必修(5)--单元测试三 不等式
2024-2025学年高一数学苏教版必修第一册单元测试:第3章 不等式(含解析)
2024-2025学年高一数学苏教版必修第一册单元测试:第3章 不等式一、选择题1.已知,,则( )A. B.C. D.P,Q 的大小与x 有关在R 上恒成立,则实数a 的取值范围为( )A. B. C. D.3.已知正实数a 、b 满足,则4.已知函数在上恒成立,则实数a 的取值范围是( )A. B. C. D.5.已知函数,若对任意的实数x,恒有成立,则实数a 的取值范围为( )A. B. C. D.6.“不等式在R 上恒成立”的充要条件是( )A.D.7.设,,,的大小关系是( )A. B. C. D.8.若,则下列不等式正确的是( )[)2,+∞22P x =+43Q x =+P Q >P Q<P Q =b ad bc d =-2x ax->3,2⎛⎤-∞ ⎥⎝⎦3,2⎛⎫-∞ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭3,2⎡⎫+∞⎪⎢⎣⎭2222e e e e a b a b ---+=+a ()23,033,x x f x x x ⎧-≤=⎨->⎩)0x ax +≥[]1,2x ∈-[]2,0-(][),20,-∞-+∞ []0,2(2()ln e 1xf x x =-+()2(1)2f ax x f x -+-+<()0,+∞[)0,+∞()1,+∞[)1,+∞20x x m -+>m ><1<1m >1a b >>1y =2y =3y =1y 2y 3y 123y y y <<213y y y <<321y y y <<231y y y <<0b a <<二、多项选择题9.已知正数a ,b 满足,则下列说法一定正确的是( )A. B. C. D.10.已知关于x 的不等式的解集是,则( )A. B. C. D.11.若,且,则( )的最小值为三、填空题12.已知命题p :“不等式有解”为真命题,则a 的取值范围是__________.13.定义表示x ,y 中的最小者,设函数,若14.已知,四、解答题15.已知a ,b,c 均为正数,若,求证:(2).16.已知关于x 的不等式.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于,不等式恒成立,求实数x 的取值范围.>a <1a>22a b ab +=4a b +≥24a b +≥2ab ≥2248a b +≥()22320a x x --->{}12x x x x <<1213x x -<<<122x x +=123x x <-214x x -<0a >0b >1a b +=6a 3-+2320x x a ++≤min{,}x y {}2()min 33,3|3|f x x x x =-+--()f x >m n +=0>n >+1a b c ++=+≤()33323a b c ab bc ac abc ++≥++-244x mx x m +>+-04m ≤≤17.已知,,且.(1)求ab 的最小值;(2)求的最小值.18.用篱笆在一块靠墙的空地围一个面积为的等腰梯形菜园,如图所示,用墙的一部分做下底,用篱笆做两腰及上底,且腰与墙成,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.19.已知.(1)若a 与b 均为正数,求的最大值;的最小值.0a >0b >0a b ab +-=23a b +2AD 60︒2284a b +=ab 22b参考答案1.答案:D解析:由题意可得,当即,当即,当即,故P、Q的大小与x有关.故选:D.2.答案:C等价于,即,所以,解得等价于,即.因为,所以,所以3.答案:A解析:由题,构造函数,则,显然在R上单调递增,所以,即所以,当且仅当时等号成立.所以故选:A.4.答案:C解析:当时,,即,当恒成立。
高中新课标人教A版必修5第三章单元测试题(含答案)
第二周周末练习题13.9.13一、选择题1、若,0<<b a 下列不等式成立的是 ( )A 22b a <B ab a <2 C1<a b D ba 11< 2、若,,n m y x >>下列不等式正确的是 ( )A x m y n ->-B xm yn > Cx yn m> D m y n x ->- 3、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}4、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00a B ⎩⎨⎧<∆>00a C ⎩⎨⎧>∆<00a D ⎩⎨⎧<∆<0a5、下列不等式的证明过程正确的是 ( )A 若,,R b a ∈则22=⋅≥+b aa b b a a b B 若+∈R y x ,,则y x y x lg lg 2lg lg ≥+ C 若,-∈R x 则4424-=⋅-≥+xx x x D 若,-∈R x则222x x -+>= 6. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1167.已知f(x)=x+1x-2(x<0),则f(x)有 ( )A 最大值为0B 最小值为0C 最大值为-4D 最小值为-4 8、不等式21≥-xx 的解集为 ( )A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞9、设,0>>y x 则下列各式中正确的是 ( )A y xy y x x >>+>2 B x xy yx y >>+>2 C xy y y x x >>+>2 D x xy yx y >≥+>210.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化11.一元二次不等式220ax bx ++>的解集是(21-,31),则a b +的值是 ( ) A .10B .10-C .14D .14-12.函数f (x )=⎩⎪⎨⎪⎧x (x >1),-1(x ≤1),则不等式xf (x )-x ≤2的解集为 ( )A.[]-2,2B.[]-1,2C.(]1,2D.[]-2,-1∪(]1,2二、填空题13.已知13,25,x y -<<<<则2x y -的取值集合是 14.关于x 的不等式x 2-(a +a 1+1)x +a +a1<0(a >0)的解集为___________. 15.当x 2-2x<8时,函数y=2x -x-5x+2的最小值是 .16、已知:0<x <1,则函数y=x (3-2x )的最大值是___________ 三、解答题 17.解下列不等式(1)-x 2+2x -23>0; (2)log 12(x 2-2x -15)>log 12(x +13)18、已知+∈R c b a ,,,且1=++c b a ,求证9111≥++cb a19、已知正数y x ,满足12=+y x ,求yx 11+的最小值有如下解法:解:∵12=+y x 且0,0>>y x .∴242212)2)(11(11=⋅≥++=+xy xyy x y x y x ∴24)11(min =+yx . 判断以上解法是否正确?说明理由;若不正确,请给出正确解法.20.(2012·福州模拟)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的 利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?21、已知函数3222)(a b x a ax x f -++=,当)6()2(∞+--∞∈,, x 时,0)(<x f ;当)62(,-∈x 时,0)(>x f 。
《不等式》单元测试卷(含详解答案)
试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。
高三数学第一轮复习单元测试题—不等式
金太阳教育网 高三数学第一轮复习单元测试题—不等式一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x 是实数,则“x >0”是“|x |>0”的 ( ) A.充分而不必要条件 B.必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知不等式1()()9a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( )A.8 B.6 C .4D .23.(文)命题p :若a 、b ∈R ,则|a |+|b |>1是|a +b|>1的充分而不必要条件; 命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .p 假q 真C .p 真q 假D .“p 且q ”为真(理)设偶函数f (x )=log a |x -b |在(-∞,0)上递增,则f (a +1)与f (b +2)的大小关系是( ) A .f (a +1)=f (b +2) B .f (a +1)>f (b +2)C .f (a +1)<f (b +2)D .不确定4.(文)若011<<ba ,则下列不等式 ①ab b a <+;②|;|||b a >③b a <;④2>+b a a b中,正确的不等式有 ( )A .0个B .1个C .2个D .3个(理)某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x 的函数关系为),(11)6(2*∈+--=N x x y 则每两客车营运多少年,其运营的年平均利润最大( )A .3B .4C .5D .65.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为 ( ).A 2 .B 3 .C 4 .D 5 6.函数f (x1x + ( ).A 25.B 12.C 2.D 17. 设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 ( )A .||||||c b c a b a -+-≤-B .aa aa 1122+≥+C .21||≥-+-ba b a D .a a a a -+≤+-+2138.(文)实数满足,sin 1log 3θ+=x 则91-+-x x 的值为( )A .8B .-8C .8或-8D .与θ无关(理)已知y x c c y c c x c ,,1,1,1则且--=-+=>之间的大小关系是( )A .y x >B .y x =C .y x <D .y x ,的关系随c 而定9.(文)若函数)(x f 是奇函数,且在(+∞,0),内是增函数,0)3(=-f ,则不等式0)(<⋅x f x 的解集为( ) A .}303|{><<-x x x 或 B .}303|{<<-<x x x 或C .}33|{>-<x x x 或D .}3003|{<<<<-x x x 或(理)若)(x f 是偶函数,且当0)1(,1)(,),0[<--=+∞∈x f x x f x 则时的解集是( ) A .(-1,0) B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)10.若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的取值范围是( )A .0B . –2C .-52D .-311.某商场的某种商品的年进货量为1万件,分若干次进货,每次进货的量相同,且需运费100元,运来的货物除出售外,还需租仓库存放,一年的租金按一次进货时的一半来计算,每件2元,为使一年的运费和租金最省,每次进货量应为 ( )A .200件B .5000件C .2500件D .1000件12.不等式,011<-+-+-ac cb ba λ对满足c b a >>恒成立,则λ的取值范围是( )A .(]0,∞-B . ()1,∞-C .(]4,∞-D .()+∞,4二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.