}解析:假设集合A={-1,0} ,那么0∈A ,但02=0∉B.应选D.答案:D2.各个图形中 ,不可能是函数y=f(x)的图象的是( )解析:因垂直x轴的直线与函数y=f(x)的图象至|多有一个交点.应选A.答案:A3.假设函数y=f(x)的定义域为M={x|-2≤x≤2} ,值域为N={y|0≤y≤2} ,那么函数y=f(x)的图象可能是( )解析:选项A ,定义域为{x|-2≤x≤0} ,不正确.选项C ,当x在(-2,2]取值时 ,y 有两个值和x对应 ,不符合函数的概念.选项D ,值域为[0,1] ,不正确 ,选项B正确.答案:B二、填空题(每题4分 ,共8分)4.假设(2m ,m+1)表示一个开区间 ,那么m的取值范围是________.解析:由2m<m+1 ,解得m<1.答案:(-∞ ,1)5.函数y=f(x)的图象如下图 ,那么f(x)的定义域是________________;其中只与x 的一个值对应的y值的范围是________________.解析:观察函数图象可知f (x )的定义域是[-3,0]∪[2,3]; 只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 答案:[-3,0]∪[2,3] [1,2)∪(4,5] 三、解答题6.(本小题总分值10分)求以下函数的定义域. (1)y =2x +1+3-4x . (2)y =1|x +2|-1.解:由得⎩⎪⎨⎪⎧2x +1≥0⇒x ≥-12 3-4x ≥0⇒x ≤34∴函数的定义域为⎣⎢⎢⎡⎦⎥⎥⎤-1234. (2)由得 ,|x +2|-1≠0 , ∴|xx ≠-3 ,x ≠-1.∴函数的定义域为(-∞ ,-3)∪(-3 ,-1)∪(-1 ,+∞).一、选择题(每题5分 ,共10分)1.四个函数:(1)y =x +1;(2)y =x 3;(3)y =x 2-1; (4)y =1x.其中定义域相同的函数有( )A .(1) ,(2)和(3)B .(1)和(2)C .(2)和(3)D .(2) ,(3)和(4)解析:(1) ,(2)和(3)中函数的定义域均为R ,而(4)函数的定义域为{x |x ≠0}. 答案:A2.函数f (x )=-1 ,那么f (2)的值为( ) A .-2 B .-1 C .0D .不确定解析:∵f (x )=-1 ,∴f (2)=-1. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={1,2,3} ,B ={4,5} ,那么从A 到B 的函数f (x )有________个.解析:抓住函数的 "取元任意性 ,取值唯一性〞 ,利用列表方法确定函数的个数.f (1) 4 4 4 4 5 5 5 5 f (2) 4 4 5 5 4 4 5 5 f (3)45454545由表可知 ,这样的函数有8个 ,故填8. 答案:8 4.函数y =x +26-2x -1的定义域为________.(并用区间表示)解析:要使函数解析式有意义 ,需满足⎩⎪⎨⎪⎧ x +2≥06-2x ≥0 6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇒-2≤x ≤3 ,且x ≠52.∴函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3.答案:⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3三、解答题5.(本小题总分值10分)将长为a 的铁丝折成矩形 ,求矩形面积y 关于边长x 的解析式 ,并写出此函数的定义域.解:设矩形一边长为x ,那么另一边长为12(a -2x ) ,所以y =x ·12(a -2x )=-x 2+12ax .由题意可得⎩⎪⎨⎪⎧0<x <a 2 0<12a -2x <a2解得0<x <a2,即函数定义域为⎝ ⎛⎭⎪⎪⎫0 a 2.活页作业(七) 函数概念的综合应用(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.函数f (x )=x +1x,那么f (1)等于( ) A .1 B .2 C .3D .0解析:f (1)=1+11=2.答案:B2.以下各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1 ,x ∈Z 与y =2x -1 ,x ∈Z解析:A 中两函数定义域不同 ,B 、D 中两函数对应关系不同 ,C 中定义域与对应关系都相同.答案:C3.函数y =x +1的值域为( ) A .[-1 ,+∞) B .[0 ,+∞) C .(-∞ ,0]D .(-∞ ,-1]解析:∵x +1≥0 ,∴y =x +1 ≥0. 答案:B二、填空题(每题4分 ,共8分) 4.函数y =x +1x的定义域为________. 解析:要使函数式有意义 ,需使⎩⎪⎨⎪⎧x +1≥0x ≠0 ,所以函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}5.函数f (x )=2x -3 ,x ∈{x ∈N |1≤x ≤5} ,那么函数的值域为__________________. 解析:函数的定义域为{1,2,3,4,5}. 故当x =1,2,3,4,5时 ,y =-1,1,3,5,7 ,即函数的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7} 三、解答题6.(本小题总分值10分)假设f (x )=ax 2- 2 ,且f (f (2))=- 2 ,求a 的值. 解:因为f (2)=a (2)2-2=2a - 2 ,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,2a -2=0或a =0 ,所以a=22或a =0.一、选择题(每题5分 ,共10分)1.以下函数中 ,值域为(0 ,+∞)的是( ) A .y =x B .y =100x +2C .y =16xD .y =x 2+x +1解析:A 中y =x 的值域为[0 ,+∞); C 中y =16x的值域为(-∞ ,0)∪(0 ,+∞);D 中y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34的值域为⎣⎢⎢⎡⎭⎪⎪⎫34 +∞;B 中函数的值域为(0 ,+∞) ,应选B. 答案:B2.假设函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,那么a 的值是( )A .-1或3B .-1C .3D .不存在解析:由⎩⎪⎨⎪⎧a 2-2a -3=0 a -3≠0得a =-1.答案:B二、填空题(每题5分 ,共10分)3.函数f (x )=x -1.假设f (a )=3 ,那么实数a =________. 解析:因为f (a )=a -1=3 ,所以a -1=9 ,即a =10. 答案:104.给出定义:假设m -12<x ≤m +12(其中m 为整数) ,那么m 叫做离实数x 最|近的整数 ,记作{x } ,即{x }=m .在此根底上给出以下关于函数f (x )=|x -{x }|的四个结论.①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎢⎡⎦⎥⎥⎤-1212. 那么其中正确的序号是________.解析:由题意得f ⎝ ⎛⎭⎪⎫-12=-12--12=-12-(-1)=12 ,①正确; f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4 ,②错误; f ⎝ ⎛⎭⎪⎫-14=-14--14=⎪⎪⎪⎪⎪⎪-14-0=14,f ⎝ ⎛⎭⎪⎫14=14-14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14 ,③正确; y =f (x )的定义域为R ,值域为⎝ ⎛⎦⎥⎥⎤-1212 ,④错误.答案:①③ 三、解答题5.(本小题总分值10分)函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12 ,f (3)+f ⎝ ⎛⎭⎪⎫13的值. (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x是定值.(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+ f (2 017)+f ⎝⎛⎭⎪⎫12 017的值.(1)解:∵f (x )=x 21+x2 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解:由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1 ,f (3)+f ⎝ ⎛⎭⎪⎫13=1 ,f (4)+f ⎝ ⎛⎭⎪⎫14=1 ,… ,f (2 017)+f ⎝⎛⎭⎪⎫12 017=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017=2 016.活页作业(八) 函数的表示法(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.小明骑车上学 ,开始时匀速行驶 ,途中因交通堵塞停留了一段时间 ,后为了赶时间加快速度行驶.与以上事件吻合得最|好的图象是( )解析:方法一:出发时距学校最|远 ,先排除A ,中途堵塞停留 ,距离不变 ,再排除D ,堵塞停留后比原来骑得快 ,因此排除B ,选C.方法二:由小明的运动规律知 ,小明距学校的距离应逐渐减小 ,由于小明先是匀速运动 ,故前段是直线段 ,途中停留时距离不变 ,后段加速 ,直线段比前段下降得快 ,故应选C.答案:C 2.f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,那么f (x )=( )A.x +1x -1B .1-x 1+x C.1+x1-xD .2x x +1解析:设t =1-x 1+x ,那么x =1-t 1+t ,f (t )=1-t 1+t ,即f (x )=1-x1+x .答案:B3.函数f (x )是一次函数 ,2f (2)-3f (1)=5,2f (0)-f (-1)=1 ,那么f (x )=( ) A .3x +2 B .3x -2 C .2x +3D .2x -3解析:设f (x )=kx +b (k ≠0) ,那么⎩⎨⎧22k +b -3k +b =52b --k +b =1.解得⎩⎪⎨⎪⎧k =3 b =-2∴f (x )=3x -2. 答案:B4.f ⎝ ⎛⎭⎪⎫12x -1=2x +3 ,且f (m )=6 ,那么m 等于( )A .-14B.14C.32D .-32解析:设12x -1=m ,那么x =2m +2 ,∴f (m )=2(2m +2)+3=4m +7=6 ,∴m =-14.答案:A5.函数f (2x +1)=3x +2 ,且f (a )=2 ,那么a 的值等于( ) A .1 B .3 C .5D .-1解析:由f (2x +1)=3x +2 ,令2x +1=t , ∴x =t -12.∴f (t )=3·t -12+2.∴f (x )=3x -12+2.∴f (a )=3a -12+2=2.∴a =1.答案:A二、填空题(每题5分 ,共15分)6.如图 ,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0) ,(1,2) ,(3,1) ,那么f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵f (3)=1 ,1f 3=1 ,∴f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2.答案:27.函数f (x ) ,g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321那么f (g (1))=____________. 解析:∵g (1)=3 ,∴f (g (1))=f (3)=1. 又∵x ,f (g (x )) ,g (f (x ))的对应值表为x 1 2 3 f (g (x ))131g (f (x ))3 1 3∴f (g (x ))>g (f (x ))答案:1 28.假设f (x )是一次函数 ,f (f (x ))=4x -1 ,那么f (x )=______.解析:设f (x )=kx +b (k ≠0) ,那么f (f (x ))=kf (x )+b =k (kx +b )+b =k 2x +kb +b =4x ⎩⎪⎨⎪⎧k 2=4 kb +b =-1解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎨⎧k =-2b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:2x -13或-2x +1三、解答题(每题10分 ,共20分) 9.下表表示函数y =f (x ).x0<x <5 5≤x <1010≤x <1515≤x ≤20y =f (x )-46810(1)写出函数的定义域、值域; (2)写出满足f (x )≥x 的整数解的集合.解:(1)从表格中可以看出函数的定义域为(0,5)∪[5,10)∪[10,15)∪[15,20]=(0,20].函数的值域为{-4,6,8,10}.(2)由于当5≤x <10时 ,f (x )=6 ,因此满足f (x )≥x 的x 的取值范围是5≤xx ∈Z ,故x ∈{5,6}.10.函数f (x )=g (x )+h (x ) ,g (x )关于x 2成正比 ,h (x )关于x 成反比 ,且g (1)=2 ,h (1)=-3 ,求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1≠0) ,h (x )=k 2x(k 2≠0) , 由于g (1)=2 ,h (1)=-3 , 所以k 1=2 ,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0 ,+∞). (2)由(1)得f (4)=2×42-34=612.一、选择题(每题5分 ,共10分)1.正方形的周长为x ,它的外接圆的半径为y ,那么y 关于x 的解析式为( )A .y =12xB .y =24xC .y =28x D .y =216x 解析:正方形边长为x4 ,而(2y )2=⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫x 42,∴y 2=x 232.∴y =x 42=28x .答案:C2.以下函数中 ,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x );对于C ,f (2x )=2x +1≠2f (x );对于D ,f (2x )=-2x =2f (x ).答案:C二、填空题(每题5分 ,共10分)3.观察以下图形和所给表格中的数据后答复以下问题:梯形个数 1 2 3 4 5 … 图形周长58111417…当梯形个数为. 解析:由表格可推算出两变量的关系 ,或由图形观察周长与梯形个数关系为l =3n +2(n ∈N *).答案:l =3n +2(n ∈N *)4.R 上的函数f (x )满足:(1)f (0)=1;(2)对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,那么f (x )=________.解析:因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,所以令y =x ,有f (0)=f (x )-x (2x -x +1) ,即f (0)=f (x )-x (x +1) ,又f (0)=1 ,所以f (x )=x (x +1)+1=x 2+x +1 ,即f (x )=x 2+x +1.答案:x 2+x +1三、解答题(每题10分 ,共20分)5.画出函数f (x )=-x 2+2x +3的图象 ,并根据图象答复以下问题: (1)比拟f (0) ,f (1) ,f (3)的大小;(2)假设x 1<x 2<1 ,比拟f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.解:因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线 ,描点 ,得函数图象如图:(1)根据图象 ,容易发现f (0)=3 ,f (1)=4 ,f (3)=0 ,所以f (3)<f (0)<f (1). (2)根据图象 ,容易发现当x 1<x 2<1时 ,有f (x 1)<f (x 2).(3)根据图象 ,可以看出函数的图象是以(1,4)为顶点 ,开口向下的抛物线 ,因此 ,函数值域为(-∞ ,4].6.函数f (x )=xax +b(a ,b 为常数 ,且a ≠0)满足f (2)=1 ,方程f (x )=x 有唯一解 ,求函数f (x )的解析式 ,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x , 即ax 2+(b -1)x =0.因为方程f (x )=x 有唯一解 , 所以Δ=(b -1)2=0 ,即b =1. 又f (2)=1 , 所以22a +1=1 ,a =12.所以f (x )=x 12x +1=2x x +2.所以f (f (-3))=f (6)=128=32.活页作业(九) 分段函数、映射(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合M ={x |0≤x ≤6} ,P ={y |0≤y ≤3} ,那么以下对应关系中 ,不能构成M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析:由映射定义判断 ,选项C 中 ,x =6时 ,y =6∉P . 答案:C2.在给定映射f :A →B ,即f :(x ,y )→(2x +y ,xy )(x ,y ∈R )的条件下 ,与B 中元素⎝ ⎛⎭⎪⎪⎫16 -16对应的A 中元素是( ) A.⎝ ⎛⎭⎪⎪⎫16 -136 B.⎝ ⎛⎭⎪⎪⎫13 -12或⎝ ⎛⎭⎪⎪⎫-14 23 C.⎝ ⎛⎭⎪⎪⎫136 -16 D.⎝ ⎛⎭⎪⎪⎫12 -13或⎝ ⎛⎭⎪⎪⎫-23 14 解析:由⎩⎪⎨⎪⎧ 2x +y =16 xy =-16 得⎩⎪⎨⎪⎧ x =13y =-12或⎩⎪⎨⎪⎧x =-14y =23.应选B.答案:B3.以下图象是函数y =⎩⎪⎨⎪⎧x 2x <0x -1 x ≥0的图象的是( )解析:由于f (0)=0-1=-1 ,所以函数图象过点(0 ,-1);当x <0时 ,y =x 2,那么函数图象是开口向上的抛物线y =x 2在y 轴左侧的局部.因此只有图象C 符合.答案:C4.f (x )=⎩⎨⎧ x -5x ≥6f x +2x <6那么f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.f (x )=⎩⎨⎧2xx >0f x +1x ≤0那么f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于( ) A .-2 B .4 C .2D .-4解析:∵f ⎝ ⎛⎭⎪⎫43=2×43=83 ,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43 ,∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:B二、填空题(每题5分 ,共15分)6.函数f (x )的图象如下图 ,那么f (x )的解析式是____________________.解析:由图可知 ,图象是由两条线段组成.当-1≤x <0时 ,设f (x )=ax +b ,将(-1,0) ,(0,1)代入解析式 ,那么⎩⎨⎧ -a +b =0 b =1.∴⎩⎨⎧a =1b =1.∴f (x )=x +1.当0≤x ≤1时 ,设f (x )=kx ,将(1 ,-1)代入 ,那么k =-1 ,∴f (x )=-x .。

人教版高中数学必修一《集合》同步练习(含答案)

人教版高中数学必修一《集合》同步练习(含答案)

1.1 集合一、选择题(本大题共10小题,每小题5分,共50分)1.若{1,2}⊆A⊆{1,2,3,4,5},则这样的集合A有()A.6个B.7个C.8个D.9个2.设A={y|y=a²-6a+10,a∈N*},B={x|x=b²+1,b∈N*},则()A.A⊆BB.A∈BC.A=BD.B⊆A3.设A={x|x=6m+1,m∈Z},B={y|y=3n+1,n∈Z},C={z|z=3p2,p∈Z},D={a|a=3q²2,q∈Z},则四个集合之间的关系正确的是()A.D=B=CB.D⊆B=CC.D⊆A⊆B=CD.A⊆D⊆B=C4.A={a,a+b,a+2b},B={a,ac,ac²},若A=B,则c的值为()A.1B.1或C. D.15.映射f:A→A满足f()≠,若A={1,2,3},则这样的映射有()A.8个B.18个C.26个D.27个6.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A.35B.25C.28D.157.设S={x||x2|>3},T={x|a<x<a+8},S∪T=R,则 a 的取值范围是()A.3<a<1B.3≤a≤1C.a≤3或a≥1D.a<3或a>18. 设全集U={(x,y)|x,y∈R},集合M={(x,y)|32yx--=1},N={(x,y)|y≠x+1},那么(U M)∩(U N)=( )A. ∅B.{(2,3)}C.(2,3)D.{(x,y)|y=x+1}9.设U 为全集,123,,S S S 为U 的三个非空子集且1S ∪2S ∪3S =U ,下列推断正确的是( )A.( U 1S )∩(2S ∪3S )=∅B. (U1S )∩(U2S )∩(U3S )=∅C. 1S ⊆(U2S )∩(U3S )D. 1S ⊆(U2S )∪(U3S )10.集合A ={a ²,a +1,3},B ={a 3,2a 1,a ²1},若A ∩B ={3},则a 的值是( )A.0B.1 C .1 D.2二、 填空题(本大题共5小题,每小题5分,共 25分) 11.M ={65a-∈N |a ∈Z },用列举法表示集合 M =___ ___. 12.设集合{}{}{}1,2,1,2,3,2,3,4A B C ===,则A B C =() . 13.已知集合P 满足{}{}464P=,,{}{}81010P =,,并且{}46810P ⊆,,,,则P =14.某校有17名学生,每人至少参加全国数学、物理、化学三科竞赛中的一科,已知其中参加数学竞赛的有11人,参加物理竞赛的有7人,参加化学竞赛的有9人,同时参加数学和物理竞赛的有4人,同时参加数学和化学竞赛的有5人,同时参加物理和化学竞赛的有3人,则三科竞赛都参加的人数是_ __.15.A ={2,1,x ²x 1},B ={2y ,4,x 4},C ={1,7},A ∩B =C ,则x ,y 的值分别是__ _. 三、解答题 (本大题共5小题,共75分) 16.(12分)已知集合A ={x |x ²3x 10≤0}.(1)设U =R ,求UA ;(2)B ={x |x <a },若A ⊆B ,求a 的取值范围.17. (15分)设A ={x ∈R |ax ²+2x +1=0,a ∈R }. (1)当A 中元素个数为1时,求a 和A ;(2)当A 中元素个数至少为1时,求a 的取值范围; (3)求A 中各元素之和.18.(15分)已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围19.(16分)已知A ={12345,,,,a a a a a },B ={2222212345,,,,a a a a a },其中12345,,,,a a a a a ∈Z ,12345a a a a a <<<<,且A ∩B ={14,a a },14a a +=10,又A ∪B 的元素之和为224,求:(1)14,a a ;(2)5a ;(3)A .20.(17分)设}019|{22=-+-=a ax x x A ,22{|560}{|280}B x x x C x x x =-+==+-=,.(1)AB =A B ,求a 的值;(2)A B =A C ≠∅,求a 的值一、选择题1.C 解析:列举法,易知满足条件的集合共8个,选C.2.D 解析:A ={y |y =(a 3)²+1,a ∈N *},因此a 3∈N ,故集合A 比集合B 多出一个元素,为1,选D.3.B 解析:首先看B 和C ,这两个集合都表示被3除余1的所有整数,故B =C. 而D 相对于C 而言,相当于C 中的p 只能取完全平方数,故D ⊆C ,也可以说D ⊆B . A 表示被6除余1的所有整数,与D 是交叉的关系,故选B. 4.C 解析:A =B 有两种可能:①2,2,a b ac a b ac +=⎧⎨+=⎩易解出c =1,但此时a =ac =ac ²,与集合元素的互异性矛盾,故c ≠1. ②2,2,a b ac a b ac ⎧+=⎨+=⎩易解出c =12-或,经检验c =12-符合题意.综上,应选C.5.A 解析:直接列举出每种情况即可,共有8种,选A.6. B 解析:全班分4类人:设两项测验成绩都及格的人数为x ;仅跳远及格的人数为40x -;仅铅球及格的人数为31x -;两项均不及格的人数为4 .∴4031450x x x -+-++=,∴25x =.7.A 解析:易解出S =(∞,1)∪(5,∞),因此可列出不等式组1,85,a a <-⎧⎨+>⎩解得3<a <1,选A.8. B 解析:(UM )∩(UN )=U(M ∪N ),集合M 表示直线y =x +1上除(2,3)点外的所有点,集合N 表示不在直线y =x +1上的所有点,因此所求的集合是一个单元素点集{(2,3)},选B. 9.B 解析:排除法,对于A 选项,不在1S 中的元素可以在2S 或3S 中,即一定在集合(2S ∪3S )中,故两集合的交集不为空,A 错,对于C,D 两项画出Venn 图易知C,D 均错,选B. 10.B 解析:集合A 中已经有元素3,集合B 中a ²+1不会为负,故a 3=3或2a 1=3,解出a =0或a =1,但a 0时a 1a ²11,不合题意,故a 不为0,而a =1符合题意,选B. 二、填空题11. {1,2,3,6} 解析:注意集合中的元素是65a-而不是a ,否则极易出错.要满足集合的条件只需让5a 为6的正约数,相应地得出集合中的4个元素:1,2,3,6. 12.{}1234,,, 解析:{}12A B =,,故(){}12,3,4.A B C =,13. {4,10} 解析:由第一个条件知P 中有元素4而没有元素6,由第二个条件知P 中有元素10而没有元素8,再由最后一个条件知P ={4,10}.14. 2 解析:设三科竞赛都参加的人数为,由题意可列方程1179453x =17,解得x =2.15. 3,0.5 解析:对于集合A 易得x ²x +1=7,解得x =3或x =2,但x =2时B 中有元素2不满足题意,故x =3,对于B 易得2y =1,故y =0.5. 三、解答题16.解:(1)A ={x |x ²3x 10≤0}={x |2≤x ≤5}.∵ U =R,∴UA ={x |x <2或x >5}.(2)∵A ⊆B ={x |x <a }, ∴a >5. 故a 的取值范围是(5,+∞). 17. 解:(1)当A 中元素个数为1时,包括两种情况,分类讨论如下: 当0a =时,有210x +=,解得12x =-,此时12A ⎧⎫=-⎨⎬⎩⎭;当0a ≠时,有∆=044a -=,得1a =,代入解得x =-1,此时{}1A =-. 综上可得0a =,12A ⎧⎫=-⎨⎬⎩⎭或1a =,{}1A =-.(2)当A 中元素个数至少为1时有0a =或∆=044a -≥,解得1a ≤. 即a 的取值范围是(]1,-∞.(3)当∆=044a -<,即a >1时,A =∅,无元素; 当a =1时,元素之和为1-;当∆=4-4a >0,即a <1且时,元素之和为2a-. 当a =0时,元素之和为12-. 18.解: {}|123B y y a =-≤≤+,当20a -≤≤时,{}2|4C z a z =≤≤,而C B ⊆,则1234,,20,2a a a +≥≥-≤≤即而 这是矛盾的;当02a <≤时,{}|04C z z =≤≤,而C B ⊆,则1234,,22a a a +≥≥≤≤1即所以2; 当2a >时,{}2|0C z z a=≤≤,而C B ⊆,则223,323a a a a a +≥>即-1≤≤,又,所以2<≤.综上所述,132a ≤≤.19.解:(1)∵A ∩B ={14,a a }, ∴14,a a ∈B ,因此14,a a 均为完全平方数.∵14a a +=10,14a a <,∴只能有1a =1,4a =9. (2)∵1234a a a a <<<,∴2a =3或3a =3 . 若3a =3,则2a =2,这时A ∪B 的元素之和224=1+2+4+3+9+81+5a +25a ,此时5a 不是整数,因此应该是2a =3.这时224>1+3+9+81+5a +25a ,故5a <11,而5a >4a =9,故5a =10. (3)由上面的结论知道224=1+3+9+81+10+100+3a +23a ,解得3a =4. ∴A ={1,3,4,9,10} . 20.解:(1)∵AB =A B ,∴A =B ,∴25196a a =⎧⎨-=⎩,,解得a =5.(2)∵AB =AC ≠∅,∴A B =A C ={2},∴ 2A .将x =2代入A 中的方程得a =5或a =3 . a =5时经检验A B ≠A C ,舍去.∴ a =3。

