平行四边形练习题及答案

合集下载

《平行四边形》习题精选及参考答案

《平行四边形》习题精选及参考答案

《平行四边形》习题精选及参考答案一、填空题1.过□ABCD的顶点A、C分别作对角线BD的垂直线,垂足为E、F,则四边形AECF是 .2.延长△ABC的中线AD到E,使DE=AD 则四边形ABEC是四边形.3.在四边形ABCD中∠A=50°欲使四边形为平行四边形,则∠B= ,∠C=,∠D= .4.在四边形中,任意相邻两个内角互补,则这个四边形是四边形.5.如图12-1-29,在□ABCD中,E、F为AB、CD的中点,连结DE、EF、BF则图中共有个平行四边形.6.在□ABCD中连结BD作AE⊥BD,CF⊥BD,垂足分别为E、F,连结CE、AF,点P、Q在线段BD上,且BP=DQ,连结AP、CP、AQ、CQ,MN分别交AB、CD于M、N连结AM、CM、NA、NC,那么图中平行四边形(除□ABCD外)有个,它们是 .二、判断题1.平行四边形的对边分别相等()2.平行四边形的对角线相等()3.平行四边形的邻角互补()4.平行四边形的对角相等()5.平行四边形的对角线互相平分一组对角()6.对角线平分平行四边形的四个三角形的面积相等()三、选择题1.能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等2.能确定平行四边形的大小和形状的条件是()A.已知平行四边形的两邻边B.已知平行四边形的两邻角C.已知平形四边形的两对角线D.已知平行四边形的两边及夹角3.平行四边形一边为32,则它的两条对角线长不可能为()A.20和18 B.40和50C.60和30 D.32和504.如图12-1-30所示,已知□ABCD的对角线的交点是O,直线EF过O点且平行于BC,直线GH过O且平行AB,则图中有()个平行四边形.A.5个B.6个C.7个D.10个5.能判定四边形为平行四边形的是()A.一组对角相等B.两条对角线互相垂直C.两条对角线互相平分 D.一对邻角互补6.以下结论正确的是()A.对角线相等,且一组对角也相等的四边形是平行四边形.B.一边长为5,两条对角线分别是4和6的四边形是平行四边形.C.一组对边平行,且一组对角相等的四边形是平行四边形.D.对角线相等的四边形是平行四边形.7.在□ABCD中,点E、F分别在边BC、AD上,如果点E,F分别由下列各种情况得到的,那么四边形AECF不一定是平行四边形的是()A.AE、CF分别平分∠DAB、∠BCDB.AE,CF使∠BEA=∠CFDC.E、F分别是BC、AD的中点D.BE=BC,AF=AD8.□ABCD对角线交点为O,△OBC的周长为59cm,且AD=28cm,两对角线之差为14cm,则对角线长为()A.12cm和9cm B.24cm 和38cmC.8.5cm和22.5cm D.15.5cm 和29.5cm四、解答题1.如图12-1-31所示,在□ABCD中,AE平分∠BAD,CF平分∠BCD,四边形AECF是平行四边形吗?2.如图12-1-32所示,四边形ABCD中∠B=∠D,∠1=∠2,则四边形ABCD是平行四边形吗?为什么?3.如图12-1-33所示,四边形ABCD的对角线AC、BD相交于点O,E、F分别是OD、OB上一点,若∠ECD=∠FAB,EC=AF,则四边形AECF是平行四边形吗?为什么?4.如图12-1-34所示,四边形ABCD中AB=CD,∠DBC=90°,FD⊥AD于D,求证四边形ABCD 是平行四边形.5.如图12-1-35所示,△ABC中DE在BC边上,N、M在AB、AC上,且EN与DM互相平分,MD ∥AB,NE∥AC求证:BD=DE=CE五、证明题1.已知:如图12-1-18,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF(2)AE∥CF2.已知:如图12-1-19,四边形ABCD为平行四边形,E、F是直线BD延长线上的两点,且DE =BF,求证AE=CF参考答案一、填空题1.平行四边形点拨:由一组对边平行且相等,即可判断2.平行四边形3.130°,50°,130°4.平行四边形点拨:由题意可得两组对边分别平行5.4个点拨:□ABCD,□ADFE,□EFCB,□EDFB6.3个□AECF,□APCQ,□AMCN二、判断题1.√ 2.×点拨:对角线不一定相等,但互相平分3.√ 4.√5.×点拨:对角线不平分一组对角,只是自己互相平分 6.√三、选择题1.B 2.D 3.A 4.D 5.C 6.C 7.B 8.B四、解答题1.解:四边形AECF是平行四边形点拨:由□ABCD知∠BCD=∠BAD,又AE平分∠BAD,CF平分∠BCD,故∠EAF=∠ECF,又∠AF ∥EC,故∠AEC+∠EAF=18O°,即∠AEC+∠ECF=18O°,所以AE∥CF,故四边形AECF是平行四边形.2.解:四边形ABCD是平行四边形由∠1=∠2得DC∥AB,所以∠D+∠DAB=18O°,又∠B=∠D,所以∠DAB+∠B=180°,所以AD∥BC,即四边形ABCD为平行四边形.3.解:是平行四边形点拨:AB∥CD,故∠ACD=∠CAB,又∠ECD=∠FAB,故∠ACD-∠ECD=∠CAB-∠FAB,即∠ACE =∠CAF,所以CE=AF,CE=AF,故AFCE是平行四边形.4.证明:∵BD⊥AD ∴∠BDA=90°∵∠DBC=90°,DC=AB,DB=DB∴△ADB≌△CBD ∴AD=BC∴四边形ABCD是平行四边形5.证明:∵NE,MD互相平分∴四边形MNDE为平行四边形∴MN DE又∵MD∥AB,NE∥AC ∴四边形MNBD、MNEC为平行四边形∵MN=BD,MN=CE ∴BD=DE=CE五、证明题1.证明:∵四边形ABCD为平行四边形∴AB DC ∴∠ABE=∠CDF在△ABE和△CDF中∴△ABE≌△CDF(SAS)∴AE=CF ∴∠AEB=∠CFD∴∠AED=∠BFC(等角的补角相等)∴AE∥CF2.证明:如图(3)所示∵四边形ABCD是平行四边形∴AD∥BC,AD=BC ∴∠1=∠2∵BD是直线∴∠1+∠3=180°,∠2+∠4=180°∴∠3=∠4∴△ADE≌△CBF ∴AE=CF。

平行四边形练习题(含答案)

平行四边形练习题(含答案)

第十八章平行四边形18.1 平行四边形1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P 从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是A.①②③B.①②⑤C.②③④D.②④⑤13.如图,在△ABC中,∠ACB=90°,AC=3,BC=4,点D是边AB的中点,将△ABC沿着AB平移到△DEF 处,那么四边形ACFB的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形. (2)若DE =13OD ,BF =13OB ,上述结论还成立吗?由此你能得出什么结论? (3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.16.(2018·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2018·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2018·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =19.(2018·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2018·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2018·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶D .432∶∶ 22.(2018·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2018·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2018·湖北十堰)如图,已知ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD的周长为__________.25.(2018·江苏泰州)如图,ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为__________.26.(2018·辽宁抚顺)如图,ABCD 中,AB =7,BC =3,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是__________.27.(2018·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2018·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2018·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2018·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE =DF .31.(2018·湖北孝感)如图,B ,E ,C ,F 在一条直线上,已知AB DE ∥,AC DF ∥,BE CF ,连接AD .求证:四边形ABED 是平行四边形.32.(2018·江苏无锡)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF =∠CDE .33.(2018·湖北恩施州)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE于O .求证:AD 与BE 互相平分.34.(2018·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2018·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2018·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.;(1)求证:AD BF(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2018·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2018·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+ ∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED= S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12 AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB =90°,AC =3,BC =4,∴22345AB =+=.∵点D 是边AB 的中点,∴AD =BD =15522⨯=,∴CF =AD =12AB 52=, 设AB 边上的高为x .∵AB =5,AC =3,BC =4,AB 边上的高为x ,∴12AC ·BC =12AB ·x ,∴125x =.∴S 梯形ACFB =1512(5)9225⨯+⨯=. 14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEMS S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意; B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意; C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意;D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3 cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN 是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高, ∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△, ∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD 是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.。

