最基本的粒子群优化算法程序,用Matlab实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个程序就是最基本的粒子群优化算法程序,用Matlab实现,非常简单。只有几十行代码。正所谓一分钱一分货啊,优化效果不总是令人满意。我还有几个改进的粒子群优化算法版本。
下面是主函数的源程序,优化函数则以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m就可以了通用性很强。
主函数源程序(main.m)
%------基本粒子群优化算法(Particle Swarm Optimization)-----------
%------名称:基本粒子群优化算法(PSO)
%------作用:求解优化问题
%------说明:全局性,并行性,高效的群体智能算法
%------作者:孙明杰(dreamsun2001@)
%------单位:中国矿业大学理学院计算数学硕2005
%------时间:2006年8月17日<CopyRight@dReAmsUn>
%------初始格化---------------
clear all;
clc;
format long;
%------给定初始化条件-------------------
c1=1.4962; %学习因子1
c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=1000; %最大迭代次数
D=10; %搜索空间维数(未知数个数)
N=40; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%-----------先计算各个粒子的适应度,并初始Pi和Pg-----------
for i=1:N
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
pg=x(1,:); %Pg为全局最优
for i=2:N
if fitness(x(i,:),D)<fitness(pg,D)
pg=x(i,:);
end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------
for t=1:MaxDT
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));实现速度的更新
x(i,:)=x(i,:)+v(i,:);实现位置的更新
if fitness(x(i,:),D)<p(i)%判断当此时的位置是否为最优的情况,当不满足时继续更新
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
if p(i)<fitness(pg,D)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg,D);
end
%------最后从所得到的结果中取出最优的解
disp('*************************************************************')
disp('函数的全局最优位置为:')
Solution=pg'
disp('最后得到的优化极值为:')
Result=fitness(pg,D)
disp('*************************************************************')
%------算法结束---DreamSun GL & HF,适应度函数源程序(fitness.m)------------
function result=fitness(x,D)
sum=0;
for i=1:D
su
m=sum+x(i)^2;
end
result=sum;
%下面是一个最基本的pso算法解决函数极值问题,如果是一些大型的问题,需要对速度、惯性常数、和自适应变异做进一步优化,希望对你有帮助
function y = fun(x)%--------X是不是粒子群的粒子最开始位置,请验证------------
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空环境
clc
clear
%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen=200; % 进化次数
sizepop=20; %种群规模
Vmax=1;%速度限制
Vmin=-1;
popmax=5;%种群限制
popmin=-5;
%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=5*rands(1,2); %初始种群
V(i,:)=rands(1,2); %初始化速度
%计算适应度
fitness(i)=fun(pop(i,:)); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
for j=1:sizepop
%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%种群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%自适应变异(避免粒子群算法陷入局部最优)
if rand>0.8
k=ceil(2*rand);%ceil朝正无穷大方向取整
pop(j,k)=rand;
end
%适应度值
fitness(j)=fun(pop(j,:));
%个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
%群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i)=fitnesszbest;
end
%% 结果分析, 并且实现了绘图的功能
plot(yy)
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');