(文)b 克盐水中,有a 克盐(0>>a b ),若再添加m 克盐(m >0)则盐水就变甜咸了,试根据这一事实提炼一个不等式 . (理)已知三个不等式①ab >0 ② ac >bd ③bc >ad 以其中两个作条件余下一个作结论,则可组 个正确命题.14.若记号“*”表示求两个实数a 与b 的算术平均数的运算,即a *b =2b a +,则两边均含有运算符号“*”和“+”,且对于任意3个实数,a 、b 、c 都能成立的一个等式可以是_________. 15.设a >0,n ≠1,函数f (x ) =alg(x 2-2n +1)有最大值.则不等式log n (x 2-5x +7)>0的解集 为__ _.16.设集合{()||2|},A x y y x =-1,≥2{()|||}B x y y x b =-+,≤,A B ≠∅ .(1)b 的取值范围是 ;(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b 的值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)(文科做)比较下列两个数的大小: (1);与3212-- (2)5632--与;(3)从以上两小项的结论中,你否得出更一般的结论?并加以证明 (理科做)已知:[]1,0...∈d c b a()()()()d c b a N d c b a M ----=----=1,1111,试比较M ,N 的大小:你能得出一个一般结论吗?18.(本小题满分12分)已知实数P 满足不等式,0212<++x x 判断方程05222=-+-Pz z有无实根,并给出证明.19.(本小题满分12分)(文科做)关于x 的不等式组⎪⎩⎪⎨⎧<+++>--05)52(20222k x k x x x 的整数解的集合为{-2},求实质数k 的取值范围.(理科做)若)(x f 是定义在),0(+∞上的增函数,且对一切0>x 满足()()()x f f x f y y=-. (1)求)1(f 的值;(2)若,1)6(=f 解不等式2)1()3(<--x f x f .20.(本小题满分12分)某单位建造一间地面面积为12m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过a 米,房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5800元,如果墙高为3m ,且不计房屋背面的费用.(1)把房屋总造价y 表示成x 的函数,并写出该函数的定义域. (2)当侧面的长度为多少时,总造价最底?最低总造价是多少?21.(本小题满分12分)(文科做)设(),1433221+++⨯+⨯+⨯=n n s求证:()()221121+<<+n n s n n(理科做)设1,,131211>∈++++=n N n nA(1)证明A>n ;(2)n A n 2212<<-+22. (本小题满分14分)(2006年广东卷)A 是由定义在]4,2[上且满足如下条件的函数)(x ϕ组成的集合:①对任意]2,1[∈x ,都有)2,1()2(∈x ϕ ; ②存在常数)10(<<L L ,使得对任意的]2,1[,21∈x x ,都有|||)2()2(|2121x x L x x -≤-ϕϕ (1)设]4,2[,1)(3∈+=x x x ϕ,证明:A x ∈)(ϕ;(2)设A x ∈)(ϕ,如果存在)2,1(0∈x ,使得)2(00x x ϕ=,那么这样的0x 是唯一的; (3)设A x ∈)(ϕ,任取)2,1(∈l x ,令,,2,1),2(1⋅⋅⋅==+n x x n n ϕ证明:给定正整数k ,对任意的正整数p ,成立不等式||1||121x x LLx x k k l k --≤-++.参考答案(5)1.A. 本小题主要考查充要条件的判定。
不等式与不等式组单元测试卷
不等式与不等式组综合检测题一、选择题1、下列各式中不是一元一次不等式组的是( ) A.1,35y y ⎧<-⎪⎨⎪>-⎩ B.350,420x x ->⎧⎨+<⎩ C.10,20a b -<⎧⎨+>⎩ D.50,20,489x x x ->⎧⎪+<⎨⎪+<⎩2、不等式组52110x x -≥-⎧⎨->⎩的解集是( ) A .3≤x B .31≤<x C .3≥x D .1>x3、如图.不等式5234x x -≤-⎧⎨-<⎩的两个不等式的解集在数轴上表示正确的为( )4、把一个不等式组的解集表示在数轴上.如图所示.则该不等式组的解集为( ) A.102x <≤ B.12x ≤ C.102x <≤ D.0x >5、不等式12>-x 的解集是( ) A .13<>x x 或 B .33-<>x x 或 C .31<<x D .33<<-x6.某种商品的价格第一年上升了%10第二年下降了()()5%5>-m m 后,仍不低于原价.则m 的值应为( )A.、111555≤<m B 、111555≤≤m C 、111555<<m D 、111555<≤m 7、若三角形三条边长分别是8,21,3a -,则a 的取值范围是( )A .5->aB .25-<<-aC .25-≤≤-aD .52-<->a a 或8、如果不等式组8x x m <⎧⎨>⎩无解.那么m 的取值范围是( ) A 、8>m B 、8≥m C 、8<m D 、8≤m9、一种灭虫药粉30kg.含药率是15100.现在要用含药率较高的同种灭虫药粉50kg 和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%1210、韩日“世界杯”期间.重庆球迷一行56人从旅馆乘出租车到球场为中国队加油.现有A、B两个出租车队.A队比B队少3辆车.若全部安排乘A队的车.每辆坐5人.车不够.每辆坐6人.有的车未满;若全部安排B队的车.每辆车4人.车不够.每辆坐5人.•有的车未满.则A队有出租车()A.11辆B.10辆C.9辆D.8辆二、填空题11、不等式组123xx-≤⎧⎨-<⎩的解集是___.12、不等式组310,27xx+>⎧⎨<⎩的整数解的个数是___.13、不等式组32482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解是__________.14、若x=23+a.y=32+a.且x>2>y.则a的取值范围是________.15、如果2m、m、1-m这三个实数在数轴上所对应的点从左到右依次排列.那么m的取值范围是 .16、某旅游团有48人到某宾馆住宿.若全安排住宾馆的底层.每间住4人.房间不够;每间住5人.有一个房间没有住满5人.则该宾馆底层有客房间.17、已知关于x的不等式组2123x ax b-<⎧⎨->⎩的解集是11<<-x,那么()()21-+ba的值等于______.18、把一篮苹果分组几个学生.若每人分4个.则剩下3个;若每人分6个.则最后一个学生最多得3个.求学生人数和苹果数?设有x个学生.依题意可列不等式组为.19、若不等式组1,21x mx m<+⎧⎨>-⎩无解.则m的取值范围是______.20、若关于x的不等式组211,3xxx k-⎧>-⎪⎨⎪-<⎩的解集为2<x,则k的取值范围是_______.三、解答题21.解不等式组.并把解集在数轴上表示出来.(1)3(1)(3)8,2111.32x xx x-+--<⎧⎪+-⎨-≤⎪⎩(2)4100,54,11213.xx xx x-<⎧⎪+>⎨⎪-≥+⎩(3)-7≤2(13)7x+≤9. (4)3(1)2(9),3 3.5 1.414.0.50.7x xx x->+⎧⎪-+⎨-≤-⎪⎩22、如果方程组325x y ax y-=+⎧⎨+=⎩的解x、y满足0,0<>yx,求a的取值范围.23、4个男生和6个女生到图书馆参加装订杂志的义务劳动.管理员要求每人必须独立装订.而且每个男生的装订数是每个女生的2倍.在装订过程中发现.女生们装订的总数肯定超过30本.男、女生们装订的总数肯定不到98本.问:男、女生平均每人装订多少本?24、.小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉.10.2千克鸡蛋.计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种符合题意的加工方案?请你帮助设计出来;(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元.那么按哪一个方案加工.小亮妈妈可获得最大利润?最大利润是多少?25、.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?。
(完整版)高中不等式难题
不等式单元测试一:填空题1.不等式a x x >--+21解集为R ,则实数a 的取值范围为_________________ 2归纳出的一般结论是 .3.已知a +1,a+2,a +3是钝角三角形的三边,则a 的取值范围是4__________. 5.(2013•重庆)设0≤α≤π,不等式8x 2﹣(8sinα)x+cos2α≥0对x ∈R 恒成立,则α的取值范围为 _________ .6.设不等式组0,24,24≥⎧⎪+≥⎨⎪+≤⎩x x y x y 所表示的平面区域为D ,则区域D 的面积为 ;若直线1=-y ax 与区域D 有公共点, 则a 的取值范围是 .7.已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤-≤+ax y x y x 11,若恒成立,则实数a 的取值范围为________.8.若log 41,a b =-则a b +的最小值为_________.9.设=(1,-2),=(a,-1),=(-b,0),a>0,b>0,O 为坐标原点,若A,B,C 三点共线,则+的最小值是________.10.已知,a R b R ++∈∈,函数2xy ae b =+的图象过(0,1是______.11.若正数x ,y 满足012=-+y x ,则的最小值为 . 12.设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则值为 .二:解答题13.如果57(0,1)xx a a a a -+>>≠且,求x 的取值范围.14.(本小题满分10分)已知关于x 的不等式(1)当8=a 时,求不等式解集; (2)若不等式有解,求a 的范围.15.某公司计划2014年在A,B两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.A,B两个电视台的广告收费标准分别为500元/分钟和200元/分钟,假定A,B两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在两个电视台做广告的时间,才能使公司的收益最大?最大收益是多少万元?16.如图,已知小矩形花坛ABCD中,AB=3 m,AD=2 m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.(1)要使矩形AMPN的面积大于32 m2,AN的长应在什么范围内?(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM,AN的长度;若不存在,说明理由.参考答案 1.(-∞,-3)(或a<-3) 【解析】试题分析:因为()()()3112211232x x x x x x -≤-⎧⎪+--=--<≥⎨⎪>⎩,它的最小值为3-,所以3a <-.考点:绝对值不等式的性质,恒成立问题.2.()2221112112311n n n ++++⋅⋅⋅+<++ 【解析】解:观察左右两边表达式吧变化规律发现,左侧表示的为连续正整数平方的倒数和,2,3,4项,项数逐一增加1,右边则是项数的倒数分之,等差数列2n+1,则按照这个规律我们就可以得到()2221112112311n n n ++++⋅⋅⋅+<++ 3.)2,0( 【解析】略4.1(,1]2-【解析】试题分析:原不等式变形为:012111()22x x -+⎛⎫≥ ⎪⎝⎭,因为112<,所以1021x x -≤+同解变形为:()()2102110x x x +≠⎧⎨+-≤⎩解得:112x -<≤,所以原不等式的解集为:1(,1]2-.