最新小升初奥数试题之工程问题(附答案)
小升初真题特训:工程问题-小学数学六年级下册人教版(有答案 有解析)
小升初真题特训:工程问题-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________一、选择题1.(2020春·全国·六年级小升初模拟)一件工程,甲单独做要6小时,乙单独做要10小时,如果按甲、乙、甲、乙…顺序交替工作,每次1小时,那么需要()小时完成。
A.7B.172C.173D.1742.(2021·四川成都·小升初真题)一项工程甲、乙合作完成了全工程的710,剩下的由甲单独完成,甲一共做了1012天,这项工程由甲单独做需15天,如果由乙单独做,需()天。
A.18B.19C.20D.213.(2020春·湖南·六年级统考小升初模拟)一项工程,甲队单独做15天完成,乙队单独做12天完成.甲乙两队合做4天还余下这项工程的几分之几?正确的解答是()A.320B.35C.25D.37604.(2020·全国·小升初真题)折叠一批纸鹤,甲同学单独折叠需要半小时,乙同学单独折叠需要45分钟,则甲乙两位同学共同折叠需要()分钟.A.12B.15C.18D.205.(2020·北京·小升初真题)如果三台同样的抽水机同时抽水,需要15小时抽干一水池.那么五台这样的抽水机同时开机,抽干这一池水需要()A.3小时B.6小时C.9小时D.12小时二、填空题6.(2022·重庆渝北·校考小升初真题)水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥()吨。
7.(2021春·天津和平·六年级统考学业考试)筑路队修一条路,第一天修了180米,第二天修了余下的29,这时还剩下全长的23没有修.筑路队第二天修了()米.8.(2021.重庆·小升初真题)如图是甲,乙,丙三人单独完成某项工程所需天数统计图,看图填空:(1)甲,乙合作___天可以完成这项工程的75%.(2)先由甲做3天,剩下的工程由丙接着做,还要___天完成.9.(2020·江苏·小升初真题)一项工程甲独做6天完成,乙独做9天完成。
六年级【小升初】小学数学专题课程《工程问题》(含答案)
18.工程问题知识要点梳理一、基本概念1.工程问题:做某件事,制造某种产品,完成某项任务或工程等,都叫做工程问题。
2.工程问题的三个基本量是工作效率、工作时间和工作总量。
(1)工作效率:单位时间内完成的工作量,它是衡量一个人工作快慢的量。
(2)工作时间:完成工作总量所需的时间。
(3)工作总量:完成一项工作的总量。
一般都是把工作总量看做单位“1”。
二、基本数量关系1.一般公式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率甲工效+乙工效=甲乙合作工效之和特别注意:工作量和工作效率都可以直接相加求和,但工作时间不能。
2.巧解工程问题:一般不知道工作总量的时候,我们常常用假设法求解。
我们把工作总量假设为单位“1”,这个巧解方法的公式有:(1)一般给出工作时间,工作效率=1工作时间。
(2)一般给出工作效率1a,就可以知道工作时间为a。
三、基本方法算术方法、比例方法、方程方法。
考点精讲分析典例精讲考点1 简单的工程问题【例1】一件工作,甲单独10天完成,乙单独15天完成,甲乙合做()天完成。
【精析】根据题意,把这件工作总量看作单位“1”,甲的工作效率是110,乙的工作效率是115,甲、乙的工作效率和是110+115,再用工作总量除以工作效率和就等于合作的工作时间。
【答案】 把这件工作总量看作单位“1”, 1÷(110+115)=1÷3+230=1÷16=6(天)【归纳总结】 此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,要求甲乙合做需要多少天可以完成,应求出甲乙工作效率和。
考点2 合作工程问题【例2】 一件工作,甲、乙合作需4小时完成,甲、丙合作需5小时完成,乙、丙合作需6小时完成,乙单独做这件工作需多少个小时完成?【精析】 首先把这件工作看作单位“1”,根据工作效率=工作量÷工作时间,分别求出甲乙、甲丙、乙丙的工作效率,再把它们求和,即可求出三人的工作效率之和的2倍,进而求出三人的工作效率之和是多少;然后用三人的工作效率之和减去甲丙的工作效率,求出乙的工作效率;最后根据工作时间=工作量÷工作效率,用1除以乙的工作效率,求出乙单独做这件工作需多少个小时完成即可。
小学奥数--工程问题(含答案解析)
