Ansys自由度耦合_不同单元之间的连接问题

合集下载

ANSYS单元节点自由度耦合

ANSYS单元节点自由度耦合

ANSYS自由度耦合当生成模型时,典型地是用单元去连接节点以建立不同自由度间的关系,但是,有时需要能够刻划特殊细节(刚性区域结构的铰链连接,对称滑动边界,周期条件,和其他特殊内节点连接等),这些用单元不足以来表达,可用耦合和约束方程来建立节点自由度间的特殊联系,利用这些技术能进行单元做不到的自由度连接。

1、什么是耦合当需要迫使两个或多个自由度(DOFs)取得相同(但未知)值,可以将这些自由度耦合在一起,耦合自由度集包含一个主自由度和一个或多个其他自由度。

耦合只能将主自由度保存在分析的矩阵方程里,而将耦合集内的其他自由度删除。

计算的主自由度值将分配到耦合集内的所有其他自由度中去。

典型的耦合自由度应包括:部分模型包含对称;在两个重复节点间形成销钉,铰链,万向节和滑动连接;迫使模型的一部分表现为刚体。

2、如何生成耦合命令:CPGUI:Preprocessor——Coupl/Ceqn——Couple DOF在生成一个耦合节点之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中。

也可用选择逻辑来耦合所选节点的全部耦合。

可用CP命令输入负的节点号来删除耦合集合中的节点。

要修改一耦合自由度(即增、删节点或改变自由度标记)用CPNGEN命令(无GUI)。

CPINTF命令通过在对每对重合节点上定义自由度标记生成一耦合集而实现对模型重合节点的耦合。

此操作对“扣紧”几对节点(诸如一条缝)尤为有用。

命令:CPINTFGUI:Preprocessor——Coupl/Ceqn——Coincident nodes除耦合重复节点外,还可用下列替换方法迫使节点有相同的变现方式:(1)如果对重复节点所有自由度都要耦合,通常用NRMMRG (numbering——mergeit)将这些节点合并起来更方便;(2)可用EINTF命令(create——element——at coincident)在重复节点生成2节点单元连接;(3)用EINTF(preprocessor——couple/ceqn——adjacent rejoins)将两个不相似网格模式的区域连接起来,这项操作使一个区域的选定节点与另一个区域的选定单元连接起来生成约束方程;(4)用下列方法以相同的节点号但与已有模式集不同的自由度标记生成新的耦合集。

ANSYS中耦合自由度的方法

ANSYS中耦合自由度的方法

标题: ANSYS中耦合自由度的方法- dongyijun123 2010-03-02 19:36 阅读:3- 评论:0当需要迫使两个或多个自由度取得相同(但未知)值,可以将这些自由度耦合在一起。

耦合自由度集包含一个主自由度和一个或多个其它自由度。

典型的耦合自由度应用包括:模型部分包含对称;在两重复节点间形成销钉、铰链、万向节和滑动连接;迫使模型的一部分表现为刚体。

生成耦合自由度集步骤:1.在给定节点处生成并修改耦合自由度集命令:CPGUI: Main Menu>Preprocessor>Coupling / Ceqn>Couple DOFs在生成一个耦合节点集之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中来。

也可用选择逻辑来耦合所选节点的相应自由度。

用CP命令输入负的节点号来删除耦合集中的节点。

要修改一耦合自由度集(即增、删节点或改变自由度标记)可用CPNGEN命令。

(不能由GUI直接得到CPNBGEN命令)。

2.耦合重合节点。

CPINTF命令通过在每对重合节点上定义自由度标记生成一耦合集而实现对模型中重合节点的耦合。

此操作对“扣紧”几对节点(诸如一条缝处)尤为有用。

命令:CPINTFGUI: Main Menu>Preprocessor>Coupling / Ceqn>Coincident Nodes3.除耦合重复节点外,还可用下列替换方法迫使节点有相同的表现方式:如果对重复节点所有自由度都要进行耦合,常用NUMMRG命令(GUI:Main Menu>Preprocessor>Numbering Ctrls>Merge Items)合并节点。

可用EINTF命令(GUI:Main Menu> Preprocessor>Create> Elements >At Coincid Nd)通在重复节点对之间生成2节点单元来连接它们。

耦合和约束方程ansys教程课件

耦合和约束方程ansys教程课件
耦合和约束方程ansys教程课件
16.1.8 练习:耦合循环对称边界
❖ 在此练习中,由生成耦合DOF 设置来模拟有循环对称性的模 型的接触问题
1.建模并在图形窗口中画单元 2.在总体柱坐标系下,生成具有
Y的增量为30的节点复制件 a.将当前坐标系变为总体柱坐
标系 b. 在当前坐标系中,以Y=30
的增量拷贝所有的结点
例如, cp,,ux,all 是把所有选择节点在UX方 向上耦合
输入耦合设置参考号 ,选择自由度卷标
耦合和约束方程ansys教程课件
16.1.6 创建耦合设置(续)
❖②在零偏移量的一组节点之间生成附加耦合关系: ❖Main Menu: Preprocessor > Coupling / Ceqn > Gen w/Same Nodes
耦合和约束方程ansys教程课件
16.2.1 约束方程的特点
约束方程的特点 ❖ 自由度卷标的任意组合 ❖ 任意节点号 ❖ 任意实际的自由度方向――在不同的节点上
ux可能不同
耦合和约束方程ansys教程课件
16.2.2 一般应用
❖ 连接不同的网格 • 实体与实体的界面 • 2-D或3-D • 相同或相似的单元类型 • 单元面在同一表面上,但结点位置不重合
如:用耦合施加循环对称 性,在循环对称切面上的 对应位置实施自由度耦合
耦合和约束方程ansys教程课件
16.1.3 施加对称条件
❖ 耦合自由度常被用来施加移动或循环对称性条件。 这可以保证平面截面依然是平面。例如:
❖ -对圆盘扇区模型 (循环对称),应使两个对称边界上 的对应节点在各个自由度上耦合。
性区的其它节点上 ❖ 使用CERIG 命令(或 Preprocessor > Coupling/Ceqn