2022年第五章 平行四边形测试题及答案

2022年第五章 平行四边形测试题及答案

一、选择题(每小题3分,共36分)1.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( D )A.7B.8C.9D.102.如图所示,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是( C )第2题图A.18B.28C.36D.463.顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有( C )A.5种B.4种C.3种D.1种4.如图所示,E是▱ABCD的边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是( C )第4题图A.∠ABD=∠DCEB.DF=CFC.∠AEB=∠BCDD.∠AEC=∠CBD5.如图所示,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,那么▱ABCD的面积为( B )第5题图A.60 cm2B.30 cm2C.20 cm2D.16 cm26.如图所示,点D,E 分别是△ABC 的边AB,AC 的中点,求证:DE ∥BC,且DE=12BC.第6题图证明:延长DE 到点F,使EF=DE,连接FC,DC,AF,又∵AE=EC,∴四边形ADCF 是平行四边形.以下是排序错误的证明过程:①∴DF BC;②∴CF AD,即CF BD;③∴四边形DBCF 是平行四边形;④∴DE ∥BC,且DE=12BC.则正确的证明顺序应是( A )A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④7.如图所示,在△ABC 中,D,E,F 分别是BC,AC,AD 的中点,若△ABC 的面积是40,则四边形BDEF 的面积是( C )第7题图A.10B.12.5C.15D.208.如图所示,将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB 与正五边形的边DE 在同一条直线上,则∠COF 的度数是( C )第8题图A.74°B.76°C.84°D.86° 9.如图所示,在▱ABCD 中,对角线AC,BD 相交于点O,BD=2AD,E,F,G 分别是OC,OD,AB 的中点,有下列结论:①BE ⊥AC;②四边形BEFG 是平行四边形;③EG=GF;④EA 平分∠GEF.其中正确的是( B )第9题图A.①②③B.①②④C.①③④D.②③④10.如图所示,在平行四边形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分线交AD于点E,△CDE的周长是15,则平行四边形ABCD的面积为( D )第10题图A.25√32B.40C.50D.25√311.如图所示,在平行四边形ABCD中,AB=6 cm,AD=10 cm,点P在AD边上以每秒1 cm的速度从点A向点D运动,点Q在BC边上,以每秒 4 cm 的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止运动(同时点Q也停止运动),在运动以后,以P,D,Q,B四点为顶点组成的四边形为平行四边形的有( C )第11题图A.1次B.2次C.3次D.4次12.(2021嘉兴)如图所示,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连接DE,点F,G分别是BC和DE的中点,连接AG,FG,当AG=FG时,线段DE的长为( A )第12题图A.√13B.5√22C.√412D.4二、填空题(每小题3分,共18分)13.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线有14 条.14.(2020金华)如图所示,平移图形M与图形N可以拼成一个平行四边形,则图中α的度数是30°.第14题图15.(2021临沂)在平面直角坐标系中,▱ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(-1,1),(2,1),将▱ABCD沿x轴向右平移3个单位长度,则顶点C的对应点的坐标是(4,-1) .16.如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B两点的点C,找到AC,BC的中点D,E.若测得DE的长为8 m,则A,B两点间的距离为16 m.第16题图17.如图所示,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为.E,AB=2,BD=4√2,AC=4,则AE的长为4√55第17题图18.(2020天津)如图所示,▱ABCD的顶点C在等边三角形BEF的边BF 上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为 1.5 .第18题图三、解答题(共46分)19.(6分)请根据下面x与y的对话解答下列各小题.x:我和y都是多边形,我们俩的内角和相加的结果为1 440°.y:x的边数与我的边数之比为1∶3.(1)求x与y的外角和相加的度数;(2)分别求出x与y的边数;(3)试求出y共有多少条对角线.解:(1)360°+360°=720°.(2)设x的边数为n,则y的边数为3n.由题意,得180×(n-2)+180×(3n-2)=1 440,解得n=3,∴3n=9,∴x与y的边数分别为3和9.(3)∵12×9×(9-3)=27,∴y共有27条对角线.20.(8分)如图所示,在四边形ABCD中,AD=BC,点O是对角线AC的中点,点E是BC边上一点,连接EO并延长交AD于点F,交BA的延长线于点G,且OE=OF.(1)求证:四边形ABCD是平行四边形;(2)若∠D=63°,∠G=42°,求∠GEC的度数.(1)证明:∵点O是对角线AC的中点,∴OA=OC.在△AOF和△COE中,{OA=OC,∠AOF=∠COE, OF=OE,∴△AOF≌△COE(SAS),∴∠OAF=∠OCE,∴AD∥BC.又∵AD=BC,∴四边形ABCD是平行四边形.(2)解:由(1),得四边形ABCD是平行四边形,∴∠B=∠D=63°,∴∠GEC=∠B+∠G=63°+42°=105°.21.(10分)如图所示,点B,E分别在AC,DF上,AF分别交BD,CE于点M,N,∠A=∠F,∠C=∠D.(1)求证:四边形BCED是平行四边形;(2)已知DE=3,连接BN,若BN平分∠DBC,求CN的长.(1)证明:∵∠A=∠F,∴DF∥AC,∴∠C=∠FEC.又∵∠C=∠D,∴∠FEC=∠D,∴DB∥EC,∴四边形BCED 是平行四边形.(2)解:∵BN 平分∠DBC,∴∠DBN=∠CBN.∵BD ∥EC,∴∠DBN=∠BNC,∴∠CBN=∠BNC,∴CN=BC.又∵BC=DE=3,∴CN=3.22.(10分)如图所示,在四边形ABCD 中,对角线AC,BD 交于点O,E,F 分别是AB,CD 的中点,且AC=BD.求证:OM=ON.证明:如图所示,取AD 的中点G,连接EG,FG.∵G,F 分别为AD,CD 的中点,∴GF 是△ACD 的中位线,∴GF=12AC,GF ∥AC. 同理,得GE=12BD,GE ∥BD.∵AC=BD,∴GF=GE,∴∠GFN=∠GEM.又∵EG ∥OM,FG ∥ON,∴∠OMN=∠GEM,∠GFN=∠ONM,∴∠OMN=∠ONM,∴OM=ON.23.(12分)分别以▱ABCD(∠CDA ≠90°)的三边AB,CD,DA 为斜边作等腰直角三角形△ABE,△CDG,△ADF.(1)如图①所示,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF 与EF 的关系.(只写结论,不需证明)(2)如图②所示,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明 理由.解:(1)GF⊥EF,GF=EF.(2)GF⊥EF,GF=EF成立.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠DAB+∠ADC=180°.∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=∠DAF=45°, ∴∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°,∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF,∴△GDF≌△EAF(SAS),∴EF=FG,∠EFA=∠DFG,∴∠EFA+∠GFA=∠GFD+∠GFA=90°,∴∠GFE=90°,∴GF⊥EF,GF=EF.。

初二平行四边形练习题含答案

初二平行四边形练习题含答案

初二平行四边形练习题含答案本篇文章将为初二学生提供一些关于平行四边形的练习题,并附带答案,帮助学生巩固对平行四边形的理解和应用。

以下是一些练习题,希望对同学们有所帮助。

练习题一:已知平行四边形ABCD中,点E、F分别为AB、CD的中点。

若AE的长度为8cm,求线段EF的长度。

解答:由平行四边形的性质可知,连结AC和BD两线段的中点为G,那么EG = GF。

由于AE的长度为8cm,AB和CD平行,所以AC的长度为16cm。

根据三角形EGC和GFC的相似性,可得EF与GF之比等于AC与CG之比,即EF/GF = AC/CG。

由于AC的长度为16cm,而CG的长度为8cm(CG为AC的中点),所以EF/GF = 16/8,即EF/GF = 2。

因此,EF的长度为GF的2倍,即EF = 2 * GF。

由于EG= GF,所以EF = 2 * EG。

代入已知条件,得到EF = 2 * 8 = 16。

因此,线段EF的长度为16cm。

练习题二:在平行四边形EFGH中,已知EF的长度为10cm,FG的长度为8cm,角EFG的度数为120°,求线段GH的长度。

解答:由平行四边形的性质可知,EF与GH的长度相同,FG与EH 的长度相同,且角EFG与角HGE互补(即两个角的度数之和为180°)。

已知EF的长度为10cm,FG的长度为8cm,所以GH的长度也为8cm。

又已知角EFG的度数为120°,根据平行四边形内角和定理,可得角HGE的度数为180° - 120° = 60°。

因此,线段GH的长度为8cm。

练习题三:已知平行四边形IJKL中,IJ的长度为12cm,KL的长度为20cm,角KJL的度数为110°,求角KIL的度数。

解答:由平行四边形的性质可知,角IJK与角KJL互补(即两个角的度数之和为180°),角IJK与角KIL互补。

已知角KJL的度数为110°,所以角IJK的度数为180° - 110° = 70°。

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)

八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。

平行四边形综合练习附答案

平行四边形综合练习附答案

平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

初中数学 平行四边形练习题(含答案)

初中数学 平行四边形练习题(含答案)

