分数百分数应用题典型解法的 和复习

合集下载

分数百分数应用题复习课件

分数百分数应用题复习课件

千克,已知出油率为40%,问共用了多
少花生去榨油?
2四.连续两次判断单位“1”的问题
3 6
7 1、元旦有3600人到动物园游玩,其 中数成的人34 ,占元25 ,旦成到人野人生数动相物当园于游小玩孩的人小 孩人数有多少人?
2、四年级有学生147人,五年级 学级生学的生人的数人是 数四相年当级于的五年23 ,级六的年67 。 六年级有学生多少人?
2、(1)某班50人,今天缺席2 人。 求出勤率。 (2)某班50人,今天出勤48人。 求出勤率。 (3)某班今天出勤48人,缺席2 人。求出勤率。
3、“求一个数比另一个多(少) 几分之几”的问题我们可以把它 转化为
“求相差量是单位“1”的几 分之几”的问题来解答,
相差量÷单位“1”=相差分率
相差量÷单位“1”=相差分率
模板中的图片展示页面,您可以根据需要
方法一:更改图片
† 在图“替换”下拉列表中选择要更改字体。(如下图)
•选中模版中的图片(有些图片与其他对象 ,而不是组合)。
1.单击鼠标右键,选择“更改图片”,选
† 在“替换为”下拉列表中选择替换字体。 † 点击“替换”按钮,完成。
(二)求一个数的几(百)分之几是多少:
2 5
A第:二一周本读书了90全0页书,的第一1周。读了全书的
1 9

10
(1)第一周读了多少页?——对应的分率是第一周读了
()
(2)第二周读了多少页?——对应的分率是第二周读了
()
(3)还剩下多少页?——对应的分率是还剩(

没读
(4)两周一共读多少页?——对应的分率是两周一共读
了( )
(5)第一周比第二周多读多少页?——对应的分率是第

2023年《分数应用题复习》教案(8篇)

2023年《分数应用题复习》教案(8篇)

2023年《分数应用题复习》教案(8篇)《分数应用题复习》教案1教学目标1、使学生较熟练地掌握求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这两类应用题。

2、提高学生分析、解答应用题的能力,培养学生对立统一的辩证思想。

教学重点和难点找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。

教学过程设计(一)复习基础知识教师谈话:我们已经复习了求一个数是另一个数的几分之几(百分之几)、求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这三类应用题。

这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。

(板书:分数,百分数应用题复习)投影出示如下习题:1、读题列式并按要求改编题:①一本书100页,读了60页,读了这本书的几分之几?学生读题:如果把问题改成读了百分之几应如何解答?样列式计算?③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板2、补充问题。

(1)六一班有男生30人,女生20人,_______________?可以求什么?从最基本的想起。

学生读题后补充问题并列式:①女生是男生的几分之几(百分之几?)②女生比男生少几分之几(百分之几?)③男生是女生的几分之几(百分之几?)④男生比女生多几分之几(百分之几?)可以求什么?从最基本的想起,学生读题后补充问题并列式:①女生有多少人?②全班共有多少人?③男生比女生多多少人?④女生比男生少多少人?3、回答问题。

师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。

)③甲是甲乙差的4倍。

⑤乙是单位1。

4、小结。

通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?(二)画线段图分析解答投影出示如下练习:1、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?①学生读题;②学生自己画图列式;③订正画图;④指名列式。

百分数分数应用题分类复习总结

百分数分数应用题分类复习总结

1、意义:表示一个数是另一个数的百分之几的数叫百分数,百分数又叫百分比或百分率,因为它只表示两个数量之间的关系,所以百分数后面没有单位。

2、读法:先读分母和分数线(即百分号),再读分子。

写法:先写分子,再写百分号。

3、互化:百分数化小数,小数点向左移两位,去掉百分号;小数化百分数,小数点向右移两位,添上百分号;百分数化分数,写成分母为100的分数,约分化简即可;分数化百分数,先把分数化成小数,再把小数化成百分数。

4、百分数的应用第一类:“求一个数是另一个数的几分之几(百分之几)”用除法:一个数÷另一个数(作为标准)=分率,例如:命中率、出勤率等等都是这个方法。

1、一本书100页,读了60页,读了这本书的几分之几?2、种子发芽的有48棵,不发芽的有2棵,求发芽率是多少。

第二类:“求一个数的几分之几(百分之几)是多少”用乘法。

(标准量)×分率=对应量1、全班有50人,女生占20%,男生有多少人?2、有一杯盐水,水和盐的比是1:3,这杯盐水共有180克,水和盐各有多少克?第三类:“已知一个数的几分之几(百分之几)是多少,求这个数(求单位1的量)”用除法:对应量÷对应分率=标准量1、路修了20%后,正好是40米,这条路有多少米?2、路修了20%后,还剩下40米没修,这条路有多少米?3、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?第四类:求一个数比另一个数多(或少)百分之几(比字后的量为标准量)求甲比乙多百分之几表示甲比乙多的部分是乙的百分之几,用(甲-乙)÷乙求乙比甲少百分之几表示乙比甲少的部分是甲的百分之几,用(甲-乙)÷甲1、今年总产量是100吨,去年是80吨,今年比去年增产了百分之几。