ANSYS各类型单元连接专题讲解(一)之连接总则

ANSYS各类型单元连接专题讲解(一)之连接总则

ANSYS各类型单元连接专题讲解(一)之连接总则一直以来,有不少同学咨询水哥关于ANSYS中杆单元、梁单元、壳单元、实体单元的连接问题。

之所以要用到各单元的连接,主要是由于我们在实际项目中,常常需要各种单元组合模拟,例如框架结构计算中的框架柱、框架梁采用梁单元模拟,楼板采用壳单元模拟,如此便会产生各类型单元之间的连接问题。

为解决部分朋友们的疑问,水哥依自己的理解将从以下几个方面系统讲解下ANSYS中杆单元、梁单元、壳单元、实体单元的连接,其中若有不合理之处,还望各位朋友批评指正。

本系列讲解目录如下:1、单元连接总原则。

2、杆与梁、壳、体单元的连接。

3、梁单元与实体单元铰接。

4、2D梁单元与2D实体单元刚接。

5、3D梁单元与3D实体单元刚接。

6、壳单元与实体单元连接。

7、单元连接综合实例。

本篇推文为该系列文章的首篇,主要说下ANSYS中单元连接总的原则以及简单介绍两个概念。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约束方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

(2)梁与壳有公共节点即可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

从上述也可见,ANSYS无非是通过三种方法来实现单元之间的连接:共用节点、耦合、约束方程。

这里简单介绍下耦合与约束方程的基本概念。

一、耦合所谓耦合,其实是一种比较特殊的约束方程,只不过为了区别于普通一般的约束方程,方便用户操作,特定提出来的一个概念。

他具体指当我们需要迫使两个或多个自由度取得相同值(值未知)时,可以将这类自由耦合在一起。

ANSYS中不同单元之间的连接问题

ANSYS中不同单元之间的连接问题

ANSYS学习就是遇到错误,解决错误的过程,不要怕错误,遇到错误,慢慢解决,解决多了,水平慢慢就提高了。

下面这是总结的一部分。

1 把体用面分割的时候出现的错误提示:Boolean operation failed.try adjusting the tolerance value on the BTOL commmand to some fraction of theminimum keypoint distance.Model Size (current problem)1.183933e+000,BTOL setting1.00000e-005,minmum KPT distance 4.308365e-006先在要分割的地方设置一个工作平面,用布尔运算“divided--volume by working plane”进行分割的时候,出现上述错误,主要愿意可能是设置的公差太小,当时试了几次都么有成功,最后干脆把体重新建立了一个,又画了一个很大的面,终于成功了。

2.一个常见的代表性错误!原来我的虚拟内存设置为“无分页文件”,现在改为“系统管理”,就不在出现计算内存不够的情况了。

Error!Element type 1 is Solid95,which can not be used with the AMES command, meshing of area 2 aborted.刚开始学习的人经常出这种错误,这是因为不同单元类型对应不同的划分网格操作。

上面的错误是说单元类型为Solid95(实体类型),不能用AMES命令划分面网格。

3 Meshing of volume 5 has been aborted because of a lack of memory. Closed down other processes and/or choose a larger element size, then try the VMESH command again. Minimum additional memory required=853MB(by kitty_zoe )说你的内存空间不够,可能因为你的计算单元太多,增加mesh尺寸,减少数量或者增加最小内存设定(ansys10中在customization preferences菜单存储栏可以修改)你划分的网格太细了,内存不足。

总结一下ANSYS中不同单元之间的连接问题

总结一下ANSYS中不同单元之间的连接问题

论坛里常有人问不同单元之间的连接问题,我自己也一直被这个问题所困绕,最近从ANSYS工程分析进阶实例上知道了ANSYS中不同单元之间的连接原则。

感觉收收获不小,现把它上传与大家共享。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

ﻫ(2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。

MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。

MPC能够连接的模型一般有以下几种。

ﻫsolid 模型-solid模型ﻫshell模型-shell模型solid模型-shell 模型solid 模型-beam模型shell模型-beam模型ﻫ在ANSYS中,实现上述MPC技术有三种途径。

ﻫ(1)通过MPC184单元定义模型的刚性或者二力杆连接关系。

定义MPC184单元模型与定义杆的操作完全一致,而MPC单(2)利用约束元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。

ﻫ方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。

ansys之节点耦合专题

ansys之节点耦合专题

/viewthread.php?tid=916386&highlight=%F1%EE%BA%CF /viewthread.php?tid=914150&highlight=%F1%EE%BA%CF/viewthread.php?tid=786833&highlight=%CD%E4%BE%D8(这个很有用!!)前言做一个总结意义!!!原因:最近网上有较多的朋友在咨询关于实体加载的方法目的:希望这个问题不再成为大家的疑惑的一部分一、说说施加方法思路1:矩或扭矩说白了就是矩,所谓矩就是力和力臂的乘积。

施加矩可以等效为施加力;思路2:直接施加弯矩或扭矩,此时需要引入一个具有旋转自由度的节点;二、在ANSYS中实现的方法这里说说3个基本方法,当然可以使用这3个方法的组合方法,组合方法就是对3个基本方法的延伸,但原理仍不变。