人教版高一数学必修一同步练习

人教版高一数学必修一同步练习

人教版高一数学必修一同步练习(共59页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--集合的含义与表示课后作业· 练习案【基础过关】1.若集合A中只含一个元素1,则下列格式正确的是=A∈A∉A∈A 2.集合{A∈A∗|A−2<3}的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合{A∈A|A3=A},用列举法表示为{−1,0,l};②实数集可以表示为{A|A为所有实数}或{A};③方程组{A+A=3,A−A=−1的解集为{A=1,A=2}.个个个个4.直角坐标系中,坐标轴上点的集合可表示为A.{(A,A)|A=0,A≠0,或A≠0,A=0}B. {(A,A)|A=0且A=0}C.{(A,A)|AA=0}D.{(A,A)|A,A不同时为0}5.若集合A含有两个元素1,2,集合A含有两个元素1,A2,且A,A相等,则A=____.6.已知集合A={(A,A)|A=2A+1},A={(A,A)|A=A+3},A∈A且A∈A,则A为 .7.设方程AA2+2A+1=0(A∈R)的根组成的集合为A,若A只含有一个元素,求A的值.8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程A=|A|的所有x的值构成的集合B.【能力提升】集合A={A|A=2A,A∈A},A={A|A=2A+1,A∈A},A∈A,A∈A,设A=A+A,则A与集合A有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又A∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.±√2【解析】由于P,Q相等,故A2=2,从而A=±√2.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组{A=2A+1,A=A+3,的解,解方程组,得{A=2,A=5,∴a为(2,5).7.A中只含有一个元素,即方程AA2+2A+1=0(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为A=-1;2(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为A1=A2=-1.∴a的值为0或1.【备注】误区警示:初学者易自然认为AA2+2A+1=0(a∈R)是一元二次方程,而漏掉对a的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z∴c∈M.集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是A.a≤2 B.a≤1 C.a≥1 D.a≥22.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则=N⊆N⫌ M⫋3.已知集合A={1,−2,x2−1},B={1,x2−3x,0},若A=B,求实数x的值. 4.满足条件{1,2,3}⫋M⫋{1,2,3,4,5,6}的集合M的个数是5.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y>0},那么M与P的关系为 .6.含有三个实数的集合,既可表示成{a,ba,1},又可表示成{a2,a+b,0},则a2015+b2016= .7.设集合A={(x,y)|y=2x−1},B={(x,y)|y=x+3},求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N⫋M,求a的取值范围. 【能力提升】已知A={x||x−a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B若存在,求出对应的a的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵A⊆B,∴a≥22.D【解析】本题考查集合间的基本关系. M={x|x=2k+14,k∈Z}, N={x|x=k+24,k∈Z}={x|x=m4,m∈Z};而{x|x=2k+14,k∈Z}⫋{x|x=m4,m∈Z};即M⫋N.选D.3.由A=B,可得{x2-1=0x2-3x=-2,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C.5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得{a,ba,1}={a2,a+b,0},所以ba=0,即b=0;此时{a,0,1}={a2,a,0},所以a2=1,a=a,且a≠1,解得a=−1.所以a2015+b2016=−1+0=−1.7.{y=2x−1y=x+3,解得{x=4y=7;所以A∩B={(4,7)}.【解析】本题考查集合的基本运算.8.解:M={x | x2-2x-3=0}={3,-1};∵N⫋M,当N=时,N⫋M成立,N={x | x2+ax+1=0},∴a2-4<0, ∴-2<a<2;当N≠时,∵N ⫋M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -,N={3,},不满足N ⫋M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N ⫋M; ∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系.【能力提升】不存在.要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又∵A ={a -4,a +4},∴{a -4=1,a +4=2或{a +4=1,a -4=2.这两个方程组均无解,故这样的实数a 不存在.集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 的个数为2.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是∪B ∩B C.(∁U A )∩(∁U B ) D.(∁U A )∪(∁U B )3.若集合P={x ∈N |-1<x <3},Q={x|x=2a ,a ∈P },则P ∩Q=A.⌀B.{x|-2<x <6}C.{x|-1<x <3}D.{0,2} 310314.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P ∩Q={0,2}.4.B【解析】∁U M={x|-1≤x ≤1},结合数轴可得N ∩(∁U M )={x|0<x ≤1}.5.12【解析】设两项运动都喜爱的人数为x ,依据题意画出Venn 图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A ∩B={(x ,y )|{x +y =0x −y =2}={(1,-1)}. 7.因为A ={x |0<x -m <3},所以A ={x |m <x <m +3}.(1)当A ∩B =⌀时,需{m ≥0m +3≤3,故m =0.即满足A ∩B =⌀时,m 的值为0. (2)当A ∪B =B 时,A ⊆B ,需m ≥3,或m +3≤0,得m ≥3,或m ≤-3.即满足A ∪B =B 时,m 的取值范围为{m |m ≥3,或m ≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A ∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A ∪B=A ,所以B ⊆A ,故集合B 中至多有两个元素1,2.而方程x 2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有 ①当a-1=2,即a=3时,B={1,2},满足题意; ②当a-1=1,即a=2时,B={1},满足题意. 综上可知,a=2或a=3. (2)因为A ∩C=C ,所以C ⊆A.①当C=⌀时,方程x 2-x+2m=0无实数解,因此其根的判别式Δ=1-8m <0,即 m >18.②当C={1}(或C={2})时,方程x 2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=18,代入方程x 2-x+2m=0,解得x=12,显然m=18不符合要求.③当C={1,2}时,方程x 2-x+2m=0有两个不相等的实数解x 1=1,x 2=2,因此x 1+x 2=1+2≠1,x 1x 2=2=2m ,显然不符合要求.综上,m >18.函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( ) =√x=√x=1x=x 2+12.下列式子中不能表示函数y =f (x )的是 A.x =y 2+1B.y =2x 2+1C.x −2y =6D.x =√y3.函数y=√1−x 2+√x 2−1的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若f(x)满足f(a∙b)=f(a)+f(b),且f(2)=p,f(3)=q,则f(72)等于A.p+q B.3p+2q C.2p+3q D.p3+q25.若[a,3a−1]为一确定区间,则 a 的取值范围是 .6.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[f(3)]的值等于 .7.求下列函数的定义域.(1)y=√2x+1+√3−4x;(2)y=1|x+2|−1.8.已知f(x)=x1+x.(1)求f(2)+f(12),f(3)+f(13)的值;(2)求f(2)+f(3)+f(4)+⋯+f(2013)+f(12)+f(13)+f(14)+⋯+f(12013)的值.【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=√x 的值域为[0,+∞),y=1x的值域为(-∞,0)∪(0,+∞),y=x 2+1的值域为[1,+∞).故选B. 2.A【解析】一个x 对应的y 值不唯一. 3.D【解析】要使函数式有意义,需满足{1−x 2≥0x 2−1≥0,解得x=±1,故选D.4.B【解析】f (72)=f (8×9)=f (8)+f (9)=3f (2)+2f (3)=3p +2q . 5.(12,+∞)【解析】由题意3a -1>a ,则a >12.【备注】误区警示:本题易忽略区间概念而得出3a -1≥a ,则a ≥12的错误.6.2【解析】由图可知f (3)=1,∴f [f (3)]=f (1)=2.【备注】误区警示:本题在求解过程中会因不理解f [f (3)]的含义而出错. 7.(1)由已知得{2x +1≥0⇒x ≥-12,3-4x ≥0⇒x ≤34,∴函数的定义域为[−12,34].(2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1, 得x ≠-3,x ≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞). 8.(1)f (2)+f (12)=21+2+121+12=23+13=1,f (3)+f (13)=31+3+131+13=34+14=1. (2)∵f(x)+f (1x)=x1+x+1x1+1x=x 1+x+1x +1=1,∴f (2)+f (3)+f (4)+⋯+f(2013)+f (12)+f (13)+f (14)+⋯+f (12013)=f (2)+f (12)+f (3)+f (13)+f (4)+f (14)+⋯+f (2013)+ f (12013)=1+1+1+⋯+1(共2012个1相加) =2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0. (2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p, 令a=b=3,得f(9)=f(3)+f(3)=2q, 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知y =f (x )是反比例函数,当x =2 时,y =1,则y =f (x ) 的函数关系式为 A.f (x )=1xB.f (x )=−1xC.f (x )=2xD.f (x )=−2x2.已知函数f (x )={2,x ∈[−1,1],x,x ∉[−1,1],若f [f (x )]=2,则x 的取值范围是A.∅B.[−1,1]C.(−∞,−1)∪(1.+∞)D.{2}∪[−1,1]3.已知函数f(x)={x +1,x ∈[−1,0]x 2+1,x ∈(0,1],则函数f(x)的图象是( )A. B. C. D.4.已知f (x )={3x +1,x ≥0,|x |,x <0,则f[f(−√2)]=C.3√2+1D.−3√2+15.已知函数f (2x +1)=3x +2,且f (a )=4,则a = . 6.已知函数f (x )对于任意实数x 满足条件f (x+2)=1f(x),若f (1)=-5,则f[f (5)]= .7.已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (x )=0,方程f (x )=x 有两个相等的实数根.求函数f (x )的解析式.8.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0) 左侧的图形的面积为f (t ),试求函数f (t ) 的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设f(x)=kx(k≠0),∵当x=2时,y=1,∴1=k2,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C 错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵f(-√2)=|-√2|=√2>0,∴f[f(-√2)]=f(√2)=3√2+1.【备注】无5.7 3【解析】f(2x+1)=3x+2=32(2x+1)+12,∴f(x)=32x+12,∴f(a)=32a+12=4,解得a=73 .6.-15【解析】由已知条件f (x+2)=1f(x)可得f (x+4)=1f(x+2)=f (x ),所以f (5)=f (1)=-5,所以f[f (5)]=f (-5)=f (-1)=1f(−1+2)=1f(1)=-15.7.∵f(x)=ax 2+bx ,且方程f (x )=x 有两个相等的实数根,∴∆=(b -1)2=0,∴b =1,又∵f (2)=0,∴4a +2=0,∴a =-12,∴f(x)=-12x 2+x .8.OB 所在的直线方程为y =√3x .当t ∈(0,1]时,由x =t ,求得y =√3t ,所以f (t )=√32t 2; 当t ∈(1,2]时,f (t )=√3-√32(2−t)2;当t ∈(2,+∞)时,f (t )=√3,所以{√32t 2,t ∈(0,1], √3-√32(2−t)2,t ∈(1,2],√3,t ∈(2,+∞).【能力提升】(1)由题意知y={(x +2)2,x ≥1x 2+2,x <1.(2)f (-3)=(-3)2+2=11, f (1)=(1+2)2=9.(3)若x ≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x 2+2=16,解得x=√14(舍去)或x=-√14.综上可得,x=2或x=-√14.单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数f(x)在区间(a,b)上是增函数,在区间(c,d)上也是增函数,则函数f(x)在区间(a,b)∪(c,d)上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A.y=1−2xB.y=−x2+2xC.y=5D.y=√x−13.函数f(x)={x+1,x≥0x−1,x<0,在R上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数f(x)=x2−2(1−a)x+1 在区间(−∞,2]上为减函数,则a 的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数f(x)=axx−1,若2f(2)=f(3)+5.(l)求a 的值.(2)利用单调性定义证明函数f(x)在区间(1,+∞)的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中y=√x-1的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得2×2a2−1=3×a3−1+5,解得a=2.(2)由(1)知f(x)=2xx−1.任取x 1,x 2∈(1,+∞)且x 1<x 2,f (x 1)<f (x 2)=2x 1x 1−1−2x 2x 2−1=2x 1(x 2−1)−2x 2(x 1−1)(x 1−1)(x 2−1)=2(x 2−x 1)(x1−1)(x 2−1),因为1<x 1<x 2,所以x 1-1>0,x 2-1>0,x 2-x 1>0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令t (x )=y x=12x +80 000x-200,可以证明t (x )在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元. (2)设该单位每月获利为S ,则S =100x -y =100x -(12x 2-200x +80 000)=−12x 2+300x -80 000=−12(x -300)2-35 000.因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,12];单调减区间为(-∞,0)和(12,+∞).(2)观察图象可知,函数没有最大值和最小值.奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设f (x ) 在[-2,-1]上为减函数,最小值为3,且f (x ) 为偶函数,则f (x ) 在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数y =f (x ) 是偶函数,其图象与x 轴有四个交点,则方程f (x )=0 的所有实根之和是3.函数y =f(x)是奇函数,图象上有一点为(a ,f(a)),则图象必过点A. (a ,f(−a))B. (−a ,f(a))C. (−a ,−f(a))D. (a ,1f(a)))4.设f (x )=ax 3+bx −5,其中a ,b 为常数,若f (−3)=7,则f (3)的值为5.已知定义在R 上的奇函数f (x ),当x >0 时,f (x )=x 2+|x |−1,那么x <0 时,f (x )= . 6.若函数f (x )=x+abx+1为区间[-1,1]上的奇函数,则a = ;b = .7.作出函数y =|x −2|(x +1)的图象,并根据函数的图象找出函数的单调区间. 8.已知函数f (x )=ax 3+bx 2+cx +d 是定义在R 上的偶函数,且当x ∈[1,2]时,该函数的值域为[−2,1],求函数f (x )的解析式.【能力提升】已知函数f (x )=-12x 2+x ,是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数的值域恰为[2m ,2n ]若存在,求出m ,n 的值;若不存在,说明理由.答案【基础过关】1.D 2.D 3.C【解析】奇函数f (x )满足f (-x )=-f (x),故有f (-a )=-f (a ).因为函数f (x )是奇函数,故点(a ,f (a ))关于原点的对称点(-a ,-f (a ))也在y =f (x )上,故选C. 4.D【解析】∵f(-3)=a(-3)3−3b -5=7, ∴27a +3b =-12, ∴f (3)=27a +3b -5=-17. 5.-x 2-|x |+1 6.0 07.当x -2≥0,即x ≥2时,y =(x -2)(x +1)=x 2-x -2=(x −12)2−94;当x -2<0,即x <2时,y =-(x -2)(x +1)=-x 2+x +2=−(x −12)2+94.所以y ={(x −12)2−94,x ≥2.−(x −12)2+94,x <2.这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中(−∞,12],[2,+∞)是函数的单调增区间;(12,2)是函数的单调减区间.8.由f (x )为偶函数可知f (x )=f (-x ),即ax 3+bx 2+cx +d =-ax 3+bx 2-cx +d ,可得ax 3+cx =0恒成立,所以a =c =0,故f(x)=bx 2+d .当b =0时,由题意知不合题意;当b >0,x ∈[1,2]时f (x )单调递增,又f (x )值域为[-2,1],所以{f(1)=-2,f (2)=1⟹ {b +d =-2,4b +d =1⟹{b =1, d =−3;当b <0时,同理可得{f (1)=1,f (2)=−2⟹ {b +d =1, 4b +d =-2⟹{b =−1,d =2.所以f(x)=x 2-3或f (x )=−x 2+2.【能力提升】假设存在实数m ,n ,使得当x ∈[m ,n ]时,y ∈[2m ,2n ],则在[m ,n ]上函数的最大值为2n .而f (x )=-12x 2+x =-12(x-1)2+12在x ∈R 上的最大值为12,∴2n ≤12,∴n ≤14.而f (x )在(-∞,1)上是增函数,∴f (x )在[m ,n ]上是增函数,∴{f(m)=2mf(n)=2n,即{−12m 2+m =2m −12n 2+n =2n.结合m <n ≤14,解得m =-2,n =0.∴存在实数m =-2,n =0,使得当x ∈[-2,0]时,f (x )的值域为[-4,0].指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简√−x 3x的结果为A.−√−xB.√x√x D.√−x2.计算[(−√2)−2]−12的结果是A.√2B.−√2C.√22D.−√223.设13<(13)b <(13)a <1,则有 A.a a <a b <b a B. a a <b a <a b C. a b <a a <b aD. a b <b a <a a4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)√a n n=a(a≥0);(3)(a b)5=a 5b15; (4)√(−3)26=(-3)13.5.若10m =2,10n=4,则102m−n 2=.6.已知x=12(2 0131n -2 013−1n ),n ∈N *,则(x+√1+x 2)n 的值为 .7.化简下列各式: (1)(√a 23·√a )÷√a 6;(2)(a 23b 12)·(-3a 12b13)÷(13a 16b56).8.求下列各式的值:(1)2532;(2)(254)−32;(3)√259+(2764)−13-π0.【能力提升】已知x12+x−12=3,求下列各式的值:(1)x+x -1;(2)x 32+x −32+2x 2+x −2+3.答案【基础过关】1.A【解析】要使式子有意义,需-x 3>0,故x <0,所以原式=-√-x . 2.A【解析】本题考查指数运算.注意先算中括号内的部分。

人教A版高中数学必修一 1-1-1同步练习题(含答案解析)

人教A版高中数学必修一 1-1-1同步练习题(含答案解析)

1.1.1一、选择题1.方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27的解集是( ) A.⎩⎪⎨⎪⎧x =3y =-7 B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7}[答案] D[解析] 解方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7 用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D.2.集合A ={x ∈Z |y =12x +3,y ∈Z }的元素个数为( ) A .4B .5C .10D .12 [答案] D[解析] 12能被x +3整除.∴y =±1,±2,±3,±4,±6,±12,相应的x 的值有十二个:9,-15,3,-9,1,-7,0,-6,-1,-5,-2,-4.故选D.3.集合A ={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为( )A .2B .3C .4D .无数个 [答案] C[解析] 两腰为2,底角为30°;或两腰为2,顶角为30°;或底边为2,底角为30°;或底边为2,顶角为30°.共4个元素,因此选C.4.已知a 、b 、c 为非零实数,代数式a |a |+b |b |+c |c |+abc |abc |的值所组成的集合为M ,则下列判断中正确的是( )A .0∉MB .-4∉MC .2∈MD .4∈M [答案] D[解析] a 、b 、c 皆为负数时代数式值为-4,a 、b 、c 二负一正时代数式值为0,a 、b 、c 一负二正时代数式值为0,a 、b 、c 皆为正数时代数式值为4,∴M ={-4,0,4}.5.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x =0且y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x ,y 不同时为零}[答案] C[解析] 在x 轴上的点(x ,y ),必有y =0;在y 轴上的点(x ,y ),必有x =0,∴xy =0.6.集合M ={(x ,y )|xy ≤0,x ,y ∈R }的意义是( )A .第二象限内的点集B .第四象限内的点集C .第二、四象限内的点集D .不在第一、三象限内的点的集合[答案] D[解析] ∵xy ≤0,∴xy <0或xy =0当xy <0时,则有⎩⎪⎨⎪⎧ x <0y >0或⎩⎪⎨⎪⎧ x >0y<0,点(x ,y )在二、四象限, 当xy =0时,则有x =0或y =0,点(x ,y )在坐标轴上,故选D.7.方程组⎩⎪⎨⎪⎧ x +y =1x 2-y 2=9的解(x ,y )构成的集合是( )A .(5,4)B .{5,-4}C .{(-5,4)}D .{(5,-4)}[答案] D[解析] 首先A ,B 都不对,将x =5,y =-4代入检验知是方程组的解.∴选D.*8.集合S ={a ,b ,c }中的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC 一定不是() A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合元素的互异性知,a 、b 、c 两两不等.9.设a 、b ∈R ,集合{1,a +b ,a }={0,b a ,b },则b -a 等于( )A .1B .-1C .2D .-2[答案] C[解析] ∵{1,a +b ,a }={0,b a,b }, ∴a ≠0,∴a +b =0,∴a =-b ,∴b a=-1, ∴a =-1,b =1,∴b -a =2.故选C.10.设集合A ={0,1,2},B ={-1,1,3},若集合P ={(x ,y )|x ∈A ,y ∈B ,且x ≠y },则集合P 中元素个数为( )A .3个B .6个C .9个D .8个[答案] D[解析] x ∈A ,对于x 的每一个值,y 都有3个值与之对应,但由于x ≠y ,∴x =1,y =1,不合题意,故共有3×3-1=8个.[点评] 可用列举法一一列出:P ={(0,-1),(0,1),(0,3),(1,-1),(1,3),(2,-1),(2,1),(2,3)}.二、填空题11.将集合{(x ,y )|2x +3y =16,x ,y ∈N }用列举法表示为________.[答案] {(2,4),(5,2),(8,0)}[解析] ∵3y =16-2x =2(8-x ),且x ∈N ,y ∈N ,∴y 为偶数且y ≤5,∴当x =2时,y =4,当x =5时y =2,当x =8时,y =0.12.已知A ={1,0,-1,2},B ={y |y =|x |,x ∈A },则B =________.[答案] {1,0,2}[解析] 当x =1时,y =1;x =0时,y =0;x =-1时,y =1;x =2时,y =2,∴B ={1,0,2}.13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________.[答案] 2或4[解析] ∵a ∈A ,∴a =2或a =4或a =6,而当a =2和a =4时,6-a ∈A ,∴a =2或a =4.三、解答题14.用列举法表示集合.(1)平方等于16的实数全体;(2)比2大3的实数全体;(3)方程x 2=4的解集;(4)大于0小于5的整数的全体.[解析] (1){-4,4} (2){5} (3){-2,2} (4){1,2,3,4}.15.用描述法表示下列集合:(1){0,2,4,6,8};(2){3,9,27,81,…};(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…; (4)被5除余2的所有整数的全体构成的集合.[解析] (1){x ∈N |0≤x <10,且x 是偶数}.(2){x |x =3n ,n ∈N +}.(3){x |x =2n -12n,n ∈N +}. (4){x |x =5n +2,n ∈Z }.*16.设A 表示集合{2,3,a 2+2a -3},B 表示集合{|a +3|,2},若已知5∈A ,且5∉B ,求实数a 的值.[解析] ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,|a +3|≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2且a ≠-8,∴a =-4. 17.已知集合A ={x |ax 2-3x -4=0,x ∈R }:(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.[分析] 集合A 是方程ax 2-3x -4=0的解集.A 中有两个元素,即方程有两个相异实根,必有a ≠0;A 中至多有一个元素,则a ≠0时,应有Δ≤0;a =0时,恰有一个元素.[解析] (1)∵A 中有两个元素,∴关于x 的方程ax 2-3x -4=0有两个不等的实数根,∴⎩⎪⎨⎪⎧Δ=9+16a >0a ≠0,即a >-916且a ≠0. (2)当a =0时,A ={-43};当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,∴Δ=9+16a ≤0,即a ≤-916.故所求的a 的取值范围是a ≤-916或a =0. *18.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2008+b 2007.[解析] 解法1:∵A =B ,∴⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1. 解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0,或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,∴a =-1,b =0,故a 2008+b 2007=1.解法2:由A =B ,可得⎩⎪⎨⎪⎧ 1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab ,即⎩⎪⎨⎪⎧ab (a 3-1)=0 ①(a -1)(a +b +1)=0 ②因为集合中的元素互异,所以a≠0,a≠1.解方程组得,a=-1,b=0.故a2008+b2007=1.。