总结:解应用题的画图的方法:1、找出标准量;2、画出单位1;3、根据题意在上方标出题目给的量(带单位数量);在下方标出分率(没带单位的分数或百分数)4、看求什么,是求对应量还是求标准量,如果已知单位“1”求对应量用乘法:(标准量)×分率=分率对应数量;如果未知单位“1”用除法:对应量÷对应分率=标准量,也可以用方程的:标准量(设为未知数)×分率=对应量方法练习题一.填空:1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的价钱是这套西服的()%。

分数百分数应用题典型解法的和复习精修订

分数百分数应用题典型解法的和复习精修订

分数百分数应用题典型解法的和复习GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22 则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳。

)练习题※一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还少10千克,求原来这堆煤共有多少千克缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。

全厂的人数为:144÷(1-207-207)=480(人) 菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。

则第一天卖出后余下的大白菜千克数为: 240÷(1-52)=400(千克)同理400千克的对应分率为这批大白菜的(1-31),则这批大白菜的千克数为:400÷(1-31)=600(千克)转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。

分数百分数应用题的复习ppt课件

分数百分数应用题的复习ppt课件

2、根据下面的线段图,先说出图中都 给了什么条件,然 后任意选择 条件,提出相应的问题,编成各种应用题。
① 第一天 1

3
②第二天25%



③ 15公顷
④还剩25公顷
⑤60公顷
1 ① ⑤求第一天耕地多少公顷? 7 ① ③ ④ 求这块地共多少公顷? 2 ② ⑤ 求第二天耕地多少公顷? 8 ① ② ③ 求第一天耕地多少公顷? 3 ① ② ⑤ 求两天共耕地多少公顷?9 ① ② 求还剩几分之几没耕? 4 ① ② ⑤ 求还剩多少公顷没耕? 10 ④ ⑤ 求两天共耕地多少公顷 5 ② ③求这块地共多少公顷? 11 ④ ⑤ 求还剩几分之几没耕? 6 ① ② ④ 求这块地共多少公顷? 12 ③ ④耕一天后还剩多少公顷?
1、根据下面的事例,提出求几分之几(或百分之几) 的问题。
果园里有两种果树,梨树50棵,桃树30棵。
桃树的棵树是梨树的几分之几?(或百分之几) 梨树的棵树是桃树的几分之几?(或百分之几) 桃树的棵树是总棵树的几分之几?(或百分之几) 梨树的棵树是总棵树的几分之几?(或百分之几) 桃树的棵树比梨树少几分之几?(或百分之几) 梨树的棵树比桃树多几分之几?(或百分之几)
1 4
⑤去年的台数比今年多
1 4
⑥去年的台数比今年少
1 4
3600÷ 1
4
3600÷(1-
1 4

3600÷(1+
1 4

3600× 1 4
3600×(1+
1 4

3600×(1-
1 4

2、根据下面的线段图,先说出图中都 给了什么条件,然 后任意选择 条件,提出相应的问题,编成各种应用题。
① 第一天 1

用口诀巧解分数、百分数应用题

用口诀巧解分数、百分数应用题

用口诀巧解分数、百分数应用题分数、百分数应用题是六年级数学学习的要点和难点,也是小升初数学的必考部分。

学生在解答较复杂的分数、百分数应用题时常常不知从哪处下手剖析题中的数目关系。

经过多年的实践,我总结了一些巧解分数应用题的口诀,现与大家共享。

一、找准“单位一”,确定基本解题思路学生在学习简单分数应用题的基础上,已经掌握了基本的解题思路:给出部重量及部重量的对应分率,求单位“1”的量,就用除法;给出单位“ 1”的量和部重量的对应分率,求部重量,就用乘法。

为帮学生进一步理清解题思路,我编了一个口诀:第一步,找关系(即分率);第二步,单位“1”(谁的分率谁是单位1);第三步,求的谁,单位“1”用除,部分就用乘;第四步,找对应。

二、抓住要点字,解出特别题分数、百分数应用题确定单位“ 1”是解题要点,要找寻单位“ 1”,需抓住题中的要点字,我的口诀是:想找单位“ 1”,需找要点字,占、是、还有比 (字 ),后跟单位“1”。

没有不重要,快去找关系(百分数)。

谁的百分比,谁是单位“ 1”。

一些特别的典型百分数应用题,如: 5 比4 多百分之几4 比5 少百分之几 5 是4 的百分之几 4 是5 的百分之几等类问题,学生易产生混杂,于是我编了一个口诀:多多少,少多少,差价除以单位“ 1”。