小学奥数--工程问题一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.122.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.43.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:24.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.35.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.56.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.6007.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.180008.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做个花篮.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?小学奥数--工程问题参考答案与试题解析一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.12【分析】把抽干这一池水的工作量看作单位“1”,先求出每部抽水机的工作效率÷3=,再求出五部这样的抽水机抽干每小时的工作效率=;然后再除工作总量1即可.【解答】解:÷3==1=9(小时)答:五部这样的抽水机抽干这一池水需用9小时.故选:C.【点评】解答本题的关键是求出每部抽水机的工作效率,解答依据是工作时间,工作效率以及工作总量之间数量关系.2.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.4【分析】原计划每天加工80个,需要5天完成,则需要加工零件的总数为80×5=400个,实际工作4天就加工完了,则平均每天加工80×5÷4个,再减去80就是实际每天多加工的零件数.【解答】解:80×5÷4﹣80=100﹣80=20(个)答:实际每天比原计划多加工零件20个.故选:A.【点评】首先根据计划工作时间及每天加工的个数,求出零件总数是完成本题的关键.3.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:2【分析】把工作总量看作“1”,根据工作总量÷工作时间=工作效率,分别求出甲、乙的工作效率,再写出对应的比,根据比的基本性质化成最简整数比.【解答】解:(1÷):(1÷)=5:3答:甲与乙的工作效率比是5:3.故选:B.【点评】掌握工作总量÷工作时间=工作效率是解决此题的关键.4.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.3【分析】把这项工作的量看作单位“1”,先依据工作时间=工作总量÷工作效率,求出两根排水管合做需要的时间(求得的时间是带分数),由于两根排水管是轮流工作1小时,那么两根排水管轮流工作的时间就是所得的带分数整数部分,然后依据工作总量=工作时间×工作效率,求出两根排水管轮流工作完成的工作量,再求出剩余的工作量,依据工作时间=工作总量÷工作效率,求出甲最后完成需要的时间,最后加两根排水管轮流工作的时间即可解答.【解答】解:甲的工作效率为,乙的工作效率为,所以甲乙各排水3小时后一共完成,还剩下1﹣=,甲排水管只需再需排水1小时可全部完成,所以一共需要2×3+1=7小时.故选:A.【点评】解答本题的关键是求出两根排水管轮流工作的时间,解答的依据是等量关系式:工作时间=工作总量÷工作效率.5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.5【分析】根据题意,甲每小时能完成这件工作的,乙每小时能完成这件工作的,丙每小时能完成这件工作的,要完成这件工作的,用除以他们每小时的效率之和即可.【解答】解:÷()=÷=4=3答:三人合做3小时可以完成这件工作的.故选:B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时把工作总量看做单位“1”,要完成工作的,再利用它们的数量关系解答即可.6.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.600【分析】总棵数1000+1250=2250棵不变,由甲、乙、丙去植树,每天能植树28+32+30=90棵,用2250除以90求出共同工作的时间,再乘甲每天的工作效率,求出甲共植树的棵数,再用1000减去它就是丙在A地植树的棵数.