(人教A版)高中数学必修一(全册)课时同步练习汇总

(人教A版)高中数学必修一(全册)课时同步练习汇总

(人教A版)高中数学必修一(全册)课时同步练习汇总[课时作业][A组基础巩固]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.1解析:由题设可知3≠4,∴m+1=4,∴m=3.答案:B2.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边.答案:A3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:∵x-3<2,∴x<5,又∵x∈N+,∴x=1,2,3,4.答案:B4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5 B.4C.3 D.2解析:利用集合中元素的互异性确定集合.当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x+y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y∈B}={-1,1,3},即元素个数为3.答案:C5.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个解析:确定集合中元素的个数,应从集合中元素的互异性入手考虑.若是相同的元素,则在集合中只能出现一次.因为x2=|x|,-3x3=-x,所以当x=0时,这几个数均为0.当x>0时,它们分别是x,-x,x,x,-x.当x<0时,它们分别是x,-x,-x,-x,-x.均最多表示两个不同的数,故所组成的集合中的元素最多有2个.故选A. 答案:A6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________.解析:由题设知a≠0,则a+b=0,a=-b,所以ba=-1,∴a=-1,b=1,故b-a=2.答案:27.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________.解析:由-5∈{x|x2-ax-5=0}得(-5)2-a×(-5)-5=0,所以a=-4,所以{x|x2-4x+4=0}={2},所以集合中所有元素之和为2.答案:28.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.解析:∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11. ∴P+Q={1,2,3,4,6,7,8,11},故P+Q中有8个元素.答案:89.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.解析:(1)当k=0时,原方程变为-8x+16=0,x=2.此时集合A={2}.(2)当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根.只需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A={4},满足题意.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值.解析:(1)因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1.此时集合A含有两个元素-4,-3,符合题意,综上所述,满足题意的实数a的值为0或-1.(2)因为a∈A,所以a=a-3或a=2a-1.当a=a-3时,有0=-3,不成立.当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上知a=1.[B组能力提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集.其中正确说法是()A.①④B.②C.②③D.以上说法都不对解析:0∈{0};方程(x-1)2(x-2)=0的解集为{1,2};集合{x|4<x<5}是无限集;只有②正确.答案:B2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P解析:(1)a>0,b>0时,x=a|a|+b|b|=1+1=2;(2)a<0,b<0时,x=a|a|+b|b|=-1-1=-2;(3)a,b异号时,x=0.答案:A3.已知集合M={a|a∈N,且65-a∈N},则M=________.解析:5-a整除6,故5-a=1,2,3,6,a∈N所以a=4,3,2.答案:{4,3,2}4.当x∈A时,若x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,所有孤立元素组成的集合称为“孤星集”,则集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为________.解析:由“孤立元素”的定义知,对任意x∈A,要成为A的孤立元素,必须是集合A中既没有x-1,也没有x+1,因此只需逐一考查A中的元素即可.0有1“相伴”,1,2则是前后的元素都有,3有2“相伴”,只有5是“孤立的”,从而集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为{5}.故填{5}.答案:{5}5.已知集合A={x|ax2+2x+1=0,a∈R}.(1)若1∈A,求a的值;(2)若集合A中只有一个元素,求实数a组成的集合;(3)若集合A中含有两个元素,求实数a组成的集合.解析:(1)因为1∈A,所以a×12+2×1+1=0,所以a=-3.(2)当a=0时,原方程为2x+1=0,解得x=-12,符合题意;当a≠0时,方程ax2+2x+1=0有两个相等实根,即Δ=22-4a=0,所以a=1.故当集合A只有一个元素时,实数a组成的集合是{0,1}.(3)由集合A中含有两个元素知,方程ax2+2x+1=0有两个不相等的实根,即a≠0且Δ=22-4a>0,所以a≠0且a<1.故当集合A中含有两个元素时,实数a组成的集合是{a|a≠0且a<1}.6.设S是由满足下列条件的实数所构成的集合:①1∉S;②若a∈S,则11-a∈S.请解答下列问题:(1)若2∈S,则S中必有另外两个数,求出这两个数;(2)求证:若a∈S,且a≠0,则1-1a∈S.解析:(1)∵2∈S,2≠1,∴11-2=-1∈S.∵-1∈S,-1≠1,∴11-(-1)=12∈S.又∵12∈S,12≠1,∴11-12=2∈S.∴集合S中另外两个数为-1和12.(2)由a∈S,则11-a∈S,可得11-11-a∈S,即11-11-a=1-a1-a-1=1-1a∈S.∴若a∈S,且a≠0,则1-1a∈S.[课时作业][A组基础巩固]1.已知M={1,2,3,4},N={2,3},则有()A.M⊆N B.N MC.N∈M D.M=N解析:由子集的概念可知N M.答案:B2.已知集合A={1,3,m},B={1,m},若B⊆A,则m=() A.0或 3 B.0或3C.1或 3 D.0或1或 3解析:(1)m=3,此时A={1,3,3},B={1,3},满足B⊆A.(2)m=m,即m=0或m=1.①m=0时,A={0,1,3},B={0,1},满足B⊆A;②m=1时,A={1,3,1},B={1,1},不满足互异性,舍去.答案:B3.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值是( ) A .1B .-1C .-1或0或1D .0或1解析:由题设可知集合A 中只有一个元素,(1)a =0时,原方程等价转化为2x =0,即x =0,满足题设; (2)⎩⎨⎧a ≠0Δ=4-4a 2=0得a =±1. 答案:C4.已知集合A ={x |x =k 2+14,k ∈Z},集合B ={x |x =k 4+12,k ∈Z},则A 与B 的关系为( ) A .A B B .BAC .A =BD .以上答案都不对解析:对两集合中的限制条件通分,使分母相同.观察分子的不同点及其关系. 集合A 中:x =k 2+14=2k +14; 集合B 中:x =k 4+12=k +24;而{2k +1}表示奇数集,{k +2}表示整数集, ∴A B . 答案:A5.满足{x |x 2+1=0}A ⊆{x |x 2-1=0}的集合A 的个数是( )A .1B .2C .3D .4解析:{x |x 2+1=0}=∅,{x |x 2-1=0}={-1,1},故集合A 是集合{-1,1}的非空子集,所以A 的个数为22-1=3.故选C. 答案:C6.已知集合M ={(x ,y )|x +y <0,且xy >0},集合P ={(x ,y )|x <0,且y <0},那么集合M 与P 之间的关系是________. 解析:M 中的元素满足{ x +y <0xy >0,即{ x <0y <0,∴M =P .答案:M=P7.已知集合A={x||x|≤2,x∈R},B={x|x≥a},且A⊆B,则实数a的取值范围是________.解析:因为A={x||x|≤2,x∈R}={x|-2≤x≤2,x∈R},B={x|x≥a},A⊆B,所以a≤-2.答案:a≤-28.已知集合A{1,2,3},且A中至多有一个奇数,则所有满足条件的集合A为________.解析:集合A是集合{1,2,3}的真子集,且A中至多有一个奇数,那么当集合A 中有0个奇数时,集合A=∅,{2};当集合A中有1个奇数时,集合A={1},{3},{1,2},{2,3}.综上,A=∅,{1},{2},{3},{1,2},{2,3}.答案:∅,{1},{2},{3},{1,2},{2,3}9.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m 的取值范围.解析:A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A.①若B=∅,则m+1>2m-1,解得m<2,此时有B⊆A;②若B≠∅,则m+1≤2m-1,即m≥2,由B⊆A,得{m≥2m+1≥-2,2m-1≤5解得2≤m≤3.由①②得m≤3.∴实数m的取值范围是{m|m≤3}.10.已知集合M={a-3,2a-1,a2+1},N={-2,4a-3,3a-1},若M=N,求实数a的值.解析:因为M=N,所以(a-3)+(2a-1)+(a2+1)=-2+(4a-3)+(3a-1),即a2-4a+3=0,解得a=1或a=3.当a=1时,M={-2,1,2},N={-2,1,2},满足M=N;当a=3时,M={0,5,10},N={-2,9,8},不满足M=N,舍去.故所求实数a的值为1.[B组能力提升]1.集合A={x|x=(2n+1)π,n∈N}与B={x|x=(4n±1)π,n∈N}之间的关系是() A.A B B.B AC.A=B D.不确定解析:对于集合A,当n=2k时,x=(4k+1)π,k∈N;当n=2k+1时,x=[4(k +1)-1]π=(4m-1)π,m∈N,其中m=k+1.所以A中的元素形如(4k±1)π,k∈N.答案:C2.定义集合A*B={x|x∈A,且x∉B},若A={1,2,3,4,5},B={2,4,5},则A*B 的子集个数为()A.1 B.2C.3 D.4解析:由题意知A*B={1,3},∴A*B的子集个数为22=4个.答案:D3.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.解析:∵y=(x-1)2-2≥-2,∴M={y|y≥-2}.∴N M.答案:N M4.定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B}.若A={1,2,3},B={1,2},则集合A*B中的最大元素为________,集合A*B的所有子集的个数为________.解析:当x1=1时,x1+x2的值为2,3;当x1=2时,x1+x2的值为3,4;当x1=3时,x1+x2的值为4,5;∴A*B={2,3,4,5}.故A*B中的最大元素为5,所有子集的个数为24=16.答案:5165.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.解析:A={-2,4},因为B⊆A,所以B=∅,{-2},{4},{-2,4}.若B =∅,则a 2-4(a 2-12)<0,即a 2>16,解得a >4或a <-4.若B ={-2},则(-2)2-2a +a 2-12=0且Δ=a 2-4(a 2-12)=0,解得a =4. 若B ={4},则42+4a +a 2-12=0且Δ=a 2-4(a 2-12)=0, 此时a 无解;若B ={-2,4},则⎩⎨⎧-a =4-2,a 2-12=-2×4.所以a =-2.综上知,所求实数a 的集合为{a |a <-4或a =-2或a ≥4}. 6.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 的取值范围. 解析:(1)由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}.∵B ⊆A ,∴①若B =∅,则m -6>2m -1,即m <-5,此时满足B ⊆A ; ②若B ≠∅,则⎩⎨⎧m -6≤2m -1,-2≤m -6,2m -1≤5,解得-5≤m ≤3.由①②可得,m <-5或-5≤m ≤3. (2)若A ⊆B ,则依题意应有⎩⎨⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得⎩⎨⎧m >-5,m ≤4,m ≥3,故3≤m ≤4.(3)若A =B ,则必有⎩⎨⎧m -6=-2,2m -1=5,此方程组无解,即不存在m 的值使得A =B .[课时作业] [A 组 基础巩固]1.(2016·高考全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},又A ={1, 2,3},所以A ∪B ={0,1,2,3}. 答案:C2.设S ={x |2x +1>0},T ={x |3x -5<0},则S ∩T =( ) A .∅ B .{x |x <-12} C .{x |x >53}D .{x |-12<x <53}解析:S ={x |2x +1>0}={x |x >-12},T ={x |3x -5<0}={x |x <53},则S ∩T ={x |-12<x <53}. 答案:D3.已知集合A ={(x ,y )|x +y =0,x ,y ∈R},B ={(x ,y )|x -y =0,x ,y ∈R},则集合A ∩B 的元素个数是( ) A .0 B .1 C .2D .3解析:解方程组⎩⎨⎧x +y =0,x -y =0,⎩⎨⎧x =0,y =0.∴A ∩B ={(0,0)}.答案:B4.设集合M ={x ∈Z|-10≤x ≤-3},N ={x ∈Z||x |≤5},则M ∪N 中元素的个数为( ) A .11 B .10 C .16D .15 解析:先用列举法分别把集合M ,N 中的元素列举出来,再根据并集的定义写出M ∪N .∵M ={x ∈Z|-10≤x ≤-3}={-10,-9,-8,-7,-6,-5,-4,-3},N ={x ∈Z||x |≤5}={-5,-4,-3,-2,-1,0,1,2,3,4,5},∴M ∪N ={-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5}.∴M ∪N 中元素的个数为16. 答案:C5.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则( ) A .-3≤m ≤4 B .-3<m <4 C .2<m <4D .2<m ≤4解析:∵A ∪B =A ,∴B ⊆A .又B ≠∅, ∴⎩⎨⎧m +1≥-2,2m -1≤7m +1<2m -1即2<m ≤4. 答案:D6.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________. 解析:由M ={0,1,2},知N ={0,2,4}, M ∩N ={0,2}. 答案:{0,2}7.已知集合A ={(x ,y )|y =ax +3},B ={(x ,y )|y =3x +b },A ∩B ={(2,5)},则a =________,b =________. 解析:∵A ∩B ={(2,5)}. ∴5=2a +3.∴a =1. ∴5=6+b .∴b =-1. 答案:1 -18.若集合A ={1,3,x },集合B ={x 2,1},且A ∪B ={1,3,x },则这样的x 值的个数为________.解析:∵A ∪B =A ,∴B ⊆A ,∴x 2∈A . 令x 2=3,得x =±3,符合要求. 令x 2=x ,得x =0或x =1.当x =1时,不满足集合中元素的互异性. ∴x =±3或x =0. 答案:39.设A ={x |-1<x <2},B ={x |1<x <3},求A ∪B ,A ∩B . 解析:如图所示:A ∪B ={x |-1<x <2}∪{x |1<x <3}={x |-1<x <3}. A ∩B ={x |-1<x <2}∩{x |1<x <3}={x |1<x <2}.10.已知集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B ⊆A ,求实数m 的取值范围.解析:由x 2+x -6=0,得A ={-3, 2},∵B ⊆A ,且B 中元素至多一个, ∴B ={-3},或B ={2},或B =∅.(1)当B ={-3}时,由(-3)m +1=0,得m =13; (2)当B ={2}时,由2m +1=0,得m =-12; (3)当B =∅时,由mx +1=0无解,得m =0. ∴m =13或m =-12或m =0.[B 组 能力提升]1.定义A -B ={x |x ∈A 且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B =( ) A .{4,8} B .{1,2,6,10} C .{2,6,10}D .{1}解析:由题设信息知A -B ={2,6,10}. 答案:C2.(2016·高考全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝ ⎛⎭⎪⎫-3,-32 B.⎝ ⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析:∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32.∴A ∩B ={x |1<x <3}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x <3. 故选D. 答案:D3.已知集合A ={x ||x +2|<3},集合B ={x |m <x <2},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ||x +2|<3}={x |-5<x <1},由图形直观性可知m =-1,n =1. 答案:-1 14.已知A ={x |-2<x <a +1},B ={x |x ≤-a 或x ≥2-a },A ∪B =R ,则实数a 的取值范围是________.解析:本题给出了两个待定的集合,且已知A ∪B =R ,结合数轴表示可求出参数a 的取值范围.如图所示,因为A ∪B =R ,所以应满足⎩⎨⎧-a ≥-2,2-a ≤a +1,解得⎩⎪⎨⎪⎧a ≤2,a ≥12,所以12≤a ≤2.答案:⎩⎨⎧a ⎪⎪⎪⎭⎬⎫12≤a ≤25.设方程x 2+px -12=0的解集为A ,方程x 2+qx +r =0的解集为B ,且A ≠B ,A ∪B ={-3,4},A ∩B ={-3},求p ,q ,r 的值. 解析:∵A ∩B ={-3}, ∴-3∈A ,代入x 2+px -12=0得p =-1, ∴A ={-3,4}∵A ≠B ,A ∪B ={-3,4}, ∴B ={-3} 即方程x 2+qx +r =0 有两个相等的根x =-3, ∴q =6,r =9.6.已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-mx +2=0},且A ∪B =A ,A ∩C =C ,求实数a 、m 的值或范围. 解析:x 2-3x +2=0得x =1或2,故A ={1,2},∵A ∪B =A , ∴B ⊆A ,B 有四种可能的情况:∅,{1},{2},{1,2}. ∵x 2-ax +a -1=(x -1)[x -(a -1)]∴必有1∈B ,因而a -1=1或a -1=2,解得a =2或a =3.又∵A ∩C =C ,∴C ⊆A .故C 有四种可能的情况:∅,{1},{2},{1,2}. ①若C =∅,则方程x 2-mx +2=0(※)的判别式 Δ=m 2-8<0,得-22<m <22;②若C ={1},则方程(※)有两个等根为1, ∴⎩⎨⎧1+1=m 1×1=2不成立;③若C ={2},同上②也不成立; ④若C ={1,2},则⎩⎨⎧1+2=m ,1×2=2.得m =3.综上所述,有a =2或a =3;m =3或-22<m <2 2.[课时作业][A组基础巩固]1.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于() A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:M∪N={1,2,3,4},M∩N=∅,(∁U M)∪(∁U N)={1,2,3,4,5,6},(∁U M)∩(∁U N)={5,6},故选D.答案:D2.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B ={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1, 3,5}解析:如图所以B={1,3,5}.答案:D3.已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为()A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3或x≥7},所以∁U A={x|3≤x<7},又因(∁U A)∩B≠∅,则a>3.答案:A4.已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N=()A.M B.NC.I D.∅解析:因为N∩∁I M=∅,所以N⊆M,则M∪N=M,选A.答案:A5.已知集合I,M,N的关系如图所示,则I,M,N的关系为()A.(∁I M)⊇(∁I N)B.M⊆(∁I N)C.(∁I M)⊆(∁I N)D.M⊇(∁I N)解析:由题图知M⊇N,∴(∁I M)⊆(∁I N).答案:C6.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.解析:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 解析:∵U={0,1,2,3},∁U A={1,2}.∴A={x|x2+mx=0}={0,3}.∴0,3是方程x2+mx=0的两根,∴0+3=-m,即m=-3.答案:-38.已知全集U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},求∁U A,(∁U B)∩A.解析:∵U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},结合数轴(如图).可知∁U A ={x |1<x ≤4},∁U B ={x |3<x ≤4或-1≤x ≤0}.结合数轴(如图).可知(∁U B )∩A ={x |-1≤x ≤0}.9.设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B ); (3)写出(∁U A )∪(∁U B )的所有子集.解析:(1)由交集的概念易得,2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={}-5,2.(2)由并集的概念易得,U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2. 由补集的概念易得,∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12.所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(∁U A )∪(∁U B )的所有子集即集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12, {-5},⎩⎨⎧⎭⎬⎫-5,12. 10.设全集U ={a 2-2,2, 1},A ={a,1},求∁U A . 解析:由补集的定义可知A ⊆U .若a =2;则a 2-2=2,集合U 中的元素不满足互异性,所以a ≠2. 若a 2-2=a ,则a =2或a =-1, 因为a ≠2,所以a =-1.此时,U ={-1,2,1},A ={-1,1},所以∁U A ={2}.[B 组 能力提升]1.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 是非空集合,则A ∩B 的元素个数为( ) A .mn B .m +n C .n -mD .m -n解析:画出Venn 图,如图.∵U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:D2.设U为全集,对集合X,Y,定义运算“*”,X*Y=∁U(X∩Y).对于任意集合X,Y,Z,则(X*Y)*Z=()A.(X∪Y)∩∁U Z B.(X∩Y)∪∁U ZC.(∁U X∪∁U Y)∩Z D.(∁U X∩∁U Y)∪Z解析:依题意得(X*Y)=∁U(X∩Y)=(∁U X)∪(∁U Y),(X*Y)*Z=∁U[ (X*Y)∩Z]=∁U[∁(X∩Y)∩Z]={∁U[∁U(X∩Y)]}∪(∁U Z)=(X∩Y)∪(∁U Z).U答案:B3.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8}.则A={1,3,5,7},B={3,6}∴A∪B={1,3,5,6,7}∴∁U(A∪B)={2,4,8}.答案:{2,4,8}4.设集合A={x|0≤x≤4},B={y|y=x-3,-1≤x≤3},则∁R(A∩B)=________. 解析:∵A={x|0≤x≤4},B={y|-4≤y≤0},∴A∩B={0},∴∁R(A∩B)={x|x∈R,且x≠0}.答案:{x|x∈R,且x≠0}5.某班共有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,求喜爱篮球运动但不喜爱乒乓球运动的人数.解析:设全集U={全班30名学生},A={喜爱篮球运动的学生},B={喜爱乒乓球运动的学生},画出Venn图如图所示:设既喜爱篮球运动又喜爱乒乓球运动的人数为x,则喜爱篮球运动但不喜爱乒乓球运动的人数为15-x,喜爱乒乓球运动但不喜爱篮球运动的人数为10-x,则有(15-x)+x+(10-x)+8=30,解得x=3.所以喜爱篮球运动但不喜爱乒乓球运动的人数为15-x=15-3=12.6.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2}, A ∩(∁U B )={4},U =R ,求实数a 、b 的值.解析:因为(∁U A )∩B ={2},A ∩(∁U B )={4},知2∈B ,但2∉A,4∈A ,但4∉B . 将x =2和x =4分别代入B ,A 两集合的方程中得 ⎩⎨⎧ 22-2a +b =0,42+4a +12b =0,即⎩⎨⎧4-2a +b =0,4+a +3b =0.解得a =87,b =-127.[课时作业] [A 组 基础巩固]1.函数y =f (x )的图象与直线x =1的公共点有( ) A .0个 B .1个 C .0或1个D .无数个解析:当x =1在函数f (x )的定义域内时,函数y =f (x )的图象与直线x =1有一个公共点(1,f (1));当x =1不在定义域内时,函数y =f (x )的图象与直线x =1没有公共点. 答案:C2.已知四组函数:①f (x )=x ,g (x )=(x )2;②f (x )=x ,g (x )=3x 3;③f (n )=2n -1, g (n )=2n +1(n ∈N);④f (x )=x 2-2x -1,g (t )=t 2-2t -1. 