统计与概率的应用专题训练
数的简单概率与统计应用练习题
数的简单概率与统计应用练习题1.小明有一组打乒乓球的数据,他发现自己打乒乓球时,击球成功率为75%。
今天他打了10次乒乓球,求他在这10次击球中至少7次成功的概率。
解析:小明击球成功率为75%,即失败率为25%。
我们需要求解至少7次成功的概率,可以通过计算小明在7次、8次、9次和10次中至少成功的概率,然后相加。
首先,求解小明7次成功的概率:P(至少7次成功) = P(7次成功) + P(8次成功) + P(9次成功) + P(10次成功) = C(10,7)*(0.75^7)*(0.25^3) + C(10,8)*(0.75^8)*(0.25^2) + C(10,9)*(0.75^9)*(0.25^1) +C(10,10)*(0.75^10)*(0.25^0)其中C(n,m)表示从n个元素中取m个元素的组合数。
计算结果为:P(至少7次成功) = 0.250 + 0.324 + 0.266 + 0.056 = 0.896所以小明在这10次击球中至少成功7次的概率为0.896。
2.某公司进行岗位评估,评估结果有三类:A、B、C,分别占评估结果的30%、50%、20%。
现从该公司的100名员工中随机选择一个员工,求该员工评估结果为B的概率。
解析:根据题目给出的信息,我们可以知道员工评估结果为B的概率为50%。
所以该员工评估结果为B的概率为0.5。
3.某学校某班级男生占班级总人数的40%,女生占60%。
现从该班级的40名学生中随机选择一名学生,求选中的学生为男生的概率。
解析:根据题目给出的信息,我们可以知道男生占总人数的40%,女生占总人数的60%。
假设总人数为x,则男生人数为0.4x,女生人数为0.6x。
现从该班级的40名学生中随机选择一名学生,求选中的学生为男生的概率。
选中男生的概率 = 选中男生的人数 / 总人数 = (男生人数 / 总人数)= 0.4x / x = 0.4所以选中的学生为男生的概率为0.4。
初二《统计与概率的应用练习》
初二《统计与概率的应用练习》介绍本练旨在帮助初二学生巩固和应用统计与概率的知识。
通过解决实际问题和进行统计分析,学生可以更好地理解和应用统计与概率概念。
本文档将提供一些示例练和解答,供学生进行自主研究和练。
练一:调查问卷分析1. 问题:某班级的学生喜欢的运动类型是什么?2. 方法:设计一份调查问卷,包括不同运动类型的选项,并让每个学生选择自己喜欢的运动类型。
3. 统计分析:将学生的选择进行统计,计算每种运动类型的喜欢程度百分比,并绘制柱状图展示结果。
练二:概率计算1. 问题:抛掷一枚硬币连续三次,获得正面的概率是多少?2. 方法:列出所有可能的结果组合,并计算正面出现次数与总次数的比值来计算概率。
3. 统计分析:将计算结果展示为百分比形式,表示获得正面的概率。
练三:统计数据分析1. 问题:某班级学生的身高分布情况如何?2. 方法:测量每位学生的身高,并记录下来。
3. 统计分析:将学生身高进行分组,并绘制频率分布直方图展示结果。
计算平均身高和身高的标准差。
练四:概率与统计的联系1. 问题:一个骰子被抛掷200次,其中1点出现的次数是多少?2. 方法:将骰子的每个面计入概率计算,然后根据抛掷次数计算1点出现的次数。
3. 统计分析:将计算结果展示为次数形式,并计算1点出现的频率百分比。
以上是《统计与概率的应用练习》的示例内容。
通过进行类似的练习,学生可以更好地理解和应用统计与概率的知识。
请学生们根据自己的能力和兴趣进行练习,并深入思考练习中的问题。
祝大家学习进步!。
09-5.4 统计与概率的应用高中数学必修第二册人教B版
≈ 32.67,
1
18
× (72 × 20 − 1582 −
(2)使用统计学的观点说明( − 2, + 2)以内的数据与原数据对比有什么特点.
(主要用平均数与方差进行说明)
【解析】( − 2, + 2)以内的数据与原数据对比,有以下特点:
①( − 2, + 2)以内的数据占总数据个数的90%,说明该校90%左右的男生身高
我们有理由认为这个骰子是不均匀的.
例6 元旦就要到了,某校欲举行联欢活动,每班派一人主持节目,高二(1)班的小
明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方式来决定,小强给
小华出主意,要小华先抽,说先抽的机会大,你是怎么认为的?
【解析】取三张卡片,上面分别标有1,2,3,抽到“1”就表示中签.假设抽签的次序
用样本估计总体,得全市居民每月节电量约为640 ×
300 000
200
= 960 000(kW ⋅ h).
(3)在(1)(2)的条件下,若使用阶梯电价前后全市缴纳电费总额不变,求第二
阶梯电价.(结果保留两位有效数字)
【解析】由题意,全市缴纳电费总额不变,由于“未超出部分”的用电量在“阶梯电价”
前后不变,故“超出部分”对应的总电费也不变,在200户居民组成的样本中,每月用
120×100
【解析】
6
= 2 000(条),即估计该水库中鱼的总条数为2 000.
.
题型2 概率的应用
例4 甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将
扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)若甲抽到红桃3,则乙抽到的牌的数字比3大的概率是多少?
统计与概率的综合运用(题目版)
第 1 页/共 23 页2021全国中考真题分类汇编(统计与概率)----统计与概率的综合运用一、挑选题1. (2021•湖南省衡阳市)下列说法准确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,预计该校最喜欢的课外体育运动项目为跳绳的有1360人2. (2021•湖北省江汉油田)下列说法准确的是( )A. “打开电视机,正在播放《新闻联播》”是必然事件B. “明天下雨概率为0.5”,是指明天有一半的时光可能下雨C. 一组数据“6,6,7,7,8”的中位数是7,众数也是7D. 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同.方差分离是2 0.2s =甲,20.4s =乙,则甲的成绩更稳定二.解答题1. (2021•黑龙江省大庆市)某校要从甲,乙两名学生中挑选一名学生参加数学比赛,在最近的8次选拔赛中,他们的成績(成绩均为整数,单位:分)如下: 甲:92,95,96,88,92,98,,99,100乙:100,87,92,93, 9 ,95,92,98因为保存不当,学生乙有一次成绩的个位数字含糊不清,(1)求甲成绩的平均数和中位数;(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学比赛.2.(2021•山东省济宁市)某校为了解九年级学生体质健康情况,随机抽取了部分学生举行体能测试,并按照测试结果绘制了不残破的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则预计该校“良好”的人数是;(4)已知“不及格”的3名学生中有2名男生、1名女生,倘若从中随机抽取两名学生举行体能加试,请用列表法或画树状图的主意,求抽到两名男生的概率是多少?3.(2021•湖南省常德市)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院举行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民举行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B类——接种了需要注射二针,且二针之间要间隔一定时光的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时光的疫苗;D类——还没有接种,图1与图2是按照此次调查得到的统计图(不残破).请按照统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请预计该小区所居住的18000名居民中有多少人举行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门决定在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.4.(2021•湖南省衡阳市)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可发明经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请预计该天可回收物所发明的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识比赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.第3 页/共23 页5.(2021•怀化市)某校开展了“禁毒”知识的宣传教诲活动.为了解这次活动的效果,现随机抽取部分学生举行知识测试,并将所得数据绘制成不残破的统计图表.频率等级频数(人数)优秀600.6良好a0.25合格10b50.05基本合格合计c1按照统计图表提供的信息,解答下列问题:(1)a=,b=,c=;(2)补全条形统计图;(3)该小学共有1600名学生,预计测试成绩等级在合格以上(包括合格)的学生约有多少人?(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位学生的成绩均为“优秀”,现班主任决定从这四名学生中随机选取两名学生出一期“禁毒”知识的黑板报,请用列表法或画树状图法求甲、乙两名学生同时被选中的概率.6.(2021•山东省泰安市)为欢庆中国共产党成立100周年,落实教诲部《关于在中小学组织开展“从小学党史,永远跟党走”主题教诲活动的通知》要求,某小学举行党史知识比赛,随机调查了部分学生的比赛成绩,绘制成两幅不残破的统计图表.按照统计图表提供的信息,解答下列问题:(1)本次共调查了名学生;C组所在扇形的圆心角为度;(2)该校共有学生1600人,若90分以上为优秀,预计该校优秀学生人数为多少?(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表小学参加上一级比赛,请用列表或画树状图的主意求恰好抽到E1,E2的概率.比赛成绩统计表(成绩满分100分)组别分数人数A组75<x≤4第5 页/共23 页80B组80<x≤8510C组85<x≤90D组90<x≤9514E组95<x≤100合计7.(2021•广西玉林市)2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识比赛,为了了解学生对党史知识的控制情况,小学随机抽取了部分学生的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分离举行统计,并绘制了如下不残破的条形统计图与扇形统计图:请按照图中提供的信息解答下列问题:(1)按照给出的信息,将这两个统计图补充残破(不必写出计算过程);(2)该校八年级有学生650人,请预计成绩未达到“良好”及以上的有多少人?(3)“优秀”学生中有甲、乙、丙、丁四位学生表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.8.(2021•湖北省随州市)疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教诲部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:已接种未接种合计七年级301040八年级3515a九年级40b60合计105c150(1)表中,a=______,b=______,c=______;(2)由表中数据可知,统计的教师中接种率最高的是______年级教师;(填“七”或“八”或“九”)(3)若该市初中七、八、九年级一共约有8000名教师,按照抽样结果预计未接第7 页/共23 页种的教师约有______人;(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感触,请用列表或画树状图的主意,求选中的两名教师恰好不在同一年级的概率.9.(2021•山东省菏泽市)2021年5月,菏泽市某中学对初二学生举行了国家义务教诲质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,小学绘制了如下不残破的统计图.按照图中提供的信息解答下列问题:(1)请把条形统计图补充残破;(2)合格等级所占百分比为%;不合格等级所对应的扇形圆心角为度;(3)从所抽取的优秀等级的学生A、B、C…中,随机选取两人去参加即将举办的小学运动会,请利用列表或画树状图的主意,求出恰好抽到A、B两位学生的概率.10.(2021•四川省达州市)为欢庆中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教诲实践活动,舞蹈,书法,为了解学生的参加情况,该校随机抽取了部分学生举行“你愿意参加哪一项活动”(必选且只选一种),部分信息如下:(1)这次抽样调查的总人数为人,扇形统计图中“舞蹈”对应的圆心角度数为;(2)若该校有1400名学生,预计挑选参加书法的有多少人?(3)小学决定从推荐的4位学生(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.11.(2021•四川省广元市)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,胜利地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:甲医院乙医院年龄段频数频率频数频率第9 页/共23 页18-29周岁9000.154000.130-39周岁a0.2510000.2540-49周岁2100b c0.22550-59周岁12000.212000.360周岁以上3000.055000.125(1)按照上面图表信息,回答下列问题:①填空:a=_________,b=_________,c=_________;②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为_________;(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.12. (2021•呼和浩特市))某大学为了解大学生对中国共产党党史识的学习情况,在大学一年级和二年级举行有关党史知识测试活动,现从一二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格:40分及40分以上为优秀)举行收拾、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,4,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如下图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一a b43m大二39.544c n请你按照上面提供的所有信息,解答下列问题:(1)上表中a=__________,b=__________,c=__________,m=__________,n__________;按照样本统计数据,你认为该大学一、二年级中哪个年级学生控制党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,预计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.13.(2021•贵州省铜仁市)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生举行调查,调查问卷设置了A:异常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并按照调查结果绘制成如图所示不残破的频数分布表和频率第11 页/共23 页直方图,按照以上信息回答下列问题:等级频数频率A200.4B15bC100.2D a0.1(1)频数分布表中a=____________,b=____________,将频数分布直方图补充残破;(2)若该校有学生1000人,请按照抽样调查结果估算该校“异常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“异常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个参加防疫志愿者团队,请用列表或画树状图的主意求所选两个学生中至少有一个女生的概率.14.(2021•湖北省黄石市)黄石是国家历史文化名城,素有“青铜故里、矿冶之都”的盛名.区域内矿冶文化旅游点有:A.铜绿山古铜矿遗址,B.黄石国家矿山公园,C.湖北水泥遗址博物馆,D.黄石园博园、矿博园.我市八年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,按照报名情况绘制了两幅不残破的统计图.请按照图中信息,解答下列问题:(1)全班报名参加研学旅游活动的学生共有______人,扇形统计图中A部分所对应的扇形圆心角是______;(2)补全条形统计图;(3)该班语文、数学两位学科教师也报名参加了本次研学旅游活动,他们随机参加A、B两个小组中,求两位教师在同一个小组的概率.15.(2021•辽宁省本溪市)为迎接建党100周年,某校组织学生开展了党史知识比赛活动.比赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述好汉故事;D.歌颂时代精神.小学要求学生全员参加且每人只能参加一项,为了解学生参加比赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不残破的统计图,请你按照图中信息解答下列问题:(1)本次被调查的学生共有________名;(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为________,并把第13 页/共23 页条形统计图补充残破;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名学生去做宣讲员,请用列表或画树状图的主意求出恰好小华和小艳被抽中的概率.16.(2021•四川省乐山市)某中学全校师生听取了“禁毒”宣传报告后,对禁毒人员肃然起敬.小学德育处随后决定在全校1000名学生中开展“我为禁毒献爱心”的捐款活动.张教师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据举行收拾,绘制了如图所示的条形统计图.(1)求这组数据的平均数和众数;(2)经调查,当学生身上的零花钱多于15元时,都到出零花钱的20%,其余学生不参加捐款.请你预计周五这一天该校可能收到学生自愿捐款多少元?(3)捐款最多的两人将和另一个小学选出的两人组成一个“禁毒”知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同小学的概率.17.(2021•四川省凉山州)随着手机的日益普及,学生使用手机给小学管理和学生发展带来诸多不利影响,为了保护学生眼力,防止学生迷恋网络和游戏,让学生在小学用心学习,促进学生身心健康发展,教诲部办公厅于2021年1月15日颁发了《教诲部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某小学团委组织了“我与手机说再见”为主题的演讲比赛,按照参赛学生的得分情况绘制了如图所示的两幅不残破的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)请你按照统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m _______;(2)请将条形统计图补充残破;(3)小学将从获得一等奖的4名学生(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取学生中恰有一名男生和一名女生的概率.18.