【解答】解:(1000+1250)÷(28+32+30)=2250÷90=25(天)1000﹣28×25=1000﹣700=300(棵)答:丙在A地植树300棵.故选:B.【点评】此题解答思路:先求出A、B两地植树需要的时间,再求出甲在A地植树的棵数,进而求出丙在A地植树的棵数,进一步解决问题.7.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.18000【分析】前一半时乙的工作量是甲的2 倍,所以后一半甲应是乙的2倍.后来甲乙的工作效率比3:2,甲后来应为4 份,乙应为2 份,说明乙休息5分钟时甲打了1 份,把后一半工作量分为6 份,这一份的量是100×3×5=1500字,故总工作量是12份即可求解.【解答】解:前一半甲乙的工作效率比是100:200=1:2,完成一半的工作总量,甲乙两人的工作量比是工作效率比即1:2,甲完成工作总量的,乙完成工作总量的,在后一半的工作中需要甲的总量是乙的2倍,后来甲乙的效率比为3:2,说明乙休息是甲完成了一份量所以甲的总量是4份,乙的总量是2份,也就是甲在5分钟完成300×5=1500(个),后来甲4份乙2份,占一半,总共份数为12份,1500×12=18000.故选:D.【点评】找到两人的工作倍数关系是本题的关键,同时设份数法是常用方法,结合比例问题.8.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15【分析】把一项工程的工作量看作单位“1”,由两队合作正好6天完成,可以求出两队的工作效率和为,甲的工作效率为,由此求得乙的工作效率,再进一步利用工作总量÷工作效率=工作时间解决问题.【解答】解:1÷(﹣)=1÷=9(天);答:乙队单独完成这项工程需要9天.故选:A.【点评】此题主要利用工作总量、工作时间、工作效率三者之间的关系解决问题.二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?【分析】把全部工作量看作“1”,则甲的工作效率为,乙的工作效率为;设甲做了x天,则乙就做了14﹣x天,由工作效率×工作时间=工作量,可得方程:x+(14﹣x)=1.【解答】解:设甲做了x天,则乙就做了14﹣x天,可得方程:x+(14﹣x)=1+﹣=1,=,x=8;答:甲先做了8天.【点评】本题是据工作效率×工作时间=工作量这一基本关系式设未知数来解决的.10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?【分析】把一桶水饮用量看作单位“1”,一只小鸭每天可以饮用它的,小鸡和小鸭的一天的饮用量是这通水的,所以小鸡一天的饮用量是﹣,用单位“1”除以(﹣),就是小鸡饮用的天数.【解答】解:1÷(﹣)=1÷=100(天);答:可以饮用100天.【点评】本题运用运用工效问题的解答方法进行解答,把一桶水的饮用量看作单位“1”,再运用工作总量除以工作效率等于工作时间进行解答即可.11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做7个花篮.【分析】先求出原来每天做多少个;再求出剩下了总数量,然后用剩下的总数量除以后来工作的天数,就是后来每天做的个数;然后用后来每天做的个数减去原来每天做的个数就是平均每天需要多做的个数.【解答】解:40÷5=8(个);(70﹣40)÷2,=30÷2,=15(个);15﹣8=7(个);答:每天比原来平均多做7个花篮.故答案为;7.【点评】本题利用工作效率=工作量÷工作时间求出两部分的工作效率,再用后来的工作效率减去原来的工作效率即可.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?【分析】设计划每天生产化肥x吨,实际每天生产x+2.5吨,根据原计划每天生产化肥的吨数×原计划的天数=实际每天生产化肥的度数×实际生产的天数,列出方程解答即可列式为:12x=9×(x+2.5),解答即可.【解答】解:设计划每天生产化肥x吨,实际每天生产x+2.5吨,12x=9×(x+2.5)12x=9x+22.512x﹣9x=22.53x=22.5x=7.5答:实际每天生产化肥7.5吨.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?【分析】把水池的容积看作单位“1”,12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,由此求出8个注水管每小时的工作效率,然后根据工作量÷工作效率=工作时间,据此列式解答.【解答】解:12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,那么8个注水管每小时注水:=,所以1(小时);答:用8个注水管注水,需要72小时注满水池.【点评】把水池的容积看作单位“1”,关键是求出8个注水管每小时的工作效率,再根据工作量÷工作效率=工作时间进行解答.。