其中是同一函数的为( ) A .没有 B .仅有② C .②④D .②③④解析:对于第一组,定义域不同;对于第三组,对应法则不同;对于第二、四组,定义域与对应法则都相同.故选C. 答案:C3.y =x 2(-1≤x ≤2)的值域是( ) A .[1,4]B .[0,1]C.[0,4] D.[0,2]解析:由图可知f(x)=x2(-1≤x≤2)的值域是[0,4].答案:C4.函数y=2-xx-1的定义域为()A.(-∞,2] B.(-∞,2) C.(-∞,1)∪(1,2) D.(-∞,1)∪(1,2]解析:要使函数y=2-xx-1有意义,则{2-x≥0,x-1≠0,解得x≤2且x≠1,所以所求函数的定义域为(-∞,1)∪(1,2].答案:D5.图中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象的是()解析:根据函数的定义,在定义域[0,1]内任意一个元素都有唯一的函数值与它对应,同样,对于值域[0,1]中的任意一个函数值,在定义域内也一定有自变量和它对应.A中函数值域不是[0,1],B中函数定义域不是[0,1],故可排除A,B;再结合函数的定义,可知对于集合M中的任意一个x,N中都有唯一的元素与之对应,故排除D.故选C.答案:C6.下列说法正确的有________.(只填序号)①函数值域中的每一个数都有定义域中的一个数与之对应;②函数的定义域和值域一定是无限集合;③若函数的定义域只有一个元素,则值域也只有一个元素;④对于任何一个函数,如果x不同,那么y的值也不同;⑤f(a)表示当x=a时,函数f(x)的值,这是一个常量.解析:函数是一个数集与另一个数集间的特殊对应关系,所给出的对应是否可以确定为y是x的函数,主要是看其是否满足函数的三个特征.①是正确的.函数值域中的每一个数一定有定义域中的一个数与之对应,但不一定只有一个数与之对应.②是错误的.函数的定义域和值域不一定是无限集合,也可以是有限集,但一定不是空集,如函数f(x)=1,x=1的定义域为{1},值域为{1}.③是正确的.根据函数的定义,定义域中的每一个元素都能在值域中找到唯一元素与之对应.④是错误的.当x不同时,函数值y的值可能相同,如函数y=x2,当x=1和-1时,y都为1.⑤是正确的.f(a)表示当x=a时,函数f(x)的值是一个常量.故填①③⑤.答案:①③⑤7.已知函数f (x )=2x 2-mx +3,若f (x )的定义域为R ,则m 的取值范围是________.解析:由已知得2x 2-mx +3≥0对x ∈R 恒成立,即Δ=m 2-24≤0,∴-26≤m ≤2 6.答案:[-26,26]8.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围为________.解析:由区间的定义知 ⎩⎨⎧2a -1<a +1a +3<4a ⇒1<a <2.答案:(1,2)9.若f (x )的定义域为[-3,5],求φ(x )=f (-x )+f (x )的定义域.解析:由f (x )的定义域为[-3,5],得φ(x )的定义域需满足⎩⎨⎧-3≤-x ≤5,-3≤x ≤5即⎩⎨⎧-5≤x ≤3,-3≤x ≤5解得-3≤x ≤3.所以函数φ(x )的定义域为[-3,3]. 10.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4x -1; (4)f (x )=x -x +1.解析:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}. (2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}. (4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎨⎧⎭⎬⎫y |y ≥-54. [B 组 能力提升]1.函数y =5+4x -x 2的值域为( ) A .(-∞,3) B .[3,+∞) C .[0,9]D .[0,3]解析:由函数性质可得5+4x -x 2≥0的值域开方即是.结合函数图象(图略)可得y ∈[0,3],故选D. 答案:D2.已知f (x )的定义域是[0,+∞),则函数(x -2)0+f (x -1)的定义域是( ) A .[0,2)∪(2,+∞) B .[1,2)∪(2,+∞) C .[-1,2)∪(2,+∞) D .[1,+∞)解析:{ x -2≠0x -1≥0得1≤x 且x ≠2.答案:B3.已知函数f (x ),g (x )分别由下表给出:x 123 f (x )1 31x 1 2 3 g (x )321则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:g (1)=3,f (g (1))=f (3)=1; f (g (1))=1,f (g (2))=3, f (g (3))=1,g (f (1))=3, g (f (2))=1,g (f (3))=3,∴满足f (g (x ))>g (f (x ))的x 值为x =2. 答案:1 24.在实数的原有运算中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )-(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎨⎧-1,x ∈[-2,1]x 2-2,x ∈(1,2].当x ∈[-2,1]时,f (x )=-1; 当x ∈(1,2]时,f (x )∈(-1,2]. ∴当x ∈[-2,2]时,f (x )∈[-1,2]. 答案:[-1,2]5.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数; (2)确定函数的定义域和值域; (3)画出函数的图象.解析:(1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).(2)定义域为{h |0<h <1.8}.值域由二次函数A =h 2+2h (0<h <1. 8)求得. 由函数A =h 2+2h =(h +1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如图所示.6.对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}.(1)求证:A⊆B;(2)设f(x)=x2+ax+b,若A={-1,3},求集合B.解析:(1)若A=∅,则A⊆B显然成立.若A ≠∅,设t ∈A , 则f (t )=t ,f (f (t ))=t ,t ∈B , 从而A ⊆B ,故A ⊆B 成立. (2)∵A ={-1,3}, ∴f (-1)=-1,且f (3)=3. 即⎩⎨⎧(-1)2-a +b =-132+3a +b =3,∴⎩⎨⎧a -b =23a +b =-6,∴⎩⎨⎧a =-1b =-3,∴f (x )=x 2-x -3.∵B ={x |f (f (x ))=x },∴(x 2-x -3)2-(x 2-x -3)-3=x , ∴(x 2-x -3)2-x 2=0, 即(x 2-3)(x 2-2x -3)=0, ∴(x 2-3)(x +1)(x -3)=0, ∴x =±3或x =-1或x =3. ∴B ={-3,-1,3,3}.[课时作业]单 [A 组 基础巩固]1.函数y =ax 2+a 与y =ax (a ≠0)在同一坐标系中的图象可能是( )解析:当a>0时,二次函数的图象开口向上,且与y轴交于(0,a)点,在y轴上方,反比例函数的图象在第一、三象限,没有满足此条件的图象;当a<0时,二次函数的图象开口向下,且与y轴交于(0,a)点,在y轴下方,反比例函数的图象在第二、四象限;综合来看,只有选项D满足条件.答案:D2.已知f(x-1)=x2-2,则f(2)=()A.6 B.2C.7 D.9解析:f(2)=f(3-1)=32-2=9-2=7.答案:C3.已知f(x)是反比例函数,且f(-3)=-1,则f(x)的解析式为()A.f(x)=-3x B.f(x)=3xC.f(x)=3x D.f(x)=-3x解析:设f(x)=kx(k≠0),∵f(-3)=k-3=-1,∴k=3,∴f(x)=3 x.答案:B4.已知函数f(x)满足2f(x)+f(-x)=3x+2,则f(2)=()A .-163B .-203 C.163D.203解析:因为2f (x )+f (-x )=3x +2,① 所以2f (-x )+f (x )=-3x +2,② ①×2-②得f (x )=3x +23. 所以f (2)=3×2+23=203. 答案:D5.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( ) A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0) C .f (x )=x 2(x ≠0) D .f (x )=(x -1x )2(x ≠0)解析: f (x -1x )=x 2+1x 2=(x -1x )2+2, ∴f (x )=x 2+2(x ≠0). 答案:B6.已知函数f (x )对任意实数a ,b 都满足:f (a +b )=f (a )+f (b ),且f (2)=3,则f (3)=________.解析:∵f (2)=f (1)+f (1)=2f (1)=3, ∴f (1)=32,∴f (3)=3f (1)=3×32=92或f (3)=f (2)+f (1)=92. 答案:927.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,则a =73. 答案:738.已知f (x )=x +2,则f (x )=________. 解析:令x =t ,则x =t 2且t ≥0. ∴f (t )=t 2+2, ∴f (x )=x 2+2 (x ≥0) 答案:f (x )=x 2+2 (x ≥0)9.已知f (x )是一次函数,且f (f (x ))=4x +3,求f (x )的解析式. 解析:设f (x )=ax +b (a ≠0),∴f (f (x ))=af (x )+b =a (ax +b )+b =a 2x +ab +b . ∴a 2x +ab +b =4x +3. ∴⎩⎨⎧ a 2=4,ab +b =3.∴⎩⎨⎧a =2,b =1,或⎩⎨⎧a =-2,b =-3.∴f (x )=2x +1或f (x )=-2x -3.10.已知函数f (x )是二次函数,且它的图象过点(0,2),f (3)=14,f (-2)=8+52,求f (x )的解析式.解析:设f (x )=ax 2+bx +c (a ≠0),则由题意,得⎩⎨⎧c =2,9a +3b +c =14,2a -2b +c =8+52,解得⎩⎨⎧c =2,a =3,b =-5.所以f (x )=3x 2-5x +2.[B 组 能力提升]1.对于任意的两个实数对(a ,b )和(c ,d ),规定(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“⊗”为(a ,b )⊗(c ,d )= (ac -bd ,bc +ad );运算“⊕”为:(a ,b )⊕(c ,d )=(a +c ,b +d ).设p ,q ∈R ,若(1,2)⊗(p ,q )=(5,0),则(1,2)⊕(p ,q )=( ) A .(4,0) B .(2,0) C .(0,2)D .(0,-4)解析:由题设可知:⎩⎨⎧ p -2q =5.2p +q =0,解得⎩⎨⎧p =1,q =-2, ∴(1,2)⊕(p ,q )=(1+p,2+q )=(2,0). 答案:B2.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6 C .f (x )=6x +9 D .f (x )=2x +3解析:用3-x 代替原方程中的x 得f (3-x )+2f [3-(3-x )]=f (3-x )+2f (x )= (3-x )2=x 2-6x +9,∴⎩⎨⎧f (x )+2f (3-x )=x 2 ①f (3-x )+2f (x )=x 2-6x +9 ②①-②×2得-3f (x )=-x 2+12x -18, ∴f (x )=13x 2-4x +6. 答案:B 3.设f (3x )=9x +52,则f (1)=________.解析:令3x =1,则x =13.∴f (1)=9×13+52=4=2.答案:24.已知函数f (x )=x 2+2x +a ,f (bx )=9x 2-6x +2,其中x ∈R ,a ,b 为常数, 则方程f (ax +b )=0的解集为________.解析:f (bx )=(bx )2+2bx +a =b 2x 2+2bx +a =9x 2-6x +2,∴⎩⎨⎧b 2=9,2b =-6,a =2,解得⎩⎨⎧a =2,b =-3,∴f(ax+b)=f(2x-3)=4x2-8x+5.∵Δ=64-4×4×5=-16<0,∴方程f(ax+b)=0的解集为∅.答案:∅5.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.解析:因为函数f(x)=-x2+2x+3的定义域为R,列表:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0,所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x1<x2<1时,有f(x1)<f(x2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].6.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[4m,4n ].如果存在,求出m ,n 的值;如果不存在,请说明理由.解析:(1)∵二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)与方程f (x )=2x 有等根,即方程ax 2+bx -2x =0有等根, ∴Δ=(b -2)2=0,得b =2.由f (x -1)=f (3-x ),知此函数图象的对称轴方程为x =-b2a =1,得a =-1, 故f (x )=-x 2+2x .(2)∵f (x )=-(x -1)2+1≤1, ∴4n ≤1,即n ≤14.而抛物线y =-x 2+2x 的对称轴为x =1, ∴若满足题设条件的m ,n 存在,则{ f (m )=4m ,f (n )=4n , 即⎩⎨⎧-m 2+2m =4m ,-n 2+2n =4n⇒⎩⎨⎧m =0或m =-2,n =0或n =-2,又m <n ≤14,∴m =-2,n =0,这时,定义域为[-2,0],值域为[-8,0]. 由以上知满足条件的m ,n 存在,m =-2,n =0.[课时作业] [A 组 基础巩固]1.已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析:因为f (1)=2,所以由f (a )+f (1)=0,得f (a )=-2,所以a 肯定小于0, 则f (a )=a +1=-2,解得a =-3,故选A. 答案:A2.给出如图所示的对应:其中构成从A 到B 的映射的个数为( ) A .3 B .4 C .5D .6解析:①是映射,是一对一;②③是映射,满足对于集合A 中的任意一个元素在集合B 中都有唯一的元素和它对应;④⑤不是映射,是一对多;⑥不是映射,a 3、a 4在集合B 中没有元素与之对应. 答案:A3.函数f (x )=⎩⎨⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:f (x )图象大致如下:由图可知值域为[0,2]∪{3}. 答案:B4.已知函数f (x )=⎩⎨⎧2x ,x ≥0,x 2,x <0,则f (f (-2))的值是( )A . 4B .-4C .8D .-8解析:∵-2<0,∴f (-2)=(-2)2=4,∴f (f (-2))=f (4); 又∵4≥0,∴f (4)=2×4=8. 答案:C5.下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2, x ∈M ,y ∈N ;③M =N =R ,f :x →y 1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N . A .①② B .②③ C .①④D .②④解析:根据映射的定义进行判断.对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D. 答案:D6.若函数f (x )=⎩⎨⎧3x 2-4,x >0,π,x =0,0,x <0,则f (f (0))=________.解析:∵f (0)=π,∴f (f (0))=f (π)=3π2-4.答案:3π2-47.已知f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于________.解析:∵43>0,∴f ⎝ ⎛⎭⎪⎫43=2×43=83;-43≤0,∴f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13;-13≤0,∴ f ⎝ ⎛⎭⎪⎫-13 =f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23; 23>0,∴f⎝ ⎛⎭⎪⎫23=2×23=43, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:48.设f :A →B 是从A 到B 的一个映射,f :(x ,y )→(x -y ,x +y ),那么A 中的元素(-1,2)的象是________,B 中的元素(-1,2)的原象是________. 解析:(-1,2)→(-1-2,-1+2)=(-3,1). 设(-1,2)的原象为(x ,y ),则⎩⎨⎧x -y =-1,x +y =2,解得⎩⎪⎨⎪⎧x =12,y =32.答案:(-3,1) (12,32)9.作函数y =|x +3|+|x -5|图象,并求出相应的函数值域. 解析:因为函数y =|x +3|+|x -5|,y =⎩⎨⎧-2x +2 (x ≤-3),8 (-3<x <5),2x -2 (x ≥5).所以y =|x +3|+|x -5|的图象如图所示:由此可知,y =|x +3|+|x -5|的值域为[8,+∞). 10.已知(x ,y )在映射f 的作用下的象是(x +y ,xy ), 求:(1)(3,4)的象;(2)(1,-6)的原象. 解析:(1)∵x =3,y =4,∴x +y =7,xy =12. ∴(3,4)的象为(7,12).(2)设(1,-6)的原象为(x ,y ),则有⎩⎨⎧x +y =1,xy =-6,解得⎩⎨⎧ x =-2,y =3或⎩⎨⎧x =3,y =-2.故(1,-6)的原象为(-2,3)或(3,-2).[B 组 能力提升]1.若已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2,且f (x )=3,则x 的值是( )A .1B .1或32 C .±3D. 3解析:由x +2=3,得x =1>-1,舍去.由x 2=3,得x =±3,-1<3<2,-3<-1,-3舍去. 由2x =3,得x =32<2,舍去. 所以x 的值为 3. 答案:D2.已知函数f (x )=⎩⎨⎧x +2,x ≤0-x +2,x >0,则不等式f (x )≥2x 的解集是( )A .(-∞,23] B .(-∞,0] C .(0,23]D .(-∞,2)解析:(1)当x >0时,f (x )=-x +2≥2x ,得3x ≤2,即0<x ≤23; (2)当x ≤0时,f (x )=x +2≥2x ,得x ≤2,又x ≤0,∴x ≤0; 综上所述,x ≤23. 答案:A3.已知集合A =Z ,B ={x |x =2n +1,n ∈Z},C =R ,且从A 到B 的映射是 f :x →y =2x -1,从B 到C 的映射是f :x →y =13x +1,则从A 到C 的映射是________. 解析:根据题意,f :A →B ,x →y =2x -1 f :B →C ,y →z =13y +1. 所以,从A 到C 的映射是f :x →z =13(2x -1)+1=16x -2,即从A 到C 的映射是f :x →y =16x -2. 答案:f :x →y =16x -24.已知f (x )=⎩⎨⎧x +2(x ≤-2),x 2(-2<x <2),2x (x ≥2),若f (a )=8,则a =________.解析:当a ≤-2时,由a +2=8,得a =6.不合题意.当a ≥2时,由2a =8,得a =4,符合题意. 当-2<a <2时,a 2=8,a =±22,不合题意. 答案:45.已知直线y =1与曲线y =x 2-|x |+a 有四个交点,求a 的取值范围. 解析:y =x 2-|x |+a =⎩⎨⎧x 2-x +a ,x ≥0x 2+x +a ,x <0如图,在同一直角坐标系内画出直线y =1与曲线y =x 2-|x |+a ,观图可知,a 的取值必须满足⎩⎪⎨⎪⎧a >14a -14<1,解得1<a <54.6.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =4 5°,作直线 MN ⊥AD 交AD 于M ,交折线ABCD 于N .设AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数.解析:作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足,依题意,则有AH =a 2,AG =32a ,∠A =∠D =45°. (1)当M 位于点H 的左侧时,N ∈AB , 由于AM =x ,∠A =45°,∴MN =x . ∴y =S △AMN =12x 2(0≤x ≤a 2).(2)当M 位于H 、G 之间时,由于AM =x ,AH =a 2,BN =x -a2, ∴y =S 直角梯形AMNB =12·a 2[x +(x -a 2)]=12ax -a 28(a 2<x ≤32a ). (3)当M 位于点G 的右侧时, 由于AM =x ,DM =MN =2a -x ,∴y =S 梯形ABCD -S △MDN =12·a 2(2a +a )-12(2a -x )2=3a 24-12(4a 2-4ax +x 2)=-12x 2+2ax -5a 24(32a <x ≤2a ).综上有y =⎩⎪⎨⎪⎧12x 2(0≤x ≤a 2),12ax -a 28(a 2<x ≤32a ),-12x 2+2ax -5a 24(32a <x ≤2a ).[课时作业] [A 组 基础巩固]1.若函数f (x )在区间(a ,b ]上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,c )上( ) A .必是增函数 B .必是减函数C .是增函数或是减函数D .无法确定单调性 答案:D2.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A .[-3,+∞) B .(-∞,-3] C .(-∞,5]D .[3,+∞)解析:二次函数开口向上,对称轴为x =-2(a -1)2=1-a ,要使f (x )在(-∞,4]上是减函数,需满足1-a ≥4,即a ≤-3. 答案:B3.函数y =|x +2|在区间[-3,0]上是( ) A .递减 B .递增 C .先减后增D .先增后减解析:y =|x +2|的图象是由y =|x |图象向左平移2个单位得来,由图可知y =|x +2|在[-3,-2]上递减,在[-2,0]上递增. 答案:C4.函数f (x )=x -1x 在(0,+∞)上( ) A .递增 B .递减 C .先增再减D .先减再增解析:∵y =x 在(0,+∞)上递增,y =-1x 在(0,+∞)上也递增, ∴f (x )=x -1x 在(0,+∞)上递增. 答案:A5.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( )A .f (x )=2x B .f (x )=-3x +1 C .f (x )=x 2+4x +3D .f (x )=x 2-4x +3解析:∵x 1,x 2∈(0,+∞)时, f (x 1)-f (x 2)x 1-x 2>0恒成立,∴f (x )在(0,+∞)是增函数. 答案:C6.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.解析:f (x )=2(x -m 4)2+3-m 28,由题意m4=2,∴m =8. ∴f (1)=2×12-8×1+3=-3. 答案:-37.函数y =-(x -3)|x |的递增区间是________. 解析:y =-(x -3)|x | =⎩⎨⎧-x 2+3x (x >0),x 2-3x (x ≤0).作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案:⎣⎢⎡⎦⎥⎤0,328.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析:由f (x )在[1,2]上单调递减可得a ≤1;由g (x )在[1,2]上单调递减可得a >0 ∴a ∈(0,1]. 答案:(0,1]9.函数f (x )是定义在(0,+∞)上的减函数,对任意的x ,y ∈(0,+∞), 都有f (x +y )=f (x )+f (y )-1,且f (4)=5. (1)求f (2)的值; (2)解不等式f (m -2)≤3.解析:(1)∵f (4)=f (2+2)=2f (2)-1=5, ∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2). ∵f (x )是(0,+∞)上的减函数. ∴⎩⎨⎧m -2≥2,m -2>0解得m ≥4. ∴不等式的解集为{m |m ≥4}.10.求函数f (x )=|x 2-6x +8|的单调区间.解析:先作出y =x 2-6x +8的图象,然后x 轴上方的不变,x 轴下方的部分关于x 轴对称翻折,得到如图f (x )=|x 2-6x +8|的图象,由图象可知f (x )的增区间为[2,3],[4,+∞];减区间为(-∞,2],[3,4].[B 组 能力提升]1.已知f (x )=x 2+bx +4,且f (1+x )=f (1-x ),则f (-2),f (2),f (3)的大小关系为( )A .f (-2)<f (2)<f (3)B .f (-2)>f (2)>f (3)C .f (2)<f (-2)<f (3)D .f (2)<f (3)<f (-2)解析:∵f (x )=x 2+bx +4,且f (1+x )=f (1-x ),∴f (x )图象开口向上且关于x =1对称,∴f (x )在[1,+∞)上递增,而f (-2)=f (1-3)=f (1+3)=f (4),∴f (2)<f (3)<f (4)=f (-2).。

高中数学必修1全套同步练习(人教版)

高中数学必修1全套同步练习(人教版)

成的集合为 M ,求 C U M .
10.( 1)设全集 U R, A x | x 1 , B x | x a 1 , 且 CU A B ,求 a 的范围 . ( 2)已知全集 U 2,3,a2 2a 3 , A 2, b ,CU A 5 , 求实数 a和 b 的值 .
【拓展提高 】
10 . 已 知 全 集 U { 不大于 5的自然数 } , 集 合 A { 0,1} , B { x x A且x 1} , C { x x 1 A且x U } .
4.已知集合 A={ x|-5<x<5} ,B={ x|-7<x<a} ,C={ x|b<x<2} ,且 A∩B=C,则 a,b 的值分别为
.
【思考应用 】
5.设全集 U={1 , 2, 3,4} , A 与 B 是 U 的子集,若 A∩B={1 , 3 } ,则称 (A,B) 为一个 “理 想配集 ”(.若 A= B,规定 (A,B)= (B, A);若 A≠B,规定 (A,B)与 ( B, A)是两个不同的 “理想
是否确定的?若确定,请求出来,若不确定,说明理由
.
7.定义集合运算: A B { z z xy(x y), x A, y B} ,设集合 A { 0,1}, B { 2,3} , 求集合 A B .
8.关于 x 的方程 ax2 bx c 0(a 0) ,当 a,b, c 分别满足什么条件时,解集为空集、含
x | 2 x 5 ,Q
x | k 1 x k 1 , 求使 P Q
的实数 k 的取
9.已知集合 A 2,3, a2 1 , B
a2
a
4,2a
13
1,
,且 A
B
2 ,求实数 a 的值 .