(2021•四川省眉山市))吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定.为了解学生们对禁毒知识的控制情况,从我市某校1000名学生中随机抽取部分学生举行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“异常了解”四类,并按照调查结果绘制出如图所示的两幅不残破的统计图.第15 页/共23 页请按照统计图回答下列问题:(1)本次抽取调查的学生共有人,其中“了解较多”的占%;(2)请补全条形统计图;(3)预计此校“异常了解”和“了解较多”的学生共有人;(4)“了解较少”的四名学生中,有3名学生A1,A2,A3是初一学生,1名学生B为初二学生,为了提高学生对禁毒知识的认识,对这4人举行了培训,然后从中随机抽取2人对禁毒知识的控制情况举行检测.请用画树状图或列表的主意,求恰好抽到初一、初二学生各1名的概率.19.(2021•遂宁市)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规矩”的了解程度举行了抽样调查(参加调查的学生只能挑选其中一项),并将调查结果绘制出以下两幅不残破的统计图表,请按照统计图表回答下列问题:类别频数频率不了解10m了解很少160.32基本了解b很了解4n合计a1(1)按照以上信息可知:a=,b=,m=,n=;(2)补全条形统计图;(3)预计该校1000名初中学生中“基本了解”的人数约有人;(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识比赛,请用画树状图或列表的主意说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.20. 2021•四川省自贡市)为了弘扬爱国主义精神,某校组织了“共和国成就”知识比赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分学生的比赛成绩,绘制了如下统计图.第17 页/共23 页(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中惟独两位女生比赛成绩不合格,小李决定随机回访两位比赛成绩不合格的学生,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你预计该校比赛成绩“优秀”的学生人数.21.(2021•青海省)为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况举行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不残破的统计表:34567月平均用水量(吨)4a9107频数(户数)频率0.080.40b c0.14请按照统计表中提供的信息解答下列问题:(1)填空:a=,b=,c=.(2)这些家庭中月平均用水量数据的平均数是,众数是,中位数是.(3)按照样本数据,预计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户举行“节水”经验分享.请用列表或画树状图的主意,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.22.(2021•湖北省荆门市)为欢庆中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识比赛活动.某年级在一班和二班举行了预赛,两个班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其等级对应的分值分离为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析收拾绘制成了如图的统计图.(1)这次预赛中,二班成绩在B等及以上的人数是多少?(2)分离计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩A等的4人中有两个男生和2个女生,二班成绩A等的都是女生,年级要求从这两个班A等的学生中随机选2人参加小学比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.第19 页/共23 页23. (2021•湖北省十堰市)为欢庆中国共产党成立100周年,某校举行党史知识比赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A 、B 、C 、D 四个等级,并绘制了如下不残破的统计表和统计图. 等级 成绩(x ) 人数A 90100x ≤≤ 15B 8090x ≤< aC 7080x ≤<18 D70x <7按照图表信息,回答下列问题:(1)表中a =__________;扇形统计图中,C 等级所占的百分比是_________;D 等级对应的扇形圆心角为________度;若全校共有1800名学生参加了此次知识比赛活动,请预计成绩为A 等级的学生共有_______人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一年级,小学将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率24. (2021•湖南省张家界市))为了积极响应中共中央文明办关于“文明用餐”的倡议,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们家庭用餐使用公筷情况举行统计,统计分类为以下四种:A (彻低使用)、B (多数时光使用)、C (偶尔使用)、D (彻低不使用),将数据举行千里之行,始于足下。
专题训练 统计与概率的实际应用
题型专项(五)统计与概率的实际应用统计与概率是云南各地中考中必定考查的内容,且一般都以解答题的形式出现,重点考查从统计图表中获取信息并应用的能力和利用列表法或树状图法计算随机事件发生的概率.预计2020年的中考也会涉及此类问题,在平时的复习中应加强训练.类型1 统计的实际应用1.(2019·云师大实验模拟)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示的不完整统计图.请根据统计图回答下面的问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图; (2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1 200本,请估计有多少本科普类书籍? 解:(1)本次抽样调查的书籍有8÷20%=40(本), 其他类有40×15%=6(本), 补全条形统计图如图所示.(2)文学类书籍的扇形圆心角度数为360°×1440=126°.(3)科普类书籍有1240×1 200=360(本).2.(2019·乐山)某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有40名男生,40名女生; (2)张老师抽取的这部分学生中,女生成绩的众数是27;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少?解:720×27+12+3+280=720×4480=396(人).答:七年级720名学生中成绩为优秀的学生人数大约是396人.3.(2019·昆明模拟)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:请根据上述统计图表,解答下列问题: (1)在表中,a =0.1,b =0.3,c =18; (2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补全频数直方图如图所示.(3)∵x =9×65+36×75+27×85+18×9590=81(分).(4)800×(0.3+0.2)=800×0.5=400(人). 答:“优秀”等次的学生约有400人.4.(2019·曲靖陆良二中模拟)甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15 乙厂:6,6,8,8,8,9,10,12,14,15 丙厂:4,4,4,6,7,9,13,15,16,16 请回答下面问题: (1)填空:(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数? (3)如果你是顾客,你会买三家中哪一家的电子产品?为什么?解:(2)甲厂的销售广告利用了平均数;乙厂的销售广告利用了众数;丙厂的销售广告利用了中位数. (3)平均数:乙>丙>甲;众数:乙>甲>丙;中位数:乙>丙>甲,顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此应选乙厂的产品.类型2 概率的实际应用5.(2019·曲靖马龙区通泉中学二模)有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =-x -1上的概率. 解:(1)列表如下:共有6种等可能情况.(2)∵点Q 落在直线y =-x -1上的有2种, ∴P (点Q 落在直线y =-x -1上)=26=13.6.(2019·云师大实验模拟)已知有甲、乙两个不透明的袋子,甲袋内装有标记数字-1,2,3的三张卡片,乙袋内装有标记数字2,3,4的三张卡片(卡片除数字不同其余都相同).先从甲袋中随机抽取一张卡片,记录下数字,再从乙袋中随机抽取一张卡片,记录下数字.(1)利用列表或画树状图的方法(只选其中一种)表示出所抽两张卡片上数字之积所有可能的结果; (2)求抽出的两张卡片上的数字之积是3的倍数的概率. 解:(1)列表如下,共有9种结果.(2)∵数字之积为3的倍数的情况共有5种:-3,6,6,9,12,∴抽出的两张卡片上的数字之积是3的倍数的概率为59.7.(2019·昆明禄劝县一模)4张背面图案完全相同的卡片A ,B ,C ,D ,其正面分别画有不同的图案(如图所示),现将这4张卡片背面朝上洗匀后摸出1张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片用A ,B ,C ,D 表示) (2)求摸出的两张卡片正面图案都是中心对称图形的概率. 解:(1)画树状图如下:或列表如下:(2)由图可知:只有卡片B ,D 才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片正面图案都是中心对称图形(记为事件M )的有4种,即(B ,B ),(B ,D ),(D ,B ),(D ,D ),∴P (M )=416=14.8.(2019·楚雄一模)现有一个如图所示的标有2,3,4,5,6的转盘,另有五张分别标有1,2,3,4,5的扑克,小华和小亮用它们做游戏,先由小华转动转盘一次,记下指针停留时所指的数字;再由小亮随机抽取背面朝上的扑克一张,记下正面的数字.(1)用列表法或画树状图的方法,求出记下的两个数字之和为8的概率;(2)若记下的两个数字之和为奇数,则小华得1分;若记下的两个数字之和为偶数,则小亮得1分.这个游戏对双方公平吗?为什么?解:(1)画树状图如下:∵共有25种等可能的情况,和为8的有4种,∴P (和为8)=425.(2)游戏不公平,理由如下:记下的两个数字之和为奇数的概率是1325,和为偶数的概率是1225,因此,小华比小亮得分的机会大,∴游戏不公平.类型3 统计与概率的综合应用9.(2019·云南考试说明)某中学共有学生2 000名,各年级男、女生人数如下表所示:若从全校学生中任意抽一名,抽到六年级女生的概率是0.12;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应的扇形的圆心角为44.28°.(1)求x ,y ,z 的值;(2)求各年级男生人数的中位数; (3)求各年级女生人数的平均数;(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率. 解:(1)x =2 000×0.12=240, y =2 000×44.28°360°=246,z =2 000-(240+250)-244-(254+246)-(258+252)=256. (2)中位数为(254+256)÷2=255.(3)平均数为(240+244+246+252)÷4=245.5. (4)抽到八年级某同学的概率为36254+246=9125.10.历下区历史文化悠久,历下一名,取意于大舜帝耕作于历山之下.这位远古圣人为济南留下了影响深远的大舜文化,至今已绵延两千年.某校就同学们对“舜文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:图1 图2根据统计图的信息,解答下列问题:(1)本次共调查60名学生,条形统计图中m =18;(2)若该校共有学生1 200名,请估算该校约有多少名学生不了解“舜文化”?(3)调查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.解:(2)1 200×1260=240(人).答:该校约有240名学生不了解“舜文化”. (3)列表如下:由上表可知,共12种可能,其中一男一女的可能性有6种,分别是(男,女)三种,(女,男)三种, ∴P (一男一女)=612=12.。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
课时作业2:5.4 统计与概率的应用
5.4 统计与概率的应用A 级:基础达标练1.某单位电话总机室内有2部外线电话:T 1和T 2.在同一时间内,T 1打入电话的概率是0.4,T 2打入电话的概率是0.5,两部同时打入电话的概率是0.2,则至少有一部电话打入的概率是( )A .0.9B .0.7C .0.6D .0.52.某娱乐节目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标的背面注明了一定的奖金额,其余商标的背面是一张哭脸,若翻到哭脸就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ) A .14B .16C .15D .3203.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次有放回地摸出1个球,设第1个人摸出黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( ) A .P 10=110P 1B .P 10=19P 1C .P 10=0D .P 10=P 14.某生物实验室研究利用某种微生物来治理污水,每10 000个微生物菌种大约能成功培育出成品菌种8 000个,根据概率的统计定义,现需要6 000个成品菌种,大概要准备________个微生物菌种.5.如图为竖直平面内一些通道,图中线条均表示通道,一钢珠从入口处自上而下沿通道自由落下,落入B 处的概率是________.6.某厂生产了1 200件衬衫,根据以往经验其合格率为0.95左右,则这1 200件衬衫中次品(不合格)的件数大约为________.7.现共有两个卡通玩具,团团、圆圆、凯凯三个小朋友都想要.他们采取了这样的办法分配玩具,拿一个飞镖射向如图所示的圆盘,若射中区域的数字为1,2,3,则玩具给团团和圆圆,若射中区域的数字为4,5,6,则玩具给圆圆和凯凯,若射中区域的数字为7,8,则玩具给团团和凯凯.试问这个游戏规则公平吗?8.某次运动会上,10位铅球选手的成绩分别为:3.65,3.68,3.68,3.72,3.73,3.75,3.80,3.80, 3.81,3.83,若40%的选手可获得奖牌,如何确定获奖选手的成绩临界点?9.一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为P 、12、14,且每题答对与否相互独立.(1)当P =23时,求考生填空题得满分的概率;(2)若考生填空题得10分与得15分的概率相等,求P 的值.B 级:素养提升练1.张明与张华两人做游戏,下列游戏中不公平的是()①抛掷一枚骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则张华获胜;②同时抛掷两枚硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则张华获胜;③从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则张华获胜;④张明、张华两人各写一个数字6或8,如果两人写的数字相同张明获胜,否则张华获胜.A.①②B.②C.②③④D.①②③④2.调查运动员服用兴奋剂的时候,应用Warner随机化应答方法调查300名运动员,得到80个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人的()A.3.33%B.53%C.5%D.26%3.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球,甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x应该是()A.3 B.4C.1 D.24.为了了解九年级学生中女生的身高(单位:cm)情况.某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:(1)求出表中m,n,M,N所表示的数分别是多少?(2)画出频率分布直方图;(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率?5.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考三门课程,至少有两门及格为考试通过.方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:(1)该应聘者用方案一考试通过的概率;(2)该应聘者用方案二考试通过的概率.6.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.【参考答案】A 级:基础达标练1.B [利用概率的一般加法公式,得所求的概率为0.4+0.5-0.2=0.7.]2.B [第三次翻牌时,一共有18个商标,其中有奖的是3个,故所求概率为P =318=16.]3.D [因为是有放回地摸球,所以每个人摸出黑球的概率均为110.]4.7 500 [现需要6 000个成品菌种,设大概要准备n 个微生物菌种,∵每10 000个微生物菌种大约能成功培育出成品菌种8 000个,∴8 00010 000=6 000n,解得n =7 500.]5.38 [根据古典概型的公式求解,基本事件总数为8条路,能够到达B 处的有3条路,可画出树状图考虑.所以一钢珠从入口处自上而下沿通道自由落下,落入B 处的概率38.]6.60 [由题意可得:1 200×(1-0.95)=60.]7.解 由题干图知,若射中1,2,3,7,8这5个数字,团团可得到玩具,所以团团得到玩具的概率是58;同理圆圆得到玩具的概率是68=34;凯凯得到玩具的概率是58.三个小朋友得到玩具的概率不相同,所以这个游戏规则不公平. 8.解 将成绩按照从大到小的顺序排列得:3.83 3.81 3.80 3.80 3.75 3.73 3.72 3.68 3.68 3.65,因为10×40%=4,所以40%分位数是第4个数与第5个数的平均值3.80+3.752=3.775,所以成绩在[3.775,3.83]的选手可获得奖牌.9.解 设考生填空题得满分、15分、10分为事件A 、B 、C (1)P (A )=23×12×14=112.(2)P (B )=P ×12×34+P ×12×14+(1-P )×12×14=3P 8+18P (C )=P ×12×34+(1-P )×12×34+(1-P )×12×14=12-P8因为P (B )=P (C ),所以3P 8+18=12-P 8,得P =34.B 级:素养提升练1.B [②中,恰有一枚正面向上包括(正,反),(反,正)两种情况,而两枚都正面向上仅为(正,正),因此②中游戏不公平.]2.A [应用Warner 随机化应答方法调查300名运动员,我们期望有150人回答了第一个问题,而在这150人中又有大约一半的人即75人回答了“是”.其余5个回答“是”的人服用过兴奋剂,由此估计这群人中服用过兴奋剂的大约占5150≈3.33%.]3.D [由题意甲从袋中任意摸出一个球,若为绿球则获胜;甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜可知,绿球与黑球的个数应相等,也为2x 个,列方程可得x +2x +2x =10,解得x =2.]4.解 (1)M =10.02=50,m =50-(1+4+20+15+8)=2;N =1,n =m M =250=0.04.(2)作出直角坐标系,组距为4,纵轴表示频率/组距,横轴表示身高,画出直方图如图所示:(3)在153.5~157.5范围内最多,估计身高在161.5以上的概率为P =1050=0.2.5.解 记该应聘者对三门指定课程考试及格的事件分别为A ,B ,C , 则P (A )=0.5,P (B )=0.6,P (C )=0.9.(1)应聘者用方案一考试通过的概率为P 1=P (AB C -)+P (A -BC )+P (A B -C )+P (ABC ) =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9=0.75. (2)应聘者用方案二考试通过的概率为P 2=13P (AB )+13P (BC )+13P (AC )=13×0.5×0.6+13×0.6×0.9+13×0.5×0.9=0.43. 6.解 设A i ={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为A 1A 2A 3,于是所求概率为P (A1A 2A 3)=910×89×18=110. (2)拨号不超过3次而接通电话可表示为A 1+A 1A 2+A 1A 2A 3,于是所求概率为P (A 1+A 1A 2+A 1 A 2A 3)=P(A1)+P(A1A2)+P(A1A2A3)=110+910×19+910×89×18=310.。