方法1:引入mass21,利用cerig命令Ex1:/prep7block,0,1,0,1,0,2k,9,0.5,0.5,2.5mp,ex,1,2e10mp,prxy,1,0.2mp,prxy,1,0.3r,2,1e-6et,1,45et,2,21keyopt,2,3,0lesize,all,0.2vmesh,allksel,s,,,9type,2real,2kmesh,allallselnsel,s,loc,z,2,3NPLOTCERIG,node(0.5,0.5,2.5),ALL,ALL, , , ,allsel/SOLUf,node(0.5,0.5,2.5),my,100e3FINISH/SOLnsel,s,loc,z,0d,all,allallselsolve方法2:利用mpc184单元/prep7block,0,1,0,1,0,2mp,ex,1,2e10mp,prxy,1,0.2mp,prxy,1,0.3et,1,45et,2,184keyopt,2,1,1lesize,all,0.2vmesh,alln,1000,0.5,0.5,2.5type,2mat,2*do,i,1,36e,1000,36+i*enddoallselallsel/SOLUf,node(0.5,0.5,2.5),my,100e3 FINISH/SOLnsel,s,loc,z,0d,all,allallselsolve方法3:使用rbe3命令/prep7block,0,1,0,1,0,2k,9,0.5,0.5,2.5mp,ex,1,2e10mp,prxy,1,0.2mp,prxy,1,0.3r,2,1e-6et,1,45et,2,21keyopt,2,3,0lesize,all,0.2vmesh,allksel,s,,,9type,2real,2kmesh,allallsel*dim,sla,array,36*do,i,1,36sla(i)=i+36*enddo*dim,sla2,array,36*do,i,1,36sla2(i)=i+36*enddoallselrbe3,node(0.5,0.5,2.5),all,sla,sla2allsel/SOLUf,node(0.5,0.5,2.5),my,100e3FINISH/SOLnsel,s,loc,z,0d,all,allallselsolve三、使用结论方法1和方法2的结果一致,方法3偏大。

ansys问题

ansys问题

7、input/output error on unit=9. possible full disk 可能:
1)ansys工作目录所在的硬盘分区满了;(可能性很大)
2)系统虚拟内存所在的硬盘分区满了;(有一定可能性)
3)硬盘有坏道。(可能性较小) 有时实际上是其它错误 (如计算不收敛等),却误报为盘空间不够,因此,需要观察计算过程中盘空间的变化,以判断是否确实是盘空间的问题。
遇到过这个问题,不过不知道解决原理是什么,当时单元划分比较多,然后我把单元减少到以前的三分之一,结果可以计算了。我的盘的剩余空间有100G,不应该是第1种原因,2G的内存,而且把虚拟内存也调整了,但是仍然不行,所以第2种可能也较小,至于3更不可能
8、在ansys里划分网格时出现 16 ANGLE LESS THAN 2.5 DEGREES FOUND IN TRIANGLE FACETS OF VOLUME 1,WITH SMALLEST ANGLE =1.2 POOR ELEMENT QUALITY OR MESH FAILURE MAY RESULT. 应该如何设置才能不出现这个警告。如果忽略在求解时会有什么问题么?
3、开始求解后出现以下提示, Solid model data is contaminated 后来终于找到原因了 有限元网格里包含一些未被划分网格的线,一般来说出现在面于面之间有重合的线,导致虽然面被划分了网格,却包含未被划分网格的线。 解决办法,把模型存为.cdb格式(去掉几何信息),然后再读取,就可以求解了 命令:cdwrite,db,模型名,cdb 听起来不错,不过也没遇到过,一般在划分后用一下NUMMRG命令,合并元素,以避免这种情况出现
4、*** WARNING *** There are 79 small equation solver pivot terms.

Ansys中不同密度的网格之间的连接方法[整理]

Ansys中不同密度的网格之间的连接方法[整理]

问题:如下图所示的网格,其左右的密度不同,怎么连接在一起呢?先看例子吧。

fini/clear,nostart/prep7et,1,63r,1,0.1mp,prxy,1,0.3mp,ex,1,2e10 !以上为定义材料,单元类型rect,0,1,0,0.4rect,1,2,0,0.4 !建立两个矩形模型aesize,1,0.1aesize,2,0.05amesh,all !划分网格asel,s,,,2 !选择编号为2的面esla !选择此面上的单元nsle !选择单元上的所有节点nsel,r,loc,x,1-1e-6,1+1e-6!在刚才选取的节点中选择1-1e-6和1+1e-6之间的节点。

!也就是疏密网格交界处的节点。

注意,选择的是网格比较密的!那一侧的面上的节点。

因为一会要把这些节点和左侧面上的单!元连接在一起。

cm,node_temp,node !给这些节点起个名字,以备后用。

alls, !全选asel,s,,,1 !选择左侧的网格较疏的面esla !选择此面上的单元nsle !选择单元上的所有节点nsel,r,loc,x,1-1e-6,1+1e-6 !同上注释。

esln,r !选择贴附在以上节点上的单元。

cm,elem_temp,elem ! 给这些单元起个名字,以备后用。

alls,nsel,noneesel,none !在开始连接操作之前,不要选中任何节点和单元cmsel,s,elem_tempcmsel,s,node_temp !选中刚才定义的单元集合和节点集合。

ceintf,0.25,all !仅此一句命令即搞定了疏密网格之间的接合。

此命令可以在接合面处生成约束方程。

All代表全部自由度。

alls,/solulsel,s,,,4nsll,s,1d,all,all !定义边界条件lsel,s,,,6nsll,s,1d,all,uz,0.01 !定义边界条件alls,solve !求解之。

ANSYS 杆单元、壳单元的单元耦合问题学习

ANSYS 杆单元、壳单元的单元耦合问题学习

ANSYS中杆单元、壳单元的单元耦合问题关键词:单元耦合ANSYS在比较复杂的结构的有限元分析中,不同的结构部件通常使用不同类型的单元来模拟。

通常情况下,不同类型的单元的各个节点的自由度数目是不同的,不同类型单元的连接节点处的自由度的耦合问题,是一个比较令人头疼的问题。

在ANSYS中通常可以用耦合命令CP来耦合不同类型单元在连接节点处的自由度(DOF)。

也可以用CE命令来认为添加自由度之间的约束方程来达到耦合的目的。

下面是一个简单的算例,使用了CE命令来耦合连接节点处的自由度。

模型是航天器的机翼的一个Section的某一个隔框。

上下表皮是薄壳结构,用Shell63单元来模拟,在上下表皮之间有起支撑作用的杆件,用link8单元来模拟。

建模的时候,link8单元和shell63单元在连接有各自独立的节点。

即:link8单元和shell63单元的节点在连接处是重合的,但是,节点编号是各自独立的。

link8单元在每个节点有ux,uy,uz3个平动自由度;shell63在每个节点有ux,uy,uz这3个平动自由度和rotx,roty,rotz这3个转个自由,共6个自由度。