求对应分数,单位“ 1”做除数。

三、画出线段图,剖析找对应分数、百分数应用题,详细量和分率之间一定是对应关系,这一点特别重要。

因为小学生的抽象思想和空间想象力较差,关于一些较复杂应用题的数目关系,难以在脑筋中理清眉目,我在讲此类应用题时,常常存心识地指引学生画线段图帮助解题。

比方:“修一条公路,先修了全程的 30%,离中点还有千米,求公路的全程是多少千米”学生一时不知如何下手,我就让学生先画线段表示图,再找数目关系。

这样各条件之间的关系就十分显然了。

如何画出正确的线段图我的口诀是 :先画单位“ 1”,详细量上边放,分率放下边,问号需点上,两圆要对圆,看看求什么,求的是单位“ 1”,数目(详细量)除分率,求的是部分,单位“ 1”去乘分率。

人教版数学六年级下册分数、百分数的整理与复习

人教版数学六年级下册分数、百分数的整理与复习

分数、百分数应用题的整理复习一、教学目的:1、使学生认识百分数应用题的数量关系式,理解百分数应用题的解题思路和解题方法。

在理解题意、分析数量关系的基础上正确解答百分数应用题。

2、通过划线段图、类比和归纳等数学活动,体验数学问题的探索性,感受数学思考过程的条理性。

3、教学重点是理解百分数应用题的解题思路,结构特征和解题方法。

二、教学过程 :(一):复习百分数应用题的数量关系判断单位“1”,说出数量关系1、甲班人数是乙班的 32 。

2、已经行了全程的 65%。

3、男生人数比女生人数少97 。

4、男工比女工多41 。

5、现打九折。

6、降价了20%。

7、今天比去年增产二成五。

8、本月用电量节约了15%。

9、期中考试的优秀率为52%。

10、今天的缺勤率是5%老师把分率句放回到应用题中你会解决吗?(二):二基本题复习分析解答下面各题,比较它们之间有什么相同点和不同点2、⑴六4班有女生25人,男生人数是女生人数的4/53、⑵学校有20个足球,篮球比足球多 1/4 ,篮球有多少个?⑶学校有20个足球,篮球比足球少 1/5 ,篮球有多少个?把分率改为百分率4、⑵学校有20个足球,篮球比足球多 25%,篮球有多少个?⑶学校有20个足球,篮球比足球少 20%,篮球有多少个?分组讨论这一组题目的解法,在弄清解题思路和正确列式的基础上进行比较:它们之间有什么相同点和不同点?当分率句不完整时应如何解决?5、(1)英华学校合唱团有女生80人,比男生少20%,则男生有多少人?(2)一件衣服原价2000元,现打八折。

现卖多少元?(3)一件衣服打九折后,比原来便宜了200元,原价多少元?在学生分析解答的基础上,教师总结:这些题目是百分数应用题中比较典型的,也是最基本的,解答时必须要准确判断单位“1”,弄清要求数量与单位“1”之间的关系和数量对应的百分率,确定解题方法。

含多个分率句又该怎样解决?(1)果园里有桃树80棵,是梨树的4/5 ,梨树又是苹果树的2/3 ,果园里有苹果树多少棵?(2)修一条400米的路,第一天修了25%,第二天修了30%。

六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)

六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)

1、找单位“1”: 单位“1” 在分率句中分率的前面; 或在“占”、“是”、“比”“相当于”的后面。

2、写数量关系式的技巧: (1)“的” 相当于 “×”“占”、“相当于”“是”、“比”是 “ = ”2)分率前是“的”字:用单位“1”的量×分率=具体量一、已知单位“1”的量1、分率前是“多或少”的关系式: (比少):单位“1”的量×(1-分率)=具体量; (比多):单位“1”的量×(1+分率)=具体量2、求一个数的几倍是多少:用 一个数×几倍;3、求一个数的几分之几是多少: 用一个数×几分之几。

4、求几个几分之几是多少:用几分之几×个数5、已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量×(1-分率)=另一个部分量(建议用) (2)、单位“1”的量 - 已知占单位“1”的几分之几的部分量=要求的部分量1、小明看一本120页的书,已看了52。

还剩下多少页没看?2、一台电脑原来售价7200元,现在降价81。

现在每台售价多少元?3、修一条长28千米的公路,上午修了41,下午修了72。

还剩下多少千米没修?4、白兔只数的512等于黑兔的只数,白兔有144只,黑兔有多少只?5、小华看一本72页的书,第一天看了全书的13 ,第二天看了第一天的14 ,小华第二天看了多少页?6、农具厂原计划全年生产农具7200件,实际每月都比计划增产110,照这样计算,全年一共增产多少件?7、一批水泥,用去12吨,剩下的是用去的59 ,这批水泥有多少吨?8、益华电脑城有电脑220台,第一天卖出14 ,第二天卖出剩下的415,第二天卖出后还剩多少台?9、饭店买来面粉78 吨,第一天用去它的314 ,第二天又用去316吨,两天共用去面粉多少吨?10、五年级同学收集树种56千克,六年级收集的比五年级多 47 ,六年级比五年级多收集树种多少千克?11、一根绳子长1513米,用去53。