10道小学奥数工程问题及答案解析
10道小学奥数工程问题及答案解析一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。
两队合作需要多少天完成?二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。
如果两队合作,多少天能修完这条公路的一半?三、题目3一项工程,甲队独做15天完成,乙队独做10天完成。
甲队先做5天后,乙队加入,两队合作还需多少天完成?一条水渠,甲队修建需要25天,乙队修建需要20天。
如果两队同时从两端开始修建,多少天能相遇并修完整条水渠?五、题目5一项工程,甲队独做需要18天完成,乙队独做需要24天完成。
如果甲队先做3天后,乙队加入,两队合作还需要多少天才能完成?六、题目6一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。
如果两队合作,需要多少天才能完成这项工程?一条公路,甲工程队修建需要20天,乙工程队修建需要30天。
如果两队从两端同时开始修建,多少天能修完整条公路?八、题目8一项工程,甲队独做12天完成,乙队独做15天完成。
甲队先做3天后,乙队加入,两队合作还需多少天完成?九、题目9修建一条水渠,甲队独做需要20天,乙队独做需要25天。
两队合作5天后,甲队离开,乙队还需多少天才能完成?十、题目10一个水池有甲、乙两个进水管,单开甲管15小时可将水池注满,单开乙管20小时可将水池注满。
如果两管同时打开,多少小时可以注满水池的3/4?以下是答案一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。
两队合作需要多少天完成?答案:6.67天,约等于7天(因为天数不能为小数,所以向上取整)解析:甲队每天完成工程的1/12,乙队每天完成工程的1/15。
两队合作每天完成的工程比例为1/12 + 1/15 = 9/60 = 3/20。
因此,两队合作完成整个工程需要的时间为1 / (3/20) = 20/3天,约等于6.67天,向上取整为7天。
二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。
六年级下册数学试题 小升初专题《工程问题》全国通用 (含答案解析)
小升初专题数学第17讲工程问题一、知识地图二、基础知识在日常生活中,做某件事,制造某种产品,完成某项任务或工程等等,都要涉及到工作总量、工作效率、工作时间这三个量之间的关系。
在小学数学中,研究这三个数量之间关系的应用题,我们都叫做“工程问题”。
(一)工程问题的基本数量关系工作效率工作时间工作总量1)⨯=工作总量工作时间=工作效率÷工作总量工作效率工作时间÷=甲工效+乙工效=甲乙合作工效之和一件工程-已完成的部分=未完成的部分上面这些数量关系式在题目中给出(或间接给出)工作总量和工作效率的具体数量情况下,进行解题用的。
2)“1”的引入如果题目中没有给出工作总量具体的数量,也没有给出工作效率的具体数量,那么我们通常把工作总量看做单位“1”,工作效率用单位时间内能完成总工作量的几分之一或几分之几来表示。
我们把工程问题中的工作总量用“1”表示,工作效率用分率表示,这种方法不妨称为“工程习惯”。
(二)工程问题分类及解法分析1、简单的工程问题:利用基本数量关系求解,一定要把分数的意义和工程问题紧密结合起来,这样才能明白在没有准确数据的情况下,工作效率的含义。
2、工程与行程的问题:在解答这类问题时,通常题目中没有直接给出路程、速度和时间,需要你把它转化成工作总量、工作效率和工作时间来思考。
注意:1)将路程看作“1”2)1,vt利用行程问题解答3、复杂工程问题:这类问题中有的问题具有特殊性与周期性问题有关,有的与实际问题有关,如水管问题。
水管问题的图表法解答(具体见例1)1)如果题目中涉及多个人,例如,甲、乙、丙三人;2)题目中可求的工效仅仅只是其中几个人的合工效,如,甲乙合工效,乙丙合工效,甲丙合工效。
3)这一类题目可以利用图表法例:2)在甲、乙、丙……对应的下行内画上“√”。
例如:第一行表示甲、乙合干需三天。
3)“合计”中,计算甲“√”个数,乙“√”个数……以及工作效率的和。
4)甲、乙、丙“√”个数均为x个,工作效率和为A,则甲、乙、丙……合作工效为A。
小升初奥数工程问题练习题+公式及例题讲解+几何图形