在耦合节点处,两个耦合节点的ux,uy,uz自由度应该是相等的。

这个等式可以用CE命令来描述。

完整的命令流如下:finish/clear,start/prep7!定义第一种材料属性;mp,ex,1,30e6mp,prxy,1,0.3!定义shell63单元和实常数;et,1,shell63r,1,1e-3!建立几何模型;rectng,31.8,33.2,0,0.3556agen,2,1,1,1,0,0,1a,1,4,8,5a,6,7,3,2KL,7,0.5, ,KL,3,0.5, ,在关键点处生成节点;nkpt,100,4 !与编号为117的节点耦合nkpt,101,9 !与编号为169的节点耦合nkpt,102,10 !与编号为120的节点耦合nkpt,103,7 !与编号为160的节点耦合mat,1type,1real,1lesize,1,,,6lesize,3,,,6lesize,5,,,6lesize,7,,,6lesize,9,,,6lesize,10,,,6lesize,11,,,6lesize,12,,,6lesize,2,,,6lesize,4,,,6lesize,6,,,6lesize,8,,,6MSHAPE, 0, 2DMSHKEY, 1allselamesh,all!定义第二种材料属性;mp,ex,2,30e4mp,prxy,2,0.3!定义link8单元和实常数;et,2,link8r,2,28.26e-6mat,2type,2real,2e,101,102e,100,101e,102,103!CE, NEQN, CONST, NODE1, Lab1, C1, NODE2, Lab2, C2, NODE3, !Lab3, C3ce,1,0,100,ux,1,117,ux,-1 !节点100的ux=节点117的ux;ce,2,0,100,uy,1,117,uy,-1 !节点100的uy=节点117的uy;ce,3,0,100,uz,1,117,uz,-1 !节点100的uz=节点117的uz;ce,4,0,101,ux,1,169,ux,-1 !同上;ce,5,0,101,uy,1,169,uy,-1ce,6,0,101,uz,1,169,uz,-1ce,7,0,102,ux,1,120,ux,-1ce,8,0,102,uy,1,120,uy,-1ce,9,0,102,uz,1,120,uz,-1ce,10,0,103,ux,1,160,ux,-1ce,11,0,103,uy,1,160,uy,-1ce,12,0,103,uz,1,160,uz,-1!施加约束,底面约束所有的自由度;DA,1,all!施加分布载荷;SFA,2,1,PRES,-1e4finish/solusolve !求解;finish/post1PLNSOL, S,X, 0,1.0finishPLNSOL, S,X, 0,1.0 对应的结果云图PLNSOL, S,EQV, 0,1.0对应的结果云图。

ansys在处理体壳连接问题中的应用

ansys在处理体壳连接问题中的应用
在使用有限元进行结构分析时,还需要考虑结构的规模效应,不同的方法往往会对应不 同建模规模的需要。下面就用两个不同建模规模的体壳组合结构模型用上述三种方法进行处 理,来考虑三者处理实体单元和壳单元的连接问题精确程度的差异。
3.1 模型一(小规模连接模型)
模型一:如图 2 所示的悬臂梁,由一个短厚的块体(20m×10m×7m )和一块非常长 的薄板(100m×10m×1m )在块体的中部连接而成,块体和板的弹性模量都是 3×1011pa, 泊松比为 0.3,在板的自由端施加垂直于板且大小为 600N/m 的均布荷载,求最大的位移与 应力。
全部壳单元
8.0171
0.00
352800
2.00
解析解
8.0170
360000
从表 1 可以看出,对于小规模的,简单的体壳组合结构模型,三种方法都能够处理实体
单元和壳单元的连接问题,且处理结果与解析解的结果偏差较小, 一般处于误差范围之内。
3.2 模型二(大规模连接模型)
当对大型的体壳组合结构模型进行有限元分析时,如苏通大桥索塔锚固区的钢锚箱与混 凝土塔壁组合结构,由于其结构的特殊性,在进行网格划分时,需要采用自由划分,此时在 接触面上实体单元和壳单元的节点就可能不重合,且在接触面上生成的节点数量很大,属于 大规模的接触问题,如图 3 所示。
其次定义接触单元和目标单元以组成“接触对”。“接触对”的接触单元必须建立在壳单 元侧,目标单元建立在实体单元侧,接触单元和目标单元利用 ESURF 命令创建,它们通过 共享实常数设置组成“接触对”。
-2-

2.3 用复合单元处理接触面
在实际生活中, 我们经常遇到图 1 所示结构的连接情况,即实体与板采用搭接的方式连 接。

ansys中如何进行刚性连接

ansys中如何进行刚性连接

ansys中如何进行刚性连接一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

(2)梁与壳有公共节点即可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

(3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

(4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。

举例:有一长为100mm的矩形截面梁,截面为10X1mm,与一规格为20mmX7mmX10mm的实体连接,约束实体的端面,在梁端施加大小为3N的y方向的压力,梁与实体都为一材料,弹性模量为30Gpa,泊松比为0.3。