考点:1.解指数型不等式;2.接分式不等式.5.[0,]∪[,π]【解析】由题意可得,△=64sin 2α﹣32cos2α≤0,得2sin 2α﹣(1﹣2sin 2α)≤0 ∴sin 2α≤, ﹣≤sinα≤, ∵0≤α≤π ∴α∈[0,]∪[,π]6【解析】当P 是x a =与1x y +=交点时,PQ 的斜率最小,为得02a ≤≤,又1a ≤,所以[01]a ∈,. 考点:线性规划.8.1 【解析】试题分析:由log 41,a b =-得104a b=>, 所以112144a b b b b b +=+≥⋅=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式. 9.8【解析】=-=(a-1,1),=-=(-b-1,2), 因为A,B,C 三点共线, 所以与共线,所以2(a-1)+b+1=0,即2a+b=1. 因为a>0,b>0,所以+=(2a+b)=4++≥4+4=8, 当且仅当=,即b=2a 时等号成立.10.322+ 【解析】试题分析:因为函数过点()0,1,把点带入函数2xy ae b =+可得12=+b a ,所以223232211+≥++=+++=+b a a b b b a a b a b a 2b a a b =.故填322+考点:基本不等式11.9 【解析】 试题分析:210,21x y x y +-=∴+=0,0x y >>()2222122x y x y x y x y xy xy xy y x y x+++∴=+=+=+=2222145x y x yy x y x+++=++ 2252549x y y x≥+⋅=+=(当且仅当22x yy x =,即13x y ==时,“=”成立) 考点:基本不等式12【解析】试题分析:因为z 为x 和y 的等比中项,所以2z xy =,则,当且仅当2y x =时等号成立,所以考点:1.等比中项;2.对数的运算性质;3.基本不等式的应用;13.当1a >时,;当01a <<时, 【解析】试题分析:解指数不等式首先确定其单调性,当底数大于1是单调递增,当底数介于01之间单调递减,此题中底数为a (0a >且1a ≠),需按1a >单调递增和01a <<单调递减,两种情况进行讨论,再利用单调性解不等式. 试题解析:①当1a >时,57x x a a -+>57,x x ∴->+解得分②当01a <<时,57x x a a -+>分分考点:1.分类讨论思想;2.指数函数的单调性.14.(1)(2 【解析】试题分析:(1)当8=a 时,原不等式即为和1≥x ,分别求出其满足的解集,再作并集即为所求不等式的解集;(2)要使不等式有解,即于是问题转化为求和1≥x ,试题解析:(1)由题意可得:3112≤---x x ,当21≤x 时,3,3112-≥≤-++-x x x ,即213≤≤-x ; 当121<<x 时,3112≤-+-x x ,即35≤x ;当1≥x 时,3112≤+--x x ,即3≤x ∴该不等式解集为{}33≤≤-x x . (2)令112)(---=x x x f ,有题意可知:min 2)(log x f a≥又⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<-≤-=1,121,2321,)(x x x x x x x f Q 21min )(-=∴x f ,即212-≥a ,22≥a .考点:1、含绝对值不等式的解法;2、对数不等式的解法;15.该公司在A 电视台做100分钟广告,在B 电视台做200分钟广告,公司的收益最大,最大收益是70万元.【解析】设公司在A 和B 做广告的时间分别为x 分钟和y 分钟,总收益为z 元, 由题意得目标函数z=3000x+2000y. 二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域, 如图阴影部分.作直线l:3000x+2000y=0,即3x+2y=0,平移直线l,从图中可知,当直线l 过M 点时,目标函数取得最大值. 联立解得∴点M 的坐标为(100,200),∴z max =3000×100+2000×200=700000,【方法技巧】常见的线性规划应用题的类型(1)给定一定量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收益最大.(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源最小.16.(1)在(2或(8,+∞)内(2)AM=6,AN=4时,S min=24.【解析】解:(1)设AM=x,AN=y(x>3,y>2),矩形AMPN的面积为S,则S=xy.∵△NDC∽△NAM x∴S.,得y>8,∴AN的长度应在(2或(8,+∞)内.(2)当y>2时,S3(y-24)=24,当且仅当y-2即y=4时,等号成立,解得x=6.∴存在M,N点,当AM=6,AN=4时,S min=24.。
北师大版高二数学必修5不等式单元测试卷
高二(2)部数学不等式单元测试卷班级____姓名_____一.选择题:(每小题5分,共60分)1.下列命题中,错误的是( ).(A) a b b a <⇔> (B) c a c b a >⇒>>(C) bd ac d c b a >⇒>>, (D) d b c a d c b a +>+⇒>>,2. 不等式0)1)(1(>-+x x 的解集是( ).(A) }10|{<≤x x (B) {}1,0-≠<x x x (C) {}11<<-x x (D) {}1,1-≠<x x x3、若R c b a ∈,,,且b a >,则下列不等式一定成立的是( ) A .c b c a -≥+ B .bc ac > C .02>-ba c D .0)(2≥-cb a 4、函数)12lg(21)(-+-=x x x f 的定义域为( ) A .),21(+∞ B .)2,21( C .)1,21(D .)2,(-∞ 5、已知01<<-a ,则 ( ) A .a a a 2212.0>⎪⎭⎫ ⎝⎛> B .aa a ⎪⎭⎫ ⎝⎛>>212.02 C .a a a 22.021>>⎪⎭⎫ ⎝⎛ D .a a a 2.0212>⎪⎭⎫ ⎝⎛> 6、不等式21≥-x x 的解集为 ( ) A .)0,1[- B .),1[∞+- C .]1,(--∞ D .),0(]1,(∞+--∞7、已知正数x 、y 满足811x y+=,则2x y +的最小值是 ( ) A.18 B.16 C .8 D .108、下列命题中正确的是 ( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .当0>x ,21≥+xx C .当20πθ≤<,θθsin 2sin +的最小值为22 D .当xx x 1,20-≤<时无最大9、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35x ≤≤时,目标函数 32z x y =+的最大值的变化范围是 ( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]10.不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 11.下列结论正确的是( ).(A )当ab b a b a 2≥+是正数时,, (B )当ba ab b a 11,0,<>>时 (C )当ab b a R b a ≥+∈222时,, (D )以上都正确12. 已知0<a ,01<<-b ,那么( ).(A)2ab ab a >> (B)a ab ab >>2 (C)2ab a ab >> (D)a ab ab >>2二.填空题:(每小题4分,共16分) 13.的解集为不等式03x 1-2x >+ . 14、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 。
高一年级数学《不等式》单元测试题
高中数学必修5第三章《不等式》单元测试题班级 姓名 座号 分数 一、选择题(3⨯12=36分)1、若,0<<b a 下列不等式成立的是 ( )A 22b a <B ab a <2 C1<a b D ba 11< 2、若,,n m y x >>下列不等式正确的是 ( )A n y m x ->-B yn xm > Cmyn x > D x n y m ->- 3、设,01,0<<-<b a 那么下列各式中正确的是 ( )A 2ab ab a >>B a ab ab >>2C 2ab a ab >>D a ab ab >>24、若角βα,满足22πβαπ<<<-,则βα-的取值范围是 ( )A )0,(π-B ),(ππ-C )2,23(ππ-D ),0(π 5、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}6、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00a B ⎩⎨⎧<∆>00a C ⎩⎨⎧>∆<00a D ⎩⎨⎧<∆<0a7、设,0>>y x 则下列各式中正确的是 ( )A y xy y x x >>+>2 B x xy yx y >>+>2 C xy y y x x >>+>2 D x xy y x y >≥+>28、已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A 1 B21 C 22D 41 9、下列不等式的证明过程正确的是 ( )A 若,,R b a ∈则22=⋅≥+b a a b b a a b B 若+∈R y x ,,则y x y x lg lg 2lg lg ≥+ C 若,-∈R x 则4424-=⋅-≥+xx x x D 若,-∈R x 则222222x x x x --+>⋅= 10、设b a ,为实数且,3=+b a 则ba22+的最小值是 ( )A 6B 24C 22D 6211、不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方12、在直角坐标系内:满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是( )二、填空题(4⨯4=16分)13、不等式230x x ++<的解集是_________。
高中数学必修5《不等式》单元测试题
高中数学必修5《不等式》单元测试题一. 选择题:(每小题5分)1. 已知a,b,c ∈R,下列命题中正确的是A 、22bc ac b a >⇒>B 、b a bc ac >⇒>22C 、ba b a 1133<⇒> D 、||22b a b a >⇒> 2.若b <0<a,d <c <0则下列各不等式中必成立的是( )A 、ac >bdB 、db c a < C 、a+c >b+d D 、a-c >b-d 3.不等式(x-3)(2-x )>0的解集是 ( )A 、{x|x <2或x >3}B 、{x|2<x <3}C 、{x|x≠2且x≠3}D 、{x|x≠2或x≠3}4.不等式(a-2)x 2+2(a-2)x-4<0对x ∈R 成立,则a 的取值范围是( )A 、]2,(--∞B 、)2,(--∞C 、]2,2(-D 、)2,2(-5.函数)20(),24(22<<-=x x x y 的最大值是( )A 、0B 、21 C 、2 D 、4 6. 已知+∈R b a ,,且3=+b a ,则b a 22+的最小值是( )A 、8B 、6C 、24D 、627. 设b a <<0,且1=+b a ,在下列四个数中最大的是( )A 、21 B 、b C 、ab2 D 、22b a + 8.不等式2x+y+1<0表示的平面区域在直线2x+y+1=0( )A 、右上方B 、右下方C 、左上方D 、右下方9. 目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A 、3,12min max ==z zB 、,12max =z z 无最小值C 、z z ,3min =无最大值D 、z 既无最大值,也无最小值10.有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是( )A 、甲B 、乙C 、一样低D 、不确定二. 填空题:(每小题5分)11. 若角α,β满足-2π<α<β<2π,则2α-β的取值范围是 。