人教版高一数学上册必修一 第二章同步练习题课后练习题含答案解析及章知识点总结

人教版高一数学上册必修一 第二章同步练习题课后练习题含答案解析及章知识点总结

2.1 等式性质与不等式性质 第1课时 不等关系与不等式基 础 练巩固新知 夯实基础 1.若某高速公路对行驶的各种车辆的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,则用不等式表示为( ) A .v ≤120 km/h 或d ≥10 mB .⎩⎪⎨⎪⎧v ≤120 km/h ,d ≥10 mC .v ≤120 km/hD .d ≥10 m2.若x <y <0,设M =(x 2+y 2)(x -y ),N =(x 2-y 2)(x +y ),则( ) A .M >N B .M <N C .M ≤ND .M ≥N3.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化4.(多选题)下列不等式恒成立的是( ) A .a 2+2>2a B .a 2+1>2a C .a 2+b 2≥2(a -b -1)D .a 2+b 2>ab 5.完成一项装修工程,请木工需付工资每人400元,请瓦工需付工资每人500元,现有工人工资预算不超过20 000元.设木工x 人,瓦工y 人,则工人满足的关系式是( )A .4x +5y ≤200B .4x +5y <200C .5x +4y ≤200D .5x +4y <2006.已知两实数a =-2x 2+2x -10,b =-x 2+3x -9,a ,b 分别对应数轴上两点A ,B ,则点A 在点B 的 (填“左边”或“右边”).7.比较2x 2+5x +3与x 2+4x +2的大小.8.已知a >b >c >0,试比较a -c b 与b -c a 的大小;能 力 练综合应用 核心素养9.已知三角形的任意两边之和大于第三边,设△ABC 的三边长为a ,b ,c ,将上述文字语言用不等式(组)可表示为( ) A .a +b >cB .⎩⎪⎨⎪⎧a +b >c a +c >bC .⎩⎪⎨⎪⎧a +c ≥bb +c ≥aD .⎩⎪⎨⎪⎧a +b >c a +c >bb +c >a10.不等式a 2+1≥2a 中等号成立的条件是( )A.a=±1B.a=1C.a=-1D.a=011.下列不等式:△a 2+3>2a ;△a 2+b 2>2(a -b -1);△x 2+y 2>xy.其中恒成立的不等式的个数为( ) A.0 B.1 C.2 D.3 12.(多选题)若x <a <0,则下列不等式不一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<axD .x 2>a 2>ax13.已知b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式,当b >a >0且m >0时, .14.已知|a |<1,则11+a与1-a 的大小关系为 .15.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,靠墙的一边长为x m . (1)若要求菜园的面积不小于110 m 2,试用不等式组表示其中的不等关系; (2)若矩形的长、宽都不能超过11 m,试求x 满足的不等关系.16.已知x <1,比较x 3-1与2x 2-2x 的大小.【参考答案】1.B 解析:考虑实际意义,知v ≤120 km/h ,且d ≥10 m.2.A 解析:M -N =(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=(x -y )[x 2+y 2-(x +y )2]=-2xy (x -y ), 又△x <y <0,△xy >0,x -y <0,△-2xy (x -y )>0,△M >N .3. C 解析:y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.4.AC 解析:对于A ,a 2+2-2a =(a -1)2+1>0,故A 成立;对于B ,因a 2+1-2a =(a -1)2≥0,故B 不成立;对于C ,a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故C 成立;对于D ,a 2+b 2-ab =(a -b 2)2+34b 2≥0,故D 不成立,故选AC .5.A 解析:由题意,可得400x +500y ≤20 000,化简得4x +5y ≤200,故选A .6.左边 解析:△a -b =-2x 2+2x -10-(-x 2+3x -9)=-2x 2+2x -10+x 2-3x +9 =-x 2-x -1=-(x +12)2-34<0,△a <b ,△点A 在点B 的左边.7.解:(2x 2+5x +3)-(x 2+4x +2)=x 2+x +1=(x +12)2+34.因为(x +12)2≥0,所以(x +12)2+34≥34>0,所以(2x 2+5x +3)-(x 2+4x +2)>0,所以2x 2+5x +3>x 2+4x +2. 8.解:a -c b -b -c a=aa -c -b b -cab=a 2-ac -b 2+bc ab =a 2-b 2-a -bc ab=a -ba +b -cab.因为a >b >c >0,所以a -b >0,ab >0,a +b -c >0.所以a -ba +b -c ab >0,即a -c b >b -ca.9.D 解析:由三角形三边关系及题意易知选D . 10.B11.B 解析:∵a 2+3-2a=(a -1)2+2>0,∵a 2+3>2a ,即△正确; ∵a 2+b 2-2(a -b -1)=(a -1)2+(b+1)2≥0,∵△错误; ∵x 2+y 2-xy=(x -y 2)2+34y 2≥0,∵△错误,选B .12.ACD 解析:△x 2-ax =x (x -a )>0,△x 2>ax .又ax -a 2=a (x -a )>0,△ax >a 2,△x 2>ax >a 2,故选项B 一定成立,故选ACD .13.a +m b +m >a b 解析:变甜了,意味着含糖量大了,即浓度高了,所以当b >a >0且m >0时,a +m b +m >a b . 14. 11+a ≥1-a 解析:由|a |<1,得-1<a <1.△1+a >0,1-a >0.△11+a 1-a =11-a 2.15.(1)因为矩形菜园靠墙的一边长为x m,而墙长为18m,所以0<x ≤18,这时菜园的另一边长为30-x2=(15-x2)(m).所以菜园的面积S=x ·(15-x2),依题意有S ≥110,即x (15-x2)≥110,故该题中的不等关系可用不等式组表示为{0<x ≤18,x (15-x 2)≥110.(2)因为矩形的另一边长15-x2≤11,所以x ≥8,又0<x ≤18,且x ≤11,所以8≤x ≤11. 16.解析:x 3-1-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34. △x <1,△x -1<0.又⎝⎛⎭⎫x -122+34>0, △(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0, △x 3-1<2x 2-2x .2.1 第2课时 等式性质与不等式性质基 础 练巩固新知 夯实基础1.下列运用等式的性质,变形不正确的是( )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =bc,则a =bD .若x =y ,则x a =ya2.若1a <1b<0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b | 3.已知a >b >0,则下列不等式一定成立的是( )A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a4.(多选题)下列说法中正确的是( )A .若a >b ,则a c 2+1>bc 2+1B .若-2<a <3,1<b <2,则-3<a -b <1C .若a >b >0,m >0,则m a <mbD .若a >b ,c >d ,则ac >bd5.已知三个不等式△ab >0;△c a >db;△bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.6.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.7.已知a >b ,1a <1b,求证:ab >0.8.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围. (1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养9.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >ac D .a |b |>c |b | 10.(多选题)设0<b <a <1,则下列不等式不成立的是( ) A .ab <b 2<1 B .a <b <1 C .1<1a <1b D .a 2<ab <111.若abcd <0,且a >0,b >c ,d <0,则( )A .b <0,c <0B .b >0,c >0C .b >0,c <0D .0<c <b 或c <b <0 12.给出下列命题: ①若a <b ,c <0,则c a <cb ;②若ac -3>bc -3,则a >b ; ③若a >b 且k ∈N +,则a k >b k ; ④若c >a >b >0,则a c -a >bc -b .其中正确命题的序号是____.13.实数a ,b ,c ,d 满足下列三个条件:△d >c ;△a +b =c +d ;△a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知2b <a <-b ,则ab 的取值范围为 .15.已知a >b >0,c <d <0,比较b a -c 与ab -d 的大小.16.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.【参考答案】1.D 解析:对于选项A ,由等式的性质3知,若x =y ,则x +5=y +5,正确;对于选项B ,由等式的性质4知,若a =b ,则ac =bc ,正确;对于选项C ,由等式的性质4知,若a c =bc ,则a =b ,正确;对于选项D ,若x =y ,则x a =ya的前提条件为a ≠0,故此选项错误.2.D 解析:△1a <1b <0,△b <a <0,△b 2>a 2,ab <b 2,a +b <0,△A 、B 、C 均正确,△b <a <0,△|a |+|b |=|a +b |,故D 错误.3. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.4.AC 解析:对于A ,∵c 2+1>0,∴1c 2+1>0,∵a >b ,∴a c 2+1>bc 2+1,故A 正确;对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,故B 中说法错误;对于C ,因为a >b >0,所以1a <1b ,又因为m >0,所以m a <mb ,故C 中说法正确;对于D ,只有当a >b >0,c >d >0时,才有ac >bd ,故D 中说法错误,故选AC .5. 3 解析:△△△△,△△△△.(证明略)由△得bc -ad ab>0,又由△得bc -ad >0.所以ab >0△△.所以可以组成3个正确命题.6. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:△1<α<3,△12<12α<32,又-4<β<2,△-2<-β<4.△-32<12α-β<112,即-32<z <112. 7.证明:△1a <1b ,△1a -1b <0,即b -a ab <0,而a >b ,△b -a <0,△ab >0. 8. 解:(1)|a |△[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,△由1≤b <2得-6<-3b ≤-3,△由△+△得,-10<2a -3b ≤3. 9. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .10.ABD 解析:取a =12,b =13验证可得A ,B ,D 不正确.11. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又△b >c ,△0<c <b 或c <b <0. 12.④ 解析:①当ab <0时,c a <cb 不成立,故①不正确;②当c <0时,a <b ,故②不正确;③当a =1,b =-2,k =2时,命题不成立,故③不正确; ④a >b >0⇒-a <-b <0⇒0<c -a <c -b , 两边同乘以1(c -a )(c -b ),得0<1c -b <1c -a,又a >b >0,∴a c -a >bc -b,故④正确.13. a <c <d <b 解析:由△得a =c +d -b 代入△得c +d -b +d <b +c ,△c <d <b . 由△得b =c +d -a 代入△得a +d <c +d -a +c ,△a <c .△a <c <d <b .14.-1<a b <2 解析:∵2b <a <-b ,∴2b <-b .∴b <0. ∴-b b <a b <2b b ,即-1<ab <2.15.解:∵c <d <0,∴-c >-d >0. 又a >b >0, ∴a -c >b -d >0, ∴1b -d >1a -c>0, 又a >b >0,∴a b -d >ba -c.16.解:令4a -2b =m (a -b )+n (a +b ),△⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又△1≤a -b ≤2,△3≤3(a -b )≤6,又△2≤a +b ≤4,△5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.2.2 基本不等式1. 已知0a ≥,0b ≥,且2a b +=,则( )A .12ab ≤B .12ab ≥C .222a b +≥D .223a b +≤2. 设0a >,0b >,若3是3a 与3b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1 D .143. 已知()110m a a a=++>,()31x n x =<,则m ,n 之间的大小关系是( ) A .m n > B .m n < C .m n = D .m n ≤ 4. 已知0a >,0b >,则112ab a b++的最小值为( ) A .2 B .22C .4D .55. 已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .56. 某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件7. 已知54x <,则函数1445y x x =+-的最大值为___________.8.设点(),P x y 在直线1x y +=位于第一象限内的图象上运动,则22log log x y +的最大值是________. 9. 设0a >,0b >,且不等式110k a b a b++≥+恒成立,则实数k 的最小值为___________. 10.函数()log 31a y x =+-(0a >,1a ≠)的图象恒过定点A ,若点A 在直线+1=0mx ny +上,其中0mn >,则12m n+的最小值为___________. 11.求()()2252log 01log f x x x x=++<<的最小值.12.住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EF GH构成的面积为2200m的十字形区域.现计划在正方形MNPQ上建一花坛,造价为4200元/2m,在四个相同的矩形上(如图中阴影部分)铺花岗岩地坪,造价为210元/2m.m,再在四个空角上铺草坪,造价为80元/2⑴设总造价为S元,AD的边长为xm,试建立S关于x的函数关系式;⑵计划至少要投入多少元,才能建造这个休闲小区?答案与解析1. C 解析:由2a b +=,得212a b ab +⎛⎫≤= ⎪⎝⎭,排除选项A ,B .由22222a b a b ++⎛⎫≥ ⎪⎝⎭,得222a b +≥. 2. B 解析:由题意,知333a b ⋅=,即33a b +=,故1a b +=.因为0a >,0b >,所以()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭2224b a b aa b a b=++≥+⋅=,当且仅当a b =时,等号成立. 3. A 解析:因为0a >,所以111213m a a a a=++≥⋅+=,当且仅当1a =时,等号成立.又因为1x <,所以1333x n =<=,所以m n >.4. C 解析:1122a bab ab a b ab+++=+,因为0a >,0b >,所以2a b ab +≥,当且仅当a b =时,等号成立.所以21222224a b ab ab ab ab ab ab ab +⎛⎫+≥+=+≥⨯= ⎪⎝⎭,当且仅当1ab ab =时,等号成立.综上所述,1a b ==时,取等号. 5. C 解析:因为2a b +=,所以12a b+=,又因为0a >,0b >,所以14142a b y a b a b +⎛⎫=+=+⋅⎪⎝⎭52529222222a b a b b a b a ⎛⎫=++≥+= ⎪⎝⎭(当且仅当22a b b a =,即2b a =时,等号成立),故14a b+的最小值为92. 6. B 解析:设每件产品的平均费用为y 元,由题意,得80080022088x xy x x =+≥⋅=. 当且仅当()80008xx x =>,即80x =时,等号成立.故选B . 7. 3 解析:因为54x <,所以450x -<,所以540x ->.所以()1144554545y x x x x =+=-++--()()11545254535454x x x x⎡⎤=--++≤--⋅+=⎢⎥--⎣⎦当且仅当15454x x-=-,即1x =时,等号成立.故当1x =时,y 取最大值,即max 3y =. 8. 2- 解析:要求22log log x y +的最大值,即求()2log xy 的最大值,应先求xy 的最大值.显然当12x y ==时,xy 的最大值为14,故22log log x y +的最大值为2-. 9. 4- 解析:由0a >,0b >,110ka b a b++≥+,得()2a b k ab +≥-.又因为()224a b b a ab a b +=++≥(a b =时,取等号),所以()24a b ab+-≤-.因此要使()2a b k ab+≥-恒成立,应有4k ≥-,即实数k 的最小值为4-.10.8 解析:因为()log 31a y x =+-恒过点()2,1--,所以()2,1A --.因为A 在直线上,所以210m n --+=,即21m n +=.又因为0mn >,所以0m >,0n >.又因为122m n m n m ++=42m nn++4224248n m m n =+++≥+=,当12n =,14m =时,等号成立,所以12m n +的最小值为8. 11.解:因为01x <<,所以2log 0x <,所以2log 0x ->,250log x->.所以()()222255log 2log log log x x x x ⎛⎫⎛⎫-+-≥--⎪ ⎪⎝⎭⎝⎭25=,即225log 25log x x ⎛⎫-+≥ ⎪⎝⎭.所以225log 25log x x +≤-.所以()2252log 225log f x x x =++≤-,当且仅当225log log x x =,即512x =时,等号成立.所以()max 225f x =-.12.解:⑴设DQ y =,则24200x xy +=,22004x y x -=.221420021048042S x xy y =+⨯+⨯⨯()224000003800040000102x x x=++<< . ⑵2824000003800040003800021610118000S x x =++≥+⨯=,当且仅当224000004000x x =,即10x =时,min 118000S =,即计划至少要投入11.8万元才能建造2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13D.⎩⎨⎧⎭⎬⎫x | x <-12 2.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 ( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4}D .{a |0≤a ≤4}3.若关于x 的不等式x 2-4x -m ≥0对任意x △(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .34.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ) A .15≤x ≤30 B .12≤x ≤25 C .10≤x ≤30 D .20≤x ≤305.若关于x 的不等式x -a x +1>0的解集为(-∞,-1)△(4,+∞),则实数a =________.6.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.7.解下列分式不等式: (1)x +12x -3≤1; (2)2x +11-x<0.8.当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养9.不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .△D .{x |x <-2或x >2}10.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2)B .(-2,2]C .(-∞,-2)△[2,+∞)D .(-∞,2)11.下列结论错误的是 ( )A.若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为RB.不等式ax 2+bx +c =0≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0C.若关于x 的不等式ax 2+x -1≤0的解集为R ,则a ≤-D.不等式>1的解集为x <112.对任意a △[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( ) A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2 13.在R 上定义运算△:x △y =x (1-y ).若不等式(x -a )△(x +a )<1对任意的实数x 都成立,则a 的取值范围是________.14.已知2≤x ≤3时,不等式2x 2-9x +a <0恒成立,则a 的取值范围为________.15.已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.16.某地区上年度电价为0.8元/kW·h ,年用电量为a kW·h ,本年度计划将电价降低到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%? 注:收益=实际用电量×(实际电价-成本价).【参考答案】1. A 解析:4x +23x -1>0△(4x +2)(3x -1)>0△x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.2.D 解析:a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.3.C 解析:由已知可得m ≤x 2-4x 对一切x △(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数,△f (x )min =f (1)=-3,△m ≤-3.4.C 解析:设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,△y =40-x ,△xy ≥300,△x (40-x )≥300,△x 2-40x +300≤0,△10≤x ≤30.5. 4解析:x -ax +1>0△(x +1)(x -a )>0 △(x +1)(x -4)>0,△a =4.6.-2<m <2 解析:由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.7. 解 (1)△x +12x -3≤1,△x +12x -3-1≤0,△-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.△原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, △原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1. 8.解 △当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.△当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 9.A 解析:△x 2+x +1>0恒成立,△原不等式△x 2-2x -2<2x 2+2x +2△x 2+4x +4>0△(x +2)2>0,△x ≠-2. △不等式的解集为{x |x ≠-2}.10.B 解析:△mx 2+2mx -4<2x 2+4x , △(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x △R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x △R . 综上所述,-2<m ≤2.11.ABD 解析:A 选项中,只有a>0时才成立;B 选项当a=b=0,c≤0时也成立;D 选项x 是大于0的.12.B 解析:设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a △[-1,1]△⎩⎪⎨⎪⎧g 1=x 2-3x +2>0g -1=x 2-5x +6>0△⎩⎪⎨⎪⎧x <1或x >2x <2或x >3△x <1或x >3. 13. -12<a <32 解析:根据定义得(x -a )△(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )△(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.14. a <9 解析:△当2≤x ≤3时,2x 2-9x +a <0恒成立,△当2≤x ≤3时,a <-2x 2+9x 恒成立. 令y =-2x 2+9x .△2≤x ≤3,且对称轴方程为x =94,△y min =9,△a <9.△a 的取值范围为a <9.15.解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得, m 满足不等式组⎩⎪⎨⎪⎧f 0=2m +1<0f-1=2>0f1=4m +2<0f2=6m +5>0解得-56<m <-12.16.解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至kx -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a(x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2a x -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.△当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.2.3 第1课时二次函数与一元二次方程、不等式基础练巩固新知夯实基础1.(多选)下面所给关于x的不等式,其中一定为一元二次不等式的是( )A.3x+4<0B.x2+m x-1>0C.a x2+4x-7>0D.x2<02.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解()A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6. 不等式-1<x2+2x-1≤2的解集是________.7.方程x2+(m-3)x+m=0的两根都是负数,则m的取值范围为________.8. 解关于x的不等式:x2+(1-a)x-a<0.能 力 练综合应用 核心素养9.若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是 ( )A.⎩⎨⎧⎭⎬⎫x |1t <x <t B.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t10.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是 ( )A .(-3,1)△(3,+∞)B .(-3,1)△(2,+∞)C .(-1,1)△(3,+∞)D .(-∞,-3)△(1,3)11.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 12. (多选题)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( ) A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9} B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0} C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1} D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________. 14.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 15.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.16.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1.BD 解析:根据一元二次不等式的定义以及特征可判定A 一定不是,C 不一定是,B ,D 一定是.2.A 解析:△M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3}, △M ∩N ={x |-4≤x <-2或3<x ≤7}.3. D 解析:由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又△a <0,△函数y =ax 2+bx +c 的图象是开口向下的抛物线,△不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析:由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析:因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. {x |-3≤x <-2或0<x ≤1} 解析: △⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,△-3≤x <-2或0<x ≤1.7.{m |m ≥9} 解析:∵⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,∴m ≥9.8. 解:方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以 (1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为△; (3)当a >-1时,原不等式解集为{x |-1<x <a }.9.D 解析:△0<t <1,△1t >1,△1t >t .△(t -x )(x -1t )>0△(x -t )(x -1t )<0△t <x <1t .10.A 解析:f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1; 当x <0时,x +6>3,解得-3<x <0.所以f (x )>f (1)的解集是(-3,1)△(3,+∞).11. B 解析:易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.12. BCD 解析:在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得m>0,3-m>0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确,故选BCD .13.k ≤2或k ≥4解析:x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2. 14. -3 -3 解析:在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得m>0,3-m>0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确,故选BCD . 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, △⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 15.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,△⎩⎨⎧-13+2=-ba-13×2=ca,△b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.16.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}. (2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.△当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2; △当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};△当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2,或x <2a .2.3二次函数与一元二次方程、不等式一、选择题1.不等式9x 2+6x +1≤0的解集是( ) A.1|3x x ⎧⎫≠-⎨⎬⎩⎭B.11|33x x ⎧⎫-≤≤⎨⎬⎩⎭C .∅D.1|3x x ⎧⎫=-⎨⎬⎩⎭2.下列不等式中,解集是R 的是( ) A .x 2+4x +4>0B.20x >C.1102x⎛⎫+> ⎪⎝⎭D .-x 2+2x -1>03.不等式ax 2+5x+c >0的解集为11{|}32x x <<,则a ,c 的值为( ) A .a=6,c=1 B .a=-6,c=-1 C .a=1,c=1 D .a=-1,c=-6 4.若0<t <1,则不等式1()()0x t x t--<的解集为( ) A.1|x x t t⎧⎫<<⎨⎬⎩⎭B.1|x x x t t ⎧⎫><⎨⎬⎩⎭或 C.1|x x x t t⎧⎫<>⎨⎬⎩⎭或D.1|x t x t ⎧⎫<<⎨⎬⎩⎭5.不等式x 2-ax -b <0的解集是{x|2<x <3},则bx 2-ax -1>0的解集是( ) A .{|23}x x << B .11{|}32x x << C .11{|}23x x -<<- D .{|32}x x -<<- 6. 关于x 的不等式(1+m )x 2+mx +m <x 2+1对x ∈R 恒成立,则实数m 的取值范围是( ) A .(-∞,0) B .(-∞,0)∪3,4⎛⎫+∞⎪⎝⎭C .(-∞,0]D .(-∞,0]∪4,3⎛⎫-+∞ ⎪⎝⎭二、填空题7.如果A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________.8.如果关于x 的方程x 2-(m -1)x+2-m=0的两根为正实数,则m 的取值范围是________. 9. 函数21()31f x ax ax =++的定义域是R ,则实数a 的取值范围为________.10.若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 三、解答题 11.解下列不等式(1)2x 2+7x +3>0; (2)-x 2+8x -3>0;12. 不等式mx 2+1>mx 的解集为实数集R ,求实数m 的取值范围.13. 解关于x 的不等式m 2x 2+2mx -3<0(其中m ∈R ).14.已知2()2(2)4f x x a x =+-+,(1)如果对一切x ∈R ,f(x)>0恒成立,求实数a 的取值范围; (2)如果对x ∈[-3,1],f(x)>0恒成立,求实数a 的取值范围. 15.解下列关于x 的不等式 0)1)(1(>+-x ax ;答案与解析1.【答案】 D【解析】 9x 2+6x +1=(3x +1)2≤0 ∴13x =-,故选D.2.【答案】 C【解析】 ∵x 2+4x +4=(x +2)2≥0, ∴A 不正确;∵2||0x x =≥,∴B 不正确;∵102x ⎛⎫> ⎪⎝⎭,∴11102x⎛⎫+>> ⎪⎝⎭(x ∈R ),故C 正确;∵-x 2+2x -1>0 ∴x 2-2x +1=(x -1)2<0, ∴D 不正确.3.【答案】B【解析】由题意可知方程250ax x c ++>的两根为12x =和13x =,由韦达定理得: 11115,2323c a a⨯=+=-,求得a=-6,c=-14.【答案】 D【解析】 ∵0<t <1,∴11t >,∴1t t< ∴11()()0x t x t x t t--<⇔<<.5.【答案】C【解析】由题意得,方程x 2-ax -b=0的两根为x=2,x=3,由韦达定理得23a +=,23b ⨯=-,求得5 a =,b=-6,从而解得bx 2-ax -1>0的解集为11{|}23x x -<<-6. 【答案】C【解析】 原不等式等价于mx 2+mx+m -1<0对x ∈R恒成立,当m =0时,0·x 2+0·x -1<0对x ∈R恒成立. 当m ≠0时,由题意,得220000404103403m m m m m m m mm m m <⎧<<⎧⎧⎪⇔⇔⇔<⎨⎨⎨<>∆=--<->⎩⎩⎪⎩或. 综上,m 的取值范围为(-∞,0].7.【答案】 [0,4)【解析】 由题意知2040a a a >⎧⎨∆=--<⎩,∴0<a <4. 当a =0时,A ={x |1<0}=∅,符合题意.8.【答案】{|1222}m m -+<< 【解析】由题意得:1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,解得1222m -+<<9. 【答案】 40,9⎡⎫⎪⎢⎣⎭【解析】 由已知f (x )的定义域是R . 所以不等式ax 2+3ax +1>0恒成立.(1)当a =0时,不等式等价于1>0,显然恒成立; (2)当a ≠0时,则有2000400(94)09(3)40a a a a a a a a >>>⎧⎧⎧⎧⇔⇔⇔<<⎨⎨⎨⎨∆<-<-<⎩⎩⎩⎩. 由(1)(2)知,409a ≤<. 即所求a 的取值范围是40,9⎡⎫⎪⎢⎣⎭.10.【答案】2【解析】由题意,得1,m 是关于x 的方程2260ax x a -+=的两根,则2611m a ama ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得 23m m ==-或(舍去)11.【解析】(1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,212x =-. 又二次函数y =2x 2+7x +3的图象开口向上, 所以原不等式的解集为1|32x x x ⎧⎫>-<-⎨⎬⎩⎭或. (2)因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不等实根1413x =-,2413x =+.又二次函数y =-x 2+8x -3的图象开口向下, 所以原不等式的解集为{}|413413x x -<<+.12.【解析】当m =0时,不等式即为1>0,满足条件.当m≠0时,若不等式的解集为R ,则应有⎪⎩⎪⎨⎧<--=∆>0m 4)m (0m 2, 解得0<m <4.综上,m 的取值范围是{m|0≤m<4}.13.【解析】 当m =0时,原不等式可化为-3<0,其对一切x ∈R 都成立, 所以原不等式的解集为R . 当m ≠0时,m 2>0,由m 2x 2+2mx -3<0,得(mx -1)(mx +3)<0, 即130x x m m ⎛⎫⎛⎫-+< ⎪⎪⎝⎭⎝⎭, 若m >0,则13m m>-, 所以原不等式的解集为31,m m ⎛⎫- ⎪⎝⎭; 若m <0,则13m m<-,所以原不等式的解集为13,m m ⎛⎫-⎪⎝⎭.综上所述,当m =0时,原不等式的解集为R ;当m>0时,原不等式的解集为31,m m⎛⎫-⎪⎝⎭;当m<0时,原不等式的解集为13,m m⎛⎫-⎪⎝⎭.14.【解析】(1)由题意得:△=2[2(2)]160a--<,即0<a<4;(2)由x∈[-3,1],f(x)>0得,有如下两种情况:2[3,1](3)0(1)0aff-∉-⎧⎪->⎨⎪>⎩或2[3,1](2)0af a-∈-⎧⎨->⎩综上所述:1,42a⎛⎫∈-⎪⎝⎭.15.【解析】当a=0时,原不等式即为-(x+1)>0,解得x<-1;当a≠0时,原不等式为关于x的一元二次不等式,方程(ax-1)(x+1)=0有两个实数根ax11=和12-=x.(Ⅰ)当21xx<,即11-<a,01<<-a时,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有两个交点,其简图如下:故不等式0)1)(1(>+-xax的解集为⎪⎭⎫⎝⎛-1,1a;(Ⅱ)当,即1,11-=-=aa时,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有一个交点,其简图如下:21xx=故不等式0)1)(1(>+-xax的解集为空集;(Ⅲ)当21xx>,即11->a,1-<a或0>a,①若1-<a,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有两个交点,其简图如下:故不等式0)1)(1(>+-xax的解集为11,a⎛⎫-⎪⎝⎭;②若a>0,数()(1)(1)f x ax x=-+的图象开口向上,与x轴有两个交点,其简图如下:故不等0)1)(1(>+-xax的解集为1(,1),a⎛⎫-∞-+∞⎪⎝⎭;综上所述,当a<-1时,不等式的解集为⎪⎭⎫⎝⎛-a1,1;当a=-1时,不等式的解集为空集;当-1<a<0时,不等式的解集为⎪⎭⎫⎝⎛-1,1a;当a=0时,不等式的解集为)1,(--∞;当a>0时,不等式的解集为⎪⎭⎫⎝⎛+∞--∞,1)1,(a.必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法 0a b a b >⇔->; 0a b a b =⇔-=; 0a b a b <⇔-<。