本例主要讲解梁与实体连接处如何利用耦合及约束方程进行处理。

命令流如下:FINI/CLE/FILNAME,BEAM_AND_SOLID_ELEMENTS_CONNECTION !定义工作文件名/TITLE,COUPLE_AND_CONSTRAINT_EQUATION !定义工作名/PREP7ET,1,SOLID95 !定义实体单元类型为SOLID95ET,2,BEAM4 !定义梁单元类型为BEAM4MP,EX,1,3E4 !定义材料的弹性模量MP,PRXY,1,0.3 !定义泊松比R,1 !定义实体单元实常数R,2,10.0,10/12.0,1000/12.0,10.0,1.0 !定义梁单元实常数BLC4,,,20,7,10 !创建矩形块为实体模型WPOFFS,0,3.5 !将工作平面向Y方向移动3.5WPROTA,0,90 !将工作平面绕X轴旋转90度VSBW,ALL !将实体沿工作平面剖开WPOFFS,0,5 !将工作平面向Y方向移动5WPROTA,0,90 !将工作平面绕X轴旋转90度VSBW,ALL !将实体沿工作平面剖开WPCSYS,-1 !将工作平面设为与总体笛卡儿坐标一致K,100,20,3.5,5 !创建关键点K,101,120,3.5,5 !创建关键点L,100,101 !连接关键点生成梁的线实体LSEL,S,LOC,X,21,130 !选择梁线LATT,1,2,2 !指定梁的单元属性LESIZE,ALL,,,10 !指定梁上的单元份数LMESH,ALL !划分梁单元VSEL,ALL !选择所有实体VATT,1,1,1 !设置实体的单元属性ESIZE,1 !指定实体单元尺寸MSHAPE,0,2D !设置实体单元为2DMSHKEY,1 !设置为映射网格划分方法VMESH,ALL !划分实体单元ALLS !全选FINI !退出前处理!------------------------/SOLU !进入求解器ASEL,S,LOC,X,0 !选择实体的端面DA,ALL,ALL !约束实体端面ALLS !全选FK,101,FY,-3.0 !在两端施加Y向压力CP,1,UX,1,21 !耦合节点1和节点21X方向自由度CP,2,UY,1,21 !耦合节点1和节点21Y方向自由度CP,3,UZ,1,21 !耦合节点1和节点21Z方向自由度CE,1,0,626,UX,1,2328,UX,-1,1,ROTY,-ABS(NZ(626)-NZ(2328)) !设置约束方程CE,2,0,67,UX,1,4283,UX,-1,1,ROTZ,-ABS(NY(67)-NY(4283)) !设置约束方程CE,3,0,67,UZ,1,4283,UZ,-1,1,ROTX,-ABS(NY(67)-NY(4283)) !设置约束方程ALLS !全选SOLVE !保存FINI !退出求解器!------------------------/POST1 !进入通用后处理PLNSOL, U,Y, 0,1.0 !显示Y方向位移PLNSOL, S,EQV, 0,1.0 !显示等效应力ETABLE,ZL1,SMISC,1 !读取梁单元上I节点X方向的力ETABLE,ZL2,SMISC,7 !读取梁单元上J节点X方向的力ETABLE,MZ1,SMISC,6 !读取梁单元上I节点Z方向的力矩ETABLE,MZ2,SMISC,12 !读取梁单元上J节点Z方向的力矩PLETAB,ZL1 !显示梁单元X方向的力PLETAB,MZ1 !显示梁单元Z方向力矩!**********************************************上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC 法。

ansys两端铰接 抗拉极限

ansys两端铰接 抗拉极限

您好!您的问题涉及到使用ANSYS软件进行两端铰接的抗拉极限分析。

在ANSYS中,模拟梁单元铰接点的方法有多种,例如可以使用BEAM3/BEAM4单元,通过结点自由度耦合来实现铰接。

在进行此类分析时,通常需要考虑以下步骤:
1. 确定结构尺寸和材料:首先,您需要明确要分析的结构的尺寸和所使用的材料属性。

2. 设置材料参数:根据所选材料的特性,设置材料的弹性模量、泊松比等参数。

3. 选择适当的网格划分:根据结构的复杂性和分析要求,进行有限元网格划分。

4. 建立有限元模型:利用ANSYS的工作界面,建立相应的有限元模型,定义两端铰接的位置和约束条件。

5. 应用边界条件和载荷:根据您的问题,确定适当的边界条件和载荷类型,确保能够反映真实的载荷与约束情况。

6. 选择合适的分析类型:根据您的需求,可以选择线性屈曲分析或非线性屈曲分析。

对于线性弹性应力分析,您可以先施加一个较小的载荷,然后计算应力,接着根据屈服强度来计算最大载荷。

对于非线性分析,可以设置多个子步来查看结构在不同阶段的响应。

7. 进行分析和结果后处理:运行分析并获取结构的变形量、应力分布等信息。

根据需要,对结果进行后处理和可视化展示。

梁单元和实体单元的自由度怎么耦合

梁单元和实体单元的自由度怎么耦合

请问梁单元和实体单元的自由度怎么耦合是不是要采用写约束方程的方法,如果是这样,按约束方程怎么写?*tie或者shell to solid coupling在interaction模块的constraint最近遇到一个模型中既有壳单元也有实体单元,看了下网上的资料和帮助,abaqus提供了shell-to-solid连接方式,但如果计算模态的话,这种方式对频率的提取是否有影响,因为频率提取是线性摄动步,不会考虑耦合的。

不知道大家遇到这问题没,怎么处理的?线性摄动步-不会考虑耦合的?tie可以在模态计算中体现呀?自由度耦合可以在模态中反映出来,最起码质量矩阵是关联的计算用实体-壳体接触,实体的表面与壳体面在空间重合,节点在同意位置。

定义主-从面接触后,因为壳体单元多了三个转动方向的自由度,所以会存在实体和壳体单元的自由度不一致的问题。

请教大家应该怎么处理,如果直接用边界条件约束壳体的转动自由度恐怕不妥,又不能用tie绑定实体与壳体,因为我要模拟实体-壳体的接触。

我一直都是用主-从面接触做的,但是dat文件中都会有warning,说明壳体单元的三个转动自由度没有约束,也不知道对结果会产生多少影响。

前段时间看到ansys板块有相关问题的帖子,想作些改进,没有找到合适的方法。

*mpc可以解决你的问题请教一个问题--如何进行节点的自由度耦合问题同题。

就是模型的一个面上的所有节点在计算过程中Z轴自由度位移是相同的,但具体是多少由计算才能知道,在abaqus中有什么命令可以实现???就coupling这些点的U3好了回答的完全不是一回事,这个方法我试过,行不通。

coupling要求有一个控制节点。

我是只要求他们的U3位移相同,不需要什么控制节点。

而且用coupling耦合U3后,被耦合的节点就不能再被用来施加其他U1、U2的自由度边界条件。

而上面的问题在Ansys在中能解决,abaqus的couple和ansys不一样。

(整理)ANSYS单元节点自由度耦合.