第二章《一元一次不等式(组)》2020年单元测试卷(三)及答案解析
第二章一元一次不等式(组)单元测试卷(三)一.选择题(共18小题)1.下列式子,其中不等式有()①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.A.1个B.2个C.3个D.4个2.下列不等式的变形不正确的是()A.若a>b,则a+3>b+3 B.若a<b,则﹣a>﹣bC.若﹣x<y,则x>﹣2y D.若﹣2x>a,则x>﹣a3.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.4.已知x=3是关于x的不等式3x﹣的一个解,求a的取值范围为()A.a>3 B.a<3 C.a<4 D.a>45.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3 D.不等式x>﹣2的解是x=﹣16.下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1D.2﹣x≤47.若不等式(a﹣3)x>2的解集是x<,则a的取值范围是()A.a≠3B.a>3 C.a<3 D.a≤38.使不等式2x﹣4≥0成立的最小整数是()A.﹣2 B.0 C.2 D.39.用不等式表示“y减去1不大于2”,正确的是()A.y﹣1<2 B.y﹣1>2 C.y﹣1≤2D.y﹣1≥210.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了()道题.A.13 B.14 C.15 D.1611.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0 B.x>1 C.x<1 D.x<012.如图,一次函数y1=kx+b的图象与直线y2=m相交于点P(﹣1,3),则关于x的不等式kx+b﹣m>0的解集为()A.x>3 B.x<﹣1 C.x>﹣1 D.x<313.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论中正确的个数是()①y2随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y2;④当x>3时,y1<y2.A.3 B.2 C.1 D.014.下列选项中是一元一次不等式组的是()A.B.C.D.15.已知[x]表示不小于x的最小整数,若(x)表示不大于x的最大整数,当x≥1时,[x]﹣(x)的值可能有()①0 ②1 ③2 ④﹣1A.1个B.2个C.3个D.4个16.不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.017.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.若小朋友的人数为x,则列式正确的是()A.0≤5x+12﹣8(x﹣1)<8 B.0<5x+12﹣8(x﹣1)≤8C.1≤5x+12﹣8(x﹣1)<8 D.1<5x+12﹣8(x﹣1)≤818.现有57本书,计划分给各学习小组,如每组6本则有剩余,每组7本却不够分,则学习小组共有()A.7个B.8个C.9个D.10个二.填空题(共15小题)19.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完,”一次服用这种药的剂量范围为.20.若2a<2b,则a b.(填“>”或“=”或“<”)21.若关于x的不等式组无解,则a的取值范围.22.若关于x的不等式(2m﹣n)x+3m﹣4n<0的解集是x>,则关于x的不等式(m﹣4n)x+2m﹣3n<0的解集是.23.如图表示的是某一不等式的解集,这个不等式可以是.24.若>5是关于x的一元一次不等式,则m=.25.若不等式(a﹣4)≤4﹣a的解集在数轴上表示如图所示,则a的取值范围是.26.已知关于x的不等式x﹣a≥0只有3个负整数解,则a的取值范围是.27.根据数量“m的3倍与2的和大于1”,列不等式为.28.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是km.29.若直线l1:y1=k1x+b1经过点(0,2),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为.30.写出一个无解的一元一次不等式组为.31.a的5倍与3的差不小于10,且不大于20(只列关系式).32.把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有本.33.按下面的程序计算,若开始输入的值x为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果=.若经过2次运算就停止,则x可以取的所有值是.三.解答题(共1小题)34.如图,直线y=kx+b经A(2,1)、B(﹣1,﹣2)两点.(1)求直线y=kx+b的表达式;(2)求不等式x>kx+b>﹣2的解集.参考答案与试题解析一.选择题(共18小题)1.【解答】解:不等式有①2>0;②4x+y≤1;⑤m﹣2.5>3.故选:C.2.【解答】解:A.若a>b,不等式两边同时加上3得:a+3>b+3,即A项正确,B.若a<b,不等式两边同时乘以﹣1得:﹣a>﹣b,即B项正确,C.若﹣x<y,不等式两边同时乘以﹣2得:x>﹣2y,即C项正确,D.若﹣2x>a,不等式两边同时乘以﹣得:x<﹣a,即D项错误,故选:D.3.【解答】解:由图示可看出,这个不等式组的解集是﹣5<x≤4.故选:D.4.【解答】解:由题意可知:9﹣>,∴a<4,故选:C.5.【解答】解:A.x=﹣3不是不等式x>﹣2的一个解,此选项错误;B.x=﹣1是不等式x>﹣2的一个解,此选项正确;C.不等式x>﹣2的解有无数个,此选项错误;D.不等式x>﹣2的解有无数个,此选项错误;故选:B.6.【解答】解:下列不等式中是一元一次不等式的是2﹣x≤4,故选:D.7.【解答】解:∵(a﹣3)x>2的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故选:C.8.【解答】解:2x﹣4≥0,2x≥4,x≥2,则使不等式2x﹣﹣4≥0成立的最小整数是2,故选:C.9.【解答】解:由题意可得:y﹣1≤2.故选:C.10.【解答】解:设小明答对x道题,则答错20﹣3﹣x=17﹣x道题.根据题意得:5x﹣2(17﹣x)>60即7x>94∴x>13.∵x≤20﹣3=17,∴13<x≤17.成绩超过60分,则小明至少答对了14道题.故选:B.11.【解答】解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.12.【解答】解:观察函数图象可知:当x<﹣1时,一次函数y1=kx+b的图象在y2=m的图象的上方,∴关于x的不等式x+b﹣m>0的解集是x<﹣1.故选:B.13.【解答】解:对于y2=x+a,y2随x的增大而增大,所以①错误;∵x=3时,y1=y2,∴3k+b=3+a,所以②正确;当x<3时,y1>y2;所以③错误;当x>3时,y1<y2;所以④正确.故选:B.14.【解答】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选:D.15.【解答】解:∵x≥1,当x为大于1的整数时,[x]﹣(x)=x﹣x=0,当x为大于1的小数时,则[x]﹣(x)=1;则[x]﹣(x)的值可能有两个,故选:B.16.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.17.【解答】解:根据小朋友的人数为x,根据题意可得:1≤5x+12﹣8(x﹣1)<8,故选:C.18.【解答】解:设学习小组共有x个,根据题意得6x<57<7x,解得8<x<9,而x为整数,所以x=9.即学习小组共有9个.故选:C.二.填空题(共15小题)19.【解答】解:由题意,每日用量120~180mg,分3~4次服完,则120÷3=40mg,120÷4=30mg,180÷3=60mg,180÷4=45mg,∴若每天服用3次,则所需剂量为40~60mg之间,若每天服用4次,则所需剂量为30~45mg之间,故一次服用这种药的剂量为30~60mg之间.20.【解答】解:∵2a<2b,不等式的两边同时除以2得:a<b,故答案为:<.21.【解答】解:∵关于x的不等式组无解,∴a≥3.故答案为:a≥3.22.【解答】解:∵不等式(2m﹣n)x+3m﹣4n<0的解集为x>,∴解不等式(2m﹣n)x+3m﹣4n<0得:x>,且2m﹣n<0,∴=,即n=m,2m﹣m<0,解得:m<0,n<0,∵(m﹣4n)x+2m﹣3n<0,∴(m﹣m)x<﹣2m+m,﹣mx<m,x<﹣,即不等式(m﹣4n)x+2m﹣3n>0的解集是x<﹣,故答案为:x<﹣.23.【解答】解:由图示可看出,从3出发向左画出的线且3处是空心圆,表示x<3.所以这个不等式x<324.【解答】解:∵>5是关于x的一元一次不等式,∴2m+1=1∴m=0故答案为:025.【解答】解:由题意得a﹣4<0,解得:a<4,故答案为:a<4.26.【解答】解:∵关于x的一元一次不等式x﹣a≥0只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.27.【解答】解:由题意得:3m+2>1,故答案为:3m+2>1.28.【解答】解:设行驶xkm,∵油箱内剩余油量不低于油箱容量的,∴40﹣x≥40×.∴x≤350故该辆汽车最多行驶的路程是350km,故答案为:350.29.【解答】解:依题意得:直线l1:y1=k1x+b1经过点(0,2),(3,1),则.解得.故直线l1:y1=﹣x+2.所以,直线l2:y2=x﹣2.由k1x+b1>k2x+b2的得到:﹣x+2>x﹣2.解得x<6.故答案是:x<6.30.【解答】解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.31.【解答】解:依题意,得:.故答案为:.32.【解答】解:设共有x个小朋友,则共有(5x+9)本书,依题意,得:,解得:6<x<8.∵x为正整数,∴x=7,∴5x+9=44.故答案为:44.33.【解答】解:当x=2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x=2时,输出结果=11,若运算进行了2次才停止,则有,解得:<x≤4.5.∴x可以取的所有值是2或3或4,故答案为:11,2或3或4.三.解答题(共1小题)34.【解答】解:(1)∵直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,∴代入得:,解得:k=1,b=﹣1.∴直线y=kx+b的表达式为y=x﹣1;(2)由(1)得:x>x﹣1>﹣2,即,解得:﹣1<x<2.所以不等式x>kx+b>﹣2的解集为﹣1<x<2.11。
2019-2020学年高二数学双测(人教必修5)第三章 不等式单元测试(A卷基础篇)(原卷版)