(完整版)分数百分数应用题典型解法的整理和复习

(完整版)分数百分数应用题典型解法的整理和复习

分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。

分数应用题涉及的知识面广,题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。

小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。

一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

1【例1】一桶油第一次用去-,第二次比第一次多用去20千克,还剩下22千克。

原5来这桶油有多少千克?[分析与解]| ■克剩下師克I _________ J_________ I _____________ I ______________* 7------ 卜--------------- *----------------- "第一挨用去第二;ir用去1 1从图中可以清楚地看出:这桶油的千克数X(1 -------------------- )=20+225 5则这桶油的千克数为:(20+22)-(1- 1—1)=70 (千克)5 5【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数X(1 —20%—50%)=290+10则这堆煤的千克数为:(290+10)-(1—20%—50%)=1000 (千克)、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

六年级数学上应用题归纳

六年级数学上应用题归纳

六年级数学上应用题归纳一、分数应用题1.求一个数是另一个数的几分之几解法:部分量÷标准量=分率2.已知一个数,求这个数的几分之几是多少(已知整体,求部分)解法:标准量×分率=部分量3.已知一个数的几分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷分率=标准量解法②:(列方程)设这个数是x,则x×分率=部分量二、百分数应用题1. 求一个数是另一个数的百分之几解法:部分量÷标准量=百分率2. 已知一个数,求这个数的百分之几是多少(已知整体,求部分)解法:标准量×百分率=部分量3.已知一个数的百分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷百分率=标准量解法②:(列方程)设这个数是x,则x×百分率=部分量分百应用题要找准题中的关键词,比如:是,比,占,相当于,等于,和“谁”比,谁就是单位“1”,就是标准量三、比的问题1.已知A,B比A多几分之几,求B解法:A×(1+分率)2.已知B,B比A多几分之几,求A解法:(列方程)设A为x,则x ×(1+分率)=B“少几分之几”的问题把加号改减号四、替换法替换的策略是指将题目中的一个量用另一个量表示,这样就将两个量替换成为一个量,将题目进行了简化,从而方便解题。

替换法体现了数学中等量代换的思想,在运用过程中一定要注意找准进行替换的量,只有相等的两个量才能够进行替换替换法一定要用“箭头()”表示清楚用哪个替换哪个,它们之间的数量关系是如何,五、假设法(“鸡兔同笼”问题)解法1:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数解法2:假设全是鸡(略)“鸡兔同笼”问题一定要先假设,假设为同一类,把问题简单化,然后再解替换法和假设法两类题解答完后一定要把答案代入题中验算,防止把两者对应答案搞错!!分数应用题在小学数学中非常重要,它不仅是考试中的重点,也是难点。

分数百分数应用题复习+分数百分数应用题解题方法

分数百分数应用题复习+分数百分数应用题解题方法

寒假专题——分数百分数应用题复习一、学习目标:1. 使学生进一步加深对基本数量关系的理解,加深对“转化”“对应”等数学思想的理解,掌握分析问题的思路与方法。

2. 能比较熟练的用算数方法和列方程法解答分数、百分数的应用题。

3. 通过一题多解、一题多编、一题多问、一图多用、补充条件编题、给出条件补充问题、题组练习等多种方式的学习,拓展思路,提高灵活运用基础知识,解决实际问题的能力。

二、重点、难点:重点:对分数、百分数应用题解题思路的分析及建立分数、百分数应用题与已有知识的联系。

难点:已知一个数的几分之几(或百分之几)是多少,求这个数的两步应用题及求一个数比另一个数多(少)百分之几的应用题。

三、考点分析:分数、百分数的知识,在日常生活和生产建设中有着广泛的应用,也是小学数学的一个重要内容。

这一部分内容要求会解答分数、百分数应用题,能够理解应用题的题意,掌握最基本的数量关系,正确判别计算的方法,会列式计算,并且善于检验答案的合理性与准确性。

并能够运用所学的知识解决生活中一些简单的实际问题,例如求一个数比另一个数增加或减少百(几)分之几的问题;求一个数增加(减少)它的几(百)分之几是多少的应用题以及这类问题的逆向问题。

本讲内容在考试中经常以解决问题的形式出现,分值大约为12~18分。

典型例题知识点一:思路分析:1)题意分析:本题主要考查同学们的审题能力。

2)解题思路:全校1200人是由男生人数和女生人数组成的,要求出女生的人数占全校人数的几分之几,可以先求出女生的人数,然后再用女生的人数除以全校人数,就是题目中的所求。

解答过程:女生人数有:1200-576=624(人)女生人数占全校人数的几分之几?解题后的思考:正确解决有关分数、百分数的应用题,常常将被比的量(标准量)看作单位“1”,再看与它相比的量(比较量)相当于单位“1”的几分之几,称作分率(百分率),认清其数量关系,是解决这类问题的突破口。