统计与概率的应用的综合应用题
统计与概率的应用的综合应用题统计与概率是数学中非常重要且广泛应用的领域。
统计学主要研究如何收集、整理、分析和解释数据,以便对现象和问题作出准确的描述和判断;而概率论则关注模型和实验结果的不确定性,以及对不确定性的量化和预测。
本文将通过几个综合应用题,展示统计与概率的应用。
1. 掷骰子的概率统计假设有一个标准的六面骰子,每个面上的数字为1到6,每个数字出现的概率相等。
现在进行100次投掷骰子的实验,请计算以下概率:a) 出现1的次数超过20次的概率;b) 出现奇数的次数在30到40次之间的概率;c) 出现相同数字的连续三次的概率。
2. 调查学生身高的统计分析在一所学校中,随机选取了100名学生,对他们的身高进行调查。
统计结果显示,男生的平均身高为170厘米,标准差为5厘米;女生的平均身高为165厘米,标准差为4厘米。
请回答以下问题:a) 男生身高超过175厘米的概率;b) 女生身高在160到170厘米之间的概率;c) 男生身高比女生高的概率。
3. 购买彩票的风险评估某彩票公司销售一种彩票,彩票上共有100个号码,中奖号码为1个。
购买者购买一张彩票,并选择其中10个号码,那么他中奖的概率是多少?如果他选择15个号码,中奖的概率又是多少?4. 生产线的质量控制某工厂生产某种产品,质量合格率为95%。
现从该生产线中随机取出10个产品进行检验,请计算以下概率:a) 10个产品都合格的概率;b) 至少有一个产品不合格的概率;c) 恰好有两个产品不合格的概率。
5. 网络流量的吞吐量某互联网服务提供商的服务器在一个小时内记录了用户访问请求的总数。
数据显示,平均每分钟有30个访问请求进入服务器的缓冲区,且服从泊松分布。
请计算以下概率:a) 在一个小时内,缓冲区接收到的访问请求少于150个的概率;b) 访问请求到达的平均间隔时间小于2分钟的概率;c) 一个小时内缓冲区最多只能接收200个访问请求的概率。
这些综合应用题涉及到统计与概率的不同领域,从理论到实际应用,帮助我们更好地理解和应用统计与概率知识。
概率与统计的综合运用试题
概率与统计的综合运用试题一、问题描述某超市销售了1000盒某品牌饼干,经过检验,共有70盒饼干是过期的。
现在从中随机抽取了10盒饼干,请计算以下几个概率值:1. 至少有一盒饼干是过期的概率;2. 有两盒饼干是过期的概率;3. 正好有两盒饼干是过期的概率;4. 最多有两盒饼干是过期的概率。
二、问题分析该问题涉及到离散的概率分布,可以使用二项分布来求解。
设X表示随机抽取10盒饼干中过期饼干的数量,那么X服从参数为n=10,p=70/1000的二项分布。
三、解题过程1. 至少有一盒饼干是过期的概率:由于“至少”包含了“有”,即至少有一盒饼干是过期的概率可以表示为1减去没有饼干过期的概率,即1-P(X=0)。
根据二项分布的概率公式可以计算得到:```P(X≥1) = 1 - P(X=0) = 1 - C(10, 0) * (70/1000)^0 * (930/1000)^10```2. 有两盒饼干是过期的概率:有两盒饼干是过期的概率可以直接计算P(X=2):```P(X=2) = C(10, 2) * (70/1000)^2 * (930/1000)^8```3. 正好有两盒饼干是过期的概率:正好有两盒饼干是过期的概率可以直接计算P(X=2)。
4. 最多有两盒饼干是过期的概率:最多有两盒饼干是过期的概率可以表示为P(X≤2),即P(X=0) + P(X=1) + P(X=2)。
四、计算结果根据以上分析,我们可以计算出以下结果:1. 至少有一盒饼干是过期的概率为:P(X≥1) = 1 - C(10, 0) * (70/1000)^0 * (930/1000)^10 ≈ 0.8682. 有两盒饼干是过期的概率为:P(X=2) = C(10, 2) * (70/1000)^2 * (930/1000)^8 ≈ 0.2243. 正好有两盒饼干是过期的概率为:P(X=2) = C(10, 2) * (70/1000)^2 * (930/1000)^8 ≈ 0.2244. 最多有两盒饼干是过期的概率为:P(X≤2) = P(X=0) + P(X=1) + P(X=2) ≈ 0.947五、结论根据计算结果,我们得出以下结论:1. 随机抽取10盒饼干中,至少有一盒饼干是过期的概率约为0.868,即大约有86.8%的概率至少有一盒饼干是过期的。
2024年高考数学专题21 概率与统计的综合运用(13大题型)(练习)(原卷版)
专题21概率与统计的综合运用目录01 求概率及随机变量的分布列与期望 (2)02 超几何分布与二项分布 (3)03 概率与其它知识的交汇问题 (4)04 期望与方差的实际应用 (6)05 正态分布与标准正态分布 (8)06 统计图表及数字特征 (10)07 线性回归与非线性回归分析 (13)08 独立性检验 (16)09 与体育比赛规则有关的概率问题 (18)10 决策型问题 (20)11 递推型概率命题 (21)12 条件概率、全概率公式、贝叶斯公式 (23)13 高等背景下的概统问题 (25)01 求概率及随机变量的分布列与期望1.(2022•甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.(2024·河南·统考模拟预测)盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.(1)求取出的3个小球上的数字两两不同的概率;E X.(2)记取出的3个小球上的最小数字为X,求X的分布列及数学期望()3.(2024·全国·模拟预测)某科研所计划招聘两名科研人员,共有4人报名应聘.科研所组织了专业能力、创新意识和写作水平三场测试,每场测试满分100分,每名选手在三场测试中的得分分别按50%,30%和20%计入总分,按总分排序,若总分相同,则依次按专业能力、创新意识和写作水平的得分从高到低排序,前两名录取.下表是4名应聘者的三场测试成绩:项目选手1选手2选手3选手4专业能力/分85808284创新意识/分80808582写作水平/分86858688(1)该科研所应招聘哪两名选手?并说明你的理由.(2)该科研所要求新招聘的两名科研人员上岗前参加线上培训.已知专业能力、创新意识和写作水平各有两个线上报告,培训者需从每个项目的两个报告中选择一个学习,记新招聘的两名科研人员参加学习的相同报告的数目为X ,求X 的概率分布列和数学期望.4.(2024·全国·模拟预测)班会课上,甲、乙两位同学参加了“心有灵犀”活动:从5个成语中随机抽取3个,甲同学负责比划,乙同学负责猜成语.甲会比划其中3个,甲会比划的成语,乙猜对的概率为12,甲不会比划的成语,乙无法猜对.(1)求甲乙配合猜对2个成语的概率;(2)设甲乙配合猜对成语个数为X ,求X 的分布列和数学期望.02 超几何分布与二项分布5.(2024·云南曲靖·高三曲靖一中校考阶段练习)某兴趣小组利用所学统计与概率知识解决实际问题.(1)现有甲池塘,已知小池塘里有10条鲤鱼,其中红鲤鱼有4条.若兴趣小组捉取3次,每次从甲池塘中有放回地捉取一条鱼记录相关数据.用X 表示其中捉取到红鲤鱼的条数,请写出X 的分布列,并求出X 的数学期望()E X .(2)现有乙池塘,已知池塘中有形状大小相同的红鲤鱼与黑鲤鱼共10条,其中红鲤鱼有()010,a a a *<<ÎN条,身为兴趣小组队长的骆同学每次从池塘中捉了1条鱼,做好记录后放回池塘,设事件A 为“从池塘中捉取鱼3次,其中恰有2次捉到红鲤鱼”.当0a a =时,事件A 发生的概率最大,求0a 的值.6.(2024·云南昆明·高三云南师大附中校考阶段练习)某校高一年级举行数学史知识竞赛,每个同学从10道题中一次性抽出4道作答.小张有7道题能答对,3道不能答对;小王每道答对的概率均为(01)p p <<,且每道题答对与否互不影响.(1)分别求小张,小王答对题目数的分布列;(2)若预测小张答对题目数多于小王答对题目数,求p 的取值范围.7.(2024·广东肇庆·统考一模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n 次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X .(1)当6n =时,求()2P X £(2)已知切比雪夫不等式:对于任一随机变最Y ,若其数学期望()E Y 和方差()D Y 均存在,则对任意正实数a ,有()()()21D Y P Y E Y a a-<³-.根据该不等式可以对事件“()Y E Y a -<”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n 的最小值.03 概率与其它知识的交汇问题8.(2024·全国·高三专题练习)如图,已知三棱锥-P ABC 的三条侧棱PA ,PB ,PC 两两垂直,且PA a =,PB b =,PC c =,三棱锥-P ABC 的外接球半径2R =.(1)求三棱锥-P ABC 的侧面积S 的最大值;(2)若在底面ABC 上,有一个小球由顶点A 处开始随机沿底边自由滚动,每次滚动一条底边,滚向顶点B 的概率为12,滚向顶点C 的概率为12;当球在顶点B 处时,滚向顶点A 的概率为23,滚向顶点C 的概率为13;当球在顶点C 处时,滚向顶点A 的概率为23,滚向顶点B 的概率为13.若小球滚动3次,记球滚到顶点B 处的次数为X ,求数学期望()E X 的值.9.(2024·全国·高三阶段练习)如图所示,一只蚂蚁从正方体1111ABCD A B C D -的顶点1A 出发沿棱爬行,记蚂蚁从一个顶点到另一个顶点为一次爬行,每次爬行的方向是随机的,蚂蚁沿正方体上、下底面上的棱爬行的概率为16,沿正方体的侧棱爬行的概率为23.(1)若蚂蚁爬行n 次,求蚂蚁在下底面顶点的概率;(2)若蚂蚁爬行5次,记它在顶点C 出现的次数为X ,求X 的分布列与数学期望.10.(2024·安徽·蚌埠二中校联考模拟预测)某从事智能教育技术研发的科技公司开发了一个“AI作业”项目,并且在甲、乙两个学校的高一学生中做用户测试.经过一个阶段的试用,为了解“AI作业”对学生学习的促进情况,该公司随机抽取了200名学生,对他们“向量数量积”知识点掌握情况进行调查,样本调查结果如下表:甲校乙校使用AI作业不使用AI作业使用AI作业不使用AI作业基本掌握32285030没有掌握8141226用样本频率估计概率,并假设每位学生是否掌据“向量数量积”知识点相互独立.(1)从两校高一学生中随机抽取1人,估计该学生对“向量数量积”知识点基本掌握的概率;(2)从样本中没有掌握“向量数量积”知识点的学生中随机抽取2名学生,以x表示这2人中使用AI作业的人数,求x的分布列和数学期望;(3)从甲校高一学生中抽取一名使用“Al作业”的学生和一名不使用“AI作业”的学生,用“1X=”表示该使用“AI=”表示该使用“AI作业”的学生没有掌握“向量数量积”,用作业”的学生基本掌握了“向量数量积”,用“X0=”表示该不使用“AI作业”的学生没“1Y=”表示该不使用“AI作业”的学生基本掌握了“向量数量积”,用“Y0有掌握“向量数量积”.直接写出方差DX和DY的大小关系.(结论不要求证明)04 期望与方差的实际应用11.(2024·北京西城·高三统考期末)生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用跑步软件二的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x ,2x ,3x ,4x ,其方差为21s ;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y ,2y ,3y ,4y ,其方差为22s ;1x ,2x ,3x ,4x ,1y ,2y ,3y ,4y 的方差为23s .写出21s ,22s ,23s 的大小关系.(结论不要求证明)12.(2024·广东东莞·高三统考期末)某区域中的物种C 有A 种和B 种两个亚种.为了调查该区域中这两个亚种的数目比例(A 种数目比B 种数目少),某生物研究小组设计了如下实验方案:①在该区域中有放回的捕捉50个物种C ,统计其中A 种数目,以此作为一次试验的结果;②重复进行这个试验n 次(其中*n ÎN ),记第i 次试验中的A 种数目为随机变量i X (1,2,,i n =×××);③记随机变量11ni i X X n ==å,利用X 的期望()E X 和方差()D X 进行估算.设该区域中A 种数目为M ,B 种数目为N ,每一次试验都相互独立.(1)已知()()()i j i j E X X E X E X +=+,()()()i j i j D X X D X D X +=+,证明:()()1E X E X =,()()11D X D X n=;(2)该小组完成所有试验后,得到i X 的实际取值分别为i x (1,2,,i n =×××),并计算了数据i x (1,2,,i n =×××)的平均值x 和方差2s ,然后部分数据丢失,仅剩方差的数据210.5s n=.(ⅰ)请用x 和2s 分别代替()E X 和()D X ,估算MN和x ;(ⅱ)在(ⅰ)的条件下,求1X 的分布列中概率值最大的随机事件{}1X k =对应的随机变量的取值.13.(2024·贵州贵阳·高三校联考阶段练习)某校为了庆祝建校100周年,举行校园文化知识竞赛.某班经过层层选拔,还有最后一个参赛名额要在甲、乙两名学生中产生,该班设计了一个选拔方案:甲,乙两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为12.甲、乙两名学生对每个问题回答正确与否都是相互独立的.(1)分别求甲、乙两名学生恰好答对2个问题的概率;(2)设甲答对的题数为X ,乙答对的题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.05 正态分布与标准正态分布14.(2024·全国·模拟预测)某市有20000名学生参加了一项知识竞赛活动(知识竞赛分为初赛和复赛),并随机抽取了100名学生的初赛成绩作为样本,绘制了频率分布直方图,如图所示.(1)根据频率分布直方图,求样本平均数的估计值和80%分位数.(2)若所有学生的初赛成绩X 近似服从正态分布()2,N m s,其中m 为样本平均数的估计值,11s »,初赛成绩不低于89分的学生才能参加复赛,试估计能参加复赛的人数.(3)复赛设置了三道试题,第一、二题答对得30分,第三题答对得40分,答错得0分.已知某学生已通过初赛,他在复赛中第一题答对的概率为23,后两题答对的概率均为12,且每道题回答正确与否互不影响,记该考生的复赛成绩为Y ,求Y 的分布列及数学期望.附:若随机变量X 服从正态分布()2,N m s,则()0.6827P X m s m s -<£+»,()220.9545P X m s m s -<£+»,()330.9973P X m s m s -<£+».15.(2024·海南省直辖县级单位·高三校考阶段练习)红松树分布在我国东北的小兴安岭到长白山一带,耐荫性强.在一森林公园内种有一大批红松树,为了研究生长了4年的红松树的生长状况,从中随机选取了12棵生长了4年的红松树,并测量了它们的树干直径i x (单位:厘米),如下表:i123456789101112ix 28.727.231.535.824.333.536.326.728.927.425.234.5计算得:1212211360,10992i i i i x x ====åå.(1)求这12棵红松树的树干直径的样本均值m 与样本方差2s .(2)假设生长了4年的红松树的树干直径近似服从正态分布.记事件A :在森林公园内再从中随机选取12棵生长了4年的红松树,其树干直径都位于区间[22,38].①用(1)中所求的样本均值与样本方差分别作为正态分布的均值与方差,求()P A ;②护林员在做数据统计时,得出了如下结论:生长了4年的红松树的树干直径近似服从正态分布()230,8N .在这个条件下,求()P A ,并判断护林员的结论是否正确,说明理由.参考公式:若()2,Y N m s :,则()()()0.6827,20.9545,30.9973P Y P Y P Y m s m s m s -£»-£»-£».参考数据:1212120.68270.01,0.95450.57,0.99730.97»»».16.已知某高校共有10000名学生,其图书馆阅览室共有994个座位,假设学生是否去自习是相互独立的,且每个学生在每天的晚自习时间去阅览室自习的概率均为0.1.(1)将每天的晚自习时间去阅览室自习的学生人数记为X ,求X 的期望和方差;(2)18世纪30年代,数学家棣莫弗发现,当n 比较大时,二项分布可视为正态分布.此外,如果随机变量()2~,Y N m s ,令Y Z ms-=,则~(0,1)Z N .当~(0,1)Z N 时,对于任意实数a ,记()()F =<a P Z a .已知下表为标准正态分布表(节选),该表用于查询标准正态分布(0,1)N 对应的概率值.例如当0.16a =时,由于0.160.10.06=+,则先在表的最左列找到数字0.1(位于第三行),然后在表的最上行找到数字0.06(位于第八列),则表中位于第三行第八列的数字0.5636便是(0.16)F 的值.a0.000.010.020.030.040.050.060.070.080.090.