小升初奥数工程问题练习题+公式及例题讲解+几何图形小升初奥数工程问题练习题1,老刘和小李合作一件工作,要12天完成。
如果让老刘先做8天,剩下的工作由小李单独做,小李还要14天才能完成。
小李单独做这件工作需多少天才能完成?2,抄一份书稿,甲每天的工作效率等于乙、丙二人每天工作效率的和,丙的工作效率相当于甲、乙每天工作效率和的1/5。
如果三人合抄,只需8天就完成了。
问乙一人单独抄需要多少天才能完成?3,甲、乙两人共同加工一批零件,8小时可以完成任务。
如果甲单独加工,需要12小时完成。
现在甲、乙两人共同加工了2.4小时后,甲被调出做其他工作,由乙继续加工了420个零件才完成任务。
问乙一共加工零件多少个?4,制造一批零件,按计划18天可以完成它的1/3。
如果工作4天后,工作效率提高了1/5,完成这批零件的一半,一共需要多少天?5,一批零件,由师傅单独做,需要5小时完成;由徒弟单独做,需要7小时完成;两人合做,完成任务时师傅做的零件比总数的一半还多18个。
这批零件共有多少个?6,一个装满了水的水池有一个进水阀及三个口径相同的排水阀。
如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完;如果同时打开进水阀和两个排水阀,则10分钟把水排完。
问:关闭进水阀并且同时打开三个排水阀,需要几分钟可以排完水池的水?7,师徒三人合作承包一项工程,4天能够全部完成。
已知师傅单独做所需天数与两个徒合做所需的天数相等,师傅与乙徒弟合做所需天数的2倍与甲徒弟单独完成所需的天数相等。
那么甲徒弟单独做,完成这项工程需要多少天?乙徒弟单独做,完成这项工程需要多少天?8,甲管注水速度是乙管的一半,同时开放甲、乙两个水管向游泳池注水,12小时可以注满。
现在先开甲管向游泳池注水若干小时,剩下的由乙管注9小时将游泳池注满。
问:甲管注水的时间是多少小时?小升初奥数工程问题练习题答案1. 小李单独做完这件工作需要18天。
2. 乙一人单独抄需要24天才能完成。
小升初工程类题目(含答案)
欢迎共阅工程、百分比、工程类【例题1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?答案:甲60天;乙20天【例题2】一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2答案:1.5天【例题7】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?答案:6天【例题8】如图,有一个正方体水箱,在某一个侧面相同高度的地方有三个大小相同的出水孔.用一个进水管给空水箱灌水,若三个出水孔全关闭,则需要用1个小时将水箱灌满;若打开一个出水孔,则需要用1小时5分钟将水箱灌满;若打开两个出水孔,则需要用72分钟将水箱灌满.那么,若三个出水孔全打开,则生人数之比是3:4问报考的共有多少人?答案:119人【例题2】有甲、乙两块含铜率不同的合金,甲块重6千克,乙块重4千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为________.答案:2.4千克。
【例题3】某体育用品商店进了一批篮球,分一级品和二级品.二级品的进价比一级品便宜20%.按优质优价的原则,一级品按20%的利润率定价,二级品按15%的利润率定价,一级品篮球比二级品篮球每个贵14元.一级品篮球的进价是每个多少元?答案:50元。
【例题4】两辆汽车运送每包价值相同的货物通过收税处。
押送人没有带足够的税款,就用部分货物充当税款。
第一辆车载货120包,交出了10包货先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?答案:3114小时 3、A 、B 、C 、D 、E 五个人干一项工作,若A 、B 、C 、D 、四人一起干需要6天完成;若B 、C 、D 、E 四人一起干需要8天完工;若A 、E 两人一起干需要12天完工.那么,若E 一人单独干需要几天完工?答案:48天。
小学奥数试题---工程问题
工程问题例1: 一项工程,甲、乙两人合作36天完成,乙、丙两人合作45天完成, 甲、丙两人合作60天完成。
甲、乙、丙单独做,各需要多少天完成?2 -(1 1 ++丄[=30(天),甲:1斗1 1;=90(天),乙:1十广1-1 1=60 <36 4560丿<30 45 丿<3060丿(天),丙:1斗(1〔、-1 1=180 (天) (30 36 丿例2: —项工作,甲组3人8天能完成,乙组4人7天也能完成。
现在由甲组2人和乙组7人合作,多少天可以完成这项工作?'1 11* 汉2 + <7 1=3 (天)\3^84疋7 丿例3:甲组6人15天能完成的工作,乙组5人12天也能完成。