最新人教版高中数学必修1课时同步测试题(全册 共173页 附解析)

最新人教版高中数学必修1课时同步测试题(全册 共173页 附解析)

最新人教版高中数学必修1课时同步测试题(全册共173页附解析)目录1.1 集合1.1.1 集合的含义与表示第1课时集合的含义第2课时集合的表示1.1.2 集合间的基本关系1.1.3 集合的基本运算第1课时并集与交集第2课时补集及集合运算的综合应用1.2 函数及其表示1.2.1 函数的概念1.2.2 函数的表示法第1课时函数的表示法第2课时式分段函数及映射1.3 函数的基本性质1.3.1 单调性与最大(小)值第1课时函数的单调性第2课时函数的最大(小)值1.3.2 奇偶性第一章章末复习课第一单元评估验收(一)第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质第1课时指数函数的图象及其性质第2课时指数函数及其性质的应用2.2 对数函数2.2.1 对数与对数运算2.2.2 对数函数及其性质第1课时对数函数的图象及其性质第2课时对数函数及其性质的应用2.3 幂函数第二章章末复习课第二单元评估验收(二)第三章函数的应用第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示第1课时集合的含义A级基础巩固一、选择题1.已知集合A中的元素x满足-5≤x≤5,且x∈N*,则必有() A.-1∈A B.0∈AC.3∈A D.1∈A解析:-5≤x≤5,且x∈N*,所以x=1,2,所以1∈A.答案:D2.下列各对象可以组成集合的是()A.中国著名的科学家B.2017感动中国十大人物C.高速公路上接近限速速度行驶的车辆D.中国最美的乡村解析:看一组对象是否构成集合,关键是看这组对象是不是确定的,A,C,D选项没有一个明确的判定标准,只有B选项判断标准明确,可以构成集合.答案:B3.由x2,2|x|组成一个集合A中含有两个元素,则实数x的取值可以是()A.0 B.-2 C.8 D.2解析:根据集合中元素的互异性,验证可知a的取值可以是8.答案:C4.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是()A.1 B.0 C.-2 D.2解析:因为a∈M,且2a∈M,又-1∈M,所以-1³2=-2∈M.答案:C5.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()A.1 B.-2 C.6 D.2解析:因A中含有3个元素,即a2,2-a,4互不相等,将选项中的数值代入验证可知答案选C.答案:C二、填空题6.由下列对象组成的集体属于集合的是________(填序号).①不超过10的所有正整数;②高一(6)班中成绩优秀的同学;③中央一套播出的好看的电视剧;④平方后不等于自身的数.解析:①④中的对象是确定的,可以组成集合,②③中的对象是不确定的,不能组成集合.答案:①④7. 以方程x2-2x-3=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:因为方程x2-2x-3=0的解是x1=-1,x2=3,方程x2-x-2=0的解是x3=-1,x4=2,所以以这两个方程的解为元素的集合中的元素应为-1,2,3,共有3个元素.答案:38.已知集合M 含有两个元素a -3和2a +1,若-2∈M ,则实数a 的值是____________.解析:因为-2∈M ,所以a -3=-2或2a +1=-2.若a -3=-2,则a =1,此时集合M 中含有两个元素-2,3,符合题意;若2a +1=-2,则a=-32,此时集合M 中含有两个元素-2、-92,符合题意;所以实数a 的值是1、-32. 答案:1、-32三、解答题9.若集合A 是由元素-1,3组成的集合,集合B 是由方程x 2+ax +b =0的解组成的集合,且A =B ,求实数a ,b .解:因为A =B ,所以-1,3是方程x 2+ax +b =0的解.则⎩⎪⎨⎪⎧-1+3=-a ,-1³3=b ,解得⎩⎪⎨⎪⎧a =-2,b =-3.10.已知集合A 中含有三个元素a -2,2a 2+5a ,12,且-3∈A ,求a 的值.解:因为-3∈A ,所以a -2=-3或2a 2+5a =-3,所以a =-1或a =-32. 当a =-1时,a -2=-3,2a 2+5a =-3,集合A 不满足元素的互异性,所以a =-1舍去.当a =-32时,经检验,符合题意.所以a =-32. B 级 能力提升1.集合A 中含有三个元素2,4,6,若a ∈A ,且6-a ∈A ,那么a 为( )A .2B .2或4C .4D .0解析:若a =2,则6-2=4∈A ;若a =4,则6-4=2∈A ;若a =6,则6-6=0∉A .故选B.答案:B2.设x ,y ,z 是非零实数,若a =x |x |+y |y |+z |z |+xyz |xyz |,则以a 的值为元素的集合中元素的个数是______.解析:当x ,y ,z 都是正数时,a =4,当x ,y ,z 都是负数时a =-4,当x ,y ,z 中有1个是正数另2个是负数或有2个是正数另1个是负数时,a =0.所以以a 的值为元素的集合中有3个元素.答案:33.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必有另外两个元素;(2)集合A 不可能是单元素集.证明:(1)若a ∈A ,则11-a∈A . 又因为2∈A ,所以11-2=-1∈A . 因为-1∈A ,所以11-(-1)=12∈A . 因为12∈A ,所以11-12=2∈A . 所以A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解.所以a ≠11-a,所以A 不可能为单元素集.第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示第2课时集合的表示A级基础巩固一、选择题1.集合{x∈N+|x-2<4}用列举法可表示为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:{x∈N+|x-2<4}={x∈N+|x<6}={1,2,3,4,5}.答案:D2.集合{(x,y)|y=2x+3}表示()A.方程y=2x+3B.点(x,y)C.函数y=2x+3图象上的所有点组成的集合D.平面直角坐标系中的所有点组成的集合解析:集合{(x,y)|y=2x+3}的代表元素是(x,y),x,y满足的关系式为y=2x+3,因此集合表示的是满足关系式y=2x-1的点组成的集合.答案:C3.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A解析:因为0是整数且满足-3≤x≤3,所以0∈A.答案:B4.由大于-3且小于11的偶数组成的集合是( )A .{x |-3<x <11,x ∈Q}B .{x |-3<x <11,x ∈R}C .{x |-3<x <11,x =2k ,k ∈N}D .{x |-3<x <11,x =2k ,k ∈Z}解析:{x |x =2k ,k ∈Z}表示所有偶数组成的集合.由-3<x <11及x =2k ,k ∈Z ,可限定集合中元素.答案:D5.用列举法表示集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪y =x 2y =-x ,正确的是( ) A .(-1,1),(0,0) B .{(-1,1),(0,0)}C .{x =-1或0,y =1或0}D .{-1,0,1}解析:解方程组⎩⎪⎨⎪⎧y =x 2,y =-x ,得⎩⎪⎨⎪⎧x =-1,y =1或⎩⎪⎨⎪⎧x =0,y =0,所以答案为{(-1,1),(0,0)}.答案:B二、填空题6.下列各组中的两个集合M 和N ,表示同一集合的是_______(填序号). ①M ={π},N ={3.141 59};②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N},N ={1};④M ={1,3,π},N ={π,1,|-3|}.解析:④中的两个集合的元素对应相等,其余3组都不表示同一个集合.所以答案为④.答案:④7.若集合A ={x ∈Z|-2≤x ≤2},B ={x 2-1|x ∈A }.集合B 用列举法可表示为________.解析:因为A ={-2,-1,0,1,2},所以B ={3,0,-1}.答案:B ={3,0,-1}8.用列举法表示集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,106-x ∈N =______________. 解析:因为x ∈Z ,106-x∈N ,所以6-x =1,2,5,10, 得x =5,4,1,-4.故A ={5,4,1,-4}.答案:{5,4,1,-4}三、解答题9.设集合A ={x |x =2k ,k ∈Z},B ={x |x =2k +1,k ∈Z},若a ∈A ,b ∈B ,试判断a +b 与集合A ,B 的关系.解:因为a ∈A ,则a =2k 1(k 1∈Z);b ∈B ,则b =2k 2+1(k 2∈Z),所以a +b =2(k 1+k 2)+1.又k 1+k 2为整数,2(k 1+k 2)为偶数,故2(k 1+k 2)+1必为奇数,所以a +b ∈B 且a +b ∉A .10.用适当方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负偶数的集合;(2)大于10的所有自然数的集合.解:(1)不超过10的非负偶数有0,2,4,6,8,10,共6个元素,故集合用列举法表示为{0,2,4,6,8,10},集合是有限集.(2)大于10的自然数有无限个,故集合用描述法表示为{x |x >10,x ∈N},集合是无限集.B 级 能力提升1.已知集合A ={一条边长为2,一个角为30°的等腰三角形},则A 中元素的个数为( )A .2B .3C .4D .无数个解析:两腰为2,底角为30°;或两腰为2,顶角为30°;或底边为2,底角为30°;或底边为2,顶角为30°.共4个元素.答案:C2.有下面四个结论:①0与{0}表示同一个集合;②集合M ={3,4}与N ={(3,4)}表示同一个集合;③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}不能用列举法表示.其中正确的结论是________(填序号).解析:①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.答案:④3.含有三个实数的集合可表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由⎩⎨⎧⎭⎬⎫a ,b a ,1可得a ≠0,a ≠1(否则不满足集合中元素的互异性). 所以⎩⎨⎧a =a +b ,1=a 2,b a =0或⎩⎨⎧a =a 2,1=a +b ,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0. 经检验a =-1,b =0满足题意.所有a 2 016+b 2 017=(-1)2 016=1.第一章 集合与函数概念1.1 集合1.1.2 集合间的基本关系A级基础巩固一、选择题1.集合P={x|x2-4=0},T={-2,-1,0,1,2},则P与T的关系为()A.P=T B.P TC.P⊇T D.P T解析:由x2-4=0,得x=±2,所以P={-2,2}.因此P T.答案:D2.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为()A.6B.5C.4D.3解析:集合{0,1,2}的非空子集为:{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.答案:A3.已知集合A={x|x(x-1)=0},那么下列结论正确的是()A.0∈A B.1∉AC.-1∈A D.0∉A解析:由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.答案:A4.以下说法中正确的个数是()①M={(1,2)}与N={(2,1)}表示同一个集合;②M={1,2}与N={2,1}表示同一个集合;③空集是唯一的;④若M={y|y=x2+1,x∈R}与N={x|x=t2+1,t∈R},则集合M=N.A .0B .1C .2D .3解析:①集合M 表示由点(1,2)组成的单元素集,集合N 表示由点(2,1)组成的单元素集,故①错误;②由集合中元素的无序性可知M ,N 表示同一个集合,故②正确;③假设空集不是唯一的,则不妨设∅1、∅2为不相等的两个空集,易知∅1⊆∅2,且∅2⊆∅1,故可知∅1=∅2,矛盾,则空集是唯一的,故③正确;④M ,N 都是由大于或等于1的实数组成的集合,故④正确.答案:D5.集合A ={x |0≤x <4,且x ∈N}的真子集的个数是( )A .16B .8C .15D .4解析:A ={x |0≤x <4,且x ∈N}={0,1,2,3},故其真子集有24-1=15(个). 答案:C二、填空题6.已知集合A ={x |x 2=a },当A 为非空集合时a 的取值范围是________. 解析:A 为非空集合时,方程x 2=a 有实数根,所以a ≥0.答案:{a |a ≥0}7.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________.解析:因为∅{x |x 2-x +a =0}.所以{x |x 2-x +a =0}≠∅,即x 2-x +a =0有实根.所以Δ=(-1)2-4a ≥0,得a ≤14. 答案:⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤14 8.已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为________.解析:当a =0时,B =∅⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =-1a ,若B ⊆A ,则-1a =-1或-1a=1,解得a =1或a =-1.综上,a =0或a =1或-1.答案:{-1,0,1}三、解答题9.已知集合A ={x |-2≤x ≤5},B ={x |p +1≤x ≤2p -1}.若B ⊆A ,求实数p 的取值范围.解:若B =∅,则p +1>2p -1,解得p <2;若B ≠∅,且B ⊆A ,则借助数轴可知,⎩⎪⎨⎪⎧p +1≤2p -1,p +1≥-2,2p -1≤5,解得2≤p ≤3. 综上可得p ≤3.10.已知集合A {x ∈N|-1<x <3},且A 中至少有一个元素为奇数,则这样的集合A 共有多少个?并用恰当的方法表示这些集合.解:因为{x ∈N|-1<x <3}={0,1,2},A {0,1,2}且A 中至少有一个元素为奇数,故这样的集合共有3个.当A 中含有1个元素时,A 可以为{1};当A 中含有2个元素时,A 可以为{0,1},{1,2}.B 级 能力提升1.已知集合B ={-1,1,4}满足条件∅M ⊆B 的集合的个数为( )A .3B .6C .7D .8解析:满足条件的集合是{-1},{1},{4},{-1,1},{-1,4},{1,4},{-1,1,4},共7个.答案:C2.设A ={4,a },B ={2,ab },若A =B ,则a +b =________.解析:因为A ={4,a },B ={2,ab },A =B ,所以⎩⎪⎨⎪⎧4=ab ,a =2,解得a =2,b =2, 所以a +b =4.答案: 43.已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求a的取值范围.解:集合A={0,-4},由于B⊆A,则:(1)当B=A时,即0,-4是方程x2+2(a+1)x+a2-1=0的两根,代入解得a=1.(2)当B A时,①当B=∅时,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.②当B={0}或B={-4}时,方程x2+2(a+1)x+a2-1=0应有两个相等的实数根0或-4.则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足条件.综上可知a=0或a≤-1.第一章集合与函数概念1.1 集合1.1.3 集合的基本运算第1课时并集与交集(对应学生用书P12)A级基础巩固一、选择题1.设集合A={1,3},集合B={1,2,4,5},则集合A∪B=() A.{1,3,1,2,4,5} B.{1}C.{1,2,3,4,5} D.{2,3,4,5}解析:因为集合A={1,3},集合B={1,2,4,5},所以集合A ∪B ={1,2,3,4,5}.故选C.答案:C2.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1解析:联立两集合中的方程得:⎩⎪⎨⎪⎧x 2+y 2=1,x +y =1, 解得⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =1,y =0,有两解. 答案:C3.若集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},则集合A ∩B 等于( )A .{x |x ≤3,或x >4}B .{x |-1<x ≤3}C .{x |3≤x <4}D .{x |-2≤x <-1}解析:直接在数轴上标出A 、B 的区间(图略),取其公共部分即得A ∩B ={x |-2≤x <-1}.答案:D4.已知集合A ={1,3,m },B ={1,m },且A ∪B =A ,则m =( )A .0或 3B .0或3C .1或 3D .1或3解析:由A ∪B =A ,得B ⊆A ,因为A ={1,3,m },B ={1,m },所以m =3或m =m ,解得m =3或m =0或m =1,验证知,m =1时不满足集合中元素的互异性,故m =0或m =3,故选B.答案:B5.设全集U =R ,A ={x ∈N|1≤x ≤10},B ={x ∈R|x 2+x -6=0},则下图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}解析:A={1,2,3,4,5,6,7,8,9,10},B={-3,2},阴影部分表示的集合是A∩B={2},故选A.答案:A二、填空题6.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=________.解析:借助数轴知,A∪B={x|x>0}∪{x|-1≤x≤2}={x|x≥-1}.答案:{x|x≥-1}7.已知集合A={x|0<x≤6,x∈N},B={0,3,5},则A∩B=________.解析:A={1,2,3,4,5,6},于是A∩B={3,5}.答案:{3,5}8.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.解析:由A∪B=R,得A与B的所有元素应覆盖整个数轴.如下图所示:所以a必须在1的左侧,或与1重合,故a≤1.答案:{a|a≤1}三、解答题9.已知集合A={x∈Z|-3≤x-1≤1},B={1,2,3},C={3,4,5,6}.(1)求A的非空真子集的个数;(2)求B∪C,A∪(B∩C).解:(1)A={-2,-1,0,1,2},共5个元素,所以A的非空真子集的个数为25-2=30.(2)因为B={1,2,3},C={3,4,5,6},所以B∪C={1,2,3,4,5,6},A∪(B∩C)={-2,-1,0,1,2,3}.10.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a-1}.当A∩B。