不等式单元测试(A 卷基础篇)(浙江专用)学校:___________姓名:___________班级:___________考号:___________满分:150分 考试时间:120分钟 题号 一二三总分得分第Ⅰ卷(选择题)评卷人得 分一.选择题(共10小题,满分50分,每小题5分) 1.(2019·浙江高一期末)不等式的解集为( )A. B.C. D.2.(2019·浙江高一月考)若0a b >>,下列不等式一定成立的是( )A.22a b <B.2a ab <C.11a b < D.1b a< 3.(2019·浙江高二期末)已知a b >,0abc ≠,a ,b ,c R ∈,则下列不等式成立的是( )A.22a b >B.a c b c ->-C.ac bc >D.11a b< 4.(2018·浙江高一期末)已知下列四个条件:①;②;③;④,能推出成立的有( )A .1个B .2个C .3个D .4个 5.(2018·浙江高一期末)已知1x >,则函数11y x x =+-的最小值是( ) A.1B.2C.3D.46.(2019·全国高一课时练习)完成一项工程,预算是20000元,需要电工和车工共同完成,已知每个电工的工资为500元,每个车工的工资为400元,如果安排电工、车工分别为x 人,y 人,则列出符合题意的关系式为( )A .50040020000x y +≤B .40050020000x y +≤C .50040020000x y +≥ D .40050020000x y +≥7.(2019·河南许昌高中高二开学考试(理))已知01x <<,则3(3)x x -取最大值时x 的值为( )A .12B .34C .23D .258.(2019·浙江高二期末)若实数满足,则的最大值为( )A.3B.4C.5D.69.(2019·河北安平中学高三期末(理))若不等式24ax +<的解集为()1,3-,则实数a 等于( ) A .8B .2C .-4D .-210.(2019·河北安平中学高三期末(理))函数|1||2|y x x =++-的最小值及取得最小值时x 的值分别是( )A .1,[1,2]x ∈-B .3,0C .3,[1,2]x ∈-D .2,[]1,2x ∈第Ⅱ卷(非选择题)评卷人得 分二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.(2019·上海格致中学高三开学考试)不等式13x>的解集为________. 12.(2019·上海市北虹高级中学高二期末)不等式215x +≤的解集是_______. 13.(2019·广东高三期中)不等式121x x +<-的解集为_________________. 14.(2019·浙江高一期末)已知突数0,0b a m >><,则mb _____ma ,b m a m --_____ba(用>,<填空). 15.(2019·浙江高一期末)若关于x 的不等式20x ax b -+<的解集是(1,2)-,则a =________,b =_______. 16.(2019·全国高一练习)某公司一年需要购买某种原材料400吨,计划每次购买x 吨,已知每次的运费为4万元/次,一年总的库存费用为4x 万元,为了使总的费用最低,每次购买的数量x 为 __ __.(6分)17.(2019·浙江高三期末)已知x ,y 满足条件0,40,10,x y x y x -≤⎧⎪+-≤⎨⎪-≥⎩则2x y +的最大值是_____,原点到点(),P x y 的距离的最小值是_____.评卷人 得 分三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.已知0a >,0b >,若141a b+=,用综合法证明:9a b +≥; 19.(2019·四川高一期末)关于x 的不等式220ax bx ++>的解集为{}12x x -<<. (1)求,a b 的值;(2)求关于x 的不等式220bx ax -->的解集. 20.(2019·北京丰台二中高二期末)已知函数,其中.(1)若,求不等式的解集;(2)求的最小值.21.(2019·黑龙江牡丹江一中高二期末(文))已知0,0x y >>,且2520x y +=. (1)求lg lg u x y =+的最大值;(2)求11x y+的最小值. 22.(2019·浙江高二期末)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间80分钟,其中广告时间1分钟,收视观众60万;连续剧乙每次播放时间40分钟,其中广告时间1分钟,收视观众20万.现在企业要求每周至少播放广告6分钟,而电视台每周至多提供320分钟节目时间. (1)设每周安排连续剧甲x 次,连续剧乙y 次,列出x ,y 所应该满足的条件; (2)应该每周安排两套电视剧各多少次,收视观众最多?。
新)高一数学集合与不等式测试题
新)高一数学集合与不等式测试题一切事情都无法追求完美,我们唯一能做的就是尽力而为。
这样做,我们就不会有太多的压力,最后的结果反而会更好。
高一数学单元测试题集合与不等式一、选择题:(4分×15=60分)1.设M={x|x≤7},x=43,则下列关系中正确的是()A。
x∈MB。
x∈MCC。
{x}∪MD。
{x}∩M2.下列不等式中一定成立的是().A。
x>0B。
x2≥0C。
x2>0D。
|x|>03.已知集合A=[-1,1],B=(-2,0),则A∩B=()。
A。
(-1,0)B。
[-1,0)C。
(-2,1)D。
(-2,1]4.下列表示①{0}={∅}、②∅∈{0}、③∅⊆{0}、④0∈∅中,正确的个数为()A。
2B。
1C。
4D。
35.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CUA)∪(CUB)=()A。
{0}B。
{0,1}C。
{0,1,4}D。
{0,1,2,3,4}6.已知∅∪A={1,2,3},则集合A真子集的个数()A。
5B。
6C。
7D。
87.设p是q的必要不充分条件,q是r的充要条件,则p 是r的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件8.不等式(x-2)(x+1)<0的解集是()A。
[-1,2]B。
[2,-1]C。
RD。
空集9.若a<b<c<d,且a+c=2b,c+d=2b,则下列结论正确的是()。
A。
a+d<b+cB。
a+c<b+dC。
-a+d<-b+cD。
a+c>b+d10.若x2-ax-b0的解集为()A。
{x|-1≤x≤1}B。
{x|-1<x<1}C。
{x|-1<x<-1}D。
{x|-1≤x≤-1}11.一元二次方程x2–mx + 4 = 0有实数解的条件是m∈()A。
(-4,4)B。
[-4,4]C。
(-∞,-4)∪(4,+∞)D。
高一数学集合与不等式测试题
高一级数学单元测试题集合与不等式一、选择题:(4×10)1、设{}|7M x x =≤,x =那么以下关系中正确的选项是 〔 〕 A xM B x M ∉ C {}x M ∈ D {}x M2、设全集U={(x ,y )R y x ∈,},集合M={(x ,y )122=-+x y },N={(x ,y )4-≠x y },那么 〔C U M 〕(C U N )等于〔 〕A {〔2,-2〕}B {〔-2,2〕}C φD C U N 3、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},那么〔C U A 〕⋃〔C U B 〕= 〔 〕 A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 4、{1,2,3}A φ,那么集合A 的个数〔 〕A 5B 6C 7D 8 5、假设x 2-ax -b <0的解集是{x |2<x <3},那么bx 2-ax -1>0的解集为〔 〕 A .11{|}23x x -≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23x x -≤≤- 6、以下不等式中,与32<-x 的解集相同的是 〔 〕 A 0542<--x x B051≤-+x x C 0)1)(5(<+-x x D 0542<-+x x 7、设集合{}212,12x A x x a B xx ⎧-⎫=-<=<⎨⎬+⎩⎭,假设A B ⊆,那么a 的取值范围是〔 〕 A .{}01a a << B .{}01a a <≤ C . {}01a a ≤≤ D .{}01a a ≤< 8、集合M={直线},N={圆},那么M ∩N 中的元素个数为( )A 0个B 0个或1个或2个C 无数个D 无法确定9、设全集U=R,P={|()0,x f x x R =∈},Q={|()0,x g x x R =∈},S={|()0,x x x R ϕ=∈},那么方程22()()0()f xg x x ϕ+=的解集为( ) A P Q S B P Q C ()U P Q C S D ()P Q S10、假设集合A={x |x 2-5x +6<0}, B={x |x 2-4ax +3a 2<0},且A ⊆B ,那么实数a 的取值范围( ).A 12a <<B 12a ≤≤C 13a <<D 13a ≤≤ 二、填空题〔5分×5=25分〕11、集合A={x ||x +2|≥5},B={x |-x 2+6x -5>0},那么A ∪B= ;12、假设A={x |x 2+x -6=0}, B={x |mx +1=0}且A ∪B =A 那么m 的取值集合为______ 13、经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,问两门都不喜欢的有 名学生.14、集合A ={a |关于x 的方程22-+x ax =1有唯一实数解},用列举法表示集合A 为______________.三.解做题(12分+13分+15分)15、不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.16、U={x |x 2-3x +2≥0}, A={x ||x -2|>1},B={x |21--x x ≥0}, 求A ∩B , A ∪B , (C U A )∪B , A ∩(C U B ).17、解关于x 的不等式:(1) x 2-(a +1)x +a <0,(2) 0222>++mx x .集合与不等式参考答案DACBC ACACB11、{x |x ≤-7或x >1} 12、110,,32⎧⎫-⎨⎬⎩⎭13 、 4 14、A={-4914、解:由22-+x a x =1得⎪⎩⎪⎨⎧≠-=---.02,0222x a x x 由方程x 2-x -a -2=0得Δ=1+4(a +2)=0,解得a =-49,此时x =21满足②.∴A ={-49}. 15、解析: (1)当m 2-2m -3=0,即m =3或m =-1时, ①假设m =3,原不等式解集为R②假设m =-1,原不等式化为4x -1<0∴原不等式解集为{x |x <41},不合题设条件. (2)假设m 2-2m -3≠0,依题意有⎪⎩⎪⎨⎧<--+-=∆<--0)32(4)3(032222m m m m m即⎪⎩⎪⎨⎧<<-<<-35131m m ∴-51<m <3,综上,当-51<m ≤3时,不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R . 16、解:∵U ={x |x 2-3x +2≥0}={x |(x -2)(x -1)≥0}={x |x ≥2或x ≤1}, A ={x ||x -2|>1} ={x |x -2>1或x -2<-1}={x |x >3或x <1},B ={x |⎩⎨⎧≠-≥--020)2)(1(x x x }={x |x >2或x ≤1}.由图(1)可知,A ∩B ={x |x >3或x <1},A ∪B ={x |x >2或x ≤1}..AAB B123x图(1) 由图(2)可知U A ={x |2≤x ≤3或x =1}, 易知U B ={x |x =2}..A AUU123x图(2) 由图(3)可知,(U A )∪B ={x |x ≥2或x ≤1}=U ..A B B UU123x图(3) 由图(4)可知,A ∩(U B )=∅.BA AU123图(4)17、解析:(1)原不等式可化为:,0)1)((<--x a x 假设a >1时,解为1<x <a ,假设a <1时,解为a <x <1,假设a =1时,解为φ(2)△=162-m . ①当时或即440162>-<>-m m m ,△>0.方程0222=++mx x 有二实数根:.416,4162221-+-=---=m m x m m x∴原不等式的解集为.416416|22⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<m m x m m x x 或 ①当m =±4 时,△=0,两根为.421mx x -== ①②假设,4=m 那么其根为-1,∴原不等式的解集为{}1,|-≠∈x R x x 且. 假设,4-=m 那么其根为1,∴原不等式的解集为{}1,|≠∈x R x x 且. ②当-4<4<m 时,方程无实数根.∴原不等式的解集为R .。