乙组7人8 天能完成的工作,丙组3人14天也能完成。
一项工作,需要甲组9人4天完成。
如果由丙组派人10天完成,丙组应该派多少人?甲组的工效:」1,乙组的工效:—1,6 15 90 5"2 601 1丙组的工效:X7X 8*3* 14=-,60 451 1—X 9X 4*(一X10)=1.8"2 (人)90 45例4:单独完成一项工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。
如果甲、乙两人合做2天后,剩下的由乙单独做,那刚好在规定时间内完成。
甲、乙两人合做需要多少天完成?分析:解法(一):说明甲做2天的相当于乙做3天的,甲、乙合做2天后,剩下的乙单独做,在规定时间内完成。
乙比甲多用5天,设甲的工效为丄,乙x1 1 1的工效为----- 根据甲做2天等于乙做3天列方程得:- X 2= ------------ X3,解之得:x十5 x x十51 1x=10,乙为15 天,1*()=6 (天)10 15分析:解法(二):甲做2天的工作量,乙要做3天,甲提前2天,乙超过23天,相差5天,把乙做的天数看作“ T,甲用的天数相当于乙的-,32 2乙用的天数:(2+3)*(1— - )=15 (天),甲用的天数:15X - =10 (天),3 31 1"(10 15)=6(天)例5:单独完成某项工作,甲需要9小时,乙需要12小时。
(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)
(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)1.某修路队修好一条路,第一天修了全长的14;第二天修了余下的13,正好是150米。
这条路长多少米? 【答案】600米【解析】【详解】(1-14)×13=14150÷14=600(米) 答:这条路长600米。
2.一条公路,如果由甲队单独修,24天可以修完;如果由乙队单独修,36天可以修完,现在由乙队先修6天,剩下的由两队合修,还要多少天可以修完?【答案】12天【解析】【详解】÷=÷ =12(天)3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?【答案】35【解析】把一池水的水量看为单位 “1”,5小时甲乙两个水管共注水1195201616⎛⎫+⨯= ⎪⎝⎭,离注满还有716,这时打开丙管,则注满水池需要的时间为711116201610⎛⎫÷+- ⎪⎝⎭。
【详解】11111152016201610⎡⎤⎛⎫⎛⎫-+⨯÷+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ =716÷180=35(小时)答:水池注满还需要35小时。
【点睛】本题考查工程问题,此类问题需要掌握工作效率、工作时间和工作总量之间的基本关系:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4.修一条路,甲工程队单独修需要20天,乙工程队单独修需30天,先由甲单独修5天,再由甲、乙两个工程队合修,还需多少天完成?【答案】9天【解析】【详解】1÷20=1 201÷30=1 30(1-120×5)÷(120+130)=9(天)答:由甲单独修5天,再由甲、乙两个工程队合修,还需9天完成.5.某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需要48天完成。
小升初奥数专题讲义-第15讲工程问题(二)(学习目标+温故知新+巩固练习)
第15讲工程问题(二)【学习目标】1、掌握周期工程问题的特征周期工程周期工程问题中,工作时工作人员(或物体)是按一定顺序轮流交替工作的。
解答时,首先要弄清一个循环周期的工作量,利用周期性规律,使复杂的问题迅速地化难为易。
其次要注意最后不满一个周期的部分所需的工作时间,这样才能正确解答。
抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案。
【温故知新】例1:一项工程,甲单独做需要12小时,乙单独做需要18小时。
若甲做1小时后乙接替甲做1小时,再由甲接替乙做1小时……两人如此交替工作,问完成任务时需共用多少小时?【答案】把2小时的工作量看做一个循环,先求出循环的次数。
①需循环的次数为:1÷(112+118)=365>7(次)②7个循环后剩下的工作量是:1-(112+118)×7=136③余下的工作两还需甲做的时间为:136÷112=13(小时)④完成任务共用的时间为:2×7+13=1413(小时)答:完成任务时需共用1413小时。