(整理)ANSYS单元节点自由度耦合.

ANSYS自由度耦合当生成模型时,典型地是用单元去连接节点以建立不同自由度间的关系,但是,有时需要能够刻划特殊细节(刚性区域结构的铰链连接,对称滑动边界,周期条件,和其他特殊内节点连接等),这些用单元不足以来表达,可用耦合和约束方程来建立节点自由度间的特殊联系,利用这些技术能进行单元做不到的自由度连接。

1、什么是耦合当需要迫使两个或多个自由度(DOFs)取得相同(但未知)值,可以将这些自由度耦合在一起,耦合自由度集包含一个主自由度和一个或多个其他自由度。

耦合只能将主自由度保存在分析的矩阵方程里,而将耦合集内的其他自由度删除。

计算的主自由度值将分配到耦合集内的所有其他自由度中去。

典型的耦合自由度应包括:部分模型包含对称;在两个重复节点间形成销钉,铰链,万向节和滑动连接;迫使模型的一部分表现为刚体。

2、如何生成耦合命令:CPGUI:Preprocessor——Coupl/Ceqn——Couple DOF在生成一个耦合节点之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中。

也可用选择逻辑来耦合所选节点的全部耦合。

可用CP命令输入负的节点号来删除耦合集合中的节点。

要修改一耦合自由度(即增、删节点或改变自由度标记)用CPNGEN命令(无GUI)。

CPINTF命令通过在对每对重合节点上定义自由度标记生成一耦合集而实现对模型重合节点的耦合。

此操作对“扣紧”几对节点(诸如一条缝)尤为有用。

命令:CPINTFGUI:Preprocessor——Coupl/Ceqn——Coincident nodes除耦合重复节点外,还可用下列替换方法迫使节点有相同的变现方式:(1)如果对重复节点所有自由度都要耦合,通常用NRMMRG (numbering——mergeit)将这些节点合并起来更方便;(2)可用EINTF命令(create——element——at coincident)在重复节点生成2节点单元连接;(3)用EINTF(preprocessor——couple/ceqn——adjacent rejoins)将两个不相似网格模式的区域连接起来,这项操作使一个区域的选定节点与另一个区域的选定单元连接起来生成约束方程;(4)用下列方法以相同的节点号但与已有模式集不同的自由度标记生成新的耦合集。

[转载]ansys中实体单元与壳单元的连接处理方法

[转载]ansys中实体单元与壳单元的连接处理方法

[转载]ansys中实体单元与壳单元的连接处理⽅法原⽂地址:ansys中实体单元与壳单元的连接处理⽅法作者:埃及⽂字2010为简化模型,在有些模型中采⽤壳和实体混合的单元类型,由于壳单元节点表⽰的是⼀个截⾯,因此除平动⾃由度外,⼀般具有转动⾃由度;⽽实体单元节点表⽰的是⼀个点,因此只有平动⾃由度。

因此在这些模型中,壳单元与实体单元过渡处的节点由于⾃由度的不同,不能单纯的进⾏节点耦合。

⽬前实体单元与壳单元连接常⽤的处理使⽤MPC⽅法(SHSD命令)定义两者之间的装配关系,这种⽅法⼀般可理解为绑定接触形式。

尽管采⽤了接触模块,采⽤MPC⽅法在⼩变形时不需要平衡迭代,在⼤变形中在每个平衡迭代中不断进⾏更新,⼜克服了传统约束⽅程只适⽤于⼩应变的限制。

该⽅法是处理节点⾃由度耦合较为理想的形式。

本⽂分别采⽤混合单元与纯实体单元两种⽅式进⾏建模,分析,结果及命令流如下:采⽤混合单元进⾏分析时的应⼒分布云图(第三应⼒强度理论):单纯采⽤实体单元进⾏分析时应⼒分布云图(第三应⼒强度理论):采⽤混合单元分析的命令流如下:/CLEAR/FILNAME, EXAMPLE26/PREP7ET, 1, SOLID95ET, 2, SHELL63ET, 3, TARGE170KEYOPT, 3, 5, 1ET, 4, CONTA175KEYOPT, 4, 2, 2KEYOPT, 4, 12, 5R, 1, 0.02R, 2R, 3R, 4R, 5MP, EX, 1, 2E11MP, PRXY, 1, 0.3/VIEW, 1, 1, 1, 1BLOCK, -0.14, 0.14, -0.14, 0.14, 0,0.98VDELE, 1,,,0ADELE, 1, 2, 1, 1BLOCK, -0.15, 0.15, -0.15, 0.15, 0.98, 1K, 20, 0, 0, 0.98K, 21, 0, 0.1, 0.98K, 22, 0, 0.1, 1K, 23, 0, 0.075, 1K, 24, 0, 0.075, 1.3 K, 25, 0, 0, 1.3 LSEL, NONEL, 20, 21L, 21, 22L, 22, 23L, 23, 24L, 24, 25L, 25, 20LFILLT, 27, 28, 0.025 AL, ALL VROTAT, 11,,,,,,20, 25 ALLS VOVLAP, ALL AATT, 1, 1, 2 ESIZE, 0.02 MSHAPE, 0 MSHKEY, 1 AMESH, 3, 6, 1 VATT, 1, 1, 1 ESIZE, 0.0175 SMRTSIZE, 5 MSHAPE, 1 MSHKEY, 0 VMESH, ALLALLSASEL, S,,,47 NSLA, S, 1TYPE, 3REAL, 2ESURFALLSLSEL, S,,,5ESURF ALLS ASEL, S,,,47 NSLA, S, 1 TYPE, 3 REAL, 3 ESURF ALLS LSEL, S,,,6 NSLL, S, 1 TYPE, 4 REAL,3 ESURF ALLS ASEL, S,,,47 NSLA, S, 1 TYPE, 3 REAL, 4 ESURF ALLS LSEL, S,,,7 NSLL, S, 1 TYPE, 4 REAL, 4 ESURF ALLS ASEL, S,,,47 NSLA, S, 1 TYPE, 3 REAL, 5 ESURF ALLSREAL, 5ESURFALLSSHSD, 2, CREATE SHSD, 3, CREATESHSD, 4, CREATESHSD, 5, CREATEFINISH/SOLUASEL, S,,,21, 27, 6ASEL,A,,,15,33,18NSLA, S, 1D, ALL, ALLALLSNSEL, S, LOC, Z, 0D, ALL, UZALLSSFA, 4,2, PRES, -1E6*3/2.804 SFA, 8, 1, PRES, -1E6*3/2.804 SOLVEFINISH/POST1PLNSOL, S, EQV, 0, 1 FINISH。