高中数学单元综合测试卷 第三章 不等式 (人教A版必修5)
第三章不等式单元综合测试时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)1.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}解析:原不等式化为x2-2x≥0,则x≤0或x≥2.答案:D2.若a、b、c∈R,a>b,则下列不等式成立的是()A.1a<1bB.a2>b2C.ac2+1>bc2+1D.a|c|>b|c|解析:根据不等式的性质,知C正确;若a>0>b,则1a>1b,A不正确;若a=1,b=-2,则B不正确;若c=0,则D不正确,所以选C.答案:C3.若a,b,c是不全相等的正数.给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与b<a及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中正确判断的个数为()A.0 B.1C.2 D.3答案:D4.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是() A.(-3,4) B.(-3,-4)C.(0,-3) D.(-3,2)解析:当x=y=0时,3x+2y+5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y+5>0,可以验证,仅有点(-3,4)的坐标满足3x+2y+5>0.答案:A5.已知m,n∈R+,且m+n=2,则mn有()A .最大值1B .最大值2C .最小值1D .最小值2 解析:∵m ,n ∈R +,∴mn ≤(m +n 2)2=1.答案:A6.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <ND .M ≤N解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0,所以M ≥N . 答案:B7.若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2,其中正确的不等式是( )A .①②B .②③C .①④D .③④解析:由于1a <1b <0,则b <a <0,则③不正确;又a +b <0<ab ,则①正确;b 2-a 2=(b +a )(b-a )>0,所以b 2>a 2,则|b |>|a |,所以②不正确;b a >0,a b >0,且b a ≠a b ,则b a +ab>2,所以④正确.答案:C8.设x ,y >0,且x +2y =3,则1x +1y 的最小值为( )A .2B.32 C .1+223D .3+2 2解析:1x +1y =13(3x +3y )=13(x +2y x +x +2y y )=13(2y x +x y +3)≥13(22+3)=232+1,当且仅当2y x =x y ,即x =32-3,y =3-322时取等号. 答案:C9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0x +y ≥0x ≤0,则z =3x +2y 的最小值是( )A .0B .1 C. 3D .9解析:在坐标平面内画出已知不等式组表示的平面区域,此区域是以O (0,0),A (0,1),B (-12,12)为顶点的三角形内部(含边界).当x =y =0时,x +2y 取最小值0,所以z =3x +2y的最小值是1. 答案:B10.不等式ax 2+bx +2>0的解集是(-12,13),则a -b 等于( )A .10B .14C .-4D .-10解析:∵2a =(-12)×13=-16,∴a =-12.又-b a =-12+13=-16,∴b =-2,∴a -b =-10.答案:D11.某人要买房,调查数据显示:随着楼层的升高,上下楼耗费的体力增多,因此不满意度升高,当住第n 层楼时,上下楼造成的不满意度为n ;但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低,当住第n 层楼时,环境不满意度为8n,则此人应选( ) A .1楼 B .2楼 C .3楼D .4楼解析:只需求不满意度n +8n 的最小值.由均值不等式得n +8n ≥42,当且仅当n =8n ,即n =22≈3时,n +8n取得最小值.答案:C12.设函数f (x )=x 3+x ,x ∈R ,若当0≤θ<π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m的取值范围是( )A .(0,1)B .(-∞,0)C .(-∞,12)D .(-∞,1)解析:∵f (x )=x 3+x ,x ∈R 是奇函数且是增函数,∴f (m sin θ)+f (1-m )>0恒成立,即f (m sin θ)>f (m -1),∴m sin θ>m -1,即m <11-sin θ.∵θ∈[0,π2),∴11-sin θ≥1,∴m <1.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.不等式x -x 2>0的解集是________. 解析:原不等式等价于x 2-x <0,解得0<x <1. 答案:{x |0<x <1}14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. 解析:图1如下图1中阴影部分所示,围成的平面区域是Rt △OAB . 可求得A (4,0),B (0,4),则OA =OB =4,AB =42, 所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+4 215.某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.那么这种汽车使用________年时,它的平均费用最少.解析:设使用x 年平均费用最少,由年维修费第一年是0.2万元,以后逐年递增0.2万元,可知汽车年维修费构成首项为0.2万元,公差为0.2万元的等差数列.因此,汽车使用x 年总的维修费用为0.2+0.2x2x 万元,设汽车的年平均费用为y 万元,则有y =10+0.9x +0.2+0.2x2xx =10+x +0.1x 2x =1+10x +x 10≥1+210x ·x 10=3.当且仅当10x =x10,即x =10时,y 取最小值.答案:1016.若关于x 的不等式4x -2x +1-a ≥0在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:设y =4x -2x +1=(2x )2-2·2x =(2x -1)2-1.由于1≤x ≤2,则2≤2x ≤4,由二次函数性质,知当2x=2,即x =1时y 有最小值0,所以原不等式在区间[1,2]上恒成立,只要a ≤0.答案:(-∞,0]三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(本小题10分)已知a >0,试比较a 与1a的大小.解:a -1a =a 2-1a =(a -1)(a +1)a.因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ;当0<a <1时,(a -1)(a +1)a <0,有a <1a. 综上,当a >1时,a >1a ;当a =1时,a =1a ;当0<a <1时,a <1a.18.(本小题12分)已知a 、b 、c 为不等正数,且abc =1.求证:a +b +c <1a +1b +1c 解:方法1:∵a 、b 、c 为不等正数,且abc =1,∴a +b +c =1bc +1ca +1ab<1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c.故原不等式成立. 方法2:∵a 、b 、c 为不等正数,且abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b +c .故原不等式成立.19.(本小题12分)已知实数x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,求(a 1+a 2)2b 1b 2的取值范围.解:因为x ,a 1,a 2,y 成等差数列,所以x +y =a 1+a 2. 因为x ,b 1,b 2,y 成等比数列,所以xy =b 1b 2,且xy ≠0. 所以(a 1+a 2)2b 1b 2=(x +y )2xy x 2+y 2+2xy xy =x 2+y 2xy+2.当x 、y 同号时,x 2+y 2≥2xy ,当且仅当x =y 时,等号成立,又xy ≠0,所以上式≥2xyxy +2=4;当x 、y 异号时,x 2+y 2≥2|xy |,当且仅当|x |=|y |时,等号成立,又xy ≠0,所以上式≤2|xy |xy+2=0.故(a 1+a 2)2b 1b 2的取值范围为(-∞,0]∪[4,+∞).20.(本小题12分)设集合A 、B 分别是函数y =1x 2+2x -8与函数y =lg(6+x -x 2)的定义域,C ={x |x 2-4ax +3a 2<0}.若A ∩B ⊆C ,求实数a 的取值范围.解:由x 2+2x -8>0,得x <-4或x >2,所以A ={x |x <-4或x >2};由6+x -x 2>0,即x 2-x -6<0,得-2<x <3,所以B ={x |-2<x <3}.于是A ∩B ={x |2<x <3}.由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0,当a >0时,C ={x |a <x <3a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧ a ≤23a ≥3,所以1≤a ≤2;当a =0时,不等式x 2-4ax +3a 2<0即为x 2<0,解集为空集,此时不满足A ∩B ⊆C ;当a <0时,C ={x |3a <x <a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧3a ≤2a ≥3,此不等式组无解.综上,满足题设条件的实数a 的取值范围为{a |1≤a ≤2}.21.(本小题12分)某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A 、B 两种规格的金属板,每张面积分别为2 m 2与3 m 2.用A 种规格的金属板可造甲种产品3个,乙种产品5个;用B 种规格的金属板可造甲、乙两种产品各6个.问A 、B 两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?解:图2设A ,B 两种金属板各取x 张,y 张,用料面积为z ,则约束条件为 ⎩⎪⎨⎪⎧3x +6y ≥45,5x +6y ≥55,x ≥0,y ≥0,目标函数z =2x +3y .作出可行域,如右图2所示的阴影部分.目标函数z =2x +3y 即直线y =-23x +z 3,其斜率为-23,在y 轴上的截距为z3,且随z 变化的一族平行线.由图知,当直线z =2x +3y 过可行域上的点M 时,截距最小,z 最小.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得M 点的坐标为(5,5),此时z min =2×5+3×5=25(m 2),即两种金属板各取5张时,用料面积最省.图322.(本小题12分)如图3所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长度应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小值.解:设AN 的长为x 米(x >2),由|DN ||AN |=|DC ||AM ||AM |=3x x -2,∴S 矩形AMPN =|AN |·|AM |=3x 2x -2.(1)由S 矩形AMPN >32,得3x 2x -2>32,又x >2,则3x 2-32x +64>0,解得2<x <83或x >8,即AN 长的取值范围为(2,83)∪(8,+∞).(2)y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12 ≥23(x -2)×12x -2+12=24, 当且仅当3(x -2)=12x -2,即x =4时,取等号,∴当AN 的长度是4米时,矩形AMPN 的面积最小,最小值为24平方米.。
