《平行四边形》的性质与判定 专题练习题 含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级下册第十八章平行四边形平行四边形的性质与判定专题练习题1.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各

点中不能作为平行四边形顶点坐标的是()

A.(-3,1) B.(4,1) C.(-2,1) D.(2,-1)

2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()

A.2 B.3 C.4 D.5

3.如图,E是▱ABCD内任意一点,若平行四边形的面积是6,则阴影部分的面积为____.4.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______.

5.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.

(1)求证:△ABC≌△EAD;

(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.

6.如图,在▱ABCD中,E是BC的中点,AE=9,BD=12,AD=10.

(1)求证:AE⊥BD;

(2)求▱ABCD的面积.

7 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求▱ABCD的面积

8. 如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.

求证:四边形BECF是平行四边形.

9. 如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边形ACE′E的形状是_____________.10. 如图,已知点E,C在线段BF上,BE=CE=CF,AB∥DE,∠ACB=∠F.

(1)求证:△ABC≌△DEF;

(2)试判断四边形AECD的形状,并证明你的结论.

11. 如图1,在▱ABCD中,点O是对角线AC的中点,EF过点O与AD,BC分别相交于点E,F,GH过点O与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.

(1)求证:四边形EGFH是平行四边形;

(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有的平行四边形.(四边形AGHD除外)

12.如图,△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形;

(2)若BF=EF,求证:AE=AD.

答案:

1. A

2. B

3. 3

4. 25°

5. 解:(1)∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,∴∠EAD=∠AEB,∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,∴△ABC≌△EAD(SAS)(2)∵AE平分∠DAB,∴∠DAE=∠BAE,又∵∠DAE=∠AEB,AB=AE,∴∠BAE=∠AEB=∠B,∴△ABE 为等边三角形,∴∠BAE=60°,∵∠EAC=25°,∴∠BAC=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°

6. 解:(1)过点D作DF∥AE交BC的延长线于点F,∵AD∥BC,∴四边形AEFD为

平行四边形,∴EF=AD=10,DF=AE=9,∵E是BC的中点,∴BF=1

2AD+AD=15,∴BD

2

+DF2=122+92=225=BF2,∴∠BDF=90°,即BD⊥DF,∵AE∥DF,∴AE⊥BD(2)过点

D作DM⊥BF于点M,∵BD·DF=BF·DM,∴DM=9×12

15=

36

5,∴S▱ABCD=BC·DM=72

7. 分析:(1)证AB=BE,AB=CD,即可得到结论;(2)将▱ABCD的面积转化为△ABE的面积求解即可.

解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵∠BAE =∠DAE,∴∠BAE=∠E,∴AB=BE,∴BE=CD(2)∵AB=BE,BF⊥AE,∴AF=FE,又∵∠DAF=∠CEF,∠AFD=∠EFC,∴△AFD≌△EFC(ASA),∴S▱ABCD=S

△ABE

,∵AB=

BE,∠BEA=60°,∴△ABE是等边三角形,由勾股定理得BF=23,∴S△ABE=1

2AE·BF=

43,∴S▱ABCD=4 3

8. 分析:可通过证BE綊CF来得到结论.

解:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,又∵AE=DF,∴△AEB≌△DFC(ASA),∴BE=CF,∴四边形BECF是平行四边形

9. 平行四边形

10. 解:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=EC=CF,∴BC=EF,又∵∠ACB=∠F,∴△ABC≌△DEF(ASA)(2)四边形AECD是平行四边形.证明:∵△ABC≌△DEF,∴AC =DF,∵∠ACB=∠F,∴AC∥DF,∴四边形ACFD是平行四边形,∴AD∥CF,AD=CF,∵EC=CF,∴AD∥EC,AD=CE,∴四边形AECD是平行四边形

11. 解:(1)∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EAO=∠FCO,又∵OA=OC,∠AOE=∠COF,∴△OAE≌△OCF(ASA),∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形

(2)▱GBCH,▱ABFE,▱EFCD,▱EGFH

12. 解:(1)∵△ABC是等边三角形,∴∠ABC=60°,又∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥BC,又∵DC=EF,∴四边形EFCD是平行四边形(2)连接BE,∵∠EFB=60°,BF =EF,∴△BEF为等边三角形,∴BE=BF=EF,∠ABE=60°,∵CD=EF,∴BE=CD,又∵△ABC为等边三角形,∴AB=AC,∠ACD=60°,∴∠ABE=∠ACD,∴△ABE≌△ACD(SAS),∴AE=AD

相关文档
最新文档