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.53590.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.57530.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.61410.30.61790.62170.62550.62930.63310.63680.64040.64430.64800.65170.40.65540.65910.66280.66640.67000.67360.67720.6808,0.68440.68790.50.69150.69500.69850.70190.70540.70880.71230.7157'0.71900.7224①求在晚自习时间阅览室座位不够用的概率;②若要使在晚自习时间阅览室座位够用的概率高于0.7,则至少需要添加多少个座位?06 统计图表及数字特征17.(2022•北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50)m 的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):m 甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;(Ⅱ)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望EX ;(Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)18.(2024·江西·高三校联考阶段练习)某学校即将迎来建校80周年,为了增进学生爱校、荣校意识,团委组织学生开展“迎校庆、知校史”的知识竞赛活动,共有100名同学参赛.为了解竞赛成绩的分布情况,将100名同学的竞赛成绩按[)70,75,[)75,80,[)80,85,[)85,90,[)90,95,[]95,100分成6组,绘制成如图所示的频率分布直方图.(1)用样本估计总体,求图中a 的值及此次知识竞赛成绩的80%分位数;(2)现从竞赛成绩在[)80,95的学生中以分层抽样的方式抽取15人进行培训,经过一轮培训后再选取2人担任主持人工作,求在至少1人来自分数段[)90,95的条件下,另外1人来自分数段[)80,85的概率.19.在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:[)40,50,[)50,60,[)60,70,…,[]90,100,得到如下频率分布直方图.(1)求出直方图中m 的值;(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(中位数精确到0.01);(3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.20.(2024·全国·高三期末)武汉外国语学校预筹办“六十周年校庆”庆典活动,需要对参与校庆活动的志愿者进行选拔性面试.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[45,55),第二组[55,65),第三组[65,75),第四组[75,85),第五组[]85,95,绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求a ,b 的值;(2)估计这100名候选者面试成绩的第70百分位数(结果精确到0.1);(3)在第二,第五两组志愿者中,采用分层抽样的方法从中抽取6人,然后再从这6人中选出2人,以确定组长人选,求选出的两人来自同一组的概率.07 线性回归与非线性回归分析21.(2024·吉林·东北师大附中校考模拟预测)2015年7月31日,在吉隆坡举行的国际奥委会第128次全会上,北京获得2022年冬奥会举办权.在申冬奥过程中,中国正式向国际社会作出“带动三亿人参与冰雪运动”的庄严承诺.这一承诺,既是我国为国际奥林匹克运动做出重大贡献的大国担当展现,也是根据我国经济水平和全民健身需求做出的群众性运动的战略部署.从北京冬奥会申办成功到2021年10月,全国参与冰雪运动人数累计达到3.46亿,实现了“带动三亿人参与冰雪运动”的目标,这是北京冬奥会给予全球冬季体育运动和奥林匹克运动的最为重要的遗产,可以说是2022年北京冬奥会的第一块金牌.“冬奥热”带动“冰雪热”,也带动了冰雪经济,以冰雪运动为主要内容的冰雪旅游近年来发展迅速,2016至2022六个冰雪季的旅游人次y (单位亿)的数据如下表:年度2016—20172017—20182018—20192019—20202020—20212021—2022年度代号t 123456旅游人次y1.71.972.240.942.543.15(1)求y 与t 的相关系数(精确到0.01),并回答y 与t 的线性相关关系的强弱;(2)因受疫情影响,现将2019—2020年度的异常数据剔除,用剩下的5个年度数据(年度代号不变),求y 关于t 的线性回归方程(系数精确到0.01),并推测没有疫情情况下,2019—2020年度冰雪旅游人次的估计值.附注:参考数据:611 3.56ii t t ===å,611 2.096i i y y ===å,6147.72i i i t y ==å,62191i i t ==å,7».参考公式:相关系数r 线的斜率和截距的最小二乘估计公式分别为:ˆb22.(2024·全国·高三专题练习)数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1~9,且不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.参考数据11t x =:71i ii t y=åt72217ii tt=-å1 7500.370.55参考公式:对于一组数据1122(,)(,)(,)n n u v u v u v L ,,,,其经验回归方程 µv a bm =+ 的斜率和截距的最小二乘估计分别为µ1221ni i i nii n n mnmn bmm==-=-åå, µav bm =- .(1)赛前小明进行了一段时间的训练,每天解题的平均速度y (秒/题)与训练天数x (天)有关,经统计得到如下数据:x (天)1234567y (秒/题)910800600440300240210现用 b y a x=+ 作为回归方程模型,请利用表中数据,求出该回归方程;( a,b 用分数表示)(2)小明和小红玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,不存在平局,两人约定先胜3局者赢得比赛.若小明每局获胜的概率为23,且各局之间相互独立,设比赛X 局后结束,求随机变量X 的分布列及均值.23.(2024·全国·模拟预测)近三年的新冠肺炎疫情对我们的生活产生了很大的影响,当然也影响着我们的旅游习惯,乡村游、近郊游、周边游热闹了许多,甚至出现“微度假”的概念.在国家有条不紊的防疫政策下,旅游又重新回到了老百姓的日常生活中.某乡村抓住机遇,依托良好的生态环境、厚重的民族文化,开展乡村旅游.通过文旅度假项目考察,该村推出了多款套票文旅产品,得到消费者的积极回应.该村推出了六条乡村旅游经典线路,对应六款不同价位的旅游套票,相应的价格x 与购买人数y 的数据如下表.旅游线路奇山秀水游古村落游慢生活游亲子游采摘游舌尖之旅套票型号A B C D E F 价格x /元394958677786经数据分析、描点绘图,发现价格x 与购买人数y 近似满足关系式()0,0by ax a b =>>,即()ln ln ln 0,0y b x a a b =+>>,对上述数据进行初步处理,其中ln i i v x =,ln i i w y =,1i =,2, (6)附:①可能用到的数据:6175.3i i i v w ==å,6124.6i i v ==å,6118.3i i w ==å,621101.4i i v ==å.②对于一组数据()12,v w ,()22,v w ,…,(),n n v w ,其回归直线ˆˆˆw bv a =+的斜率和截距的最小二乘估计值分别为()()()1122211ˆn niii ii i nniii i v v w w v w nvwbv v vnv ====---==--åååå,ˆˆa w bv=-.(1)根据所给数据,求y 关于x 的回归方程.(2)按照相关部门的指标测定,当套票价格[]49,81x Î时,该套票受消费者的欢迎程度更高,可以被认定为“热门套票”.现有三位游客,每人从以上六款套票中购买一款旅游,购买任意一款的可能性相等.若三人买的套票各不相同,记三人中购买“热门套票”的人数为X ,求随机变量X 的分布列和期望.08 独立性检验24.(2024·湖北武汉·高三统考期末)数学运算是数学学科的核心素养之一,具备较好的数学运算素养一般体现为在运算中算法合理、计算准确、过程规范、细节到位,为了诊断学情、培养习惯、发展素养,某老师计划调研准确率与运算速度之间是否有关,他记录了一段时间的相关数据如下表:项目速度快速度慢合计准确率高102232准确率低111728合计213960(1)依据0.010a =的独立性检验,能否认为数学考试中准确率与运算速度相关?(2)为鼓励学生全面发展,现随机将准确率高且速度快的10名同学分成人数分别为3,3,4的三个小组进行小组才艺展示,若甲、乙两人在这10人中,求甲在3人一组的前提下乙在4人一组的概率.附:a0.1000.0500.0250.0100.0050.001x a2.7063.8415.0246.6357.87910.828()()()()()22n ad bc a b c d a c b d c -=++++其中n a b c d =+++.25.(2024·陕西榆林·校考模拟预测)由于人类的破坏与栖息地的丧失等因素,地球上濒临灭绝生物的比例正在以惊人的速度增长.在工业社会以前,鸟类平均每300年灭绝一种,兽类平均每8000年灭绝一种,但是自工业社会以来,地球物种灭绝的速度已经超出自然灭绝率的1000倍.所以保护动物刻不容缓,全世界都在号召保护动物,动物保护的核心内容是禁止虐待、残害任何动物,禁止猎杀和捕食野生动物,某动物保护机构为了调查研究人们“保护动物意识的强弱与性别是否有关联”,从某市市民中随机抽取400名进行调查,得到统计数据如下表:保护动物意识强保护动物意识弱合计男性14060200女性80120200合计220180400(1)根据以上数据,依据小概率值0.001a=的独立性检验,能否认为人们保护动物意识的强弱与性别有关联?(2)将频率视为概率,现从该市女性的市民中用随机抽样的方法每次抽取1人,共抽取4次.记被抽取的4人中“保护动物意识强”的人数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式:()()()()()22n ad bca b c d a c b dc-=++++,其中n a b c d=+++.附:a0.100.050.0100.0050.001xa2.7063.841 6.6357.87910.82826.(2024·全国·高三专题练习)为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免.据统计,活动开展以来游客至少去过两个及以上景区的人数占比为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的2×2列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上2×2列联表,根据小概率值0.001a=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联(结果精确到0.01)?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X,若以本次活动中至少去过两个及以上景区的人数的频率为概率,求X的分布列和数学期望.参考公式及数据:()()()()()22n ad bca b c d a c b dc-=++++,其中n a b c d=+++.a0.1000.0500.0100.001xa2.7063.841 6.63510.82809 与体育比赛规则有关的概率问题27.(2024·吉林·通化市第一中学校校联考模拟预测)2022年12月18日,第二十二届男足世界杯决赛在梅西率领的阿根廷队与姆巴佩率领的法国队之间展开,法国队在上半场落后两球的情况下,下半场连进两球,2比2战平进入加时赛,加时赛两队各进一球(比分3∶3)再次战平,在随后的点球大战中,阿根廷队发挥出色,最终赢得了比赛的胜利,时隔36年再次成功夺得世界杯冠军,梅西如愿以偿,成功捧起大力神杯.(1)法国队与阿根廷队实力相当,在比赛前很难预测谁胜谁负.赛前有3人对比赛最终结果进行了预测,假设每人预测正确的概率均为12,求预测正确的人数X的分布列和期望;(2)足球的传接配合非常重要,传接球训练也是平常训练的重要项目,梅西和其他4名队友在某次传接球的训练中,假设球从梅西脚下开始,等可能地随机传向另外4人中的1人,接球者接到球后再等可能地随机传向另外4人中的1人,如此不停地传下去,假设传出的球都能接住,记第n次传球之前球在梅西脚下的概率为n P,求n P.。
初中数学统计与概率专题训练50题(含答案)
初中数学统计与概率专题训练50题含答案一、单选题1.下表是小明星期一至星期五每天下午练习投篮的命中率统计表,下列说法正确的一项是()A.可以看出每天投中的次数B.五天的命中率越来越高C.可以用扇形统计图统计表中的数据D.可以用折线统计图分析小明的投篮命中率2.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.3.下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解黄河的水质,采用抽样调查C.了解河北省中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用普查4.下列问题中,不适合用全面调查的是()A.了解全省七年级学生的平均身高B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全班同学每周体育锻炼的时间5.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分)规定笔试成绩占40%,面试成绩占60%,应聘者蕾蕾的笔试成绩和面试成绩分别是90分和85分,她最终得分是()A.87.5分B.87分C.88分D.88.5分6.在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.127.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是()A.抽到男同学名字的可能性是50%B.抽到女同学名字的可能性是50% C.抽到男同学名字的可能性小于抽到女同学名字的可能性D.抽到男同学名字的可能性大于抽到女同学名字的可能性8.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如右表所示:关于这组数据,下列说法正确的是()A.众数是2B.中位数是2C.极差是2D.方差是2 9.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是()A.众数B.中位数C.平均数D.都可以10.布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A.5个B.10个C.15个D.20个11.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定12.某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A .176cmB .177cmC .178cmD .180cm13.为了解本校学生周末玩手机所花时间的情况,七、八、九年级中各抽取50名学生(男女各25名)进行调查,此次调查所抽取的样本容量是( ) A .150B .75C .50D .2514.数据2,3,1,1,3的方差是:( ) A .1B .3C .2D .0.815.袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是( )A .从中随机抽出一个球,一定是红球B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大C .从袋中随机抽出2个球,出现都是红球的概率为35D .从袋中抽出2个球,出现颜色不同的球的概率是3516.已知一组数据2,l ,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ). A .2B .2.5C .3D .517.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,则成绩最稳定的是( ).A .甲B .乙C .丙D .丁18.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( ) A .2B .3C .4D .619.响应国家体育总局提出的“全民战疫居家健身”,学校组织了趣味横生的线上活动.某校组织了“一分钟跳绳”活动,根据10名学生上报的跳绳成绩,将数据整理制成如下统计表:则关于这组数据的结论正确的是( )A .平均数是144 B .众数是141C .中位数是144.5D .方差是5.4二、填空题20.一组数据3,4,5,4,6的中位数是________.21.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.22.甲、乙人进行射击,每人10次射击成绩的平均数都是8.8环,方差分别为2s 甲=0.65, 2s 乙=0.52,则成绩比较稳定的是__.(填“甲”或“乙”) .23.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.24.若一组数据12345x x x x x ,,,,的平均数是a ,另一组数据1234523521x x x x x ++--+,,,,的平均数是b ,则a ______b (填写“>”、“<”或“=”).25.数据0,-1,3,2,4的极差是__________________.26.已知一组数据3、a 、4、6的平均数为4,则这组数据的中位数是______. 27.某学校300名学生参加植树活动,要求每人植树2~5棵,活动结束后随机抽查了20名学生,调查他们每人的植树情况,并绘制成如图所示的折线统计图,则这20名学生每人平均植树________棵.28.某组数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是_______.29.数据1,2,x ,-1,-2的平均数是0,则这组数据的方差是____.30.为了帮助残疾人,某地举办“即开型"福利彩票销售活动,规定每10万张为一组,其中有10名一等奖,100名二等奖.1 000名三等奖,5 000名爱心奖,小明买了10张彩票,则他中奖的概率为__.31.某食堂午餐供应8元/盒、10元/盒、12元/盒三种价格的盒饭,如图为食堂某月销售午餐盒饭的统计图,由统计图可计算出该月食堂午餐盒饭的平均价格是__________元/盒.32.淮北到上海的431N次列车,沿途停靠宿州、滁州、南京、镇江、常州、无锡、苏州,需要准备_____________ 种不同的车票33.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___34.