绝密★启用前《平行四边形》培优专题学校:___________姓名:___________班级:___________考号:___________一.解答题(共40小题)1.附加题:(成绩只作参考,不计入总分)如图:正方形ABCD中内有一E,连接AE,BE,使∠EAB=∠EBA=15°,证明:(1)DE=CE;(2)△CDE是正三角形.2.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.3.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E.求证:BE=2OG.4.如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,求PE+PF的长.5.在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE 交DP于点F,连接BF,FC.求证下列结论:①FB=AB;②CF⊥EF,FC=EF.6.平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.7.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?9.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.10.菱形ABCD中,F是对角线AC的中点,过点A作AE⊥BC垂足为E,G为线段AB上一点,连接GF并延长交直线BC于点H.(1)当∠CAE=30°时,且CE=√3,求菱形的面积;(2)当∠BGF+∠BCF=180°,AE=BE时,求证:BF=(√2+1)GF.11.在▱ABCD中,E,F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)▱ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;(3)▱ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).12.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12AB.13.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.14.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.15.(1)如图1,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的.在探索中,有人曾利用过如图2所示的图形,其中,ABCD是长方形(AD ∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=13∠ACB吗?16.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.17.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.19.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2√2,求EB的长.20.如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE.F为AB上的一点,且BF=DE,连接FC.(1)若DE=1,CF=2√2,求CD的长;(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=60°,求证:AF+CE=√3AC.21.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:求证:(1)△ABE是等边三角形;(2)△ABC≌△AED;(3)S△ABE=S△CEF.22.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)△ABC满足什么条件时,四边形ADCF是矩形?并证明你的结论.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点,连接EF,试证明EF⊥BD.25.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE =度.26.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.27.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=8,DC=6,AD=10.动点P 从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)若四边形ABQP为平行四边形,求运动时间t.(2)当t为何值时,三角形BPQ是以BQ或BP为底边的等腰三角形?28.如图,在▱ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?请说明理由.29.如图,在矩形ABCD中,BC=24cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm,(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.30.如图,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.31.正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连结DN.如果正方形的边长为2.(1)求证:BE⊥AM;(2)求DN的最小值.32.如图,已知△ABD、△BCE、△ACF都是等边三角形.(1)试判断四边形ADEF的形状并说明理由.(2)当△ABC满足,四边形ADEF是矩形(不需证明).(3)当△ABC满足,四边形ADEF是菱形(不需证明).(4)当△ABC满足,四边形ADEF不存在(不需证明).33.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…S8,若S2=2,S7=3,S8=8,则S3的值为.34.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF ⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.35.已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F 为BD中点.求证:EF⊥BD.36.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)37.如图正方形ABCD的边长为12,E为CD上一点(CE<DE),P为AD上一点,且∠PBE =45°,PE=10,过B作BF⊥PE于F.(1)求证:BF=CD;(2)求CE的长.38.如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL=14AE.39.如图所示.在四边形ABCD中,CD>AB,AB与CD不平行,E,F分别是AC,BD的中点.求证:EF>12(CD−AB).40.如图,四边形ABCD中,对角线AC、BD相交于点O,O为AC、BD的中点,AB=10,AC=16,BD=12.(1)四边形ABCD是什么特殊的四边形?请证明;(2)点P在AO上,点Q在DO上,且AP=2OQ.若PQ=BQ,求AP的长.《平行四边形》培优专题参考答案与试题解析一.解答题(共40小题)1.附加题:(成绩只作参考,不计入总分)如图:正方形ABCD中内有一E,连接AE,BE,使∠EAB=∠EBA=15°,证明:(1)DE=CE;(2)△CDE是正三角形.【分析】(1)由正方形的性质可以得出∠DAB=∠ABC=90°,由∠EAB=∠EBA=15°,可以得出∠DAE=∠EBC=75°及AE=BE,从而可以证明△AED≌△BEC,然后就可以得出结论.(2)以AB为边作正三角形ABM,连接ME,可以得到∠EAM=∠EBM=75°,利用三角形全等可以得出∠AEM=∠BEM=75°,可以得出ME=MB,再证明△BME≌△BCE,可以得出CE=ME,得到EC=BC=CD.从而得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵∠EAB=∠EBA=15°,∴∠DAE=∠EBC=75°,AE=BE,∴△AED≌△BEC,∴DE=CE.(2)以AB为边作正三角形ABM,连接ME,如图所示:∵∠EAB=∠EBA=15°,∴AE=BE,又∠EAM=∠EBM=75°,∵ME=ME,∴△MAE≌△MBE,∴∠MEB=∠MEA=75°,∴EM=MB=AB,∵∠EBC=75°,∴∠CBE=∠EBM,∴△BME≌△BCE,∴CE=ME=CB=DC,同理:DE=EM=CB=DC,∴CE=DE=CD,∴△CDE是正三角形.【点评】本题考查了正方形的性质,全等三角形的判定及性质,等边三角形的判定和等腰三角形的性质的运用.2.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.【分析】作∠BAC的平分线交BC于M,交DC的延长线于F,进而求证△ABM≌△ANM,进而可得△ABN≌△ADQ,Rt△PMN≌Rt△PMC,△ABM≌△ADQ进而可得出结论.【解答】解:作∠BAP的平分线交BC于M,作MN⊥AP,垂足为N,连接MP∵AF是∠BAP的平分线,MN⊥AP,∴∠BAM=∠MAP,∠B=∠ANM=90°,AM=AM,∴△ABM≌△ANM(AAS),∴MB=MN,AB=AN,∵AP=PC+CB=PC+AB,又AP=AN+NP=AB+NP∴NP=PC,∵PM=PM,∴Rt△PMN≌Rt△PMC(HL),∴MN=MC,∴MB=MC,∴△ABM≌△ADQ(SAS),∴∠QAD=∠BAM,∴∠BAP=2∠QAD【点评】本题考查了正方形各边长相等的性质,全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中求证△ABM≌△ADQ是解题的关键.3.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E.求证:BE=2OG.【分析】作OM∥AB交DE于M.首先证明OM是△DEB的中位线,再证明OG=OM即可解决问题.【解答】解:作OM∥AB交DE于M.∵四边形ABCD是正方形,∴OB=OD,∵OH∥BE,∴EM=DM,∴BE=2OM,∵∠OAD=∠ADO=∠BAC=45°,∵F A平分∠BAC,∴∠EAH=22.5°,∵AF⊥DE,∴∠AHE=∠AHD=90°,∴∠AEH=67.5°,∵∠ADE+∠AED=90°,∴∠ADE=22.5°,∴∠OGD=∠GAD+∠ADE=67.5°,∵∠AEH=∠OME=67.5°,∴∠OGM=∠OMG,∴OG =OM ,∴BE =2OG .【点评】本题考查正方形的性质、三角形的中位线定理、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造三角形中位线解决问题,属于中考常考题型.4.如图,在矩形ABCD 中,已知AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD ,PE⊥AC ,E 、F 分别是垂足,求PE +PF 的长.【分析】连结OP ,由S △AOP +S △DOP =15,可得12×OA ×PF +12×OD ×PE =15.由此即可解决问题.【解答】解:连结OP .由矩形ABCD ,AD =12,AB =5.∴AC =BD =2OA =2OB =13.∴OA =OD =6.5.而S 矩形=12×5=60.∴S △AOD =14×60=15.∴S △AOP +S △DOP =15.即12×OA ×PF +12×OD ×PE =15. ∴12×6.5×(PE +PF )=15.∴PE +PF =6013. 【点评】本题考查矩形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.在正方形ABCD 中,P 为AB 的中点,BE ⊥PD 的延长线于点E ,连接AE 、BE 、F A ⊥AE交DP 于点F ,连接BF ,FC .求证下列结论:①FB =AB ;②CF ⊥EF ,FC =EF .【分析】(1)根据已知和正方形的性质推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,证△ABE≌△ADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证∠AMB =∠FMB,BM=BM,AM=MF,推出△ABM≌△FBM,利用全等三角形的性质得出结论;(2)利用(1)中△ABM≌△FBM可得∠BAM=∠BFM,求出∠FDC=∠EBF,推出△BEF ≌△DFC,利用全等三角形的性质即可得出结论.【解答】证明:(1)∵正方形ABCD,BE⊥PD,EA⊥F A,∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,∵∠APD=∠EPB,∴∠EAB=∠DAF,∠EBA=∠ADP,∵AB=AD,在△ABE与△ADF中,{∠EAB=∠DAF AB=AD∠EBA=∠ADP,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∴∠AEF=∠AFE=45°,取EF的中点M,连接AM,∴AM⊥EF,AM=EM=FM,∴BE∥AM,∵AP=BP,∴AM=BE=DF,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB,在△ABM与△FBM中,{AM=FM∠AMB=∠FMB BM=BM,∴△ABM≌△FBM(SAS),∴AB=BF;(2)∵△ABM≌△FBM,∴∠BAM=∠BFM,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,在△BEF与△DFC中,{BE=DF∠EBF=∠FDC BF=CF,∴△BEF≌△DFC(SAS),∴CF=EF,∠DFC=∠FEB=90°,∴CF=EF且CF⊥EF.【点评】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.6.平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.【分析】取AB中点G,连接FG交BE于O,连接FB,利用三线合一的性质可判断出△FEB 是等腰三角形,然后根据菱形及平行四边形的性质得出FO,FB是∠EFC的三等分线,继而可证得结论.【解答】证明:取AB中点G,连接FG交BE于O,连接FB,则AD∥FG,BE⊥FG,∵G是AB中点,∴O是BE中点,∴△FEB是等腰三角形(三线合一的性质),∴∠EFO=∠BFO,又∵CF=12CD=CB,∴四边形BCFG是菱形,∴∠GFB=∠CFB,∴FO,FB是∠EFC的三等分线,∴DEF=∠EFO=13∠DEF,故可得∠EFC=3∠DEF.【点评】本题考查了平行四边形及菱形的性质,作出AD的平行线FG是解答本题的关键,要求我们熟练掌握等腰三角形的三线合一性质.7.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.