举一反三1:1、一项工程,甲单独做要6小时完成,乙单独做要10小时完成。
如果按甲、乙;甲、乙……的顺序交替工作,每次1小时,需要多少小时才能完成?2、一项工作,甲单独完成要9小时,乙单独完成要12小时。
如果按照甲、乙;甲、乙……的顺序轮流工作,每人每次工作1小时,完成这项工程的23共要多少时间?【答案】1、(1)需循环的次数1÷(16+110)=154>3(2)3个循环后剩下的工作量1-(16+110)×3=15(3)最后由乙做的时间(15-16)÷110=13小时(4)需要的总时间2×3+1+13=713小时2、(1)需循环的次数2 3÷(19+112)=247>3(2)3个循环后剩下的工作量2 3-(19+112)×3=112(3)最后由乙做的时间1 12÷19=34小时(4)需要的总时间2×3+34=634小时例题2:一项工程,甲、乙合作2263天完成。
六年级数学试题-小升初专题训练-第12节:工程问题 人教课标版 (含答案)
第12节:工程问题1. 工程问题基本公式:工作量=工作效率×工作时间;工作时间=工作量÷工作效率;工作效率=工作量÷工作时间2理解“单位1"的概念并灵活应用.3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔梳理工作过程、灵活运用基本数量关系.4工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量.【例1】如图表示甲、乙、丙三个工人单独完成一项工程各自所需的天数,若选择两位效率较高的合作()天可以完成那个全部工程的7 10。
【例2】单独把水池的水注满,甲水管要用2小时,乙水管要用3小时。
如果两水管同时注水()小时可以注满水池的23。
A.45B.23C.56D.65【例3】一项工程,甲队独做10天完成,已知甲队2天的工作等于乙队3天的工作量,两队合作()天完成.1.判断题(1)做同一工作,甲单独做要14小时,乙单独做要15小时,则甲比乙做得慢。
()(2)一项工程,20人去做,15天完成;如果30人去做,10天就可以完成。
()(3)做一批零件,甲单独做要4小时完成,乙要5小时完成,乙与甲的工作效率的最简整数比是5:4。
()2.一项工程,甲、乙合作6天完成,甲独做10天完成,乙独做()天完成。
3.生产一个零件,甲用5分钟,乙用8分钟,他们同时开工,合作生产零件78个,其中甲做了()个。
A.40B.44C.484.一项工程,甲单独做要a小时,乙单独做要b小时,则甲、乙合作需要时间为()模块一:基本公式应用A.11a b + B.1ab C.aba b+ 5.一项工程,甲单独完成需要10天,乙单独3天完成15,甲、乙两人的工作效率的比为 ,如果两人合作, 天可以完成该工程的一半。
最常见的工程问题, 基本思路是根据工作过程计算效率, 通过对效率的分析计算时间。
(1)基本工程问题:关键在于效率的计算;(2)中途离开或加入型:算清楚每个人工作的时间或合作时间即可; (3)来回帮忙型:先利用每个人都在干活算出总时间, 再根据总时间算每个人具体的工作安排【例1】生产一批帽子, 甲、乙二人合作需15天完成. 现由甲先单独工作5天, 再由乙单独工作3天后还剩这批帽子的34没完成. 若甲每天比乙少加工4个帽子, 则这批帽子共有多少个?【例2】—项工程,甲单独做24小时完成, 乙单独做36小时完成,现在要求20小时完成,并且两人合作的时间尽可能少,那么甲乙合作多少小时?【例3】甲乙丙共同修建一套房子,2天完成了全部工作的三分之一,然后甲休息了6天,乙休息了2天,丙没有休息。
小学数学小升初数学工程问题所有类型题齐全了拿分技巧(图文结合)详解04
小升初数学
工程问题
小升初数学
工程问题——基础题
例1 单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两 队合干50天后,剩下的工程乙队干还需多少天?
详解
小升初数学
工程问题——基础题
例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工 时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天 才完成任务。问:甲队干了多少天?
详解
小升初数学
工程问题——中等难度
例5某工程由一、二、三小队合干,需要8天完成;由二、三、四小队 合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、 三、四、一、二、三、四、……的顺序,每个小队干一天地轮流干,那么 工程由哪个队最后完成?