数据80,82,85,89,100的标准差为__________(小数点后保留一位).35.有许多事情我们事先无法肯定它会不会发生,这些事情称为__,也称为__,一般地,不确定事件发生的可能性是有大有小的.36.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_____.37.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是___,众数是___,中位数是___.38.数据1,2,3,5,5的众数是___________.39.从小到大排列的一组数据:-2,0,4,4,x,6,6,9的中位数是5,那么这组数据的众数是_______.三、解答题40.为进一步加强学生对“垃圾分类知识”的重视程度,某中学初一、初二年级组织了“垃圾分类知识”比赛,现从初一、初二年级各抽取10名同学的成绩进行统计分析(成绩得分用x 表示,共分成四组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤),绘制了如下的图表,请根据图中的信息解答下列问题.初一年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86 初二年级10名学生的成绩在C 组中的数据是:86,87,87初一、初二年级抽取学生比赛成绩统计表(1)b c +的值为______.(2)根据以上数据,你认为该校初一、初二年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可)(3)若两个年级共有400人参加了此次比赛,估计参加此次比赛成绩优秀()90100x ≤≤的学生共有多少人?41.为了有效控制新型冠状病毒的传播,目前,国家正全面推进新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了部分民进行问卷调查,把调查结果分为A (准备接种)、B (不接种)、C (已经接种)、D (观望中)四种类别.并绘制了两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为______人;(2)请补全条形统计图,同时求出C 类别所在扇形的圆心角度数;(3)若该社区共有居民14000人,请你估计该社区已接种新冠疫苗的居民约有多少人? 42.为了让全校学生牢固树立爱国爱党的崇高信念,某校举行了一次党史知识竞赛(百分制).现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,对成绩进行整理分析,得到了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩为:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.(1)a = ,b = ; (2)请补全条形统计图;(3)若初一有400名学生,请估计此次测试成绩初一达到90分及以上的学生有多少人?43.为了了解某小区今年6月份家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计表和统计图:根据以上信息,解答下列问题:(1)本次抽样调查的样本容量是,m的值为,n的值为;(2)若该小区共有500户家庭,请估计该月有多少户家庭用水量不超过...9.0吨?44.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?45.某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:77838064869075928381858688626586979682738684898692735777878291818671537290766878整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?46.党的教育方针“培养德智体美劳全面发展的社会主义建设者和接班人”把劳动教育列入教育目标之一,学校更要重视开展劳动教育,某校为了解九年级学生一学期参加课外劳动时间(单位:h)的情况,从该校九年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.010t < 1020t < 2030t < 3040t <4050t <解答下列问题:(1)求频数分布表中a ,m 的值,并将频数分布直方图补充完整;(2)若九年级共有学生300人,试估计该校九年级学生一学期课外劳动时间不少于20h 的人数;(3)已知课外劳动时间在30h 40h t ≤<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.47.为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.48.给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰子的质量.49.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.参考答案:1.D【分析】根据表格中给出的信息进行解答即可.【详解】解:根据折线统计图表示的是事物的变化情况,故小明星期一至星期五每天下午练习投篮的命中率可以用折线统计图分析小明的投篮命中率.故选:D.【点睛】本题主要考查了数据的整理和应用,解题的关键是理解题意,熟练掌握扇形统计图、折线统计图和条形统计图的特点.2.A【详解】试题分析:一共有4种等可能的结果:小明打扫社区卫生,小华打扫社区卫生;小明打扫社区卫生,小华参加社会调查;小明参加社会调查,小华打扫社区卫生;小明参加社会调查,小华参加社会调查.其中两人同时选择参加社会调查只有1种.所以两人同时选择参加社会调查的概率.故此题选A.考点:概率.3.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解一批灯泡的使用寿命,数量较多,应采用抽样调查,故此选项符合题意;B.了解黄河的水质,量较大,适宜用抽样调查,故此选项不合题意;C.了解河北省中学生睡眠时间,人数较多,适宜用抽样调查,故此选项不合题意;D.了解某班同学的数学成绩,适宜用全面调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A【分析】由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析即可.【详解】A 、了解全省七年级学生的平均身高,调查范围广,费时费力,适合抽样调查,不适合用全面调查,故该项符合题意;B 、旅客上飞机前的安检,涉及到安全问题,需要一一检查,适合全面调查,故该项不符合题意;C 、学校招聘教师,对应聘人员面试,需要依次进行面试,适合全面调查,故该项不符合题意;D 、了解全班同学每周体育锻炼的时间,好调查,适合全面调查,故该项不符合题意; 故选:A .【点睛】本题考查了全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小,理解全面调查与抽样调查的适用范围是解题的关键. 5.B【分析】根据加权平均数公式计算即可. 【详解】解:应聘者蕾蕾的最终得分是9040%8560%8740%60%⨯+⨯=+分,故选:B .【点睛】此题考查了加权平均数的计算,正确掌握加权平均数的计算公式是解题的关键. 6.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】解:设盒子中有白球x 个, 由题意可得:0.425x=, 解得:10x =, 故选C .【点睛】本题考查了利用频率估计概率.解题的关键在于明确大量试验得到的频率可以估计事件的概率. 7.D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D、正确,由AB可知抽到男同学名字的可能性大于抽到女同学名字的可能性.故选:D.【点睛】本题考查概率的有关知识,需注意可能性的求法.8.B【分析】根据极差、方差、众数、中位数及平均数的算法,依次计算各选项即可作出判断.【详解】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,S2≠2,故D不符合题意.故选:B.【点睛】考查平均数、中位数、众数的意义和求法,掌握计算方法是解决问题的关键.9.B【详解】因为6位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选B.10.B【分析】由共摸了300次球,发现有61次摸到白球,知摸到白球的概率为61300,设布袋中白球有x个,可得x6150300=,,解之即可.【详解】由共摸了300次球,发现有61次摸到白球,①摸到白球的概率为61 300,设布袋中白球有x个,可得x61 50300=,解得:x=1016,①布袋中白球的个数最有可能是10个故选B.【点睛】:此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.A【分析】列举出甲获胜的所有可能,求出甲获胜的概率,然后求出乙获胜的概率,比较大小即可得到结果.【详解】解:由题意知,甲取出4时,乙有3,5,10共三种可能,其中甲获胜有1种可能;甲取出6时,乙有3,5,10共三种可能,其中甲获胜有2种可能;甲取出8时,乙有3,5,10共三种可能,其中甲获胜有2种可能;①甲获胜的概率为122599++=,则乙获胜的概率为54199-=①54 99 >①甲获胜的概率大故选A.【点睛】本题考查了列举法求概率.解题的关键在于正确列举事件.12.B【分析】根据中位数的定义即可求解.【详解】表格中第10,11位队员的身高分别为176cm、178cm,故中位数为1761781772+=cm,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义. 13.A【分析】根据样本容量的定义解答即可.【详解】①从七、八、九年级中各抽取50名学生进行调查,①一共抽了150名学生,①样本容量是150.故选A.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 14.D【详解】X =(2+3+1+1+3)÷5=2,S 2="1/5" [(2-2)2+(3-2)2+(1-2)2+(1-2)2+(3-2)2]=0.8 故选D . 15.D【分析】先求出随机事件所有情况数,再求出对应的事件发生的情况数,根据概率=所求情况数与总情况数之比进行依次解答.【详解】解:A .从中随机抽出一个球,不一定是红球,故此选项不合题意;B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率不相同,故此选项不合题意;C .从袋中随机抽出2个球,出现都是红球的概率为310,故此选项不合题意; D .从袋中抽出2个球,出现颜色不同的球的概率是35,故此选项符合题意;故选:D .【点睛】本题主要考查概率的定义,熟练掌握概念的定义和概率计算公式是解决本题的关键. 16.B【详解】数据2,1,x ,7,3,5,3,2的众数是2,说明2出现的次数最多,所以当x =2时,2出现3次,次数最多,是众数;再把这组数据从小到大排列:1,2,2,2,3,3,5,7,处于中间位置的数是2和3,所以中位数是:(2+3)÷2=2.5. 故选B. 17.D【详解】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.①2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,①2S 丁<2S 丙<2S 甲<2S 乙,①成绩最稳定的是丁.故选D .考点:方差;算术平均数. 18.A【分析】该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【详解】①a 、b 、c 的中位数与众数都是5, ①a 、b 、c 三个数中有两个数是5, 设不是5的那个数为x , ①a 、b 、c 的平均数是4, ①5543x ++=⨯, 解得,2x =,即a 可能是2,也可能是5. 故选:A .【点睛】用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 19.B【分析】根据平均数、众数、中位数、方差的定义分别计算出结果,然后判断即可. 【详解】根据题目给出的数据,可得: 平均数为:14151442145114621435212x ⨯+⨯+⨯+⨯+++==,故A 选项错误;众数是:141,故B 选项正确;中位数是:141144142.52+=,故C 选项错误; 方差是:()()()()2222211411435144143214514311461432 4.40[]1s -⨯+-⨯+-⨯+-⨯==,故D 选项错误; 故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的定义和计算,熟悉相关定义是解题的关键. 20.4【分析】根据中位数的定义求解可得.【详解】解:把这些数从小大排列为3,4,4,5,6,则中位数是4.故答案为:4.【点睛】本题主要考查了中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】①共有23510++=个小球,3个黄球,①第10次摸出黄球的概率是3 10.故答案为3 10.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.22.乙【分析】根据方差的性质可知,方差越小,数据波动越小,数据情况越趋于稳定,据此进行分析即可.【详解】解:由题干可得甲、乙的方差分别为2s甲=0.65,2s乙=0.52,有2s甲=0.65>2s乙=0.52,故乙的成绩比较稳定.【点睛】本题考查方差所反映的数据稳定情况,掌握方差越小,数据波动越小,数据情况越趋于稳定即可.23.8.【分析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、8、8、10、10,所以这组数据的中位数为882+=8.故答案为8.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.24.>【分析】根据12345x x x x x ,,,,的平均数是a ,可得123455x x x x x a ++++=,再根据1234523521x x x x x ++--+,,,,的平均数是b ,可得15a b -=进而即可得到解答. 【详解】解:①12345x x x x x ,,,,的平均数是a , ①123455x x x x x a ++++=,①12345235215x x x x x ++++-+-++12345155x x x x x ++++=-15a =-b =,①a b >, 故答案为:>.【点睛】本题考查了算术平均数的的定义(是指在一组数据中所有数据之和再除以数据的个数),灵活运用所学知识求解是解决本题的关键. 25.5【详解】试题解析:极差=4-(-1)=5. 考点:极差. 26.3.5【分析】先根据平均数的计算公式求出x 的值,再根据中位数的定义即可得出答案. 【详解】①数据3、a 、4、6的平均数是4, ①(3+a+4+6)÷4=4, ①x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5, 则中位数是3.5; 故答案为3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a 的值. 27.3.3【分析】根据折线统计图中的数据和算术平均数的求法,可以解答本题. 【详解】解:243846523.320⨯+⨯+⨯+⨯=(棵),故答案为:3.3.【点睛】本题考查折线统计图,平均数,熟练掌握平均数计算公式是解题的关键. 28.0.2.【详解】分析:根据各组的频率的和是1即可求解. 详解:第五组的频率是:12×(1﹣0.35﹣0.25)=0.2.故答案为0.2.点睛:本题考查了频率的意义,利用各组的频率的和为1分析是解题的关键. 29.2【分析】先根据平均数的公式求出x 的值,再根据方差公式即可得. 【详解】解:由题意得:()()121205x +++-+-=,解得0x =,则方差为()()()()()222221102000102025⎡⎤⨯-+-+-+--+--=⎣⎦, 故答案为:2.【点睛】本题考查了平均数和方差,熟记平均数和方差的计算公式是解题关键. 30.0.611【详解】买一张中奖的概率为:P =1010010005000100000+++=0.0611,则买10张中奖的概率为0.0611×10=0.611. 故答案为0.611.点睛:本题关键在于先算出买一张获奖的概率,再计算买10张获奖的概率. 31.10.2【分析】根据加权平均数公式计算即可. 【详解】解:815%1225%1060%10.215%25%60%⨯+⨯+⨯=++(元/盒),故答案为:10.2.【点睛】此题考查了求加权平均数,正确理解题意及加权平均数的计算公式是解题的关键. 32.36【分析】根据概率公式求解所有种类出现的情况即可. 【详解】共有9个车站,且属于单向车程。
初中数学统计与概率专题训练50题含参考答案
初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
苏科版数学中考专题复习卷之《统计和概率的简单应用》