2023-2024学年全国全部人教A版(2019)高一上数学同步练习(含解析)

2023-2024学年全国全部人教A版(2019)高一上数学同步练习(含解析)

2023-2024学年全国高一上数学同步练习考试总分:117 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )1.设,函数的图象一定经过( )A.第一象限B.第二象限C.第三象限D.第四象限2. 关于的方程:有两个实数根,则实数的取值范围可以是( )A.B.C.D.3. 不等式的解集是( )A.B.C.D.4. 已知,,,若,则,,的大小关系是( )α∈R f(x)=(−a 13)x−1x +2+a =02x−1x 2a (,+∞)12(1,+∞)(−∞,1)(−∞,−)12>10.52lg|x|(−1,1)(−1,0)∪(0,1)∅(−∞,−)∪(,+∞)1212f(x)=a x g(x)=x log a h(x)=x a 0<a <1f(2)g(2)h(2)f(2)>g(2)>h(2)A.B.C.D.5. 若,则关于的不等式的解集是( )A.B.C.D.6. 函数在上是增函数,则的取值范围是( )A.B.C.D.7. 已知集合,则满足的集合可以是( )A.B.C.D.二、 多选题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )8. 关于函数 下列说法正确的是( )A.值域B.值域C.单调增区间f(2)>g(2)>h(2)g(2)>f(2)>h(2)h(2)>g(2)>f(2)h(2)>f(2)>g(2)0<a <1x >a +x−88x2102lg a {x |x <−10或x >9}{x |x <−9或x >10}{x |−10<x <9}{x |−9<x <10}f(x)=(−1a 2)x (−∞,+∞)a |a |>1|a |>2|a |>2–√1<|a |<2–√A =(y |y =,x ∈R)()12+1x 2A ∩B =B B (0,)12{x |−1≤x ≤1}(x |0<x <)12{x |x >0}f (x)=3−2x x2(0,]13[,+∞)13[1,+∞)(−∞,1]D.单调减区间9. 给出下列四个结论,其中正确的结论有( )A.函数的最大值为B.设正数,,满足,C.已知函数且在上是减函数则的取值范围是D.在同一直角坐标系中,函数与的图象关于轴对称卷II (非选择题)三、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )10. 函数的单调递增区间为________.11. 函数的单调递减区间是________;值域是________.12. 方程的解是________.13. 已知集合,,若是必要不充分条件,则实数 的取值范围是________.14. 已知,若不等式恒成立,则实数的取值范围是________.15. 函数的最小值为________.16. 方程的解为________.17. 函数的单调增区间为________. 18. 若的值域为,则的取值范围是________.(−∞,1]y =()12−+1x 212a b c ==4a 6b 9c =−1c 2b 1ay =(2−ax)(a >0log a a ≠1)(0,1)a (1,2]y =x log 3y =x log 13x f(x)=(12)−2x−3x 2y =(13)1+2x−x 2−3⋅−16=04x+12x+2A ={x |(<1}12)−x−6x 2B ={x |(x +a)<1}log 4x ∈A x ∈B a 0≤x ≤2a ≤−3×−44x 2x a y =+2x 2−x −=22x 12|x|f(x)=(12)−+4x x 2f(x)=(x ∈[a,b])3|x|[1,9]b −a19. 已知,则的最小值是________.四、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )20. 已知函数是奇函数,是偶函数.求,的值;求证:;若方程在上有一个实数根,求的取值范围. 21. 已知二次函数.若为偶函数,求在上的值域;当时, 恒成立,求实数的取值范围.22. 已知为上的奇函数, 为 上的偶函数,且,其中.求函数和的解析式;若不等式在上恒成立,求实数的取值范围;若,,使成立,求实数的取值范围.23. 已知全集,集合,,,求,.24. 已知函数是定义在上的奇函数,且,,当时,,为常数).求:和的值;当时,的解析式;在上的解析式.25. 已知定义域为的函数 满足 ,当时,.求函数的解析式;解关于的不等式: .{2x −y ≤0x −3y +5≥0(13)2x+y−2f (x)=−a e x e −x2g(x)=−b e x e −x2(1)a b (2)−=1[g(x)]2[f (x)]2(3)−kf (x)−3=0[g(x)]2[ln(+1),+∞)2–√k f (x)=−2(a −1)x +4x 2(1)f (x)f (x)[−1,3](2)x ∈[1,2]f (x)>ax a f (x)R g(x)R f (x)+g(x)=2e x e =2.71828⋯(1)f (x)g(x)(2)f (+3)+f (1−ax)>0x 2(0,+∞)a (3)∀∈[0,1]x 1∃∈[m,+∞x 2)f ()=x 2e −|−m|x 1m U =R A ={x |−9⋅+8<0}4x 2x B ={x |≥1}5x +2C ={x ||x −2|<4}A ∪B A ∩C C U f (x)R f (−1)=−4f (2)=9x >0f (x)=+ax +b(a 2x b (1)a b (2)x <0f (x)(3)f (x)R R f (x)f (x)+f (−x)=0x >0f (x)=log 21x (1)f (x)(2)x f (−)+3>02x log 2参考答案与试题解析2023-2024学年全国高一上数学同步练习一、 选择题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )1.【答案】B【考点】指数型复合函数的性质及应用【解析】根据指数函数的性质求出函数的取值范围即可.【解答】解:∵为减函数,∴当时,函数,则函数不经过第四象限,若,则,此时函数不经过第三象限,若,则,则函数不经过第一象限,故函数的图象一定经过第二象限.故选.2.【答案】D【考点】指数型复合函数的性质及应用【解析】将方程转化为两个函数,利用数形结合即可得到结论.【解答】f(x)=(−a13)x−1a =0f(x)>0a =3f(0)=1−1=0a <3f(0)=1−a <0f(x)B +2+a =0x−12=−2−ax−12解:由得:,设函数,,作出两个函数的图象如图,当两个函数与存在两个交点,即,∴,即实数的取值范围可以是,故选:.3.【答案】B【考点】对数函数的单调性与特殊点指数型复合函数的性质及应用【解析】先利用指数函数的单调性,将不等式等价转化为对数不等式,再利用对数函数的定义和单调性将不等式转化为绝对值不等式,进而利用公式得不等式解集【解答】解:不等式不等式,或∴不等式的解集是故选4.【答案】D【考点】指数型复合函数的性质及应用【解析】由已知中,,,结合指数函数,对数函数和幂函数的图象和性质,及,估算,,的値,可得答案.【解答】解:∵,,,若,+2+a =02x−1x 2=−2−a 2x−1x 2f(x)=2x−1g(x)=−2−a x 2g(0)>f(0)f(x)g(x)−a >12a <−12a (−∞,−)12D >1⇔0.52lg|x|>0.52lg|x|0.50⇔2lg |x |<0⇔lg |x |<lg1⇔0<|x |<1⇔−1<x <00<x <1>10.52lg|x|(−1,0)∪(0,1)B f(x)=a x g(x)=x log a h(x)=x a 0<a <1f(2)g(2)h(2)f(x)=a x g(x)=x log a h(x)=x a 0<a <1f(2)∈(0,1)则,,,故,故选:5.【答案】C【考点】指数型复合函数的性质及应用【解析】由题意可得,故有 ,即,由此求得不等式的解集.【解答】解:∵,,∴,即,解得,故选.6.【答案】C【考点】指数型复合函数的性质及应用【解析】根据指数函数的单调性的性质进行求解即可.【解答】解:若在上是增函数,则,即,即,故选:.7.【答案】C【考点】指数型复合函数的性质及应用f(2)∈(0,1)g(2)∈(−∞,0)h(2)∈(1,2)h(2)>f(2)>g(2)D >=a +x−88x 2102lg a a 2+x −88<2x 2(x +9)(x −10)<00<a <1>==a +x−88x 2102lg a 10lg a 2a 2+x −88<2x 2(x +9)(x −10)<0−10<x <9C f(x)=(−1a 2)x (−∞,+∞)−1>1a 2>2a 2|a |>2–√C交、并、补集的混合运算【解析】利用复合函数的值域知识可得},因为,所以,所以答案是.【解答】此题暂无解答二、 多选题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )8.【答案】B,C,D【考点】函数的值域及其求法函数单调性的判断与证明复合函数的单调性指数型复合函数的性质及应用【解析】利用二次函数求出函数的最值,结合复合函数单调性得到函数单调区间,依次验证选项,即可得到答案.【解答】解:,.的值域是.令,则在单调递减,在单调递增,在上是增函数,的单调增区间是,单调减区间是.故选.9.【答案】B,C,D【考点】3A ={y|0<y ≤}12|A ∩B =B B ⊆A C ∵−2x =−1≥−1x 2(x −1)2∴≥=3−2x x 23−113∴f(x)[,+∞)13u(x)=−2x =−1x 2(x −1)2u(x)(−∞,1][1,+∞)∵y =3x R ∴f(x)[1,+∞)(−∞,1]BCD命题的真假判断与应用指数型复合函数的性质及应用对数及其运算【解析】直接利用复合函数的性质判定的结论,利用对数的运算判断的结论,利用函数的对称性判断的结论.【解答】解:,函数的最小值为,故错误;,设正数,,满足,设,,,,则,,,,,故正确;,已知函数且在上是减函数,所以解得,故正确;,在上单调递增,且过点,在上单调递减,且过点,,故,即图形关于轴对称,故正确.故选.三、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )10.【答案】【考点】指数型复合函数的性质及应用【解析】要求函数的单调递增区间,根据复合函数的单调性可知,只有求函数的单调递增区间即可【解答】解:令,在单调递减,在单调递增A BC D A y =()12−+1x 212A B a b c ==4a 6b 9c ===M 4a 6b 9c ∴a =M log 4b =M log 6c =M log 9=41a log M =61b log M =91c log M 4+9=26log M log M log M ∴=−1c 2b 1a B C y =(2−ax)(a >0log a a ≠1)(0,1){a >1,2−a ≥0,1<a ≤2C D y =x log 3(0,+∞)(1,0)y =x log 13(0,+∞)(1,0)x =x =x =−x log 13log 3−11−1log 3log 3x =−x log 13log 3x D BCD (−∞,1]f(x)=(12)−2x−3x2t =−2x −3x 2t =−2x −3=(x −1−2x 2)2(−∞,1][1,+∞)(t)=(1∵在上单调递减由复合函数的单调性可知,函数的单调递增区间为故答案为:11.【答案】,【考点】指数型复合函数的性质及应用复合函数的单调性函数的值域及其求法【解析】此题暂无解析【解答】解:设,则函数在定义域内单调递减,又,其图象开口向下,则函数在上单调递增,在上单调递减,所以函数在上单调递减,在上单调递增,.故答案为:;.12.【答案】【考点】指数型复合函数的性质及应用【解析】根据指数幂的运算性质可将方程变形为然后将看做整体解关于的一元二次方程即可.【解答】解:即为f(t)=(12)t R (−∞,1](−∞,1](−∞,1][,+∞)19t =1+2x −x 2y =(13)t t =1+2x −=−(x −1+2x 2)2t =1+2x −x 2(−∞,1][1,+∞)y =(13)1+2x−x 2(−∞,1][1,+∞)=(=y min 13)1+2×1−1219(−∞,1][,+∞)19x =2−3⋅−16=04x+12x+24⋅(−12⋅−16=02x )22x 2x t −3⋅−16=04x+12x+24⋅(−12⋅−16=02x )22x 4−12t −16=02令则有解得,(舍)所以,故答案为.13.【答案】【考点】对数函数的单调性与特殊点必要条件、充分条件与充要条件的判断指数型复合函数的性质及应用【解析】解指数不等式求得集合,解一元二次不等式求得集合,由题意可得,经检验 ,从而得到,或 ,由此求得实数 的取值范围.【解答】解:∵.}.是必要不充分条件,可得,∴或 .当 时,,无解.∴.∴,或 .解得 或 ,故答案为 .14.【答案】【考点】指数型复合函数的性质及应用【解析】先将不等式恒成立问题转化为求函数,的最小值问题,再利用换元法设,将问题转化为求关于的二次函数的最值问题,最后利用配方法求其最小值即可【解答】解:令,设,则=t 2x 4−12t −16=0t 2t =4t =−1=42x x =2x =2(−∞,−3]∪[6,+∞)A B B ⊊A B ≠∅−a <4−a ≤−23≤−a <4−a a A ={x |(<1}={x |−x −6>0}={x |x <−2或x >3}12)−x−6x2x 2B ={x |(x +a)<1}={x |0<x +a <4}=[x |−a <x <4−a log 4x ∈A x ∈B B ⊊A B =∅B ≠∅B =∅4−a ≤−a a B ≠∅−a <4−a ≤−23≤−a <4−a a ≥6a ≤−3(−∞,−3]∪[6,+∞)(−∞,−]254f(x)=−3×−44x 2x t =2x t f(x)=−3×−44x 2x t =2x 1≤t ≤4(x)=g(t)=−3t −4=(t −−325则,∴当时,取最小值即的最小值为若不等式恒成立,只需小于或等于的最小值,∴故答案为15.【答案】【考点】基本不等式指数型复合函数的性质及应用【解析】根据基本不等式的性质即可得到结论.【解答】解:∵,∴,当且仅当,即,时取等号,故函数的最小值为,故答案为:16.【答案】【考点】指数式与对数式的互化指数型复合函数的性质及应用【解析】当时方程无解,当时,将看成成整体,求一元二次方程,然后解对数方程即可求出所求.【解答】f(x)=g(t)=−3t −4=(t −−t 232)2254(1≤t ≤4)t =32g(t)−254f(x)=−3×−44x 2x −254a ≤−3×−44x 2x a f(x)a ≤−254(−∞,−]2542y =>02x y =+≥2=22x 2−x ⋅2x 2−x −−−−−−√=2x 2−x x =−x x =0y =+2x 2−x 22(+1)log 22–√x ≤0x >02x =21解:当时,无解当时,解得:即故答案为:17.【答案】【考点】指数型复合函数的性质及应用【解析】令,则,再根据复合函数的单调性可得,本题即求函数的减区间,再利用二次函数的性质可得的减区间.【解答】解:令,则,再根据复合函数的单调性可得,本题即求函数的减区间.再利用二次函数的性质可得 的减区间为,故答案为.18.【答案】【考点】指数型复合函数的性质及应用【解析】本题主要考查指数函数的图象和性质,根据值域求出对应,的取值可能即可的结论.【解答】解:当时,,当时,,即,若,则,此时,若,则,此时,综上.故答案为:.19.x ≤0−=22x 12−xx >0−=22x 12x (−2⋅−1=02x )22x =+12x 2–√x =(+1)log 22–√(+1)log 22–√[2,+∞)t =−+4x =−(x −2+4x 2)2f(x)=(12)t t t t =−+4x =−(−4x)=−(x −2+4x 2x 2)2f(x)=(12)t t t =−(x −2+4)2[2,+∞)[2,+∞)[2,4]a b =13|x|x =0=93|x||x |=2x =±2a =−20≤b ≤22≤b −a ≤4b =2−2≤a ≤02≤b −a ≤42≤b −a ≤4[2,4]【答案】【考点】简单线性规划指数型复合函数的性质及应用【解析】先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数的最大值,再代入求出的最小值.【解答】解:满足约束条件的可行域如图,由图象可知:当,时,的最大值,∴的最小值是故答案为:.四、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )20.【答案】解:∵是奇函数,∴恒成立,∴,∴.∵是偶函数,∴恒成立,∴,∴.证明:∵,,∴.解:记,函数在上单调递增,∴.由可得,∴原问题转化为方程在上有一个实数根,19{2x −y ≤0x −3y +5≥0Z =2x +y −2(13)2x+y−2{2x −y ≤0x −3y +5≥0x =1y =2Z =2x +y −22(13)2x+y−21919(1)f (x)f (−x)=−f (x)(+)(a −1)=0e x e −x a =1g(x)g(−x)=g(x)(−)(b +1)=0e x e −x b =−1(2)=[g(x)]2++2e 2x e −2x 4=[f (x)]2+−2e 2x e −2x 4−[g(x)]2[f (x)]2=−=1++2e 2x e −2x 4+−2e 2x e −2x 4(3)t =f (x)f (x)[ln(+1),+∞)2–√t =f (x)≥f (ln(+1))=12–√(2)=1+[g(x)]2[f (x)]2−kt −2=0t 2[1,+∞)=t −2即在上有一个实数根,记,易知在单调递增,∴.【考点】函数奇偶性的性质由函数零点求参数取值范围问题函数的零点与方程根的关系【解析】此题暂无解析【解答】解:∵是奇函数,∴恒成立,∴,∴.∵是偶函数,∴恒成立,∴,∴.证明:∵,,∴.解:记,函数在上单调递增,∴.由可得,∴原问题转化为方程在上有一个实数根,即在上有一个实数根,记,易知在单调递增,∴.21.【答案】解:为二次函数,其对称轴为,若为偶函数,则,解得,所以,因为,所以当时,有最小值,当时,有最大值,所以,即函数的值域为.由题意知时, 恒成立,即,k =t −2t [1,+∞)h (t)=t −2t h (t)[1,+∞)k ≥h (1)=−1(1)f (x)f (−x)=−f (x)(+)(a −1)=0e x e −x a =1g(x)g(−x)=g(x)(−)(b +1)=0e x e −x b =−1(2)=[g(x)]2++2e 2x e −2x 4=[f (x)]2+−2e 2x e −2x 4−[g(x)]2[f (x)]2=−=1++2e 2x e −2x 4+−2e 2x e −2x 4(3)t =f (x)f (x)[ln(+1),+∞)2–√t =f (x)≥f (ln(+1))=12–√(2)=1+[g(x)]2[f (x)]2−kt −2=0t 2[1,+∞)k =t −2t [1,+∞)h (t)=t −2t h (t)[1,+∞)k ≥h (1)=−1(1)f (x)=−2(a −1)x +4x 2x =a −1f (x)a −1=0a =1f (x)=+4x 2−1≤x ≤3x =0f (x)4x =3f (x)134≤f (x)≤13f (x)[4,13](2)x ∈[1,2]f (x)>ax −(3a −2)x +4>0x 2g(x)=−(3a −2)x +42g >0(x)令,所以只需,的对称轴为,当,即时,,解得,所以,当,即时,,解得,所以;当,即时,,解得,舍去,综上所述,的取值范围是.【考点】二次函数的性质函数的值域及其求法函数奇偶性的性质函数恒成立问题【解析】此题暂无解析【解答】解:为二次函数,其对称轴为,若为偶函数,则,解得,所以,因为,所以当时,有最小值,当时,有最大值,所以,即函数的值域为.由题意知时, 恒成立,即,令,所以只需,的对称轴为,当,即时,,解得,所以,当,即时,,g(x)=−(3a −2)x +4x 2g >0(x)min g(x)x =3a −22≤13a −22a ≤43g =g(1)=7−3a >0(x)min a <73a ≤431<<23a −22<a <243g =g()=4−>0(x)min 3a −22(3a −2)24−<a <223<a <243≥23a −22a ≥2g =g(2)=12−6a >0(x)min a <2a (−∞,2)(1)f (x)=−2(a −1)x +4x 2x =a −1f (x)a −1=0a =1f (x)=+4x 2−1≤x ≤3x =0f (x)4x =3f (x)134≤f (x)≤13f (x)[4,13](2)x ∈[1,2]f (x)>ax −(3a −2)x +4>0x 2g(x)=−(3a −2)x +4x 2g >0(x)min g(x)x =3a −22≤13a −22a ≤43g =g(1)=7−3a >0(x)min a <73a ≤431<<23a −22<a <243g =g()=4−>0(x)min 3a −22(3a −2)24<a <22a <24解得,所以;当,即时,,解得,舍去,综上所述,的取值范围是.22.【答案】解:由题意知,.于是,解得;,解得.由已知在上恒成立.因为为上的奇函数,所以在上恒成立.又因为为上的增函数,所以在上恒成立,即在上恒成立,所以,因为,当且仅当,即时取等号.所以.设,在上的最小值为,在上的最小值为,由题意,只需.因为为上的增函数,所以.当时,因为在上单调递增,在上单调递减,所以当时,.于是由得,即,解得.考虑到,故,即,解得.因为,所以.当时,在单调递减,所以.又,,所以对任意,恒有恒成立.综上,实数的取值范围为.【考点】函数奇偶性的性质函数解析式的求解及常用方法不等式恒成立问题函数的单调性及单调区间−<a <223<a <243≥23a −22a ≥2g =g(2)=12−6a >0(x)min a <2a (−∞,2)(1)f (x)+g(x)=2e x −f (x)+g(x)=2e −x 2g(x)=2+2e x e −x g(x)=+e x e −x 2f (x)=2−2e x e −x f (x)=−e x e −x (2)f (+3)+f (1−ax)>0x 2(0,+∞)f (x)R f (+3)>f (ax −1)x 2(0,+∞)f (x)=−e x e −x R +3>ax −1x 2(0,+∞)a <x +4x (0,+∞)a <(x +)4x min x +≥2=44x x ×4x −−−−−√x =4xx =2a <4(3)h (x)=e −|x−m|f (x)[m,+∞)f(x)min h (x)[0,1]h(x)min f ≤h (x)min (x)min f (x)=−e x e −x R f =−(x)min e m e −m m ≥0h (x)(−∞,m)(m,+∞)x ∈[0,1]h =min (x)min {h (0),h (1)}{h (0)=≥−,e −|m|e m e −m h (1)=≥−.e −|1−m|e m e −m h (0)=≥−e −|m|e m e −m ≤2e m e −m ≤2e 2m m ≤ln 212m ≤ln 2<112h (1)==≥−e −|1−m|e m−1e m e −m ≤e 2m e e −1m ≤ln 12e e −1<2e e −10≤m ≤ln 12e e −1m <0h (x)[0,1]h =h (1)=(x)min e m−1>0e m−1−<0e m e −m m <0h (1)=≥−=f e m−1e m e −m (x)min m (−∞,ln ]12e e −1已知函数的单调性求参数问题【解析】无【解答】解:由题意知,.于是,解得;,解得.由已知在上恒成立.因为为上的奇函数,所以在上恒成立.又因为为上的增函数,所以在上恒成立,即在上恒成立,所以,因为,当且仅当,即时取等号.所以.设,在上的最小值为,在上的最小值为,由题意,只需.因为为上的增函数,所以.当时,因为在上单调递增,在上单调递减,所以当时,.于是由得,即,解得.考虑到,故,即,解得.因为,所以.当时,在单调递减,所以.又,,所以对任意,恒有恒成立.综上,实数的取值范围为.23.【答案】解:由,得.由,得.由,得.所以,.(1)f (x)+g(x)=2e x −f (x)+g(x)=2e −x 2g(x)=2+2e x e −x g(x)=+e x e −x 2f (x)=2−2e x e −x f (x)=−e x e −x (2)f (+3)+f (1−ax)>0x 2(0,+∞)f (x)R f (+3)>f (ax −1)x 2(0,+∞)f (x)=−e x e −x R +3>ax −1x 2(0,+∞)a <x +4x (0,+∞)a <(x +)4x min x +≥2=44x x ×4x −−−−−√x =4xx =2a <4(3)h (x)=e −|x−m|f (x)[m,+∞)f(x)min h (x)[0,1]h(x)min f ≤h (x)min (x)min f (x)=−e x e −x R f =−(x)min e m e −m m ≥0h (x)(−∞,m)(m,+∞)x ∈[0,1]h =min (x)min {h (0),h (1)}{h (0)=≥−,e −|m|e m e −m h (1)=≥−.e −|1−m|e m e −m h (0)=≥−e −|m|e m e −m ≤2e m e −m ≤2e 2m m ≤ln 212m ≤ln 2<112h (1)==≥−e −|1−m|e m−1e m e −m ≤e 2m e e −1m ≤ln 12e e −1<2e e −10≤m ≤ln 12e e −1m <0h (x)[0,1]h =h (1)=(x)min e m−1>0e m−1−<0e m e −m m <0h (1)=≥−=f e m−1e m e −m (x)min m (−∞,ln ]12e e −11<<82x A =(0,3)≥1⇒≤05x +2x −3x +2B =(−2,3]|x −2|<4⇒−2<x <6C =(−2,6)A ∪B =(−2,3]A ∩C =(−2,0]∪[3,6)C U【考点】交、并、补集的混合运算指数型复合函数的性质及应用其他不等式的解法【解析】由,得.由,得.由,得.由此能求出,.【解答】解:由,得.由,得.由,得.所以,.24.【答案】解:∵为奇函数,,得.又∵,∴可得,.由得,当时,.设,则,. 为奇函数,∴,∴,∴当时,.