思路分析:1)题意分析:本题主要考查同学们能不能正确找出单位“1”。

六年级数学总复习--分数百分数应用题PPT课件

六年级数学总复习--分数百分数应用题PPT课件

(2)池塘里有12只鸭,鹅的只数是鸭

1 3
。池塘里有多少只鹅?
(3)池塘里有4只鹅,正好是鸭的只数

1 3
。池塘里有多少只鸭?
先分析数量关 系,再解答。
(1)池塘里有12只鸭和4只鹅,
鹅的只数是鸭的几分之几?
单位“1”
鸭:
鹅:
4只
12只
求一个数是另一个数的几分之几(或
百分之几)是多少,用除法计算。
鹅:
?只
4只
鸭的只数×
1 3
=

单位“1”的量未知,
可直接用除法计算。

1 3
=12(只)
答:池塘里有12只鸭。
二、一个乡去年原计划造林12公顷,实际造 林14公顷。实际造林比原计划多百分之几?
﹋﹋多的﹋公﹋顷数﹋占计﹋划﹋的百﹋分之几
原计划: 实 际:
12公顷 实际比原计划多的 14公顷
是求多的公顷数与计划造林数的比, 要以原计划造林的公顷数(12公顷)作 为单位“1”,求(14-12)是12的百分之 几,用除法计算。
原价
(4)鹅的只数是鸭的
2。
5
鸭的只数
(5)男生的人数相当于女生人数的 3。 4
女生人数
第一类 果园里有梨树50棵,桃树30棵 1、梨树是桃树的几分之几? 50÷30 2、梨树比桃树多几分之几?(50-30)÷30
这是一类 怎样的应用题?
请在此输入您的标题 概括的说: • 请在此输入您的文本。
求甲是乙的几分之几(百分之几); 求甲比乙多(少)几分之几(百分之 几),用除法
当于”、“正好”后面的那个数量是单位“1”。如:男生人数比女生 多20℅
三、原数量与现数量。原来的数量就是单位“1”。如:水结成冰

分数、百分数应用题的一般解题方法

分数、百分数应用题的一般解题方法

分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。

另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。

相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。

(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。

数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。

分数百分数应用题解题方法

分数百分数应用题解题方法

分数百分数应用题解题方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March分数百分数应用题解题方法分数应用题的基本解题思路:根据分率句写数量关系式。

说明:单位“1”分为标准量和整体量下列五种基本类型的解题方法:一、求:一个数的百分之几是多少方法:单位1×对应分率= 比较量例题:1、 60的40%是多少2、五(1)班有40人,男生占全班的65 % ,男生有多少人3、五(1)班男生有25人,女生是男生的80 %,女生多少人二、已知一个数的百分之几是多少,求这个数。

方法:比较量÷对应分率=单位1;或设这个数(单位1)为X,用方程解。

例题:1、()的30%是30。

2、五(1)班男生有20人,男生是全班的40%,全班有多少人3、五(1)班男生有16人,男生是女生的80%,女生有多少人4、一条公路,已经修了60%,还剩下20千米,这条公路有多长5、五(1)班男生占全班的60%,男生比女生多了10人,全班有多少人三、条件中有“比多(少)百分之几(几分之几)”,求:标准量(单位1)或比较量方法: (1)单位1±单位1× n% =比较量(2)单位1×(1±n%) =比较量(3)比较量÷(1±n%)=单位一找准单位一是关键。

单位一是已经条件的用方法(1)(2),未知的用方法(3),设标准量为X。

例题:1、五(1)班男生有20人,女生比男生多了10 %,女生有多少人2、有一列火车,原来每小时行驶80千米,提速后,这列火车的速度比原来增加了40%。

现在这列火车每小时行驶多少千米3、五(2)班男生有20人,女生比男生少了10 %,女生有多少人4、游乐场的门票原来每张30元,“六一”期间八折优惠,购买一张门票多少元能比原来省多少元四、求:“比多(少)百分之几(几分之几)”方法:相差数÷单位1例题:1、男生有30人,女生有20人,男生比女生多了百分之几女生比男生少了百分之几2、电饭锅的原价是220元,现价是160元,电饭锅的价格降低了百分之几五、是(占、相当于)的百分之几(几分之几)”方法:比较量÷单位1(提示:在出油率、发芽率、正确率、成活率、出勤率、含盐率等题目中,单位“1”是总数,即整体量。

分数应用题解的技巧

分数应用题解的技巧

分数应用题解的技巧解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占,男工人比女工人多多少人?根据题意,可找出下列对应关系:二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加.冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即.四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.分数应用题是小学教学中的难点之一,它主要有三种类型:1.已知两个数,求一个数是另一个数的几分之几;2.已知一个数,求它的几分之几;3.已知一个数的几分之几是多少,求这个数。