第16章 耦合和约束方程(ansys教程)

第16章 耦合和约束方程(ansys教程)

16.2.5 建立刚性区
约束方程通常被用来模拟刚性区 作用在节点(主节点 主节点)上的载荷将被恰当地分配到刚 作用在节点 主节点 上的载荷将被恰当地分配到刚 性区的其它节点上 使用CERIG 命令 或 Preprocessor > Coupling/Ceqn 命令(或 使用 > Rigid Region) 在某些特殊情况下,全 在某些特殊情况下, 刚性区给出了约束方程 的另一种应用 全刚性区和部分刚性区 的约束方程都可由程序 自动生成
16.1.1 耦合设置的特点
只有一个自由度卷标- 只有一个自由度卷标-如:ux,uy或temp 或 可含有任意节点数 任意实际的自由度方向- 在不同的节点上 任意实际的自由度方向-ux在不同的节点上 可能是不同的 主、从自由度的概念 加在主自由度上的载荷
16.1.2 一般应用
施加对称条件 无摩擦界面 铰接 如 : 用耦合施加循环对称 性 , 在循环对称切面上的 对应位置实施自由度耦合
16.1.5 铰接
耦合可用来模拟铰接, 耦合可用来模拟铰接,如:万向节、铰链 万向节、 借助力矩释放可模拟铰接: 借助力矩释放可模拟铰接: 只耦合连接节点间的位 移自由度, 移自由度,不耦合旋转自由度 例如: 下图中, 若 A处重合两节点在 例如 : 下图中 , 处重合两节点在UX、 UY方向 、 方向 处重合两节点在 上耦合,旋转不耦合, 上耦合,旋转不耦合,则A连接可模拟成铰接 连接可模拟成铰接 节点1和节点 节点 和节点2 和节点 重合, 重合 , 为了看 清分开显示
16.2.4 连接不同类型的单元
如果需要连接自由度集不同的单元类型, 如果需要连接自由度集不同的单元类型,则要求写出 约束方程以便于从一类单元向另一类单元传递载荷: 约束方程以便于从一类单元向另一类单元传递载荷 梁与实体或垂直于壳的梁 壳与实体 命令: 命令: CE 命令 (Preprocessor > Coupling/Ceqn > Constraint Eqn) 建立转动自由 度和移动自由 度之间的关系

ansys结构的耦合分析需要注意的问题总结

ansys结构的耦合分析需要注意的问题总结

ansys结构的耦合分析需要注意的问题总结间接法,可以理解为先做温度场的分析,再做结构的分析,其中要引入温度场分析的结果。

在不同的分析里,单元的性质是不同的,但DOF一定要一致。

直接法,和上述方法不同的地方是,单元是直接就定义为含有温度和结构耦合的单元,然后直接做分析,即不需要分为两个步骤。

瞬态分析,一样可以用上述两个方法。

只是运用第一个时要分清楚载荷步与分析的关系,虽然比第二种灵活,但处理起来也分麻烦。

在做温度场的瞬态分析,根据需要,在合适的载荷步停顿,做结构分析(如果想省去单元定义转换的麻烦,那么就定义physics环境切换)。

做完结构分析,再开启温度场分析(一样要转换环境),这里为确保从某一载荷步出发,我们用FLOCHECK,2,然后继续加载边界条件求解。

耦合的过程很公式化,但是要让其符合你的要求,就要很小心数据的提取。

还有一个问题,结构分析时需不需要删除热边界条件。

需要删除热边界条件,比如对流等等。

一般情况下,不考虑变形对温度的影响(因为特别小),采用间接耦合,即先计算温度场,然后读取温度场结果,进行结构分析。

、、、、、、、、、、、、、、、、、、、、、、、、载荷步是为了表达随时间变化的载荷,也就是说把载荷—时间曲线分成载荷步。

这是瞬态与稳态分析最大的不同。

分析时对于每一个载荷步都要定义载荷值和对应的时间值。

而分析类型应定义为瞬态分析,每计算一个载荷步时,都要删掉上一个载荷步的温度,除非这些节点的温度在瞬态与稳态分析中都相同。

至于单元,个人推荐使用SOLID62,无论是分网还是施加载荷都比教方便,基本可满足各类瞬态分析计算条件。

、、、、、、、、、、、、、、、、、、、、、、首先了解一个概念,顺序耦合或是直接耦合的选择是针对不同的问题选择的,一般地,当温度变化对于结构的力学影响相对很小的时候,也就是说可以忽略的情况下,我们称之为单向弱耦合,此时采用顺序耦合很方便,例如焊接过程,这样可以节省分析时间!而对于诸如车的制动系统即车闸盘与闸片的接触,在制动过程中,由于闸片与闸盘的摩擦生热会影响两者的接触,同时由于闸盘的减速对闸片的生热也会有很大影响,所以两者是强耦合,只能采用直接耦合!你需要选择合适的耦合方法才能更好的求解你的问题!从实际情况来讲,直接耦合是最接近现实的耦合方法,但同时求解也会存在困难性!你的模型如果是热力过程同时进行的话,那么这个求解过程无疑是瞬态的,每一点每一时刻的温度值都是需要读入力学分析中的相应时刻的,不存在“静态力分析和瞬态热分析的过程!当然,如果你的分析过程是模型先受热后才开始力载荷的作用,那可以进行”静态力分析“,此时你的模型热分析的温度值你只需对最终的温度值以载荷形式赋与结构分析中去,当然,这种过程也就不叫做耦合了!、、、、、、、、、、、、、、、、、、、、、顺序法热力耦合的基本思路是:在热载荷作用下温度场分析的过程,是热梯度分布渐变的过程。

ansys ls-dyna分析全过程(跌落)

ansys ls-dyna分析全过程(跌落)