苏科版数学中考专题复习卷之《统计和概率的简单应用》一.选择题(共8小题)1.一个不透明的袋子中装有2个红球、3个黄球,每个球除颜色外都相同.晓君同学从袋中任意摸出1个球(不放回)后,晓静同学再从袋中任意摸出1个球.两人都摸到红球的概率是( ) A .110B .225C .425D .252.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号1﹣4的小正方形中任意一个涂黑,则所得图案中阴影部分是一个轴对称图形的概率是( )A .14B .1C .34D .123.如图是郑州5月5日﹣5月10日的低温折线图,则对于这6天的低温数据,下列判断错误的是( )A .平均数是14℃B .中位数是14.5℃C .众数是12℃D .方差不可能为04.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( ) A .23B .12C .16D .185.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查某电视节目的收视率B .调查乘坐飞机的旅客是否携带了违禁物品C .调查某品牌冰箱的使用寿命D .调查市场上冷冻食品的质量情况6.下列调查中,不适合用抽样调查方式的是( ) A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵7.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品,现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是( ) A .19B .16C .13D .128.长沙市某一周内每日最高气温.情况如图所示,下列说法中,错误的是( )A .这周最高气温是32℃B .这组数据的中位数是30C .这组数据的众数是24D .周四与周五的最高气温相差8℃ 二.填空题(共6小题)9.不透明的袋子中有四个完全相同的小球,上面分别写着数字1,2,3,4.随机摸出一个小球,记录其数字,放回并摇匀,再随机摸出一个小球,记录其数字,则两次记录的数字不相同的概率是.10.每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某初级中学对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了如图的两个统计图.其中:A.能将垃圾放到规定的地方,而且还会考虑垃圾的分类B.能将垃圾放到规定的地方,但不会考虑垃圾的分类C.偶尔会将垃圾放到规定的地方D.随手乱扔垃圾根据以上信息回答下列问题:如果该校共有师生1600人,那么随手乱扔垃圾的约有人.11.等式:1□1=1,在每一个“□”中添加运算符号“+”或“﹣”或“×”或“÷”后,等式成立的概率是.12.一个不透明的袋子中装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同.从袋子中任意摸出两球,则两球上所标数字之和为6的概率是.13.某校有数学教师52人,将他们的年龄分成3组,在40岁以上的组内有13名教师,则这个组的频率是.14.在一个不透明的盒子里,装有6个黑球和若干个白球,它们除颜色外没有区别,摇匀后从中摸出一球再放回,不断重复,共摸球50次,其中38次摸到白球,则估计白球有个.三.解答题(共6小题)15.某校德育处开展专项安全教育活动前,在全校范围内随机抽取了40名学生进行安全知识测试,测试结果如表1所示(每题1分,共10道题).专项安全教育活动后,再次在全校范围内随机抽取40名学生进行测试,根据测试数据制作了如图1、图2所示的统计图(尚不完整).表1分数/分人数/人2456687881292设定8分及以上为合格,分析两次测试结果得到表2.表2平均数/分众数/分中位数/分合格率第一次 6.4a735%第二次b89c请根据图表中的信息,解答下列问题:(1)将图2中的统计图补充完整,并直接写出a,b,c的值;(2)若全校学生以1200人计算,估计专项安全教育活动后达到合格水平的学生人数;(3)从多角度分析本次专项安全教育活动的效果.16.张师傅开车带着儿子去参观我省举办的“喜迎二十大•奋进新征程——乡村振兴成果展”,他的车前有两辆车即将行驶到有信号灯的路口,该路口的信号灯分别为:直行、左转和右转.张师傅给儿子提出下列两个问题,请你帮助张师傅的儿子解答:(1)在我们车前面的第一辆车右转的概率是;(2)在我们车前面的两辆车向同一个方向行驶的概率是多少,请用列表或画树状图的方法说明,(注:为了方便解答,我们把“直行”“右转”和“左转”分别用“直”“右”和“左”表示)17.为落实青岛市中小学生“十个一”行动计划,学校举办了“节约用水常识”竞赛活动,并随机抽取了部分学生的竞赛成绩x(分)(成绩取整数.总分为100分)进行统计分析,根据统计结果绘制了如下不完整的统计图表.分组成绩x/分频数频率各组总成绩/分A50≤x<6050.05280B60≤x<7010b670C70≤x<80a0.151110D80≤x<90300.302550E90≤x≤100400.403840请根据图表中的信息,解答下列问题:(1)b=,抽取的学生竞赛成绩的中位数落在组;(2)补全频数分布直方图,并求此次抽取的学生竞赛成绩的平均数;(3)若学校规定此次竞赛成绩在90分(含90分)以上为“优秀”,请你估计全校1800名学生中,此次竞赛成绩为“优秀”的学生人数.18.2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,鄂州市某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.(1)九(1)班共有名学生;并补全图1折线统计图;(2)请阅读图2,求出D所对应的扇形圆心角的度数;(3)若小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.19.为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是.(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.20.中华文化源远流长,文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)请将条形统计图补充完整,扇形统计图中“4部”所在扇形的圆心角为度;(2)本次调查所得数据的众数是,中位数是;(3)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.。
专题1.6统计与概率三大考点与真题训练(解析版)
2023年中考数学考前30天迅速提分复习方案(上海地区专用)专题1.6统计与概率三大考点与真题训练考点一:数据的收集与整理一、单选题1.(2023·上海·模拟预测)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法正确的是( )A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生D.样本容量是400名学生【答案】A【分析】我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.总体是该校4000名学生的体重,说法正确,故A符合题意;B.个体是每一个学生的体重,原来的说法错误,故B不符合题意;C.样本是抽取的400名学生的体重,说法错误,故C不符合题意;D.样本容量是400,说法错误,故D不符合题意.故选:A.【点睛】本题主要考查了总体、个体、样本、样本容量,解题的关键是正确记忆各自的概念.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.2.(2022·上海徐汇·统考二模)在知识竞赛中,成绩分为A,B,C,D四个等级,相应等级的得分依次记为100分,90分,80分,70分.将九年级二班参赛选手的成绩整理并绘制成如下的统计图,九年级二班参赛选手成绩的众数和中位数分别是()A.100和90B.100和80C.80和90D.80和80.【答案】B【分析】根据中位数和众数的定义求解即可.【详解】解:由统计图可知,A级的占比最多,即得分为100分的人数最多,∴二班参赛选手的成绩的众数为100;∵中位数是一组数据中处在最中间或处在最中间的两个数据的平均数,∴由扇形统计图可知处在最中间的成绩为80分或处在最中间的两个数据分别为80分,80分,∴中位数即为80,故选B.【点睛】本题主要考查了求中位数和众数,熟知二者的定义是解题的关键.3.(2020·上海虹口·统考二模)如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是()A.8,7B.7,6.5C.7,7D.8,7.5【答案】D【分析】先根据折线图将这10个数据从小到大排列,再根据众数和中位数的概念求解可得.【详解】解:由折线图知,这10个数据分别为3、4、6、7、7、8、8、8、9、10,+=7.5,所以这组数据的众数为8,中位数为782故选:D.【点睛】本题主要考查众数和中位数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数.4.(2021·上海·上海市实验学校校考二模)为了了解某校九年级300名学生的体重情况,从中抽取50名学生的体重进行分析,在这项调查中,样本是指()A.300名学生B.300名学生的体重C.被抽取的50名学生D.被抽取的50名学生的体重【答案】D【分析】根据总体、个体、样本、样本容量的定义判断即可.【详解】解:为了解某校九年级300名学生的体重情况,从中随机抽取50名学生的体重进行分析,在这项调查中,样本是被抽取的50名学生的体重.故选:D.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题5.(2021·上海青浦·统考二模)为了解某区2400名初中教师中接种新冠疫苗的教师人数,随机调查了其中200名教师,结果有150人接种了疫苗,那么估计该区接种新冠疫苗的初中教师人数约有_______人.【详解】解:估计该区接种新冠疫苗的初中教师人数约有2400×150=1800(人),200故答案为:1800.【点睛】本题考查用样本估计总体.理解用样本估计总体的含义和掌握其公式是解答本题的关键.6.(2021·上海金山·二模)为了了解某校初三学生在体育测试中报名球类的情况,随机调查了40名学生的报名情况,得到如下数据.根据此信息,估计该校480名初三学生报名足球的学生人数约为_____人.7.(2021·上海嘉估计某个鱼塘里的鱼的数量,养殖工人网住了50条鱼,在每条鱼的尾巴上做个记号后,又将鱼放回鱼塘.等鱼游散后再随机撒网,网住60条鱼,发现其中有2条鱼的尾巴上有记号.设该鱼塘里有x条鱼,依据题意,可以列出方程:_____.8.(2021·上海静安·统考二模)为了了解学生用于阅读课外书籍的时间的情况,某校在300名九年级学生中随机对40名学生每周阅读课外书籍所用的时间进行统计.根据调查结果画出频率分布直方图,如图所示(每个小组可包括最小值,不包括最大值),由此可以估计该校九年级学生阅读课外书籍用的时间在6小时及以上的人数约为________.【答案】120【分析】根据直方图分析出课外阅读时间在6小时及以上的人数的频率,然后利用频率乘总人数即可求解.【详解】由图中可知,课外阅读时间在6小时及以上的人数的频率为0.25+0.15=0.4,∴所有学生中,课外阅读时间在6小时及以上的人数300×0.4=120人,故答案为:120.【点睛】本题考查频率分布直方图,理解频率分布直方图的意义是解题关键.9.(2021·上海闵行·统考二模)为了解全区104000个小学生家庭是否有校内课后服务需求,随机调查了4000个小学生家庭,结果发现有2800个小学生家庭有校内课后服务需求,那么估计该区约有________个小学生家庭有校内课后服务需求.【答案】72800【分析】先求出样本中学生参加校内课后服务所占的百分比,再用样本估算总体.【详解】280010400072800´=(人).4000故答案为:72800.【点睛】考查了用校本估算总体,解题关键先计算出样本中所占的百分比,再用样本的数据去估算总体情况.10.(2021·上海松江·统考二模)一次数学测试后,某班40名学生按成绩分成5组,第1、2、3、4组的频数分别为6、7、10、13,则第5组的频率为 _____.11.(2022·上海杨浦·统考二模)为了了解全区近4800名初三学生数学学习状况,从中随机抽取500名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组)数据可含最低值,不含最高值根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是_______.【答案】1920【分析】根据题意和表格中的数据,可以先计算出80~90和90~100的学生人数,然后即可计算出70~80的学生人数,再计算出全区此次成绩在70~80分的人数即可.【详解】解:由题意可得,80~90的学生有:500×0.18=90(人),90~100学生有:500×0.04=20(人),∴样本中70~80的学生有:500-12-18-160-90-20=200(人),=1920,∴估计全区此次成绩在70~80分的人数大约是4800×200500故答案为:1920.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出样本中70~80分的人数.12.(2021·上海·上海市实验学校校考二模)某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:70~90有15人,90~105有42人,105~12 0有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是______________.三、解答题13.(2023·上海·模拟预测)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4710142055++++=(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.7211.520.2-=(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.14.(2021·上海徐汇·统考二模)问题:某水果批发公司用每千克2元的价格购进1000箱橘子,每箱橘子重10千克.由于购进的橘子有损耗,所以真正可以出售的橘子不到100 00千克.如果该公司希望这批橘子销售能获得5000元利润,应该把销售价格定为多少元?思路:为了解决这个问题,首先要估计这10000千克橘子中除去损耗后剩下多少橘子可以销售,因此需要估计损耗的橘子是多少千克.方案:为此,公司采用抽样调查来估计这批橘子的损耗情况.公司设计如下两种抽样方案:①从仓库中最方便处打开若干箱子逐个检查;②把这批橘子每箱从1~1000编号,用电脑随机选择若干号码,打开相应的箱子进行逐个检查.解决:(1)公司设计的两个抽样方案,从统计意义的角度考虑,你认为哪个方案比较合适?并说明理由;(2)该公司用合理的方式抽取了20箱橘子进行逐个检查,并在表中记录了每个被抽到的箱子里橘子的损耗情况.:被抽到的箱子里橘子的损耗情况表根据如表信息,请你估计这批橘子的损耗率;(3)根据以上信息,请你帮该公司确定这批橘子的销售价格,尽可能达到该公司的盈利目标(精确到0.01元/千克).【答案】(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)8.36%;(3)2.73元/千克【分析】(1)根据抽样调查时选取的样本必须具有代表性即可求解;(2)计算出抽取的20箱橘子的平均损耗率即可;(3)设该公司确定这批橘子的销售价格为x元/千克,根据利润=售价﹣进价列出方程即可.【详解】解:(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)(8.57+8.15)÷(10×20)×100%=8.36%.即估计这批橘子的损耗率为8.36%;(3)10000×(1﹣8.36%)x﹣2×10000=5000,解得,x≈2.73.答:该公司可确定这批橘子的销售价格约为2.73元/千克,能够尽可能达到该公司的盈利目标.【点睛】本题是一道利用统计知识解答实际问题的重点考题,主要考查利用统计图表处理数据的能力和利用样本估计总体的思想.从统计表中获取有用信息是解题的关键.15.(2022·上海青浦·统考二模)为了解某区3200名学生放学后在校体育运动的情况,调研组选择了有600名学生的W校,抽取40名学生进行调查,调查情况具体如下表:图表1:感兴趣的运动项目(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;【点睛】本题主要考查平均数、众数、中位数、方差及频数直方图;熟练掌握平均数、众数、中位数、方差及频数直方图是解题的关键.考点二:数据分析一、单选题1.(2022·上海松江·校考三模)小丽连续7次的数学考试成绩分数是:93、85、88、89、90、87、90.关于这组数据,下列说法正确的是( )A.中位数是88B.众数是90C.平均数是89D.方差是87【答案】B【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【详解】解:将数据重新排列为85、87、88、89、90、9093,、则这组数的中位数为89,众数为90,平均数为18587888990909388.97´++++++»(),所以说法正确的是B.故选:B.【点睛】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.2.(2022·上海普陀·统考二模)某公司有9个子公司,某年各子公司所创年利润的情况如下表所示.根据表中的信息,下列统计量中,较为适宜表示该年各子公司所创年利润的平均水平的是( )A.方差B.众数C.平均数D.中位数【答案】D【分析】先分别求出平均数和中位数,再进行分析即可得.3.(2022·上海杨浦·统考二模)在一次引体向上的测试中,如果小明等5位同学引体向上的次数分别为:6、8、9、8、9,那么关于这组数据的说法,正确的是()A.平均数是8.5B.中位数是9C.众数是8.5D.方差是1.24.(2022·上海黄浦·统考二模)下列各统计量中,表示一组数据波动程度的量是()A.方差B.众数C.平均数D.频数【答案】A【分析】根据方差、众数、平均数、频数的意义即可求解.【详解】解:方差是表示一组数据波动程度的量,众数、平均数是表示一组数据集中趋势的量,频数是表示数据出现的次数,故选A.【点睛】本题考查了方差、众数、平均数、频数的意义,掌握以上知识是解题的关键.5.(2021·上海青浦·统考二模)某校为了解学生在“慈善募捐”活动中的捐款情况,进行了抽样调查,结果如表所示.那么该样本中学生捐款金额的中位数和众数分别是( )A.20元,50元B.35元,50元C.50元,50元D.20元,20元【答案】A【解析】根据中位数和众数的定义求解即可.【详解】解:∵本组数据从小到大排列共50个,且最中间的两个数据是20和20,∴这组数据的中位数为:2020202+=;∵捐款50元的人数最多,∴这组数据的众数是50.故选:A【点睛】本题考查中位数和众数的知识点,充分利用中位数和众数的定义是解题的关键.6.(2021·上海金山·二模)某人统计九年级一个班35人的身高时,算出平均数与中位数都是158厘米,但后来发现其中一位同学的身高记录错误,将160厘米写成了166厘米,经重新计算后,正确的中位数是a 厘米,那么中位数a 应( )A.大于158B.小于158C.等于158D.无法判断【答案】C【分析】根据中位数的定义得出最中间的数还是158厘米,从而选出正确答案.【详解】解:∵原来的中位数158厘米,将160厘米写成166厘米,最中间的数还是158厘米,∴a =158,故选:C.【点睛】本题考查了中位数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(2021·上海·统考二模)某校对进校学生进行体温检测,在某一时段测得6名学生的体温分别为36.8℃,36.9℃,36.5℃,36.6℃,36.9℃,36.5℃,那么这6名学生体温的平均数与中位数分别是()A.36.7℃,36.7℃B.36.6℃,36.8℃C.36.8℃,36.7℃D.36.7℃,36.8℃8.(2021·上海普陀·统考二模)已知两组数据:x1、x2、x3、x4、x5和x1+2、x2+2、x3+2、x4+2、x5+2,下列有关这两组数据的说法中,正确的是( )A.平均数相等B.中位数相等C.众数相等D.方差相等【答案】D【分析】根据平均数、中位数、众数和方差的意义求解即可.【详解】解:因为新数据是在原数据的基础上每个加2,∴这两组数据的平均数、中位数和众数都改变,而波动幅度不变,即方差不改变,故选:D.【点睛】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.(2021·上海闵行·统考二模)如果一组数据为,0,1,0,0,那么下列说法不正1-确的是()A.这组数据的方差是0B.这组数据的众数是0C.这组数据的中位数是0D.这组数据的平均数是010.(2022·上海·上海市娄山中学校考二模)某射击选手10次射击成绩统计结果如下表,这10A.8、8B.8、8.5C.8、9D.8、10【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题11.(2021·上海宝山·统考三模)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12.(2021·上海浦东新·统考模拟预测)某商店4月份销售的鞋子部分情况如表:根据这组数据可知,这个月销售36到41码鞋子尺寸的众数是_____.【答案】39.【分析】根据表格中的数据,正确使用众数的定义即可.【详解】根据表格中数据,可以知道36到41码的鞋子的销售量,其中尺寸为39码的鞋子销售量最大,故众数为39.故答案为:39.【点睛】本题考查统计表的理解和众数的定义,正确理解统计表并掌握众数概念是解题关键.13.