【分析】取OB中点M,OC中点N,根据三角形中位线定理可得到DM∥OC,DM=12OC,DN∥OB,DN=12OB,再根据直角三角形斜边上的中线的性质得到QM=12OB,PN=12OC,再根据三角形外角的性质即可推出∠QMD=∠PND,从而利用SAS判定△QMD≌△DNP,根据全等三角形的对应的边相等即可证得结论.【解答】证明:如图,取OB中点M,OC中点N,连接MD,MQ,DN,PN.∵D为BC的中点∴DM∥OC,DM=12OC,DN∥OB,DN=12OB.∵在Rt△BOQ和Rt△OCP中,QM=12OB,PN=12OC.∴DM=PN,QM=DN.∠QMD=∠QMO+∠OMD=2∠ABO+∠FOB,∠PND=∠PNO+∠OND=2∠ACO+∠EOC.∵∠ABO=∠ACO,∠FOB=∠EOC,∴∠QMD=∠PND.∴△QMD≌△DNP,∴DQ=DP.【点评】此题主要考查学生对三角形中位线定理及全等三角形的判定与性质的综合运用能力.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?【分析】(1)根据等腰三角形的三线合一可得出D为BC的中点,结合E、F分别为AB、AC的中点可得出DE和DF是△ABC的中位线,根据中位线的定义可得出DE∥AC、DF∥AB,即四边形AEDF是平行四边形,根据三角形中位线定义可得出DE=12AC、DF=12AB,结合AB=AC即可得出DE=DF,从而得出四边形AEDF是菱形;(2)根据中位线的定义可得出EF的长度,根据菱形的面积公式可求出菱形AEDF的面积;(3)由中位线的定义可得出EF∥BC,根据平行四边形的判定定理可得出关于t的一元一次方程,解之即可得出结论.【解答】(1)证明:∵AB=AC,AD⊥BC,∴D为BC的中点.∵E、F分别为AB、AC的中点,∴DE和DF是△ABC的中位线,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵E,F分别为AB,AC的中点,AB=AC,∴AE=AF,∴四边形AEDF是菱形,(2)解:∵EF为△ABC的中位线,∴EF=12BC=5.∵AD=8,AD⊥EF,∴S菱形AEDF=12AD•EF=12×8×5=20.(3)解:∵EF∥BC,∴EH∥BP.若四边形BPHE为平行四边形,则须EH=BP,∴5﹣2t=3t,解得:t=1,∴当t=1秒时,四边形BPHE为平行四边形.∵EF∥BC,∴FH∥PC.若四边形PCFH为平行四边形,则须FH=PC,∴2t=10﹣3t,解得:t=2,∴当t=2秒时,四边形PCFH为平行四边形.【点评】本题考查了菱形的判定与性质、三角形的中位线、菱形的面积、等腰三角形的性质、平行四边形的判定以及解一元一次方程,解题的关键是:(1)根据三角形中位线的性质找出DE∥AC、DF∥AB;(2)牢记菱形的面积公式;(3)根据平行四边形的判定定理找出关于t的一元一次方程.9.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.【分析】(1)求出BC=BE,根据勾股定理求出BD,即可求出DE;(2)求出△FEB≌△ECD,根据全等三角形的性质得出BF=DE即可;(3)延长GE交AB于F,证△GDE∽△FBE,得出比例式,代入即可求出答案.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=12∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=√2,在Rt△ACD中,由勾股定理得:BD=√(√2)2+(√2)2=2,∴DE=BD﹣BE=2−√2;(2)∵FE⊥CE,∴∠CEF =90°,∴∠FEB =∠CEF ﹣∠CEB =90°﹣67.5°=22.5°=∠DCE ,∵∠FBE =∠CDE =45°,BE =BC =CD ,∴△FEB ≌△ECD ,∴BF =DE =2−√2;(3)延长GE 交AB 于F ,由(2)知:DE =BF =2−√2,由(1)知:BE =BC =√2,∵四边形ABCD 是正方形,∴AB ∥DC ,∴△DGE ∽△BFE ,∴DG BF =DE BE , ∴2−√2=√2√2, 解得:DG =3√2−4.【点评】本题考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键,题目比较好,难度偏大.10.菱形ABCD 中,F 是对角线AC 的中点,过点A 作AE ⊥BC 垂足为E ,G 为线段AB 上一点,连接GF 并延长交直线BC 于点H .(1)当∠CAE =30°时,且CE =√3,求菱形的面积;(2)当∠BGF +∠BCF =180°,AE =BE 时,求证:BF =(√2+1)GF .【分析】(1)只要证明△ABC 是等边三角形,即可解决问题;(2)如图,连接GC ,作GM ⊥GF 交BF 于M .想办法证明△BGC 是等腰直角三角形,再证明△BGM ≌△CGF 即可解决问题;【解答】(1)解:∵四边形ABCD 是菱形,∴AB =BC ,∵AE ⊥BC ,∠EAC =30°,∴∠ACE =60°,AC =2EC =2√3,∴△ABC ,△ACD 都是等边三角形,∴S 菱形ABCD =2•S △ABC =2×√34×(2√3)2=6√3.(2)如图,连接GC ,作GM ⊥GF 交BF 于M .∵四边形ABCD 是菱形,∴BA =BC ,∵AF =FC ,∴BF ⊥AC ,∴∠BF A =90°,∵∠BGF +∠BCF =180°,∠AGF +∠BGF =180°,∴∠AGF =∠ACB ,∵∠GAF =∠CAB∴△AGF ∽△ACB ,∴AG AC =AF AB , ∴AG AF =AC AB ,∵∠CAG =∠BAF ,∴△CAG ∽△BAF ,∴∠CGA=∠BF A=90°,∵AE⊥BE,AE=BE,∴∠ABE=45°,∴∠GBC=∠GCB=45°,∴GB=GC,∵∠BGC=∠MGF,∴∠BGM=∠CGF,∵∠GBM=∠GCF,∴△BGM≌△CGF,∴BM=CF,GM=GF,FM=√2GF,∵∠AGC=90°AF=FC,∴GF=FC=BM,∴BF=BM+FM=GF+√2GF=(√2+1)GF.【点评】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.11.在▱ABCD中,E,F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)▱ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;(3)▱ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;(3)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个正方形.【解答】解:(1)∵四边形ABCD 是平行四边形,∴AE ∥CF ,AB =CD ,∵E 是AB 中点,F 是CD 中点,∴AE =CF ,∴四边形AECF 是平行四边形,∴AF ∥CE .同理可得DE ∥BF ,∴四边形FGEH 是平行四边形;(2)当平行四边形ABCD 是矩形时,平行四边形EHFG 是菱形.∵四边形ABCD 是矩形∴∠ABC =∠DCB =90°,∵E 是AB 中点,F 是CD 中点,∴BE =CF ,在△EBC 与△FCB 中,∵{BE =CF∠ABC =∠DCB BC =BC,∴△EBC ≌△FCB ,∴CE =BF ,∠ECB =∠FBC ,BH =CH ,EH =FH ,平行四边形EHFG 是菱形;(3)当平行四边形ABCD 是矩形,并且AB =2AD 时,平行四边形EHFG 是正方形.连接EF .∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=12AB,这时,EF=AE=AD=DF=12AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=12AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是正方形.【点评】本题考查了平行四边形的判定与性质,菱形的判定和正方形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12AB.【分析】连接BE,根据等腰三角形三线合一的性质可得BE⊥AC,再根据直角三角形斜边上的中线等于斜边的一半证明.【解答】证明:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=12 AB【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出直角三角形是解题的关键.13.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.【分析】(1)①先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;②过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;(2)先根据题意画出图形,然后再证明EF=EC,然后再按照(1)②中的思路进行证明即可.【解答】解:(1)①证明:∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.②过点E作MN⊥BC,垂直为N,交AD于M.∵CE=EF,∴N是CF的中点.∵BC=2BF,∴CNBN =14.又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED=√2DM=√2CN=√24a.(2)如图所示:过点E作MN⊥BC,垂直为N,交AD于M.∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC=32a,∴EN=BN=14a,∴DE=3√24a.【点评】本题主要考查的是正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.14.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=√2AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,DG =DG∴Rt △DFG ≌Rt △DCG (HL ),∴GF =GC ;(2)BH =√2AE ,理由是:证法一:如图2,在线段AD 上截取AM ,使AM =AE ,∵AD =AB ,∴DM =BE ,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵{DM =BE∠1=∠BEH DE =EH,∴△DME ≌△EBH ,∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM =√2AE ,∴BH =√2AE ;证法二:如图3,过点H 作HN ⊥AB 于N ,∴∠ENH =90°,由方法一可知:DE =EH ,∠1=∠NEH ,在△DAE 和△ENH 中,∵{∠A =∠ENH∠1=∠NEH DE =EH,∴△DAE ≌△ENH ,∴AE =HN ,AD =EN ,∵AD =AB ,∴AB =EN =AE +BE =BE +BN ,∴AE =BN =HN ,∴△BNH 是等腰直角三角形,∴BH =√2HN =√2AE .【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.15.(1)如图1,已知DE ∥BC ,∠D :∠DBC =2:1,∠1=∠2.求∠DEB 的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的.在探索中,有人曾利用过如图2所示的图形,其中,ABCD是长方形(AD ∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=13∠ACB吗?【分析】(1)利用平行线的性质即可解决问题;(2)由AD∥CB,由此∠FCB=∠F,由∠AGC是△AGF的外角,推出∠AGC=∠GAF+∠F=2∠F,又∠ACG=∠AGC,可得∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB;【解答】(1)解:如图1中,∵DE∥BC,∴∠D+∠DBC=180°,∵∠D:∠DBC=2:1,∴∠D=2∠DBC,∴2∠DBC+∠DBC=180°,即∠DBC=60°,∵∠1=∠2,∴∠1=∠2=30°,∵DE∥BC,∴∠DEB=∠1=30°.(2)解:如图2中,∵AD∥CB,∴∠FCB=∠F,∵∠AGC是△AGF的外角,∴∠AGC=∠GAF+∠F=2∠F,又∵∠ACG=∠AGC,∠ACB=∠ECB+∠ACG,=∠F+2∠F=3∠F=3∠ECB,∴∠ECB=13∠ACB.【点评】本题考查平行线的性质、矩形的性质、三角形的内角和定理、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2√5,由直角三角形性质知MN=√2OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,∴MN=√2OM=2√10.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.17.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=√2GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=√2CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH=2−AH2=√7,∴S△ABE=12AE×BH=12×4×√7=2√7;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME =∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=12BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,{∠AME=∠BNG ∠MAE=∠NBG AE=BG,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=√2NG=√2ME=√22BE,∴BE=√2GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=√2CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.【点评】本题关键是通过题目角平分线和垂线合一启发构造等腰三角形,从而构造出DF为△BCG的中位线,利用中位线定理解决问题.19.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2√2,求EB的长.【分析】(1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5√2,根据勾股定理计算即可.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,{AC=AE∠GAD=∠EAB AD=AB∴△GAD≌△EAB,∴EB=GD;(2)∵四边形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5√2,∴∠DOG=90°,OA=OD=12BD=5√22,∵AG=2√2,∴OG=OA+AG=9√2 2,由勾股定理得,GD=2+OG2=√53,∴EB=√53.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.。