R14w笔记本跌落仿真分析一笔记本仿真模型的建立1.1模型的建立1.1.1 模型简化对分析结果无关紧要的一些细节部分常常使模型相当复杂,在实体建模时往往可将这一步略去。

在某些情况下,由于一些很小的局部而破坏了整个结构的对称性.有时可略去这些局部(或将它们作对称处理)以保持对称结构,缩小分析的规模。

必须权衡简化模型的利弊(损失精度以减小花费)审慎地略去不对称部分。

在这里还想进一步说明模型简化中一些方法和技巧。

“子结构“是将一组有限元压缩成为一个用用一个矩阵表示的超单元.采用子结构的原因有:1.减少计算时间.在非线性分析中,可用子结构计算结构的线性部分,以便那部分的单元短阵不必重复计算每一个平衡迭代;对于有重复部分的结构分忻,可以生成一个超单元来表示这部分图形、然后拷贝到不同的位置:2.利用有限的计算机资料解决非常大型的问题。

当一个分析相对于计算机波前空间或磁盘空间来说太大了、用子结构可使每一部分都满足计算机的要求:“子模型”是为了获得模型中某一区域的更精确的解而产生的一种有限元技术。

当整个模型的网格划分相对于某一区域太组时,可不必重新对整个模型进行更纫的划分,只需对这一区域重新划分。

这就大大节约了时间和费用。

“等效结构”的概念为:将原来的复杂结构用一简单结构模拟,新结构的材料和几何特性与原结构有所不同但刚度等效。

其等效结构是指那些具有重复性的均匀结构,如蜂窝结构、晶体结构等。

1.1.2 单元类型选择1.2单元类型的选择Ansys 隐式单元ANSYS的单元库提供了100 多种的单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上,通常采用以下方法。

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。

例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。

(2)梁与壳有公共节点即可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题:如下图所示block单元和beam单元如何连接在
一起?
先看例子:
FINI
/CLE
/FILNAME,BEAM_AND_SOLID_ELEMENTS_CONNECTION !定义工作文件名/TITLE,COUPLE_AND_CONSTRAINT_EQUATION !定义工作名
/PREP7
ET,1,SOLID95 !定义实体单元类型为SOLID95
ET,2,BEAM4 !定义梁单元类型为BEAM4
MP,EX,1,3E4 !定义材料的弹性模量
MP,PRXY,1,0.3 !定义泊松比
R,1 !定义实体单元实常数
R,2,10.0,10/12.0,1000/12.0,10.0,1.0 !定义梁单元实常数
BLC4,,,20,7,10 !创建矩形块为实体模型
WPOFFS,0,3.5 !将工作平面向Y方向移动3.5
WPROTA,0,90 !将工作平面绕X轴旋转90度
VSBW,ALL !将实体沿工作平面剖开
WPOFFS,0,5 !将工作平面向Y方向移动5
WPROTA,0,90 !将工作平面绕X轴旋转90度
VSBW,ALL !将实体沿工作平面剖开
WPCSYS,-1 !将工作平面设为与总体笛卡儿坐标一致K,100,20,3.5,5 !创建关键点
K,101,120,3.5,5 !创建关键点
L,100,101 !连接关键点生成梁的线实体
LSEL,S,LOC,X,21,130 !选择梁线
LATT,1,2,2 !指定梁的单元属性
LESIZE,ALL,,,10 !指定梁上的单元份数
LMESH,ALL !划分梁单元
VSEL,ALL !选择所有实体
VATT,1,1,1 !设置实体的单元属性
ESIZE,1 !指定实体单元尺寸
MSHAPE,0,2D !设置实体单元为2D
MSHKEY,1 !设置为映射网格划分方法
VMESH,ALL !划分实体单元
ALLS !全选
FINI !退出前处理
/SOLU !进入求解器
ASEL,S,LOC,X,0 !选择实体的端面
DA,ALL,ALL !约束实体端面
ALLS !全选
FK,101,FY,-3.0 !在两端施加Y向压力
CP,1,UX,1,21 !耦合节点1和节点21X方向自由度CP,2,UY,1,21 !耦合节点1和节点21Y方向自由度CP,3,UZ,1,21 !耦合节点1和节点21Z方向自由度
CE,1,0,626,UX,1,2328,UX,-1,1,ROTY,-ABS(NZ(626)-NZ(2328)) !设置约
束方程
CE,2,0,67,UX,1,4283,UX,-1,1,ROTZ,-ABS(NY(67)-NY(4283)) !设置约束
方程
CE,3,0,67,UZ,1,4283,UZ,-1,1,ROTX,-ABS(NY(67)-NY(4283)) !设置约束
方程
ALLS !全选
SOLVE !保存
FINI !退出求解器
/POST1 !进入通用后处理
PLNSOL, U,Y, 0,1.0 !显示Y方向位移
PLNSOL, S,EQV, 0,1.0 !显示等效应力
ETABLE,ZL1,SMISC,1 !读取梁单元上I节点X方向的力
ETABLE,ZL2,SMISC,7 !读取梁单元上J节点X方向的力
ETABLE,MZ1,SMISC,6 !读取梁单元上I节点Z方向的力矩
ETABLE,MZ2,SMISC,12 !读取梁单元上J节点Z方向的力矩
PLETAB,ZL1 !显示梁单元X方向的力
PLETAB,MZ1 !显示梁单元Z方向力矩。

相关文档
最新文档