(2021·上海普陀·统考二模)为了唤起公众的节水意识,从1993年起,联合国将每年的3月22日定为“世界水日”.某居委会表彰了社区内100户节约用水的家庭,5月份这100户家庭节约用水的情况如表所示,那么5月份这100户家庭节水量的平均数是_____吨.【答案】5.5【分析】根据加权平均数的定义列式计算即可.【详解】解:5月份这100户家庭节水量的平均数是5626287.210100´+´+´=5.5(吨),故答案为:5.5.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.14.(2023·上海·模拟预测)已知第一组数据:12,14,16,18的方差为21s ;第二组数据:32,34,36,38的方差22s ;第三组数据:2020,2019,2018,2017的方差为23s ,则21s ,22s ,23s 的大小关系是21s _______22s ________23s (填“>”,“=”或“<”)【答案】 = >【分析】根据方差是反映数据波动情况的量进行判断即可.【详解】解:Q 第一组和第二组数据都是间隔为2的偶数,\两组数据波动情况相同,即:2212s s =,Q 第三组数据是相差为1的整数,\方差最小,即:222123s s s =>,故答案为:=,>.【点睛】考查了方差的知识,解题时可以直接根据波动情况判断,也可以利用方差公式计算后确定答案,难度不大.考点三:概率一、填空题1.(2022·上海松江·统考二模)甲乙两人做“石头、剪刀、布”游戏,能在一个回合中分出胜负的概率是____________.【答案】23【分析】直接用列表法求出所有可能的情况,然后根据基本概率公式即可得出答案.【详解】分别用、、A B C 表示石头、剪刀、布,则在一个回合下的所有情况列表如下:一共有9种等可能结果,其中获胜的情况有6种,故获胜的概率6293P ==.【点睛】本题考查了基本概率的求法,解题的关键是熟练掌握求概率的方法,包括列表法和树状图法.2.(2022·上海金山·统考二模)一个布袋中有8个红球和16个黑球,这两种球除了颜色以外没有任何其他区别,从布袋中任取1个球是黑球的概率是______.3.(2022·上海黄浦·统考二模)一副52张的扑克牌(无大王、小王),从中任意抽出一张,抽到红桃K 的概率是________.4.(2022·上海闵行·统考二模)一个布袋中有三个完全相同的小球,把它们分别标号为1、2、3,从布袋中任取一个球记下数字作为点P 的横坐标x ,不放回小球,然后再从布袋中取出一个球记下数字作为点P 的纵坐标y ,那么点(),P x y 落在直线1y x =+上的概率是_________.共有6种等可能的结果,其中,点(),P x y 落在直线1y x =+上的结果有2种,∴点(),P x y 落在直线1y x =+上的概率=2163=.故答案为:13.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,还需要注意实验是不放回实验.5.(2023·上海·模拟预测)一个袋子里装有10个材质均匀,大小相同,颜色不同的球,每个球上面都标有0到9中任意一个数字.现从中任意摸取一个球,摸取到数字是合数的球的概率是___________.【答案】25##0.4数与总情况数之比.6.(2023·上海·模拟预测)从2π这三个数中任选一个数,选出的这个数是有理数的概率为________________.7.(2023·上海·模拟预测)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是_____.8.(2022·上海虹口·统考二模)如果从1、2、3、4、5、6、7、8、9、10这10个数中任取一个数,那么取到的数恰好是素数的概率是______.9.(2022·上海奉贤·统考二模)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是2的倍数的概率是_____ _______.##0.5【答案】1210.(2022·上海·上海市进才中学校考一模)将 1、2、3 三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是__________.【真题训练】一、单选题1.(2022·上海·统考中考真题)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【答案】D【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.2.(2021·上海·统考中考真题)商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包【答案】A【分析】选择人数最多的包装是最合适的.【详解】由图可知,选择1.5kg/包-2.5kg/包的范围内的人数最多,∴选择在1.5kg/包-2.5kg/包的范围内的包装最合适.故选:A.【点睛】本题较简单,从图中找到选择人数最多的包装的范围,再逐项分析即可.3.(2020·上海·统考中考真题)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( ) A.条形图B.扇形图C.折线图D.频数分布直方图【答案】B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能。
培优专题22 统计与概率的综合应用-解析版
培优专题22 统计与概率的综合应用【巩固训练】1.(2022·全国·九年级课时练习)我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:用过的餐巾纸投放情况统计图:(1)此次调查一共随机采访了______名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为_____°;(2)补全条形统计图(要求在条形图上方注明人数);(3)若该校有4000名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)李老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中A,B两人的概率.由表格可知,共有12种等可能结果,其中恰好抽中A,B两人的有2种结果,所以恰好抽中A,B两人的概率为21 126=.【点睛】本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图,用到的知识点为:概率=所求情况数与总情况数之比,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.2.(2022·四川·巴中市教育科学研究所中考真题)为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.参加四个社团活动人数统计表社团活动舞蹈篮球围棋足球人数503080参加四个社团活动人数扇形统计图请根据以上信息,回答下列问题:(1)抽取的学生共有人,其中参加围棋社的有人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.3.(2021·甘肃·模拟预测)经典国学著作是中华民族文化教育的庞大载体,是民族生存的根基,为进一步培养学生的人文素养,某校举办了以“弘扬传统文化,品经典国学”为主题的诵读比赛,分“单人项目”和“双人项日”两种形式,诵读的篇目有四种类型:A.人生管理;B.家国情怀;C励志劝勉;D.山明水秀,且每种类型包含的篇目数相同,参赛者需从中随机抽取一篇进行诵读.(1)若小甘参加“单人项目”,求他抽中的篇目恰好属于“B.家国情怀”的概率;(2)张帆和李欣参加“双人项目”,比赛规定:同一小组的两名同学的篇目类型不能相同,且每人只能抽取一次,求他们恰好抽到“A、人生管理”和“C励志劝勉”类篇目的概率是多少?(画树状图或列表求解)´个小方格的雷区中,随机地埋4.(2022·河南郑州·七年级期末)如图为计算机“扫雷”游戏的画面,在99藏着10颗地雷,每个小方格最多能埋藏1颗地雷.´个小方格的任意一个小方格,则踩中地雷的概率是______;(1)小明如果踩在99(2)如图,小明游戏时先踩中一个小方格,显示数字3,它表示与这个小方格相邻的8个小方格(图中黑框所围区域,设为A区域)中埋藏着3颗地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地面的概率是______;②小明和小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,请用所学的概率的知识,通过计算来说明这个约定对谁有利.5.(2022·河南省实验中学八年级开学考试)如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明设计了一个如下方法:①在此封闭图形内画出一个半径为1米的圆.②在此封闭图形旁边闭上眼晴向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:掷小石子落在不规则图形内的总次数50150300500…小石子落在圆内(含圆上)的次数m2059123203…小石子落在圆外的阴影部分(含外缘)的次数n2991176293…m∶n0.6890.6940.6890.706(1)通过以上信息,可以发现当投掷的次数很大时,则m∶n的值越来越接近(结果精确到0.1).(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在附近(结果精确到0.1).(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留p)【答案】(1)0.7(2)0.4(3)封闭图形的面积为10π平方米.【分析】(1)根据提供的m和n的值,计算m:n后即可确定二者的比值逐渐接近的值;(2)大量试验时,频率可估计概率;(3)利用概率,求出圆的面积比上总面积的值,计算出阴影部分面积.(1)解:20÷29≈0.69;59÷91≈0.65;123÷176≈0.70,…当投掷的次数很大时,则m:n的值越来越接近0.7;故答案为:0.7;(2)6.(2022·江苏·兴化市乐吾实验学校八年级阶段练习)自2009年以来,“中国·兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如下:批次123456油菜籽粒数100400800100020005000发芽油菜籽粒数a31865279316044005发芽频率0.8500.7950.8150.793b0.801(1)分别求a 和b 的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有8000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.【答案】(1)85a =,0.802b =(2)该品种油菜籽发芽概率的估计值为0.8(3)估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为6400粒【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值;(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率;(3)用油菜籽总数乘以发芽概率即可求得发芽粒数.。
06-专项拓展训练 概率与统计的综合应用高中数学必修一北师大版
(1)求, 的值,并估计这100位居民去年可支配收入的平均值(同一组中的数据用该组区间的中点值作代表);
【解析】 根据题意,设事件,,分别为甲、乙、丙在 内,则 .①设事件“抽取的3人中有2人在 内”,则,且与与 互斥,根据概率的加法公式和事件独立性定义,得 .
②设事件“抽取的3人都在内”,则 ,由事件的独立性定义,得 .设事件“抽取的3人中至少有2人去年可支配收入在 内”,则 .
第七章 概率
专项拓展训练 概率与统计的综合应用
过专项 阶段强化专项训练
1.某校高一年级为了提高教学质量,对老师命制的试卷提出要求,难度系数要控制在 (难度系数是指学生得分的平均数与试卷总分的比值,例如:满分为100分的试卷平均分为68分,则难度系数为 ).某次数学考试
根据图中的数据,回答下列问题:
(满分100分),王老师根据所带班级100名学生的等级来估计高一年级1 800人的数学成绩情况,已知学生的成绩分为,,,, 五个等级,统计数据如图所示.
(1)试估算该校高一年级学生的数学成绩等级为 的人数.
【解析】 高一年级学生的数学成绩等级为的人数约为
(2)若等级,,,, 分别对应90分、80分、70分、60分、50分,请问按王老师的估计,本次数学考试试卷的命制是否符合要求?
【解析】 由频率分布直方图可得, ,则 .①因为居民可支配收入数据的分位数为 ,所以 ,则 .②将①与②联立,解得 所以这100位居民去年可支配收入的平均值为 (万元).
(2)用样本的频率估计概率,从该地居民中抽取甲、乙、丙3人,若每次抽取的结果互不影响,求抽取的3人中至少有2人去年可支配收入在 内的概率.
2024年初中数学统计与概率专项训练
2024年初中数学统计与概率专项训练在初中数学的学习中,统计与概率是一个重要的组成部分。
它不仅能够帮助我们更好地理解和处理数据,还能培养我们的逻辑思维和分析问题的能力。
对于即将迎来 2024 年中考的同学们来说,进行专项训练是提高这部分知识掌握程度的关键。
首先,我们来了解一下统计的基本概念。
统计主要包括数据的收集、整理、描述和分析。
数据的收集可以通过调查、实验等方式进行。
比如,我们想了解班级同学的身高情况,就可以通过测量每个同学的身高来收集数据。
数据的整理则是将收集到的数据进行分类、排序等操作,使其更有条理。
比如,将同学们的身高按照从矮到高的顺序排列。
描述数据常用的方法有统计图和统计表。
统计图包括条形统计图、折线统计图和扇形统计图。
条形统计图能清楚地反映出各种数据的数量多少;折线统计图可以直观地展示数据的变化趋势;扇形统计图则能很好地呈现各部分在总体中所占的比例。
例如,要展示一个班级同学不同学科成绩的分布情况,使用条形统计图就能清晰地看出每个学科的成绩高低。
如果要观察某个同学一段时间内成绩的起伏变化,折线统计图就是最佳选择。
而想了解班级同学在各种兴趣爱好上的占比,扇形统计图会更合适。
在统计分析中,我们常常要计算一些统计量,比如平均数、中位数和众数。
平均数是所有数据的总和除以数据的个数,它能反映数据的平均水平。
中位数是将一组数据按照从小到大或从大到小的顺序排列后,位于中间位置的数,如果数据个数是奇数,中位数就是中间的那个数;如果数据个数是偶数,中位数则是中间两个数的平均值。
众数是一组数据中出现次数最多的数。
比如说,有一组数据:12、15、18、15、20、15、19,那么这组数据的平均数是(12 + 15 + 18 + 15 + 20 + 15 + 19)÷ 7 = 16。
中位数是 15,因为将这组数据从小到大排列为 12、15、15、15、18、19、20,中间的数是 15。
众数也是 15,因为 15 出现的次数最多。
高中数学练习题附带解析概率与统计的应用
高中数学练习题附带解析概率与统计的应用高中数学练习题附带解析 - 概率与统计的应用一、选择题(每题5分,共40分)1. 在一批大小为100的家用电器中,有10台次品。
如果从这批电器中随机抽取5台,则其中不超过2台为次品的概率是:A. 0.717B. 0.268C. 0.989D. 0.154解析:使用二项分布计算该问题。
设X为抽取的次品数目,n为抽取的总数,p为次品的概率。
则可得到概率公式:P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)= C(5, 0) * (10/100)^0 * (90/100)^5 + C(5, 1) * (10/100)^1 * (90/100)^4 + C(5, 2) * (10/100)^2 * (90/100)^3≈ 0.717答案:A. 0.7172. 一个包含100个学生的班级中,有40人会打篮球,50人会踢足球,30人两项运动都会。
从班级中随机抽取一个学生,求其不会篮球也不会踢足球的概率。
B. 0.3C. 0.4D. 0.5解析:使用概率的求和法则。
设A为会打篮球的学生数目,B为会踢足球的学生数目,A∩B为两项运动都会的学生数目。
则根据题意可得:P(A) = 40/100 = 0.4P(B) = 50/100 = 0.5P(A∩B) = 30/100 = 0.3P(不会篮球且不会足球) = 1 - [P(A) + P(B) - P(A∩B)] = 1 - (0.4 + 0.5 - 0.3) = 0.4答案:C. 0.43. 一位数学老师将期末考试的成绩根据正态分布曲线转化为等级,规定成绩大于等于平均分且小于平均分+1个标准差的学生为A等级,成绩大于等于平均分+1个标准差且小于平均分+2个标准差的学生为B 等级,以此类推。
如果平均分为75,标准差为10,求A等级人数的近似百分比是:A. 68%B. 34%D. 84%解析:根据正态分布的相关性质,可知平均分左右的区间包含了大约68%的学生。
8.7 统计和概率的简单应用(基础