2024学年八年级数学经典好题专项(平行四边形)练习(附答案)

2024学年八年级数学经典好题专项(平行四边形)练习(附答案)

2024学年八年级数学经典好题专项(平行四边形)练习一、选择题1、如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度不可能是( )A .60°B .90°C .120°D .180°(1) (4) (5)2、下列图案中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3、对于任意的矩形,下列说法一定正确的是 ( )A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形4、如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB5、如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF6、如图所示,四边形ABCD 是平行四边形,按下列条件得到的四边形BFDE 是平行四边形的个数是( )①图甲,DE ⊥AC ,BF ⊥AC ②图乙,DE 平分∠ADC ,BF 平分∠ABC③图丙,E 是AB 的中点,F 是CD 的中点 ④图丁,E 是AB 上一点,EF ⊥AB . A . 3 B . 4 C . 1 D . 27、如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( ) A. 7 B. 9 C. 10 D. 11(7) (8) (9) (10) 8、如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .509、已知平行四边形ABCD 中,8AC =,E 是AD 上一点,DCE 的周长是平行四边形ABCD 周长的一半,且5EC =,连结EO ,则EO 的长为( )A.2 B.3 C.4 D.510、如图,△ABC 的周长为17,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为点M ,若BC =6,则MN 的长度为( )A .B .2C .D .311、如图,正方形ABCD 中,点E.F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC=4,DE=AF=1,则GF 的长为( )A .135B .125C .195D .165(11) (12) (13) (14)12、如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ∠=︒,则(AED ∠= )A .60︒B .65︒C .70︒D .75︒ 13、如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②AG ⊥BE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的是( )A .①③B .①②③④C .①②③D .①③④14、已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12)C . (65,35)D . (107,57)二、填空题15、如图,△ABP 是由△ACD 按顺时针方向旋转某一角度得到的,若∠BAP =60°,则在这转过程中,旋转中心是 ,旋转的角度为 .(15) (16) (18)16、如图,△DEC 是由△ABC 经过了如下的几何变换而得到的:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°;②以C 为旋转中心,顺时针旋转90°得△A'B'C ,再以A'C 所在直线为对称轴作轴对称;③将△ABC 向下、向左各平移1个单位,再以AC 的中点为中心作中心对称.其中正确的变换有( )A.①②B.①③C.②③ D .①②③17、一个平行四边形的两条对角线的长分别为5和7,则它的一条边长a 的取值范围是18、如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD 交AD 于点E ,AB =6,BC =10,则EF 长为______________19、如图,在矩形ABCD 中,AE =AF ,过点E 作EH ⊥EF 交DC 于点H ,过F 作FG ⊥EF 交BC 于G ,当AD 、AB 满足____________(关系)时,四边形EFGH 为矩形.(19) (20) (21)20、如图,已知DE∥BC,AB∥CD,E 为AB 的中点,∠A=∠B.下列结论:①AC=DE;②CD=AE;③AC 平分∠BCD;④O 点是DE 的中点;⑤AC=AB. 其中正确的序号有_______.21、如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________.22、如图,平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,给出下列判断:①若△AEF 是等边三角形,则∠B =60°,②若∠B =60°,则△AEF 是等边三角形,③若AE =AF ,则平行四边形ABCD 是菱形,④若平行四边形ABCD 是菱形,则AE =AF ,其中,结论正确的是__________(只需填写正确结论的序号).(22) (23) (24)23、如图,菱形ABCD 的边长为2,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE的周长最小,则△PBE 的周长的最小值为 .24、如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE =1,则△BEF 的面积为 .三、解答题25、如图,E、F 在正方形ABCD 的边上,45EAF ︒∠=.(1)ABG 是由ADE 旋转而来,旋转中心是什么?旋转角是多少度?(2)求证:GF EF =;(3)若2,3BG BF ==,求正方形ABCD 的面积.26、如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO=CO .(1)求证∶△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF______(填"是"或"不是")平行四边形.27、如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.28、如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:ABE ∆≅△CDF ∆;(2)当线段AB 与线段AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.29、如图,矩形ABCD 中,点E 在边CD 上,将BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作//FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若3AB =,5AD =,求四边形CEFG 的面积.30、四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形.⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.31、如图,以△ABC 的边AB 、AC 为边的等边三角ABD 和等边三角形ACE ,四边形ADFE 是平行四边形.(1)当∠BAC 满足什么条件时,四边形ADFE 是矩形;(2)当∠BAC 满足什么条件时,平行四边形ADFE 不存在;(3)当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形,正方形?32、已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足 条件时,四边形EFGH 是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.33、如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE CG=,=,AH CF 且EG平分HEF∠.(1)求证:AEH CGF∆≅∆.(2)若90∠=︒.求证:四边形EFGH是正方形.EFG34、在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB外作正方形ABCD,正方形ABCD的对角线交于点O(如图1).(1)如图1,OM⊥EM并交EB延长线于点M,ON⊥AE,且交EA于点N,求证:EO平分∠AEB;(2)如图1,延长EA到P,使AP=BE,连接OP,试猜想线段OE与OP是否相等,并证明;(3)如图2,过点C作CF⊥EB并交EB的延长线于点F,过点D作DH⊥EA并交EA的延长线于点H,CF 和DH的反向延长线交于点G,求证:四边形EFGH为正方形.参考答案一、选择题1、如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度不可能是( )A.60° B.90° C.120° D.180°【答案】解:如图,观察图形可知:∠AOB=∠EOF=60°∴旋转角是60°的倍数时,旋转后可以与原来图形重合,故性质90°不可能与原来图形重合,故选:B.2、下列图案中,既是中心对称图形又是轴对称图形的是()B.B.C.D.【答案】解:A、不是轴对称图形,是中心对称图形;B、不是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.3、对于任意的矩形,下列说法一定正确的是A.对角线垂直且相等 B.四边都互相垂直C.四个角都相等 D.是轴对称图形,但不是中心对称图形【解析】A.矩形的对角线相等,但不垂直,故此选项错误;B.矩形的邻边都互相垂直,对边互相平行,故此选项错误;C.矩形的四个角都相等,正确;D.矩形是轴对称图形,也是中心对称图形,故此选项错误.故选C.4、如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB【解析】∵四边形ABCD是平行四边形,∴OA=OC;故选C.5、如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE 是△ABC 的中位线,∴DE = 12AC .A .根据∠B=∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B .根据∠B=∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C .根据AC=CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D .根据AD=CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误.故选B .6、如图所示,四边形ABCD 是平行四边形,按下列条件得到的四边形BFDE 是平行四边形的个数是( )①图甲,DE ⊥AC ,BF ⊥AC ②图乙,DE 平分∠ADC ,BF 平分∠ABC③图丙,E 是AB 的中点,F 是CD 的中点 ④图丁,E 是AB 上一点,EF ⊥AB . A . 3 B . 4 C . 1 D . 2【解析】①∵四边形ABCD 是平行四边形,∴S △ACD =S △ABC ,∵DE ⊥AC ,BF ⊥AC ,∴DE ∥BF ,S △ACD =AC ꞏDE ,S △ABC =AC ꞏBF ,∴DE =BF ,∴四边形BFDE 是平行四边形;②∵四边形ABCD 是平行四边形,∴∠ADC =∠ABC ,AD =CB ,AD ∥BC ,∴∠DAE =∠BCF ,∵DE 平分∠ADC ,BF 平分∠ABC ,∴∠ADE =∠CBF ,在△ADE 和△CBF 中,∴△ADE ≌△CBF (ASA),∴DE =BF ,∠AED =∠BFC ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴四边形BFDE 是平行四边形;③∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵E 是AB 的中点,F 是CD 的中点,∴DF =CD ,BE =AB ,∴DF =BE ,∴四边形BFDE 是平行四边形;④∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵E 是AB 上一点,EF ⊥AB ,无法判定DF =BE ,∴四边形BFDE 不一定是平行四边形.故选A.7、如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A. 7B. 9C. 10D. 11【解析】本题考查勾股定理、三角形的中位线定理和四边形的周长 . 解题思路:⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫⎭⎬⎫ BD =4,CD =3 BD ⊥CD ⇒BC =5E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点⇒EF =HG =12BC =52 ⎭⎬⎫E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点 AD =6⇒EH =FG =12AD =3 ⇒四边形EFGH 的周长=EF +FG +HG +EH =11. 故选D8、如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .50【解析】∵E ,F 分别是AD ,BD 的中点,∴EF 是△DAB 的中位线.∴AB =2EF =10.∵菱形的四边相等,∴菱形ABCD 的周长=4AB =40.故选C .9、已知平行四边形ABCD 中,8AC =,E 是AD 上一点,DCE 的周长是平行四边形ABCD 周长的一半,且5EC =,连结EO ,则EO 的长为( )A.2 B.3 C.4 D.5解析:∵DCE 的周长是平行四边形ABCD 周长的一半,即AD+CD=CD+DE+EC,∴AE=EC=5,即ACE △为等腰三角形.∵点O 是平行四边形ABCD 对角线交点,∴点O 为AC 中点.∴EO 垂直平分AC.∴AO=4.在Rt AOE 中,3EO ===.故选:B10、如图,△ABC 的周长为17,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为点M ,若BC =6,则MN 的长度为( )A .B .2C .D .3【答案】解:∵BN 平分∠ABC ,BN ⊥AE ,∴∠NBA =∠NBE ,∠BNA =∠BNE ,在△BNA 和△BNE 中,,∴△BNA ≌△BNE (ASA ),∴BA =BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一), ∴MN 是△ADE 的中位线,∵BE +CD =AB +AC =17﹣BC =17﹣6=11, ∴DE =BE +CD ﹣BC =5,∴MN =DE =. 故选:C .11、如图,正方形ABCD 中,点E.F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC=4,DE=AF=1,则GF 的长为A .135B .125C .195D .165【解析】正方形ABCD 中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF(SAS),∴∠CBE=∠DCF ,∵∠CBE+∠CEB=∠ECG+∠CEB =90°=∠CGE ,∵BCE S ∆=21BC CE ∙=21BE ∙CG, ∴CG=125,∴GF=CF ﹣CG=5﹣125=135,故选A .12、如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ∠=︒,则(AED ∠= )A .60︒B .65︒C .70︒D .75︒【答案】解:∵四边形ABCD 是正方形,∴∠ABC =90°,BA =DA ,∠BAE =∠DAE =45°.又AD =AD ,∴△ABE ≌△ADE (SAS ).∴∠ADE =∠ABE =90°﹣25°=65°.∴∠AED =180°﹣45°﹣65°=70°.故选:C .13、如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②AG ⊥BE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的是( ) A .①③ B .①②③④ C .①②③ D .①③④【答案】解:∵四边形ABCD 是正方形,E 是AD 边上的中点,∴AE =DE ,AB =CD ,∠BAD =∠CDA =90°,∴△BAE ≌△CDE (SAS ),∴∠ABE =∠DCE ,故①正确;∵四边形ABCD 是正方形,∴AD =DC ,∠ADB =∠CDB =45°,DH =DH ,∴△ADH ≌△CDH (SAS ),∴∠HAD =∠HCD ,∵∠ABE =∠DCE ,∴∠ABE =∠HAD ,∵∠BAD =∠BAH +∠DAH =90°,∴∠ABE +∠BAH =90°,∴∠AGB =180°﹣90°=90°,∴AG ⊥BE ,故②正确;∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确; ∵△ADH ≌△CDH ,∴∠AHD =∠CHD ,∴∠AHB =∠CHB ,∵∠BHC =∠DHE ,∴∠AHB =∠EHD ,故④正确;故选:B .14、已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF , ∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4, 根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x , 直线AD 的函数解析式是y =-15x +1,联立得:⎩⎪⎨⎪⎧y =12x y =-15x +1,解得⎩⎪⎨⎪⎧x =107y =57,∴点P 的坐标为(107,57).