详解
小升初数学
工程问题——中等难度
详解
小升初数学
工程问题——中等难度
分析与解:把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完 成的总工作量都相同。所以三种顺序前面若干轮完成的工作量及用的天数都相同(见 下图虚线左边),相差的就是最后一轮(见下图虚线右边)。
详解
小升初数学
工程问题高难度
工程问题的常见类型
1.基本效率计算 2.中途离开或加入型 3.来回帮忙型 4.具有周期性的工程问题 5.水管问题和牛吃草问题
详解
小升初数学
工程问题——基础题
例6甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙 需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了 5分钟。甲再出发后多长时间两人相遇?
分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用 时间、路程、速度三者的关系来解答。甲出发5分钟后返回,路上耽误10分钟, 再加上取东西的5分钟,等于比乙晚出发15分钟。我们将题目改述一下:完成一 件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时 间?由此看出,这道题应该用工程问题的解法来解答。
小升初工程问题奥数题
小升初工程问题奥数题1.小升初工程问题奥数题篇一1、装配车间的师徒两人加工同样多的零件,当师傅完成一半时,徒弟完成120个,当师傅完成任务时,徒弟完成4/5。
这批零件多少个?2、一项工程,甲独做需10天,乙独做需15天,如果两人合作,要求8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?3、一项工程,甲、乙、丙三人合作需要13天完成。
如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天。
问这项工程由甲独做需要多少天?4、筑路队预计30天修一条公路,先由18人修12天只完成全部工程的1/3。
如果想提前6天完工,还需要增加多少人?5、加工一批零件,甲、乙合作24天可以完成。
现在由甲先做16天,然后乙再做12天,还剩下这批零件的2/5没有完成。
已知甲每天比乙多加工3个零件,求这批零件共多少个?2.小升初工程问题奥数题篇二1、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2、修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3、一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4、一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5、师徒俩人加工同样多的零件。
小学数学小升初数学工程问题所有类型题齐全了拿分技巧(图文结合)详解04
详解
小升初数学
工程问题——中等难度
例1一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先 做20天,那么乙接着做8天可完成。如果甲、乙合做,那么多少天可以完 成? 从上图可直观地看出:甲15天的工作量和乙12天的工 作量相等,即甲5天的工作量等于乙4天的工作量。于 是可用“乙工作4天”等量替换题中“甲工作5天”这 一条件,通过此替换可知乙单独做这一工程需用 20+4=24(天)
详解
小升初数学
工程问题——中等难度
例5某工程由一、二、三小队合干,需要8天完成;由二、三、四小队 合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、 三、四、一、二、三、四、……的顺序,每个小队干一天地轮流干,那么 工程由哪个队最后完成?
详解
小升初数学
工程问题——中等难度
详解
小升初数学
分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两 队合干需多少天?”这样一来,问题就简单多了。
详解
小升初数学
工程问题——基础题
例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三 个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工 程。问:甲队实际工作了几天?
小升初数学
典型例题
详解
小升初数学
典型例题
例题2 甲、乙两位老师一起批改试卷,甲单独批改需要20小时,乙单独批 改需要15小时.现在两个人一起批改,由于批改时会相互影响,每小时共 少批改30张试卷,结果用9小时批改完.那么这批试卷共多少张?
详解
小升初数学
典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数试题之工程问题(附答案)
是□否□
(1)位置的优越性(一)DIY手工艺品的“多样化”
9、如果你亲ቤተ መጻሕፍቲ ባይዱ朋友送你一件DIY手工艺制品你是否会喜欢?
300元以下□ 300~400元□ 400~500□ 500元以上□为此,装潢美观,亮丽,富有个性化的店面环境,能引起消费者的注意,从而刺激顾客的消费欲望。这些问题在今后经营中我们将慎重考虑的。
经常光顾□偶尔会去□不会去□
我们熟练的掌握计算机应用,我们可以在网上搜索一些流行因素,还可以把自己小店里的商品拿到网上去卖,为我们小店提供了多种经营方式。
功能性手工艺品。不同的玉石具有不同的功效,比如石榴石可以促进血液循环,改善风湿和关节炎;白水晶则可以增强记忆力;茶晶能够帮助镇定情绪,缓解失眠、头昏等症状。顾客可以根据自己的需要和喜好自行搭配,每一件都独一无二、与众不同。