必修5 不等式 单元测试
绵阳市开元中学 高2013级高二数学(上)(必修5)第三章:不等式随堂测验制卷:王小凤学生姓名:____________1. 若011<<b a ,则下列不等式 ①ab b a <+;②|;|||b a >③b a <;④2>+baa b 中,正确的不等式有 ( )A .0个B .1个C .2个D .3个2.已知y x c c y c c x c ,,1,1,1则且--=-+=>之间的大小关系是( ) A .y x > B .y x =C .y x <D .y x ,的关系随c 而定3.设函数f (x )=log a x 在(0,+∞)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)=f (b +2) B .f (a +1)>f (b +2) C .f (a +1)<f (b +2)D .不确定4.某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x 的函数关系为),(11)6(2*∈+--=N x x y 则每辆客车营运多少年,其运营的年平均利润最大( ) A .3B .4C .5D .65. b 克盐水中,有a 克盐(0>>a b ),若再添加m 克盐(m >0)则盐水就变咸了,试根据这一事实提炼一个不等式 .6.不等式20x ax b ++>的解是{}21x x x <->或则 a = _________, b =__________.7. 已知实数x 、y 满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,则2Z x y =-的取值范围是_________8.关于x 的不等式组⎪⎩⎪⎨⎧<+++>--05)52(20222k x k x x x 的整数解的集合为{-2},求实数k 的取值范围.9.设0a >b >,求()211a ab a a b ++-的最小值。
高一数学不等式单元测试卷
不等式单元测试卷一、选择题(每小题3分,共30分.每小题中只有一个选项是正确的.)1.下列命题正确的是( )A .若b c b a >>,,则c a >B . 若b a −>,则b c a c −>+C .若b a >,则2>−b aD . 若,,d c b a >>则bd ac >2.若a >b ,则( ).A .a 2>b2 B .a 2≥b 2 C .a 2≤b 2 D .以上都不对 3.若01x <<,则下列关系式中正确的是( ).A .22x x x >>B .22x x x >>C .22x x x >>D .22x x x >> 4.不等式2650x x −−>的解集为( ).A .(,2)(3,)−∞+∞B .(,1)(6,)−∞−+∞ C .(2,3) D .(1,6)−5.不等式+−>0的解集为( ). A .(–1,3) B .(–3,1)C .(-∞,–13,+∞)D .(-∞,3) 6.解集为{x |x <–2或x >3}的不等式为( ).A .(x +1)(x -2)<0B .(x +2)(x -3)>0C .x 2–2x –3>0D .x 2-2x -3<0 7.若不等式20x x c ++<的解集是(-4,3),则c 的值等于( ).A .12B .-12C .11D .-118.若|-|=-,则的取值是( ).A .>5B .≥5C .<5D .≤5.9.不等式︱-1︱≤2的解集为( ).A .(-∞,3]B .[-1,+∞)C .[-1,3]D .(-∞,-13,+∞)10.设不等式的解集为(-1,2),则=( ). A . B . C . D . 二、填空题(每小题3分,共24分)11.>>0_____.12.<<0______.13.>>0,<<0____.14.不等式>的解集是____________.15.不等式532<−x 的解集为____________.2x 32x )(m 55m m m m m m x )[12x a −<a 14123232a b ⇒1a 1b a b ⇒2a 2b a b c d ⇒ac bd 2x 417.不等式240x ax ++<的解集不是空集,则实数a 的取值范围是____________.18.不等式︱+︱<4的解集是(-3,5),则=____________三、计算题(每小题8分,共24分)19.解不等式 2320x x −+−>.20.解不等式22340x x −−+>.21.已知={},={≤4},求,.四、综合题22.有意义?(7分)23.已知不等式2240ax bx ++<的解集为(−∞,−4)(2,+∞),求实数a 、b 的值.(7分)24.若2(3)(3)50a x a x −+−−≤对任意实数x R ∈都成立,求实数a 的取值范围ax 1a A 231x x −>B 32x x −A B A B x。
不等式与不等式组单元测试题(含答案)
不等式与不等式组单元测试题一、填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。
7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。
8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。
在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题(每小题2分,共20分)11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<-13、如图1,设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为 A 、 ○□△ B 、 ○△□C 、 □○△D 、 △□○图114、如图2天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是(.1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 A. a>4 B. a>2 C. a=2 D.a ≥20、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是 .4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分) 0 0 1 2 B 0 A A 图2 0 12 A 2 1C 1 D21、解下不等式(或不等式组)并在数轴上表示解集。
北师大版高二数学必修5单元测试题
高二年级数学学科《必修5》单元质量检测试题第I 卷(选择题,共60分)一、 选择题(本大题共12小题,每小题5分,共60分)1、若R c b a ∈,,,且b a >,则下列不等式一定成立的是 ( )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-cb a2. 不等式11<-x ax的解集为}21|{><x x x 或,则a 值( ) A. 21>a B. 21<a C. 21=a D. 以上答案均不正确3.不等式112x <的解集是( )A .(,2)-∞B .(2,)+∞C .(0,2)D .()0,∞-⋃(2,)+∞4.原点和点(1,1)在直线a y x =+两侧,则a 的取值范围是( )A .0<a 或2>aB .20<<aC .0=a 或2=aD .20≤≤a5、已知正数x 、y 满足811x y+=,则2x y +的最小值是 ( ) A.18 B.16 C .8 D .106:对任意a ∈[-1,1],函数f(x)=x 2+(a-4)x+4-2a 的值恒大于零,则x 的取值范围是( ) A 1<x<3 B x<1或x>3 C 1<x<2 D a<1或x>27.已知集合M ={x|x 2<4},N ={x|x 2-2x -3<0},则集合M ∩N =( ) (A ){x|x <-2} (B ){x|x >3} (C ){x|-1<x <2} (D ){x|2<x <3}8.某高速公路对行驶的各种车辆最大限速为120h km /,行驶过程中,同一车道上的车间距d 不得小于10m ,用不等式表示为( )A .h km v /120≤或m d 10≥B .⎩⎨⎧≥≤md h km v 10/120C .h km v /120<或m d 10>D .h km v /120≥或m d 10≤9 若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是( )(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥110 .已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是( )(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x11、设直角三角形两直角边的长分别为a 和b ,斜边长为c ,斜边上的高为h ,则44b a +和44h c +的大小y 关系是 ( )A.4444h c b a +<+ B.4444h c b a +>+ C .4444h c b a +=+ D .不能确定 12、已知等比数列}{n a 的各项均为正数,公比1≠q ,设293a a P +=,75a a Q ∙=,则P 与Q 的大小关系是 ( )A .P > QB .P < QC .P = QD .无法确定第II 卷(非选择题,共90分)二、 填空题(本大题共6小题,每小题5分,共30分.把最佳的答案填在该题的横线上) 13.不等式224122x x +-≤的解集为 _________ . 14.若不等式022>++bx ax 解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则b a +的值为 。
高二数学必修五单元测试03不等式(A卷)(解析版).doc