故选D二、填空题15、如图,△ABP 是由△ACD 按顺时针方向旋转某一角度得到的,若∠BAP =60°,则在这转过程中,旋转中心是 ,旋转的角度为 .【解答】解:旋转中心为点A ,旋转角为∠BAC =∠BAP +∠P AC =60°+30°=90°;故答案为A ,90°.16、如图,△DEC 是由△ABC 经过了如下的几何变换而得到的:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°;②以C 为旋转中心,顺时针旋转90°得△A'B'C ,再以A'C 所在直线为对称轴作轴对称;③将△ABC 向下、向左各平移1个单位,再以AC 的中点为中心作中心对称.其中正确的变换有( )A.①②B.①③C.②③ D .①②③答案A 根据题意分析可得△DEC 可以由△ABC 经过:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°得到,故正确;②以C 为旋转中心,顺时针旋转90°得△A'B'C ,再以A'C 所在直线为对称轴作轴对称变化得到,故正确;③将△ABC 向下、向左各平移1个单位,所得三角形与△DEC 为轴对称图形,以AC 的中点为中心,作中心对称得不到△DEC ,故错误.17、一个平行四边形的两条对角线的长分别为5和7,则它的一条边长a 的取值范围是OD C B A【解析】如图,不妨设AB a =,5AC =,7BD =,在ABO ∆中,52AO =,72BO =,由三角形三边关系可得 AO BO AB AO BO -<<+,即16a <<.18、如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD 交AD 于点E ,AB =6,BC =10,则EF 长为______________【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =10,DC =AB =6.∴∠AFB =∠FBC .∵BF 平分∠ABC ,∴∠ABF =∠FBC .∴∠AFB =∠ABF .∴AF =AB =6.同理可得DF =DC =6. ∴EF =AF +DE ﹣AD =6+6﹣10=2.19、如图,在矩形ABCD 中,AE =AF ,过点E 作EH ⊥EF 交DC 于点H ,过F 作FG ⊥EF 交BC 于G ,当AD 、AB 满足____________(关系)时,四边形EFGH 为矩形.【解析】∵四边形ABCD 是矩形,∴∠A =90°. ∵AE =AF ,∴∠AFE =∠AEF =45°.又∵EH ⊥EF ,FG ⊥EF ,∴∠GFB =∠HED =45°,∴△DHE 和△BGF 都是等腰直角三角形.如果四边形EFGH 是矩形,则EH =FG ,∴ED =FB , 又∵AE =AF ,∴AD =AB .20、如图,已知DE∥BC,AB∥CD,E 为AB 的中点,∠A=∠B.下列结论:①AC=DE;②CD=AE;③AC 平分∠BCD;④O 点是DE的中点;⑤AC=AB. 其中正确的序号有_______.解:①∵DE∥BC,AB∥CD,∴四边形BCDE 是平行四边形,∴BC=DE,∵∠A=∠B,∴AC=BC,∴AC=DE;故①正确;∵四边形BCDE 是平行四边形,∴CD=BE,∵E 为AB 的中点,∴AE=BE,∴CD=AE;故②正确; ∵AB∥CD,∴∠A=∠ACD,∵∠A=∠B,∴∠ACD=∠B,但∠B 不一定等于∠ACB,故AC 不一定是∠BCD 的平分线;故③错误;在△AOE 和△COD 中,,A OCD AOE COD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOE≌△COD(AAS),∴OE=OD,即O 是DE 的中点;故④正确;∵AC=BC,但不能确定AC=AB,故⑤错误.答案: ①②④21、如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________.【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.22、如图,平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,给出下列判断:①若△AEF 是等边三角形,则∠B =60°,②若∠B =60°,则△AEF 是等边三角形,③若AE =AF ,则平行四边形ABCD 是菱形,④若平行四边形ABCD 是菱形,则AE =AF,其中,结论正确的是__________(只需填写正确结论的序号).【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ꞏAE =21CD ꞏAF ,∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确; ④若平行四边形ABCD 是菱形,则BC =CD ,∴21BC ꞏAE =C 21D ꞏAF ,∴AE =AF ,故④正确; 故答案为①③④.23、如图,菱形ABCD 的边长为2,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE的周长最小,则△PBE24、如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE =1,则△BEF 的面积为 .解:∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,CM =AE =1,∴F 、C 、M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠FDM =90°,∵∠EDF =45°,∴∠FDM =∠EDF =45°,在△DEF 和△DMF 中,,∴△DEF ≌△DMF (SAS ),∴EF =MF ,设BF =x ,则CF =3﹣x ,FM =3﹣x +1=4﹣x ,EF =4﹣x ,∵Rt △BEF 中,BE 2+BF 2=EF 2,∴22+x 2=(4﹣x )2,解得x =,∴BF =,∴△BEF的面积为××2=.故答案为:.三、解答题25、如图,E、F 在正方形ABCD 的边上,45EAF ︒∠=.(1)ABG 是由ADE 旋转而来,旋转中心是什么?旋转角是多少度?(2)求证:GF EF =;(3)若2,3BG BF ==,求正方形ABCD的面积.解:(1)由旋转性质可得旋转中心为A 点,旋转角度为90°;(2)ABG △由ADE 旋转而来,ABG ADE ∴≅ ,,AG AE BAG DAE ∴=∠=∠90,45BAD EAF ︒︒∠=∠= ,45GAF BAG BAF ︒∴∠=∠+∠=,GAF EAF ∴∠=∠在EAF △由GAF 中AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()EAF GAF SAS ∴≅ ,GE EF ∴=;(3)设正方形边长为x ,235EF GF ==+=222(3)(2)5x x ∴-+-=,6x ∴=或1x =-(舍弃)∴正方形面积为2636=.26、如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO=CO .(1)求证∶△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF______(填"是"或"不是")平行四边形.解析:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FAO=∠ECO ,在△AOF 和△COE 中FAO ECO AO CO AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOF 和△COE (ASA ).(2)由(1)△AOF 和△COE ,∴OF=OE ,又∵OA=OC ,∴四边形AEOF 为平行四边形.27、如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥BC ,∴∠ADE =∠CBF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在△ADE 和△CBF中,,∴△ADE ≌△CBF (AAS ),∴AE =CF ;(2)证明:∵AE ⊥BD ,CF ⊥BD ,∴AE ∥CF ,∵AE =CF ,∴四边形AECF 是平行四边形.28、如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:ABE ∆≅△CDF ∆;(2)当线段AB 与线段AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE =OB ,DF =OD ,∴BE =DF ,在△ABE 和△CDF 中,∴△ABE ≌△CDF (SAS );(2)解:当AC =2AB 时,四边形EGCF 是矩形;理由如下:∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG =90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG =AE ,OA =OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG =90°,∴四边形EGCF 是矩形.29、如图,矩形ABCD 中,点E 在边CD 上,将BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作//FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若3AB =,5AD =,求四边形CEFG的面积.解:(1)证明:由题意可得,BCE BFE ≌,∴BEC BEF ∠=∠,FE CE =,∵//FG CE ,∴FGE CEB ∠=∠,∴FGE FEG ∠=∠,∴FG FE =,∴FG EC =,∴四边形CEFG 是平行四边形, 又∵CE FE =,∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,3AB =,5AD =,BC BF =,∴90BAF ∠=︒,5AD BC BF ===,∴4AF =,∴1DF =,设EF x =,则CE x =,3DE x =-,∵90FDE ∠=︒,∴21+22)3(x x =-,解得,53x =,∴53CE =, ∴四边形CEFG 的面积是:51353CE DF ⋅=⨯=.30、四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证: ⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形.⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.解析:⑴ 因为()11802GHE BHC ABC BCD ∠=∠=︒-∠+∠, ()11802GFE AFD DAB CDA ∠=∠=︒-∠+∠, 所以GHE GFE ∠+∠()13602ABC BCD CDA DAB =︒-∠+∠+∠+∠180=︒ ⑵ 若四边形ABCD 为平行四边形,则180ABC BCD ∠+∠=︒所以()360180DAB CDA ABC BCD ∠+∠=︒-∠+∠=︒. 从而1180180902GFE ∠=︒-⨯︒=︒,故1180180902GHE ∠=︒-⨯︒=︒. 同理,四边形EFGH 的另两个角都是直角,所以,四边形EFGH 为矩形.⑶ 若四边形ABCD 为矩形,则由⑵知四边形EFGH 是矩形.GCD EAB ∆∆≌,HBC FAD ∆∆≌,GC EB =,HC HB =,GH HE =,故矩形EFGH 为正方形.31、如图,以△ABC 的边AB 、AC 为边的等边三角ABD 和等边三角形ACE ,四边形ADFE 是平行四边形.(1)当∠BAC 满足什么条件时,四边形ADFE 是矩形;(2)当∠BAC 满足什么条件时,平行四边形ADFE 不存在;(3)当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形,正方形?【答案】解 (1)当∠BAC =150°时,四边形ADFE 是矩形,∴∠DAE =360°-120°-150°=90°;∵四边形ADFE 是平行四边形,∴四边形ADFE 是矩形(有一个角是直角的平行四边形是矩形);(2)当∠BAC =60°时,平行四边形ADFE 不存在, ∠DAE =180°-60°-60°-60°=0°;(3)当AB =AC 且∠BAC 不等于60°时,平行四边形ADFE 是菱形.当AB =AC ,∠BAC =150°时,平行四边形ADFE 是正方形.32、已知:如图1,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD的对角线AC与BD,当AC与BD满足 条件时,四边形EFGH是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.【答案】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图1,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下: 如图2,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图3,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直.33、如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE CG=,=,AH CF ∠.且EG平分HEF(1)求证:AEH CGF∆≅∆.(2)若90∠=︒.求证:四边形EFGH是正方形.EFG【答案】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,∠B =∠D .∵AE =CG ,AH =CF ,∴EB =DG ,HD =BF .∴△BEF ≌△DGH (SAS ),∴EF =HG . 又∵△AEH ≌△CGF ,∴EH =GF .∴四边形HEFG 为平行四边形.∴EH ∥FG ,∴∠HEG =∠FGE .∵EG 平分∠HEF ,∴∠HEG =∠FEG ,∴∠FGE =∠FEG ,∴EF =GF ,∴四边形EFGH 是菱形. 又∵∠EFG =90°,∴平行四边形EFGH 是正方形.34、在Rt△AEB 中,∠AEB =90°,以斜边AB 为边向Rt△AEB 外作正方形ABCD ,正方形ABCD 的对角线交于点O (如图1).(1)如图1,OM ⊥EM 并交EB 延长线于点M ,ON ⊥AE ,且交EA 于点N ,求证:EO 平分∠AEB ;(2)如图1,延长EA 到P ,使AP =BE ,连接OP ,试猜想线段OE 与OP 是否相等,并证明;(3)如图2,过点C 作CF ⊥EB 并交EB 的延长线于点F ,过点D 作DH ⊥EA 并交EA 的延长线于点H ,CF和DH 的反向延长线交于点G ,求证:四边形EFGH为正方形.解:(1)证明:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∴∠BON +∠AON =90°,∵∠AEB =90°,OM ⊥EM ,ON ⊥AE ,∴四边形MENO 为矩形,∴∠MON =90°,∴∠BON +∠BOM =90°,∴∠BOM =∠AON ,在△BOM 和△AON 中,90OM ONA BOM AON OB OA ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△BOM ≌△AON (AAS ),∴OM =ON ,∵OM ⊥EM ,ON ⊥AE ,∴EO 平分∠AEB ;(2)解:OE =OP ,理由如下:由(1)可知,△BOM ≌△AON ,∴∠OBM =∠OAN ,∴∠OBE =∠OAP ,在△OBE 和△OAP 中,OB OA OBE OAP BE AP =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAP (SAS ),∴OE =OP ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∴四边形EFGH 为矩形, ∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,90EAB HDA AEB DHA AB DA ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADH (AAS ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∴四边形EFGH 为正方形.。