六年级上册分数百分数应用题类型及解题方法

六年级上册分数百分数应用题类型及解题方法

2Hale Waihona Puke 多/少百分之几六年级举行“小发明”比赛,六(1)班交了 32件作品,六(2)班交了40件作品。六(1) 班的作品比六(2)班的作品少几分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品比六(2)班作品 少几分之几
分析:少几分之几,即是求少的部分占单 位“1”的几分之几,就是少的部分÷单位 “1” 寻找单位“1”:比谁多,比谁少,即与谁相 比,谁就是单位“1”
小结:求谁占谁的几分之几,就用谁÷谁,
即:前一个量÷后一个量
六年级举行“小发明”比赛,六(1)班交 了 32件作品,六(2)班交了40件作品。六(1) 班的作品占六(2)班的百分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品占六(2)班作品 的百分之几
六(1)班作品÷六(2)班作品×100%
分数、百分数 应用题
1、占几分之几/百分之几
六年级举行“小发明”比赛,六(1)班交了 32件作品,六(2)班交了40件作品。六(1) 班的作品占六(2)班的几分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品占六(2)班作品 的几分之几
六(1)班作品÷六(2)班作品
小结:已知比较量,比较量比标准量多或少几分之 几,求标准量 即 :已知比较量,求单位“1”的量,用除法 解题步骤:1、先找出单位“1”,单位“1”未知,用 除法 2、再找出比较量对应的分率,多几分之 几,就是(1+几分之几),少几分之几,就是 (1-几分之几) 3、列式:比较量÷比较量对应的分率
小结:已知一个量,另一个量比已知量多或少几分 之几,求另一个量 即 :已知单位“1”的量,求比较量,用乘法 解题步骤:1、先找出单位“1”,单位“1”已知,用 乘法 2、再找出比较量对应的分率,多几分之 几,就是(1+几分之几),少几分之几,就是 (1-几分之几) 3、列式:比较量=单位“1”的量×比较 量对应的分率

分数和百分数应用练习题复习

分数和百分数应用练习题复习

精品文档分数和百分数应用题姓名:解题方法:找准单位“ 1 ”一、把分率作为突破口,找准单位“ 1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率 = 比较量,比较量÷标准量 = 分率,比较量÷分率 = 标准量,要正确找准单位“ 1的”量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。

例如:幸福村有旱地300 亩,水田面积是旱地面积的3/5 ,水田面积有多少亩?这道题中的分率 3/5 是旱地面积的3/5 ,所以旱地面积是单位“ 1的”量。

二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“ 1。

”例如:我国人口约占世界人口的 1/5 ,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“ 1。

”例如:食堂买来 100 千克白菜,吃了 2/5 ,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以 100 千克白菜就是单位“ 1 。

”解答这类分数应用题,只要找准总数和部分数,确定单位“ 1就”很容易了。

三、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“ 1。

”例如:六( 2)班男生比女生多1/2 。

就是以女生人数为标准(单位“ 1)”,男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。

例如,一个长方形的宽是长的 5/12 。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“ 1。

用分数(百分数)解决实际问题题型总结超全

用分数(百分数)解决实际问题题型总结超全

四、工程问题:(两人一直合作)
五.小明和爷爷一起去操场散步,小明走一圈需要6分钟,爷爷走一圈需要8分钟,(1)如果两人 同时同地出发,多少分钟相遇?
六.如果两人同时同地出发,同向而行,多少分钟后小明超爷爷一圈 6. 一个水池,有两个进水管,单开甲管8小时可以将水池放满,单开乙管6小时可以将水池放满 ,两管齐开多少小时可以将水池放满? 7. 一个水池可以装水360吨,有两个水管,单出水管8小时可以将满池水放完,单开进水管6小 时可以将水池放满,两管齐开多少小时可以将水池放满?(用两种方法解答)
○ 说明:题目中没有:比……多(少),也可能用单位1加减分数 ○ 整体为单位1
1)的前比后,的字优先 2)找多或少,谁比谁多或少,比后
3、原价100元,降低了1/5,现价是多3少)元整?体为单位1
4、降价1/5后现价为100元,原价是多少元?
5、提价1/5后现价为100元,原价是多少元?
3、甲36,乙是甲的4/9,丙是乙的3/4,求丙
4、甲36,是乙的4/9,丙是乙的3/4,求丙
5、甲36,是乙的4/9,乙是丙的3/4,求丙
率前面对应的量是部
分量,总数是单位1
6、出粉率是75%,要加工12吨面粉,需要多少小麦?
7、出粉率是75%,有12吨小麦,能加工多少吨面粉?
8、合格率是80%,不合格的有20个,求这批产品有多少?
已知比一个数多(少)几分 之几(百分之几)
一.甲是3位1) =百分率
四、求多(少)几分之几(百分之几)
一.计划20万元,实际16万元,少用了几分之几(百分之几) 二.计划20万元,比实际多5万元,多用了几分之几(百分之几) 三.计划20万元,比实际少5万元,少用了几分之几(百分之几) 四.降价10元后的售价是40元,,降价几分之几(百分之几) 五.提价10元后的售价是100元,涨价几分之几(百分之几)