∵函数为奇函数,,∴函数在上的解析式为【考点】函数解析式的求解及常用方法函数奇偶性的性质【解析】此题暂无解析【解答】1<<82x A =(0,3)≥1⇒≤05x +2x −3x +2B =(−2,3]|x −2|<4⇒−2<x <6C =(−2,6)A ∪B A ∩C C u 1<<82x A =(0,3)≥1⇒≤05x +2x −3x +2B =(−2,3]|x −2|<4⇒−2<x <6C =(−2,6)A ∪B =(−2,3]A ∩C =(−2,0]∪[3,6)C U (1)f (x)∴f (−1)=−f (1)=−4f (1)=4f (2)=9{2+a +b =4,4+2a +b =9,a =3b =−1(2)(1)x >0f (x)=+3x −12x x <0−x >0f (−x)=−3x −12−x ∵f (x)f (−x)=−f (x)=−3x −12−x f (x)=−+3x +12−x x <0f (x)=−+3x +12−x (3)f (x)f (0)=0f (x)R f(x)= +3x −1,x >0,2x 0,x =0,−+3x +1,x <0.2−x (1)f (x)解:∵为奇函数,,得.又∵,∴可得,.由得,当时,.设,则,. 为奇函数,∴,∴,∴当时,.∵函数为奇函数,,∴函数在上的解析式为25.【答案】解:由得函数为奇函数,当时,,则,∴,,∴ 由知当时, ,为减函数,可将不等式转化为,∴,∴,所以不等式的解集为.【考点】对数的运算性质函数奇偶性的性质函数解析式的求解及常用方法函数的求值【解析】【解答】(1)f (x)∴f (−1)=−f (1)=−4f (1)=4f (2)=9{2+a +b =4,4+2a +b =9,a =3b =−1(2)(1)x >0f (x)=+3x −12x x <0−x >0f (−x)=−3x −12−x ∵f (x)f (−x)=−f (x)=−3x −12−x f (x)=−+3x +12−x x <0f (x)=−+3x +12−x (3)f (x)f (0)=0f (x)R f(x)= +3x −1,x >0,2x 0,x =0,−+3x +1,x <0.2−x (1)f (x)+f (−x)=0f (x)x <0−x >0f (−x)=(−)log 21x f (x)=−(−)log 21x f (0)=0f(x)= ,x >0,log 21x 0,x =0,(−x),x <0.log2(2)(1)x <0f (x)=(−x)log 2f (−)+3>02x log 2f (−)>−3=f (−)2x log 213>2x 13x >−3log 2(−3,0)log 2(1)f (x)+f (−x)=0f (x)解:由得函数为奇函数,当时,,则,∴,,∴ 由知当时, ,为减函数,可将不等式转化为,∴,∴,所以不等式的解集为.(1)f (x)+f (−x)=0f (x)x <0−x >0f (−x)=(−)log 21x f (x)=−(−)log 21x f (0)=0f(x)= ,x >0,log 21x 0,x =0,(−x),x <0.log 2(2)(1)x <0f (x)=(−x)log 2f (−)+3>02x log 2f (−)>−3=f (−)2x log 213>2x 13x >−3log 2(−3,0)log 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合A中只含一个元素1,则下列格式正确的是A.1=AB.0∈AC.1∉AD.1∈A2.集合{x∈N∗|x−2<3}的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合{x∈N|x3=x},用列举法表示为{−1,0,l};②实数集可以表示为{x|x为所有实数}或{R};③方程组{x+y=3,x−y=−1的解集为{x=1,y=2}.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.{(x,y)|x=0,y≠0,或x≠0,y=0}B. {(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为0}5.若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a=____.6.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a为 .7.设方程ax2+2x+1=0(a∈R)的根组成的集合为A,若A只含有一个元素,求a 的值.8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程x=|x|的所有x的值构成的集合B.【能力提升】集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b∈M,设c= a+b,则c与集合M有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又x∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.±√2【解析】由于P,Q相等,故a2=2,从而a=±√2.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组{y=2x+1,y=x+3,的解,解方程组,得{x=2,y=5,∴a为(2,5).7.A中只含有一个元素,即方程ax2+2x+1=0(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为x=-12;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为x1=x2=-1.∴a的值为0或1.【备注】误区警示:初学者易自然认为ax2+2x+1=0(a∈R)是一元二次方程,而漏掉对a的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是A.a≤2B.a≤1C.a≥1D.a≥22.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则A.M =NB.M⊆NC.M⫌ND. M⫋N3.已知集合A={1,−2,x2−1},B={1,x2−3x,0},若A=B,求实数x的值. 4.满足条件{1,2,3}⫋M⫋{1,2,3,4,5,6}的集合M的个数是A.8B.7C.6D.55.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y>0},那么M与P的关系为 .6.含有三个实数的集合,既可表示成{a,ba,1},又可表示成{a2,a+b,0},则a2015+b2016= .7.设集合A={(x,y)|y=2x−1},B={(x,y)|y=x+3},求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N⫋M,求a的取值范围.【能力提升】已知A={x||x−a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵A⊆B,∴a≥22.D【解析】本题考查集合间的基本关系. M={x|x=2k+14,k∈Z}, N={x|x=k+24,k∈Z}={x|x=m4,m∈Z};而{x|x=2k+14,k∈Z}⫋{x|x=m4,m∈Z};即M⫋N.选D.3.由A=B,可得{x2-1=0x2-3x=-2,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C.5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得{a,ba,1}={a2,a+b,0},所以ba=0,即b=0;此时{a,0,1}={a2,a,0},所以a2=1,a=a,且a≠1,解得a=−1.所以a2015+ b2016=−1+0=−1.7.{y=2x−1y=x+3,解得{x=4y=7;所以A∩B={(4,7)}.【解析】本题考查集合的基本运算.8.解:M={x | x2-2x-3=0}={3,-1};∵N⫋M,当N=时,N⫋M成立,N={x | x2+ax+1=0},∴a2-4<0, ∴-2<a<2;当N≠时,∵N ⫋M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -,N={3,},不满足N ⫋M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N ⫋M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又∵A ={a -4,a +4},∴{a -4=1,a +4=2或{a +4=1,a -4=2.这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 的个数为 A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A ∪BB.A ∩BC.(∁U A )∩(∁U B )D.(∁U A )∪(∁U B )3.若集合P={x ∈N |-1<x <3},Q={x|x=2a ,a ∈P },则P ∩Q=A.⌀B.{x|-2<x <6}C.{x|-1<x <3}D.{0,2}4.设全集U=R ,集合M={x|x >1或x <-1},N={x|0<x <2},则N ∩(∁U M )=31031A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P ∩Q={0,2}. 4.B【解析】∁U M={x|-1≤x ≤1},结合数轴可得N ∩(∁U M )={x|0<x ≤1}. 5.12【解析】设两项运动都喜爱的人数为x ,依据题意画出Venn 图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A ∩B={(x ,y )|{x +y =0x −y =2}={(1,-1)}.7.因为A ={x |0<x -m <3},所以A ={x |m <x <m +3}. (1)当A ∩B =⌀时,需{m ≥0m +3≤3,故m =0.即满足A ∩B =⌀时,m 的值为0.(2)当A ∪B =B 时,A ⊆B ,需m ≥3,或m +3≤0,得m ≥3,或m ≤-3.即满足A ∪B =B 时,m 的取值范围为{m |m ≥3,或m ≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A ∪B={x|2≤x<10}. 因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}. (2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2. 【能力提升】A={1,2}.(1)因为A ∪B=A ,所以B ⊆A ,故集合B 中至多有两个元素1,2.而方程x 2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有 ①当a-1=2,即a=3时,B={1,2},满足题意; ②当a-1=1,即a=2时,B={1},满足题意. 综上可知,a=2或a=3.(2)因为A ∩C=C ,所以C ⊆A.①当C=⌀时,方程x 2-x+2m=0无实数解,因此其根的判别式Δ=1-8m <0,即 m >18.②当C={1}(或C={2})时,方程x 2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=18,代入方程x 2-x+2m=0,解得x=12,显然m=18不符合要求.③当C={1,2}时,方程x 2-x+2m=0有两个不相等的实数解x 1=1,x 2=2,因此x 1+x 2=1+2≠1,x 1x 2=2=2m ,显然不符合要求.综上,m >18.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=√xB.y=√xC.y=1xD.y=x 2+12.下列式子中不能表示函数y =f (x )的是 A.x =y 2+1B.y =2x 2+1C.x −2y =6D.x =√y3.函数y=√1−x 2+√x 2−1的定义域是( ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(0,1)D.{-1,1}4.若f (x )满足f (a ∙b )=f (a )+f (b ),且f (2)=p ,f (3)=q ,则f (72)等于 A.p +qB.3p +2qC.2p +3qD.p 3+q 25.若[a,3a −1] 为一确定区间,则 a 的取值范围是 .6.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[f(3)]的值等于 .7.求下列函数的定义域.(1)y=√2x+1+√3−4x;(2)y=1|x+2|−1.8.已知f(x)=x1+x.(1)求f(2)+f(12),f(3)+f(13)的值;(2)求f(2)+f(3)+f(4)+⋯+f(2013)+f(12)+f(13)+f(14)+⋯+f(12013)的值.【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】 1.B【解析】y=√x 的值域为[0,+∞),y=1x的值域为(-∞,0)∪(0,+∞),y=x 2+1的值域为[1,+∞).故选B. 2.A【解析】一个x 对应的y 值不唯一. 3.D【解析】要使函数式有意义,需满足{1−x 2≥0x 2−1≥0,解得x=±1,故选D.4.B【解析】f (72)=f (8×9)=f (8)+f (9)=3f (2)+2f (3)=3p +2q . 5.(12,+∞)【解析】由题意3a -1>a ,则a >12.【备注】误区警示:本题易忽略区间概念而得出3a -1≥a ,则a ≥12的错误.6.2【解析】由图可知f (3)=1,∴f [f (3)]=f (1)=2.【备注】误区警示:本题在求解过程中会因不理解f [f (3)]的含义而出错. 7.(1)由已知得{2x +1≥0⇒x ≥-12,3-4x ≥0⇒x ≤34,∴函数的定义域为[−12,34].(2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1,得x ≠-3,x ≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞). 8.(1)f (2)+f (12)=21+2+121+12=23+13=1, f (3)+f (13)=31+3+131+13=34+14=1. (2)∵f(x)+f (1x)=x1+x+1x1+1x=x 1+x+1x +1=1,∴f (2)+f (3)+f (4)+⋯+f(2013)+f (12)+f (13)+f (14)+⋯+f (12013)=f (2)+f (12)+f (3)+f (13)+f (4)+f (14)+⋯+f (2013)+ f (12013)=1+1+1+⋯+1(共2012个1相加) =2012. 【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0. (2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p, 令a=b=3,得f(9)=f(3)+f(3)=2q, 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知y =f (x )是反比例函数,当x =2 时,y =1,则y =f (x ) 的函数关系式为 A.f (x )=1xB.f (x )=−1xC.f (x )=2xD.f (x )=−2x2.已知函数f (x )={2,x ∈[−1,1],x,x ∉[−1,1],若f [f (x )]=2,则x 的取值范围是A.∅B.[−1,1]C.(−∞,−1)∪(1.+∞)D.{2}∪[−1,1]3.已知函数f(x)={x +1,x ∈[−1,0]x 2+1,x ∈(0,1],则函数f(x)的图象是( )A. B. C. D.4.已知f (x )={3x +1,x ≥0,|x |,x <0,则f[f(−√2)]=A.2B.-2C.3√2+1D.−3√2+15.已知函数f (2x +1)=3x +2,且f (a )=4,则a = . 6.已知函数f (x )对于任意实数x 满足条件f (x+2)=1f(x),若f (1)=-5,则f[f (5)]= .7.已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (x )=0,方程f (x )=x 有两个相等的实数根.求函数f (x )的解析式.8.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0) 左侧的图形的面积为f (t ),试求函数f (t ) 的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设f(x)=kx(k≠0),∵当x=2时,y=1,∴1=k2,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵f(-√2)=|-√2|=√2>0,∴f[f(-√2)]=f(√2)=3√2+1.【备注】无5.7 3【解析】f(2x+1)=3x+2=32(2x+1)+12,∴f(x)=32x+12,∴f(a)=32a+12=4,解得a=73 .6.-15【解析】由已知条件f (x+2)=1f(x)可得f (x+4)=1f(x+2)=f (x ),所以f (5)=f (1)=-5,所以f[f (5)]=f (-5)=f (-1)=1f(−1+2)=1f(1)=-15.7.∵f(x)=ax 2+bx ,且方程f (x )=x 有两个相等的实数根,∴∆=(b -1)2=0,∴b =1,又∵f (2)=0,∴4a +2=0,∴a =-12,∴f(x)=-12x 2+x .8.OB 所在的直线方程为y =√3x .当t ∈(0,1]时,由x =t ,求得y =√3t ,所以f (t )=√32t 2; 当t ∈(1,2]时,f (t )=√3-√32(2−t)2;当t ∈(2,+∞)时,f (t )=√3,所以{√32t 2,t ∈(0,1], √3-√32(2−t)2,t ∈(1,2],√3,t ∈(2,+∞).【能力提升】(1)由题意知y={(x +2)2,x ≥1x 2+2,x <1.(2)f (-3)=(-3)2+2=11, f (1)=(1+2)2=9.(3)若x ≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x 2+2=16,解得x=√14(舍去)或x=-√14.综上可得,x=2或x=-√14.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数f(x)在区间(a,b)上是增函数,在区间(c,d)上也是增函数,则函数f(x)在区间(a,b)∪(c,d)上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A.y=1−2xB.y=−x2+2xC.y=5D.y=√x−13.函数f(x)={x+1,x≥0x−1,x<0,在R上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数f(x)=x2−2(1−a)x+1 在区间(−∞,2]上为减函数,则a 的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数f(x)=axx−1,若2f(2)=f(3)+5.(l)求a 的值.(2)利用单调性定义证明函数f(x)在区间(1,+∞)的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中y=√x-1的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得2×2a2−1=3×a3−1+5,解得a=2.(2)由(1)知f(x)=2xx−1.任取x1,x2∈(1,+∞)且x1<x2,f (x 1)<f (x 2)=2x 1x 1−1−2x 2x 2−1=2x 1(x 2−1)−2x 2(x 1−1)(x 1−1)(x 2−1)=2(x 2−x 1)(x1−1)(x 2−1),因为1<x 1<x 2,所以x 1-1>0,x 2-1>0,x 2-x 1>0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令t (x )=y x=12x +80 000x-200,可以证明t (x )在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x -y =100x -(12x 2-200x +80 000)=−12x 2+300x -80 000=−12(x -300)2-35 000.因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损. 【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,12];单调减区间为(-∞,0)和(12,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设f (x ) 在[-2,-1]上为减函数,最小值为3,且f (x ) 为偶函数,则f (x ) 在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数y =f (x ) 是偶函数,其图象与x 轴有四个交点,则方程f (x )=0 的所有实根之和是 A.4B.2C.1D.03.函数y =f(x)是奇函数,图象上有一点为(a ,f(a)),则图象必过点A. (a ,f(−a))B. (−a ,f(a))C. (−a ,−f(a))D. (a ,1f(a)))4.设f (x )=ax 3+bx −5,其中a ,b 为常数,若f (−3)=7,则f (3)的值为 A.-7B.7C.17D.-175.已知定义在R 上的奇函数f (x ),当x >0 时,f (x )=x 2+|x |−1,那么x <0 时,f (x )= . 6.若函数f (x )=x+abx+1为区间[-1,1]上的奇函数,则a = ;b = .7.作出函数y =|x −2|(x +1)的图象,并根据函数的图象找出函数的单调区间. 8.已知函数f (x )=ax 3+bx 2+cx +d 是定义在R 上的偶函数,且当x ∈[1,2]时,该函数的值域为[−2,1],求函数f (x )的解析式. 【能力提升】已知函数f (x )=-12x 2+x ,是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数的值域恰为[2m ,2n ]?若存在,求出m ,n 的值;若不存在,说明理由.答案【基础过关】 1.D 2.D 3.C【解析】奇函数f (x )满足f (-x )=-f (x),故有f (-a )=-f (a ).因为函数f (x )是奇函数,故点(a ,f (a ))关于原点的对称点(-a ,-f (a ))也在y =f (x )上,故选C. 4.D【解析】∵f(-3)=a(-3)3−3b -5=7, ∴27a +3b =-12, ∴f (3)=27a +3b -5=-17. 5.-x 2-|x |+1 6.0 07.当x -2≥0,即x ≥2时,y =(x -2)(x +1)=x 2-x -2=(x −12)2−94;当x -2<0,即x <2时,y =-(x -2)(x +1)=-x 2+x +2=−(x −12)2+94.所以y ={(x −12)2−94,x ≥2.−(x −12)2+94,x <2.这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中(−∞,12],[2,+∞)是函数的单调增区间;(12,2)是函数的单调减区间.8.由f (x )为偶函数可知f (x )=f (-x ),即ax 3+bx 2+cx +d =-ax 3+bx 2-cx +d ,可得ax 3+cx =0恒成立,所以a =c =0,故f(x)=bx 2+d .当b =0时,由题意知不合题意;当b >0,x ∈[1,2]时f (x )单调递增,又f (x )值域为[-2,1],所以{f(1)=-2,f (2)=1⟹ {b +d =-2,4b +d =1⟹{b =1, d =−3;当b <0时,同理可得{f (1)=1,f (2)=−2⟹ {b +d =1, 4b +d =-2⟹{b =−1,d =2.所以f(x)=x 2-3或f (x )=−x 2+2. 【能力提升】假设存在实数m ,n ,使得当x ∈[m ,n ]时,y ∈[2m ,2n ],则在[m ,n ]上函数的最大值为2n .而f (x )=-12x 2+x =-12(x-1)2+12在x ∈R 上的最大值为12,∴2n ≤12,∴n ≤14.而f (x )在(-∞,1)上是增函数,∴f (x )在[m ,n ]上是增函数,∴{f(m)=2mf(n)=2n,即{−12m 2+m =2m −12n 2+n =2n.结合m <n ≤14,解得m =-2,n =0.∴存在实数m =-2,n =0,使得当x ∈[-2,0]时,f (x )的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简√−x 3x的结果为A.−√−xB.√xC.-√xD.√−x2.计算[(−√2)−2]−12的结果是A.√2B.−√2C.√22D.−√223.设13<(13)b <(13)a<1,则有A.a a <a b <b aB. a a <b a <a bC. a b <a a <b aD. a b <b a <a a4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)√a n n=a(a≥0);(3)(a b)5=a 5b15; (4)√(−3)26=(-3)13.A.1B.2C.3D.45.若10m =2,10n=4,则102m−n 2=.6.已知x=12(2 0131n -2 013−1n ),n ∈N *,则(x+√1+x 2)n 的值为 .7.化简下列各式: (1)(√a 23·√a )÷√a 6;(2)(a 23b 12)·(-3a 12b13)÷(13a 16b56).8.求下列各式的值:(1)2532;(2)(254)−32;(3)√259+(2764)−13-π0.【能力提升】已知x 12+x−12=3,求下列各式的值:(1)x+x -1;(2)x 32+x −32+2x 2+x −2+3.答案【基础过关】 1.A【解析】要使式子有意义,需-x 3>0,故x <0,所以原式=-√-x . 2.A【解析】本题考查指数运算.注意先算中括号内的部分。

相关文档
最新文档