(完整版)平行四边形的判定练习及答案

(完整版)平行四边形的判定练习及答案

诘你添加一个适当的条 A.1: 2 :B.2 : 2 :C.2 : 3 : 平行四边形的判定二、课中强化(10分钟训 练)1•如图3,在 匚ABCD 中,对角线F 满足F 列哪个条件时,四边形AC 、BD 相交于点0,E 、F 是对角线AC 上的两点,当E 、 DEBF 不一定是平行四边形( A.AE=CFC.Z ADE=/CBFB.DE=BF D. / AED= / CFB 2•如图 4,AB\|DC, DC=EF=10 , DE=CF=8,则图中的平行四边形有由分别是 ___________________3.如图5,E 、F 是平行四边形ABCD 对角线BD 上的两点,'使四边形AECF 是平行四边形.4.如图6,AD=BC,要使四边形ABCD 是平行四边形,还需补充的一个条件是: __________三、课后巩固(30分钟训练)1 •以不在同一直线上的三个点为顶点作 平行四边形最多能作() A.4个 B.3个 C.2个 D.1个2. 下面给出了四边形ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形ABCD 是平行四边形的是()3. 九根火柴棒排成如右图形状 ,图中 __个平行四边形,你判断的根据是 __________________4. 已知四边形ABCD 的对角线AC 、BD 相交于点O,给出下列5个条件:①AB // CD ; OA=OC ; ③AB=CD :④/ BAD= / DCB ; ® AD // BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD 是平行四边形的有(用序图4图5 图6⑵对由以上5个条件中任意选取2个条件,不能推出四边形ABCD 是平行匹边形的,请选取一种 情形举出反例说明 •5•若三条线段的长分别为 平行四边形?20 cm,14 cm,16 cm,以其中两条为对角线 ,另一条为一边,是否可以画 6•如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE , DF=BE , DF// BE.求证:(】)△AFD ©A CEB;(2)四边形ABCD 是平行四边形.17•如图,已知DC // AB ,且DC= —AB, E 为AB 的中点• 2⑴求证:△ AED EBC ;(2)观察图形,在不添加辅助线的情况下,除厶 EBC 夕卜,请再写出两个与厶AED 的面积相等 的三角形(直接写出结果,不要求证明): __________________________________8•如图,已知二1ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ©A CEB;⑵四边形AECF是平行四边形•二、课中强化(10分钟训练)1懈析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC ,故OE=OF.可知四边形DEBF是平行四边形•当E、F满足/ ADE= / CBF 时,因为AD // BC,所以/ DAE= / BCF.又AD=BC,可证出厶ADE OA CBF,所以DE=BF,/ DEA= / BFC.故/ DEF= / BFE.因此DE// BF,可知四边形DEBF是平行四边形•类似地可说明D也可以•答案:B2•解析:因为ABWDC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD,四边形CDEF —组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ; Z BAE= / CDF^-答案:BE=DF或ZBAE=ZCDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填(DAD// BC,② AB=CD,③ ZA+ZB=180。