六年级分数(百分数)应用题典型解法的整理和练习

六年级分数(百分数)应用题典型解法的整理和练习

1、分数应用题类型总结第一类、一个数的几分之几。

已知单位“1”,用乘法。

“是”“比”“占”后面是单位1,已知单位“1”,用乘法。

“是比占”相当于“=” “的”相当于“×”例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 = 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、一个数的几分之几。

未知单位“1”,用除法。

“是”“比”“占”后面是单位1,未知单位“1”,用除法。

“是比占”相当于“=” “的”相当于“×”例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=251、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有桃树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。

1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。

思路:a 、看问题求小利有图书多少本; B 、小利的图书是小芳的3/4;从ab 看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。

C 、小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数; D 、最后,彩蛋来了,“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。

看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。

自己尝试做一下吧B 、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。

分数、百分数应用题的分析及解答过程

分数、百分数应用题的分析及解答过程

分数、百分数应用题的分析及解答过程一、分数、百分数应用题的结构例。

小红有20元,小军是小红的6倍,小军有多少元?20 × 6 = 120 (元)求一个数的几倍是多少?例。

小红有20元,小军相当于小红0.7倍,小军有多少元?20 ×0.7 = 14 (元)求一个数的十分之几、百分之几、千分之几……是多少?例。

小红有20元,小军占小红3/10,小军有多少元?20 ×3/10 = 6 (元)求一个数的几分之几是多少?由于上面的三道题从文字的叙述方式和表达的意思是一致的,所以应用的解题方法也是相同的,根据整数、小数、分数乘法的意义都是用乘法进行计算。

也可以把它们统称为倍比应用题。

结合我们已经学过的倍数应用题的基本结构(“1”份数×倍数=几份数),可以归纳为:求一个数的几倍是多少?(整数乘法应用题——倍数应用题)求一个数的十分之几、百分之几、千分之几……是多少?(小数乘法应用题)求一个数的几分之几是多少?(分数乘法应用题)单位“1”×分率= 分率的对应量(量率相对应)在这里都是以“一个数”为标准,用“另一个数”来同“一个数”进行比较,每次比较都有一个“结果”。

因此我们把“一个数”称为单位“1”,把“另一个数”称为分率的对应量,把比较的“结果”称为分率。

注意在这里进行比较时,产生的关系是倍比关系(乘除关系)。

二、分数、百分数应用题的分析1.怎样判断分数、百分数应用题的单位“1”、分率、分率的对应量?首先,找出题中的分率。

分率的表现形式有:倍数、百分数、比、分数(不带计量单位)。

在一道题中如果有倍比关系,也就分率出现,而题中出现的倍数、百分数、比都是反映两个量之间的倍比关系,因此倍数、百分数、比都是分率。

当出现分数时,就有两种情况,如果分数的后面带有计量单位,那么这个分数表示的是具体的数量;如果分数的后面不带有计量单位,那么这个分数表示的是两个量之间的倍比关系,它就是分率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳。

)练习题※一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还少10千克,求原来这堆煤共有多少千克? 缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人? 解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。

全厂的人数为:144÷(1-207-207)=480(人)菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。

则第一天卖出后余下的大白菜千克数为: 240÷(1-52)=400(千克) 同理400千克的对应分率为这批大白菜的(1-31),则这批大白菜的千克数为:400÷(1-31)=600(千克)转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。

它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。

复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。

1、从分数的意义出发,把分数变成份数进行“率”的转化 男生人数是女生人数的54,男生人数是学生总人数的几分之几? [分析与解] 男生人数是女生的54,是将女生人数看作单位“1”,平均分成5份,男生是这样的4份,学生总人数为这样的(4+5)份,求男生人数是学生总人数的几分之几?就是求4份是(4+5)份的几分之几?4÷(4+5)=94 兄弟两人各有人民币若干元,其中弟的钱数是兄的54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元?[分析与解]兄弟两人的总钱数是不变量,把它看作单位“1”,原来弟的钱数占两人总钱数的544+,后来弟的钱数占两人总钱数的322+,则两人的总钱数为: 4÷(544+-322+)=90(元)弟原来的钱数为:90×544+=40(元)兄原来的钱数为:90-40=50(元)2、直接运用分率计算进行“率”的转化 甲是乙的32,乙是丙的54,甲是丙的的几分之几? [分析与解]甲是乙的32,乙是丙的54,求甲是丙的的几分之几?就是求54的32是多少?54×32=158某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?[分析与解]51是以上半月的产量为“1”,下半月比上半月多生产51,即下半月生产了计划的53×(1+51)=2518。

则计划的(53+2518)为1980个,计划生产个数为: 1980÷[53+53×(1+51)]=1500(个)3、通过恒等变形,进行“率”的转化【例9】甲的54等于乙的73,甲是乙的几分之几?[分析与解]由条件可得等式:甲×54=乙×73方法1:等式两边同除以54得:甲×54=乙×73÷54甲=乙×2518方法2:根据比例的基本性质得:甲∶乙=73∶54化简得:甲∶乙=15:28 即甲是乙的2518。