统计和概率的简单应用巩固练习一.选择题1.下列事件是随机事件的是( )A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.在只装了红球的不透明袋子里,摸出黑球D.射击运动员射击一次,命中靶心【解答】D【解析】A、画一个三角形,其内角和是360°,是不可能事件,不合题意;B、投掷一枚正六面体骰子,朝上一面的点数小于7,是不可能事件,不合题意;C、在只装了红球的不透明袋子里,摸出黑球,是不可能事件,不合题意;D、射击运动员射击一次,命中靶心,是随机事件,符合题意;故选D.2.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是( )A.随机事件B.不可能事件C.必然事件D.无法确定【解答】C【解析】∵一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,∴事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是必然事件.故选C.3.下列事件中,是必然事件的是( )A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯【解答】A【解析】A、从一个只有红球的盒子里摸出一个球是红球,是必然事件;B、买一张电影票,座位号是5的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、走过一个红绿灯路口时,前方正好是红灯,是随机事件.故选A.4.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,根据折线图判断下列说法正确的是( )A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定【解答】B【解析】由折线统计图得,乙运动员的10次射击成绩的波动性较小,甲运动员的10次射击成绩的波动性较大,所以乙的成绩更稳定.故选B.5.以下问题,不适合用全面调查的是( )A.旅客上飞机前进行安检B.学校对学生进行体检C.了解七年级学生的课外读书时间D.了解岳麓山风景区全年游客流量【解答】D【解析】A、旅客上飞机前进行安检,应采用全面调查,故此选项不合题意;B、学校对学生进行体检,应采用全面调查,故此选项不合题意;C、了解七年级学生的课外读书时间,应采用全面调查,故此选项不合题意;D、了解岳麓山风景区全年游客流量,应采用抽样调查,故此选项符合题意;故选D.6.下列调查中,最适合采用全面调查方式的是( )A.对同批次LED灯泡的使用寿命的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对中央电视台“战疫情”栏目收视率的调查【解答】B【解析】A、对同批次LED灯泡的使用寿命的调查适合抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查适合全面调查;C、对一个社区每天丢弃塑料袋数量的调查适合抽样调查;D、对中央电视台“战疫情”栏目收视率的调查适合抽样调查;故选B.7.下列调查中,适宜采用普查方式的是( )A.了解一批灯泡的寿命B.考察人们保护环境的意识C.检査一枚用于发射卫星的运载火箭的各零部件D.了解全国八年级学生的睡眠时间【解答】C【解析】A、了解一批灯泡的寿命,适合抽样调查,故A不符合题意;B、考察人们保护环境的意识,调查范围广适合抽样调查,故B不符合题意;C、检査一枚用于发射卫星的运载火箭的各零部件,适合普查,故C符合题意;D、了解全国八年级学生的睡眠时间,调查范围广适合抽样调查,故D不符合题意;故选C.8.今年某校有2000名学生参加线上学习,为了解这些学生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是( )A.2000名学生是总体B.每位学生的数学成绩是个体C.这100名学生是总体的一个样本D.100名学生是样本容量【解答】B【解析】A、2000名学生的数学成绩是总体,故选项不合题意;B、每位学生的数学成绩是个体,故选项符合题意;C、这100名学生的数学成绩是总体的一个样本,故选项不合题意;D、样本容量是100,故选项不合题意;故选B.9.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )A.0.82B.0.84C.0.85D.0.90【解答】A【解析】∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选A.10.一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为( )A.12B.13C.14D.16【解答】B【解析】∵不透明的袋中有4个白球,3个黄球和2个红球,共有9个球,∴从袋中随机摸出一个球是黄球的概率为39=13;故选B.11.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为( )A.30石B.150石C.300石D.50石【解答】B【解析】根据题意得:1500×30300=150(石),答:这批米内夹谷约为150石;故选B.12.计算机的“扫雷”游戏是在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.若游戏时先踩中一个小方格,显示数字3,它表示与这个方格相邻的8个小方格中埋藏着3颗地雷.如图,是小明某次游戏时随机点开一个方块所显示的数字,小明接下来在数字“2”的周围随机点开一个方块,没有踩中地雷的概率为( )A.14B.38C.58D.34【解答】D【解析】∵8个位置有2颗地雷,则没有地雷的有6颗,∴没有踩中地雷的概率为68=34;故选D.二.填空题13.一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球,从布袋里任意摸出1个球,是红球的概率是 .【解答】27.【解析】∵从布袋里任意摸出1个球有7种等可能结果,其中是红球的有2种结果,∴是红球的概率是27,故答案为27.14.为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是 .【解答】90.【解析】为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是90,故答案为90.15.一个容量为100的样本的最大值是120,最小值是48,取组距为10,则可分成 组.【解答】8.【解析】根据题意,极差为120﹣48=72,=7.2,而7210所以组数为7+1=8.故答案为8.16.为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:cm)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是 .【解答】0.15.【解析】根据题意,得:=6÷40=0.15.频率=频数数据总和故答案为0.15.17.一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个黑球”是 事件.(填“必然”、“不可能”或“随机”)【解答】随机.【解析】一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,共有以下2种情况:1、2个红球;2、1个红球,1个黑球;所以从中任意摸出2球,“摸出的球至少有1个黑球”是随机事件,故答案为随机.18.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示的统计图,则该班参加乒乓球和羽毛球项目的人数总和为 .【解答】25.【解析】由扇形统计图可知,参加羽毛球项目的人数所占的百分比为72360=20%,参加乒乓球项目的人数所占的百分比为30%,∴该班参加乒乓球和羽毛球项目的人数总和=50×(20%+30%)=25(人),故答案为25.19.某城市家庭人口数的一次统计结果表明:2口人家占23%,3口人家占42%,4口人家占21%,5口人家占9%,6口人家占3%,其他占2%,若要制作统计图来反映这些数据,最适当的统计图是 (从折线统计图、条形统计图、扇形统计图中选一).【解答】扇形统计图.【解析】要反映各个部分所占整体的百分比,因此选择扇形统计图,故答案为扇形统计图.20.已知a为正整数,且二次函数y=x2+(a﹣7)x+3的对称轴在y轴右侧,则a使关于y的分式方程ay4y1―2=y1y有正整数解的概率为 .【解答】13.【解析】∵二次函数y=x2+(a﹣7)x+3的对称轴在y轴右侧.∴―a72>0,∴a﹣7<0,∴a<7,∵a是正整数,∴a的值为1,2,3,4,5,6,分式方程ay4y1―2=y1y可化为ay﹣4﹣2(y﹣1)=﹣y,解得y=2a1,∵关于y的分式方程ay4y1―2=y1y有正整数解,∴a﹣1>0,解得a>1,当a=2时,y=2,当a=3时,y=1;∴a使关于y的分式方程ay4y1―2=y1y有正整数解的概率为=26=13.故答案为13.21.一个不透明的口袋中有红球和黑球共若干个,这些球除颜色外都相同,每次摸出1个球,进行大量的球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率的为 .【解答】0.6【解析】∵每次摸出1个球,进行大量的球试验后,发现摸到黑球的频率在0.4附近摆动,∴摸到黑球的概率约为0.4,∴摸到红球的概率约为1﹣0.4=0.6,故答案为0.6.22.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是 .【解答】见试题解答内容【解析】由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是120°360°=13.故答案为13.23.在一个不透明的口袋里装有黑、白两种颜色的球30个,这些球除颜色外都相同.某学习小组进行摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再把它放回袋中,不断重复上述过程,试验数据如下表:摸球的次数10020050080010001200摸到白球的次数4281201324402481根据上表数据,估算口袋中黑球有 个.【解答】18.【解析】根据图表给出的数据可得,摸到白球的频率将会接近0.4,所以可估计口袋中白种颜色的球的个数是:30×0.4=12(个),则口袋中黑球有30﹣12=18(个).故答案为18.24.2020年3月12日是我国第42个植树节,某林业部门要考察一种幼树在一定条件下的移植成活率,幼树移植过程中的一组统计数据如表:幼树移植数(棵)1002500400080002000030000幼树移植成活数(棵)872215352070561758026430幼树移植成活的频率0.8700.8860.8800.8820.8790.881请根据统计数据,估计这种幼树在此条件下移植成活的概率是 .(结果精确到0.01)【解答】0.88.【解析】∵根据表中数据,试验频率逐渐稳定在0.88左右,∴这种幼树在此条件下移植成活的概率是0.88;故答案为0.88.三.解答题25.嘉陵江为长江上游支流,因流经陕西风县东北嘉陵谷而得名.干流流经陕西省、甘肃省、四川省、重庆市,在重庆朝天门汇入长江,嘉陵江的警戒水位是237.1米,上周星期日的嘉陵江水位刚好达到警戒水位,如表记录的是本周内的水位变化情况.(正号表示水位比前一天上升,负号表示水位比前一天下降)星期一二三四五六日水位变化(米)+0.20+0.80﹣0.35+0.30+0.25﹣0.30﹣0.60(1)本周哪一天河流的水位最高?最高水位是多少米?(2)本周日与上周日相比,水位是增加了还是减少了?如果是增加了,求出增加了多少米,如果是减少了,求出减少了多少米?(3)以警戒水位作为0点,用折线统计图表示本周的水位情况.【解答】(1)周五的水位最高,最高水位为238.30米;(2)水位增加了0.30米;(3)见解析【解析】(1)周一水位:237.1+0.20=237.30米;周二水位:237.30+0.80=238.10米;周三水位:238.10﹣0.35=237.75米;周四水位:237.75+0.30=238.05米;周五水位:238.05+0.25=238.30米;周六水位:238.30﹣0.30=238米;周日水位:238﹣0.60=237.40米;故周五的水位最高,最高水位为238.30米;(2)本周日与上周日相比,水位增加了237.40﹣237.10=0.30米,(3)用折线统计图表示本周的水位情况.26.学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)求全班学生总人数;(2)在扇形统计图中,a= ,b= ,C类的圆心角为 ;(3)张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随机抽取2人,请求出全是B类学生的概率..【解答】(1)40人;(2)a=15,b=60,54°;(3)16【解析】(1)全班学生总人数为:10÷25%=40(人);(2)∵C类人数为:40﹣(10+24)=6(人),∴C类所占百分比为640×100%=15%,C类的圆心角为360°×640=54°,B类百分比为2440×100%=60%,∴a=15,b=60,54°;故答案为a=15,b=60,54°;(3)列表如下:A B B CA BA BA CAB AB BB CBB AB BB CBC AC BC BC由表可知,共有12种等可能结果,其中全是B类学生的有2种结果,∴全是B类学生的概率为212=16.27.下面折线图描述了西丰县六月某日的气温变化情况.根据折线图解答问题:(1)这一天的最高气温是 ;(2)这一天12时的气温是 ;(3)估计这一天7时、11时的气温大约分别 ;(4)这一天的14~24时,气温逐渐 ;(5)这一天的温差是 .【解答】(1)32℃;(2)30℃;(3)22℃,28℃;(4)12℃.【解析】(1)从折线统计图中气温的最高点,相应的气温为32℃,相应的时间为14:00,故答案为32℃;(2)从折线统计图上,当时间为12:00时,相应的气温为30℃,故答案为30℃;(3)从图中可以直观得到7时的气温约为22℃,11时的气温约为28℃,故答案为22℃,28℃;(4)最高气温为32℃,最低气温为20℃,因此温差为32℃﹣20℃=12℃,故答案为12℃.28.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?【解答】(1)5或6;(2)1或2;(3)3或4.【解析】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.29.在一个不透明的袋子里装有2个白球,3个黄球,每个球除颜色外均相同,现将同样除颜色外都相同的黄球和白球若干个(白球个数是黄球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是白球的概率,求后放入袋中的黄球的个数.是12【解答】1.【解析】设放入袋中的黄球的个数为x个,根据题意得:(2+3+x+2x)2+2x=12解得:x=1,答:放入袋中的黄球的个数有1个.30.某校准备组建“校园安全宣传队”,每班有两个队员名额,某年某班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选,利用画树状图或列表的方法,求丁同学被选中的概率.【解答】12.【解析】画出树状图如图:由树状图知,共有12种等可能结果,其中丁同学被选中的有6种结果,∴丁同学被选中的概率为612=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率的应用
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,则老师需要知道小明这5次数学成绩的()
A.平均数或中位数B.方差或极差C.众数或频率D.频数或众数2.下列调查,比较容易用普查方式的是()
A.了解某市居民年人均收入B.了解某市初中生体育中考成绩
C.了解某市中小学生的近视率D.了解某一天离开贵阳市的人口流量
3.在频率分布直方图中,各个小长方形的面积等于()
A.相应各组的频数B.组数C.相应各组的频率D.组距
4.第五次我国人口普查资料显示:2000年某省总人口为780
万,图中的“?•”表示某省2000年接受初中教育这一类别
的人数数据丢失了,•那么结合图中其他信息,可推知2000
年该省接受初中教育的人数为()
A.93.6万B.234万C.23.4万D.2.34万
5.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~
2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡
场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有()只
A.56 B.560 C.80 D.150
6.设有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,从中任取1个乒乓球,抽到非一等品的概率是()
A.4
25
B.
1
25
C.
1
5
D.
4
5
7.某厂家准备投资一批资金生产10万双成人皮鞋,•现对顾客所需鞋的大小号码抽样调查如下:100名顾客中有15人穿36码,20人穿37码,25人穿38码,20人穿39码,…,如果你是厂商你准备在这10万双鞋中生产39码的鞋约()双
A.2万B.2.5万C.1.5万D.5万
8
下面有三个命题:①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;•③甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数(跳绳次数≥150次为优秀).其中正确的是()
A.①B.②C.③D.②③
9.给出下述四个命题:①众数与数据的排列顺序有关;②10个数据中,至少有5个数据
大于这10个数据的平均数;③若x甲>x乙,则s甲2>s乙2;④频率分布直方图中,各长方
形的面积和等于1,其中正确命题的个数是()
A.1 B.2 C.3 D.4
10.近年来我国国内生产总值增长率的变化情况统计图如图,下列结论中不正确的是()A.1995─1999年,国内生产总值的年增长率逐年减少;
B.2000年,国内生产总值的年增长率回升;C.这7
年中,每年的国内生产总值不断增长;
D.这8年中,每年的国内生产总值有增有减。
二、填空题(本大题共8题,每题3分,共24分)
11.在全年级的375名学生中,有两名学生生日相
同的概率是_________.
12.从甲、乙两班抽取人数相等的学生参加了同一
次数学竞赛,其竞赛成绩的平均分,方差分别为:
x甲=x乙=80,s甲2=240;s乙2=180,则成绩较稳定
的是________.
13.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.
14.用5分评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估计全班的作业质量,从中抽查的数据中已知其众数是4分,•那么得4•分的至少有_______人.
15.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,•对其使用寿命跟踪调查结果如下(单位:年):
甲:3,4,6,8,8,8,10,5
乙:4,6,6,6,8,9,12,13
丙:3,3,4,7,9,10,11,12
三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、•中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________.
16.抽屉里有尺码相同的3双黑袜子和2双白袜子,混放在一起,•在夜晚不开灯的情况下,你随意拿出2只,它们恰好是1双的可能性是_________.
17.某商场5月份随机抽查7天的营业额,结果如下(单位:万元):3.6,3.2,3.4,3.9,3.0,3.1,3.6.试估计该商场5月份(31天)的营业额大约是________万元.
18.某公司董事会拨出总额为40万元作为奖金,全部用于奖励本年度做出突出贡献的一、
二、三等奖的职工,原来设定一等奖每人5万元,二等奖每人3万元,三等奖每人2万
元,后因考虑到获一等奖的职工科技创新已给公司带来的巨大的经济效益,•现在改为一等奖每人15万元,二等奖每人4万元,三等奖每人1万元,•那么该公司本年度获得
一、二、三等奖的职工共________人.
三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)
19.如图,为第27届奥运金牌扇形统计图,•根据图中提供的信息回答下列问题:(1)美国、俄罗斯、中国、德国四国的金牌榜排名如何?
(2)哪两个国家金牌数最接近?
(3)如果你是中国队的总教练,你在下一次奥运会的追赶目标是谁?
20.小文和小颖做游戏,在两个被6等分的转盘上分别写有数字1,2,3,4,5,6.•转动两个转盘,当转盘停止后,如果它们的指针指向数字的积为奇数,则小文胜,如果两个数字的积为偶数,则小颖胜.试问:这个游戏对双方公平吗?请说明你的理由.
21.为了解全校学生的身高情况,小明、小华、小刚三个同学分别设计了三个方案:(1)小明:测量出某班每个同学的身高,以此推出全校学生的身高.
(2)小华:在校医务室找出了1995年全校各班的体检表,•从中摘录全校学生的身高情况.
(3)小刚:在全校每个年级的(一)班中,抽取了学号为5的倍数的10名学生,•测量他们的身高,从而估计全校学生身高的情况.
这三种调查方案哪一种较好?为什么?
22.投放一个水库的鱼成活了5万条,从水中捕捞了10条,称得它们的质量(单位:kg)
为2.5,2.2,2.4,2.3,2.4,2.5,2.8,2.6,2.7,2.6.
(1)根据统计结果估计水库有上述这种活鱼多少千克?
(2)估计质量在2.35~2.65kg的鱼有多少条?
23.将10盒同一品种的花施用甲、乙两种保花肥,随意分成两组,每组5盆,•其花期的
(1)施用哪种花肥,使得花的平均花期较长?(2)施用哪种保花肥效果比较可靠?24.某公司10
(1)求销售额的平均数、众数、中位数(单位:万元).
(2)今年公司为调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较合理确定今年每个销售员统一的销售额标准是多少万元?。