班级_________ 姓名_____________ 学号____________ 分数 ___________ 《必修五单元测试三不等式》测试卷(A卷)(测试时间:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.在不等式x + 2y-1>0表示的平面区域内的点是()A. (1,-1)B. (0,1)C. (1,0)D. (-2,0)【答案】B【解析】试题分析:・・・1+2><(_1)_1〈0;0+2><1_1血1 + 2><0-1 = 0;-2 + 2><0-1<0,二可知点(0丄)在不等式x+2y-l >0表示的平面区域內.故B正确.2.已知集合A = [xeN\x2-5x + 4<0], B = {x\x2-4 = o],下列结论成立的是()A. Be A B_. A\J B = A C. Ar\B = A D. AcB = {2}【答案】D【解析】由已知得A = {123,4}, B = {-2,2},则AcB = {2},故选D.x>l3.区域{y>\构成的儿何图形的面积是()x+y<3A. 2B. 1C. 一D.-4 2【答案】D【解析】画出不等式组表示的区域如图,结合图形对知区域三角形的面积是S=-xlxl=l,应选答案D.2 24.[2018届河南省中原名校高三上学期第一次质】若a<b<0,则下列不等关系屮,不能成立的是1 ] ] ] 1 1A. ->-B. -------------------- >-C. a3 <b3D. a2 > b2a b a~b a【答案】B【解析]Va<b<0,.\a<a - b<0由y =丄在(一a,0)上单调递减知:一-— < 丄x a~b a因此B不成立.故选:B.5.不等式乞二L>0的解集是()x + 3A. _,+8B. (4,+00)、2(J 、C. (-00, -3)U(4, +oo)D. (-00,-3)u —,+oo【答案】D【解析】分式不等式可转换为二次不等式:(2兀一1)(兀+3)>0,(\ \据此可得不等式的解集为:(-00,-3)u -,+a)>本题选择D选项.6.已知关于兀的不等式x2-4x>m对任意XG(O,1]恒成立,则有()A. m <一3B. m >—3C. —3 < m < 0D. m > ~4【答案】A【解析1 vx2-4x> w对任意xe[O3l]恒成立,令/(x)=x2-4x s xe[0a l], v f(x)的对称轴为x = 2 ,二/ (x)在[0 J]单调递减,二当* 1时取到最小值为-3 ,:.实数w的取值范围是w<-3,故选A.X>1x + y<47.【2018届四川省南充市高三零诊】若实数俎y满足lx-2y-lS0 ,贝ljz = 2x + y的最大值为()A. 2B. 5C. 7D. 8【答案】C【解析】作出可行域:学@科网rf]Z = 2x +儿可得:y=- 2x + z,平行移动丿=-2兀+ z,由图象可知当直线经过点A时,直线的纵截距最大, 即z最大;易得A(3, 1),带入目标惭数z = 2咒+儿得:z = 2x3 + l = 7,即z = 2兀+ y的最大值为7故选:C.8.已知/(兀)=0?+加,且满足:15/(1)53,-1</(-1)<1,则/(2)的取值范围是()A. [0,12] B. [2,10] C. [0,10] D. [2,12]【答案】B【解析】・・・/(兀)=血2+加且15/(1)53, -1</(-1)<1, :.\<a + b<3, -\<a-b<\,JV+V =4 x— 3/(2)= 4a + 2b,令4d + " = x(Q+b) + y(a—b),可得{7-,解得{—,即x-y=2 y=l4a + 2/? = 3(Q+b)+(o—b), ・・・353(d+b)59, 253(a+b)+(d—b)510,则/(2)的取值范围是[2,10],故选B.F — r — 69.不等式一<0的解集为()兀—1A. {兀|兀(一2或»1}B. {兀| 兀<一2或vxv3}C. {兀|-2v兀〈1或x〉3}D. {%|-2VJVV1或lcxv3}【答案】B【解析】不等式即:(〒)(节2)<0(-1)转化为高次不等式:(x-3)(x+2)(x-l)<0利用数轴穿根法解得x < —2或1 v尢v 3 ,本题选择B选项.点睛:解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.10.若a,bER且必>0,则下列不等式中,恒成立的是()11 2 b a9 9.—— +「> ~严= —d—二2A. a + b > 2ab g a + b > Q a b ^Jab D. Q b'【答案】D【解析】对于选项A,当a = b时不成立;对于选项巧当a<0.b<0或a = b > 0时不成立;对于选项C, 当aV0,b<0时不成立:对于选项D,因为ab>0,所以;>0^>0,由基本不等式有恒成立, 故选D.y>0尤-y + 1 二011.[2018届广东省茂名市五大联盟学校高三9月】设绘y满足约束条件U + y-3<0,贝ijz = x-3y的最大值为()A. 3B. -5C. 1D. -1【答案】Ax - y +1 > 0 y = _x —z —z画出不等•式组k + 表示的区域如图,则问题转化为求动直线 3 B 在y 上的截距B 的最小值 1 1的问题,结合图形可知:当动直线一孑经过点P (3,0)^, z nlax = 3-3x0 = 3,应选答案A .12. [2018届云南省师范大学附属中学高三月考一】若直线ax + by-2 = Q (d>0』>0)始终平分圆第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填•在答题纸上)13.【2018届江苏省泰州屮学高三上学期开学】已知点PU ,y )满足<-XI y>>-+ y Xy z ~~ _贝I 」X 的最大值为 __________【解析】画出满足条件的半面区域,如图示:由z【答案】D【解析】x 2+y 2-2x-2y = 2 的周长,则眾的最小值为(3-2^2 43-2^2 ~2-D.【解析】直线平分圆周,则直线过圆心(1」),所以有G + b = 2,-!- +丄二丄(d + b) — 2ci b 2、)"(1 1)• -I 2G b )b = y[2a 时取“二”),故选 D.y咒表示过平面区域的点Qy)与(°,°)的直线的斜率,显然直线过力仃,3)时,z取得最大值,x故答案为:3.14. [2018届河南省中原名校高三上学期第一次联考】某学生计划用不超过50元钱购买单价分别为6元、7元的软皮和硬皮两种笔记本,根据需要软皮笔记本至少买3本,硬皮笔记本至少买2本,则不同的选购方式共有. _________ 种.【答案】7.(6x + 7y < 50% > 3沖2【解析】根据题意,设买x本软皮笔记本,y本硬皮笔记本,则有I ,32y <——当x=3时,7 ,可取的值.为2、3、4;26y < —当x=4时,7,可取的值为2、3;20y <——当x=5时,一7,可取的值为2;14y <——当X二6时,7,可取的值为2;共7种不同的选购方式;故答案为:7.15.若不等式x2-ax-b< 0的解集为何2VXV3},则不等式bx2-ax-l>0的解集为_____________________【答案】【解析】.••不等式x2-ax-b<0的解集为{x|2<x<3})・・・2,3是一元二次方程x2-ax-b = 0的两个实数根,2 +3 = a[2 x 3 =- b ,解得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试三 不等式 一、选择题 1.设S ={x |2x +1>0},T ={x|3x -5<0},则集合S ∩T 等于( )
(A)∅ (B){x |x <-21} (C){x|x >35} (D)}3
521|{<<-x x 2.若a ,b 是任意实数,且a >b ,则下列不等式中一定正确的是( )
(A)a 2>b 2
(B)1<a b (C)2a >2b (D)|a|>|b | 3.不等式01
2≤+-x x 的解集是( ) (A)(-∞,-1)∪(-1,2)
(B)[-1,2] (C)(-∞,-1)∪[2,+∞] (D)(-1,2]
4.设x ,y 为正数,则(x +y )(
y x 41+)的最小值为( ) (A)6 (B)9
(C)12 (D)15 5.若f (x )是定义在R 上的减函数,则满足f (x
1)>f (1)的实数x 的取值范围是( ) (A)(-∞,1) (B)(1,+∞)
(C)(-∞,0)∪(0,1) (D)(-∞,0)∪(1,+∞)
6.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( )
(A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M (D)2∉M ,0∈M .
二、填空题
7.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(R B )=R ,则实数a 的取值范围是________.
8.若实数a 满足a 2+a <0,那么a ,a 2,-a ,-a 2由小到大的顺序是________.
9.函数f (x )=x x x ---4lg 3
2的定义域是________. 10.已知实数x ,y 满足⎪⎩
⎪⎨⎧≤≥+≥+-.1,0,02x y x y x 则z =2x +4y 的最大值为________.
11.已知正实数a ,b 满足a +4b =8,那么ab 的最大值是________.
12.如果方程(x -1)(x 2-2x +m )=0的三个根可以作为一个三角形的三条边长,那么实数m 的取值范围是________.
三、解答题
13.已知一元二次不等式x 2-ax -b <0的解集是{x |1<x <3},
(1)求实数a ,b 的值;
(2)解不等式
b
x a x ++2>1.
14.设a ∈R ,且a ≠-1,试比较1-a 与a
+11的大小.
15.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(盈利率=投资额盈利额
×100%),可能的最大亏损率分别为30%和10%(亏损率=投资额亏损额
×
100%),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?
16.已知函数f (x )=x
a x x ++22,其中x ∈[1,+∞). (1)当a >0时,求函数f (x )的最小值g (a );
(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.
参考答案
单元测试三 不等式
一、选择题
1.D 2.C 3.D 4.B 5.D 6.A
二、填空题
7.a ≥2 8.a <-a 2<a 2<-a 9.[2,3)∪(3,4) 10.14 11.4
12.4
3<m ≤1 三、解答题
13.(1)因为不等式x 2-ax -b <0的解集是{x |1<x <3}
所以1,3是方程x 2-ax -b =0的两根,
故a =1+3,-b =1×3,即a =4,b =-3.
(2)不等式b x a x ++2>1,即为:3
42-+x x >1. 因为342-+x x >1⇔3
42-+x x -1>0 ⇔03
7>-+x x ⇔(x +7)(x -3)>0 ⇔x >3,或x <-7.
所以,原不等式的解集为{x |x >3,或x <-7}.
14.当a =0时,1-a =a
+11; 当a <-1时,1-a >a
+11; 当a >-1且a ≠0时,1-a <a
+11. 15.解:设投资人对甲、乙两个项目分别投资x 、y 万元,
由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.
0,0,8.11.03.0,10y x y x y x 目标函数为z =x +0.5y ,
上述不等式组表示的平面区域如右图所示,
阴影部分(含边界)即为可行域.
作直线l :x +0.5y =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值. 这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点,容易解得M (4,6),此时 z 取到最大值1×4+0.5×6=7.
答:投资人用4万元投资甲项目,用6万元投资乙项目,才能确保在可能的资金亏损不超过1.8万元的前提下,使可能的盈利最大.
16.略解:
(1)当a ≥1时,222222)(2+=+⋅≥++=++=a x
a x x a x x a x x x f , 当且仅当x =x
a ,即x =a 时,f (x )有最小值2a +2; 当0<a <1时,可证函数f (x )在x ∈[1,+∞)上是单调增函数(在此略), 所以f (x )有最小值f (1)=a +3,
综上,函数f (x )有最小值⎪⎩
⎪⎨⎧≥+<<+=1,2210,3)(a a a a a g . (2)因为x ∈[1,+∞],且f (x )=x
a x x ++22>0, 所以x 2+2x +a >0,
即a >-x 2-2x =-(x +1)2+1对于x ∈[1,+∞)恒成立,
而函数y =-(x +1)2+1,x ∈[1,+∞)的最大值为-3,
所以a >-3.。