【例10】五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?[分析与解] 由条件可得等式:男生人数×(1-75%)= 女生人数×(1-80%) 男生人数∶女生人数=4:5就是男生人数是女生人数的54。

女生人数:54÷(1+54)=30(人) 男生人数:54-30=24(人)分数(百分数)应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数量的变化,但总存在着不变量。

解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。

1、部分量不变有两种糖放在一起,其中软糖占209,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块? [分析与解]根据题意,硬糖块数、两种糖的总块数都发生变化,但软糖块数不变,可以确定软糖块数为单位“1”,则原来硬糖块数是软糖块数的(1-209)÷209=911倍。

加入16块硬糖以后,后来硬糖块数是软糖块数的(1-41)÷41=3倍,这样16块硬糖相当于软糖的3-911=916倍,从而求出软糖的块数。

16÷[(1-41)÷41-(1-209)÷209]=9(块) 小明看一本课外读物,读了几天后,已读的页数是剩下页数的81,后来他又读了20页,这时已读的页数是剩下页数的61,这本课外读物共有多少页?[分析与解]根据题意,已读页数和未读页数都发生了变化,但这本书的总页数不变,可把总页数看作单位“1”,原来已读页数占总页数的811+,又读了20页后,这时已读页数占总页数的611+,这20页占这本书总页数的(611+-811+),则这本课外读物的页数为: 20÷(611+-811+)=630(页)【例13】兄弟三人合买一台彩电,老大出的钱是其他两人出钱总数的21,老二出的钱是其他两人出钱总数的31,老三比老二多出400元。

问这台彩电多少钱?[分析与解]从字面上看21和31的单位“1”都是其他两人出钱的总数,但含义是不同的,21是以老二和老三出钱的总数为单位“1”, 31是以老大和老三出钱的总数为单位“1”。

但三人出钱的总数(彩电价格)是不变的,把它确定为单位“1”,老大出的钱数相当于彩电价格的211+,老二出的钱相当于彩电价格的311+,老三出的钱数相当于彩电价格的1-211+-311+=125,400元相当于彩电价格的125-311+=61。

这台彩电的价格为: 400÷(1-211+-311+-311+)=2400(元)五、假设思想假设思想是一种重要的数学思想,常用有推测性假设法和冲突式假设法。

1、推测性假设法推测性假设法是通过假定,再按照题的条件进行推理,然后调整设定内容,从而得到正确答案。

【例14】一条公路修了1000米后,剩下部分比全长的53少200米,这条公路全长多少米?[分析与解]由题意知,假设少修200米,也就是修1000-200=800(米),那么剩下部分正好是全长的53,因此已修的800米占全长的(1-53),所以这条公路全长为:(1000-200)÷(1-53)=2000(米)2、冲突式假设法冲突式假设法是解应用题中常用的一种思维方法。

通过对某种量的大胆假设,再依照已知条件进行推算,根据数量上出现的矛盾冲突,进行比较,作适当调整,从而找到正确答案的方法。

【例15】甲、乙两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣小组,问甲、乙两班原来各有多少人?[分析与解]假设两班都选出41,则选出96×41=24(人),假设比实际多选出24-22=2(人)。

调整:这是因为把选出乙班人数的51假设为选出41,多算了41-51=201,由此可先算出乙班原来的人数。

(96×41-22)÷(41-51)=40(人)甲班原来的人数: 96-40=56(人)【例16】某书店出售一种挂历,每售出1本可得18元利润。

售出一部分后每本减价10元出售,全部售完。

已知减价出售的挂历本数是减价前出售挂历本数的32。

书店售完这种挂历共获利润2870元。

书店共售出这种挂历多少本?[分析与解]根据减价出售的挂历本数是减价前出售挂历本数的32,我们假设减价前出售的挂历为3本,减价出售的挂历为2本,则售出这2+3=5(本)挂历所获的利润为: 18×3+(18-10)×2=70(元)这与实际共获利润2870元相矛盾,这是什么原因造成的呢?调整:这是因为把出售的挂历假设为5本,根据实际共获利润是假设所获利润的2870÷70=41倍,实际共售出挂历的本数也应该是假设5本的41倍。

即5×41=205(本)六、用方程解应用题思想在用算术方法解应用题时,数量关系比较复杂,特别是逆向思考的应用题,往往棘手,而这些的应用题用列方程解答则简单易行。

列方程解应用题一开始就用字母表示未知量,使它与已知量处于同等地位,同时运算,组成等式,然后解答出未知数的值。

列方程解应用题的关键是根据题中已知条件找出的等量关系,再根据等量关系列出方程。

【例17】某工厂第一车间人数比第二车间的54多16人,如果从第二车间调40人到第一车间,这时两个车间的人数正好相等,原来两个车间各有多少人? [分析与解]根据题意,有如下数量关系:第一车间人数+40人=第二车间人数-40人 解:设第二车间有X 人。

54X+16+40=X -40 解得: X=480 第一车间人数为:54X+16=54×480+16=400(人)。

相关文档
最新文档