平行四边形判定专项练习30题

平行四边形判定专项练习30题

平行四边形的判定专项练习30题(有答案)1.如图,四边形ABCD中,AD∥BC,ED∥BF,AF=CE,求证:ABCD是平行四边形.2.如图,四边形ABCD中,∠BAC=90°,AB=11﹣x,BC=5,CD=x﹣5,AD=x﹣3,AC=4.求证:四边形ABCD为平行四边形.3.已知四边形ABCD的对角线AC与BD交于点O,现给出四个条件:①OA=OC;②AB=CD;③∠BAD=∠DCB;④AD∥BC.请你从中选择两个,推出四边形ABCD为平行四边形,并写出你的推理过程.(1)从以上4个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示)_________ .(2)从(1)中选出一种情况,写出你的推理过程.4.如图,已知:点B、E、F、D在一条直线上,DF=BE,AE=CF.请从下列三个条件中选择一个合适的条件,添加到已知条件中,使四边形ABCD是平行四边形,并说明理由,供选择的三个条件(请从其中选择一个):①AB=DC;②BC=AD;③∠AED=∠CFB.5.如图,在▱ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.6.如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD、△BCE、△ACF,猜想:四边形ADEF 是什么四边形,试证明你的结论.7.如图,已知BE⊥AD,CF⊥AD,且BE=CF.求证:(1)AD是△ABC的中线;(2)请连接BF、CE,试判断四边形BECF是何种特殊四边形,并说明理由.8.如图,矩形ABCD的两条对角线AC和BD相交于点O,E、F是BD上的两点,且∠AEB=∠CFD.求证:四边形AECF 是平行四边形.9.如图:在四边形ABCD中,AD∥BC,AB=CD,E是BC上一点,DE=AB.求证:四边形ABED是平行四边形.10.如图,已知 AB∥DC,E是BC的中点,AE,DC的延长线交于点F;(1)求证:△ABE≌△FCE;(2)连接AC,BF.则四边形ABFC是什么特殊的四边形?请说明理由.11.等边△ABC中,点D在BC上,点E在AB上,且CD=BE,以AD为边作等边△ADF,如图.求证:四边形CDFE是平行四边形.12.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.若∠BAC=30°,EF⊥AB,垂足为F,连结DF.求证:(1)△ABC≌△EAF;(2)四边形ADFE是平行四边形.13.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.14.如图所示:在四边形ABCD中,AD∥BC、BC=18cm,CD=15cm,AD=10cm,AB=12cm,动点P、Q分别从A、C同时出发,点P以2cm/秒的速度由A向D运动,点Q以3cm/秒的速度由C向B运动.(1)几秒钟后,四边形ABQP为平行四边形?并求出此时四边形ABQP的周长(2)几秒钟后,四边形PDCQ为平行四边形?并求出此时四边形PDCQ的周长.15.求证:顺次连接四边形各边中点所得的四边形是平行四边形.16.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点,求证:四边形MNEF是平行四边形.17.如图,AD=DB,AE=EC,FG∥AB,AG∥BC.(1)证明:△AGE≌△CFE;(2)说明四边形ABFG是平行四边形;(3)研究图中的线段DE,BF,FC之间有怎样的位置关系和数量关系.18.如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.19.已知在△ABC中,D、E分别是AB、AC的中点,点F在DE的延长线上,且EF=DE,图中有几个平行四边形?请说明你的理由.20.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形.21.如图:在四边形ABCD中,AD∥BC,E是BC的中点,BC=2AD.找出图中所有的平行四边形,并选择一个说明它是平行四边形的理由.22.求证:两组对角分别相等的四边形是平行四边形.23.已知:如图,A、B、C、D在同一条直线上,且AB=CD,AE∥DF,AE=DF.求证:四边形EBFC是平行四边形.24.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.图中的四边形BFCE 是平行四边形吗?为什么?25.已知点E、F、G、H分别为四边形ABCD四边的中点,试问四边形EFGH的形状并说明理由.26.如图,已知四边形ABCD中AD=BC,点A、B、E在同一条直线上,且∠B=∠EAD,试说明四边形ABCD是平行四边形.27.如图,AD∥BC,ED∥BF,且AE=CF,求证:四边形ABCD是平行四边形.28.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.29.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.当AB≠AC时,求证:四边形ADFE为平行四边形.30.已知:在四边形ABCD中,AD∥BC,且AB=DC=5,AC=4,BC=3.求证:四边形ABCD为平行四边形.平行四边形的判定30题参考答案:1.∵AD∥BC,∴∠DAE=∠BCF,∵ED∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,又∵AF=CE,∴AE=CF,在△ADE和△CBF中:∵∠DAE=∠BCF,∠AED=∠CFB,AE=CF,∴△ADE≌△CBF(AAS),∴AD=CB,即:AD∥CB,AD=CB,∴四边形ABCD是平行四边形,2.∵∠BAC=90°,AB=11﹣x,BC=5,AC=4.∴(11﹣x)2+42=52,解得:x1=8,x2=14>11(舍去),当x=8时,BC=AD=5,AB=CD=3,∴四边形ABCD为平行四边形.3.(1)解:能推出四边形ABCD是平行四边形的有①④、③④;故答案是:①④、③④;(2)以①④为例进行证明.如图,在四边形ABCD中,OA=OC,AD∥BC.证明:∵AD∥BC,∴∠DAO=∠BCO.∴在△AOD与△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∴在四边形ABCD中,AD BC,∴四边形ABCD为平行四边形.4.选择①,∵DF=BE,AE=CF,AB=CD,∴△ABE≌△CDF(sss),∴∠ABE=∠CDF,∴四边形ABCD是平行四边形.5. BE=DF,BE∥DF因为ABCD是平行四边形,所以OA=OC,OB=OD,因为E,F分别是OA,OC的中点,所以OE=OF,所以BFDE是平行四边形,所以BE=DF,BE∥DF 6.四边形ADEF是平行四边形.连接ED、EF,∵△ABD、△BCE、△ACF分别是等边三角形,∴AB=BD,BC=BE,∠DBA=∠EBC=60°.∴∠DBE=∠ABC.∴△ABC≌△DBE.同理可证△ABC≌△FEC,∴AB=EF,AC=DE.∵AB=AD,AC=AF,∴AD=EF,DE=AF.∴四边形ADEF是平行四边形7.(1)∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.(2)四边形BECF是平行四边形,由(1)得:BD=CD,ED=FD.∴四边形BECF是平行四边形8.∵四边形ABCD是矩形∴AB∥CD,AB=CD,∴∠ABE=∠CDF,又∵∠AEB=∠CFD,∴△ABE≌△CDF,∴BE=DF,又∵四边形ABCD是矩形,∴OA=OC,OB=OD,∴OB﹣BE=OD﹣DF,∴OE=OF,∴四边形AECF是平行四边形9.∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴∠B=∠C,∵DE=AB,∴∠DEC=∠B,∴AB∥DE,∴四边形ABED是平行四边形.10.(1)证明:∵AB∥DC,∴∠1=∠2,∠FCE=∠EBA,∵E为BC中点,∴CE=BE,∵在△ABE和△FCE中,∠1=∠2,∠FCE=∠EBA,CE=BE,∴△ABE≌△FCE;(2)四边形ABFC是平行四边形;理由:由(1)知:△ABE≌△FCE,∴EF=AE,∵CE=BE,∴四边形ABFC是平行四边形11.连接BF,∵△ADF和△ABC是等边三角形,∴AF=AD=DF,AB=AC=BC,∠ABC=∠ACD=∠CAB=∠FAD=60°,∴∠FAD﹣∠EAD=∠CAB﹣∠EAD,∴∠FAB=∠CAD,在△FAB和△DAC中,∴△FAB≌△DAC(SAS),∴BF=DC,∠ABF=∠ACD=60°,∵BE=CD,∴BF=BE,∴△BFE是等边三角形,∴EF=BE=CD,在△ACD和△CBE中∵,∴△ACD≌△CBE(SAS),∴AD=CE=DF,∵EF=CD,∴四边形CDFE是平行四边形.12.(1)∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);(2)∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形13.在△ABC中,∵AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形14.(1)x秒后,四边形ABQP为平行四边形.则2x=18﹣3x,解得x=3.6.3.6秒钟后,四边形ABQP为平行四边形,此时四边形ABQP的周长是3.6×2×2+12×2=38.4cm.(2)y秒后,四边形PDCQ为平行四边形.10﹣2y=3y,解得y=2.2秒钟后,四边形PDCQ为平行四边形,此时四边形PDCQ的周长是3.6×2×2+15×2=43.2cm.15.:连接BD,∵E、F为AD,AB中点,∴FE BD.又∵G、H为BC,CD中点,∴GH BD,故GH FE.同理可证,EH FG.∴四边形FGHE是平行四边形16.∵BE,CF是△ABC的中线,∴EF∥BC且EF=BC,∵M是BO的中点,N是CO的中点,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.17.(1)证明:∵AG∥BC(已知)∴∠G=∠EFC(两直线平行,内错角相等)∵∠AEG=∠FEC(对顶角相等),又AE=EC(已知)∴△AGE≌△CFE(AAS);(2)说明:∵FG∥AB,AG∥BC(已知)∴四边形ABFG是平行四边形(平行四边形的定义);(3)解:线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC,理由:由(1)可知△AGE≌△CFE∴AG=FC,FE=EG(全等三角形的对应边相等),∴E是FG的中点,又∵AD=DB(已知)∴DE为三角形ABC的中位线,∴DE=BC,DE∥BC,即DE∥BF,DE∥FC,由(2)可知四边形ABFG是平行四边形∴AG=BF,∴BF=FC=BC,∴DE=BF=FC,即线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC.18.(1)∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即:∠EAB=∠DAC,∴△ABE≌△ACD(SAS);(2)证明:∵△ABE≌△ACD,∴BE=DC,∠EBA=∠DCA,又∵BF=DC,∴BE=BF.∵△ABC是等边三角形,∴∠DCA=60°,∴△BEF为等边三角形.∴∠EFB=60°,EF=BF∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC=∠EFB,∴EF∥BC,即EF∥DC,∴四边形EFCD是平行四边形19.平行四边形ADCF和平行四边形DBCF.理由:(1)∵D、E分别是AB、AC边的中点,∴DE∥BC ,.又∵EF=DE,∴DF=BC,∴四边形DBCF是平行四边形;(2)在四边形ADCF中,∵EF=DE,又∵E是AC边的中点,∴EA=EC,∴四边形ADCF是平行四边形20.∵E为AD中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,在△AEF和△CED中∵,∴△AEF≌△CED(AAS),∴AF=DC,∵AD是△ABC的中线,∴BD=DC,∴AF=BD,即AF∥BD,AF=BD,故四边形AFBD是平行四边形21.图中有两个平行四边形:▱ABED、▱AECD.∵,∴AD=BE,∵AD∥BC,∴四边形ABED是平行四边形.22.已知:四边形ABCD,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形,证明:∵∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,∴2∠A+2∠B=360°,∴∠A+∠B=180°,∴AD∥BC,同理AB∥CD,∴四边形ABCD是平行四边形.在△ABE和△DCF中∴△ABE≌△DCF(SAS),∴EB=FC,∠ABE=∠DCF,∵∠ABE+∠EBC=180°,∠DCF+∠FCB=180°,∴∠EBC=∠FCB,∴BE∥FC,∵BE=FC,∴四边形EBFC是平行四边形24.∵CE∥BF,BD=CD,∴△BDF≌△CDE,∴BF=CE,∴四边形BFCE是平行四边形.25.四边形EFGH是平行四边形证明:连接AC、BD∵E、F、G、H分别为四边形ABCD四边的中点∴EH=BD,FG=BD,HG=AC,EF=AC∴EH=FG,EF=HG∴四边形EFGH是平行四边形.26.∵∠B=∠EAD,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形.27.∵AD∥BC,∴∠EAD=∠FCB,又ED∥BF,∴∠FED=∠EFB,∠AED=180°﹣∠FED,∠CFB=180°﹣∠EFB,∴∠AED=∠CFB,又已知AE=CF,∴△AED≌△CFB,∴AD=BC,∴四边形ABCD是平行四边形.28.∵AD∥BC,∴∠EAD=∠FCB,又ED∥BF,∴∠FED=∠EFB,∠AED=180°﹣∠FED,∠CFB=180°﹣∠EFB,∴∠AED=∠CFB,又已知AE=CF,∴△AED≌△CFB,∴AD=BC,∴四边形ABCD是平行四边形.29.∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.∴∠FBE=∠CBA,在△FBE和△CBA中,,∴△FBE≌△CBA(SAS).∴EF=AC.又∵△ADC为等边三角形,∴CD=AD=AC.∴EF=AD.同理可得AE=DF.∴四边形AEFD是平行四边形30.∵AB=5,AC=4,BC=3∴AB2=AC2+BC2∴∠BCA=90°∵AD∥BC∴∠DAC=∠BCA=90°∵DC=5,AC=4,∴AD2=DC2﹣AC2=9∴AD=BC=3∴四边形ABCD为平行四边形.。

初中数学平行四边形练习题(含答案和解析)

初中数学平行四边形练习题(含答案和解析)

一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在▱ABCD中,E为BC的中点,DE、AC交于点F,则EFDF的值为()A.1B.13C.23D.122.在□ ABCD中,∠A=70∘,则∠B度数为()A.110∘B.100∘C.70∘D.20∘3.如图,在□ABCD中,对角线AC,BD交于点O,下列结论一定成立的是()A.AC⊥BD B.AO=OD C.AC=BD D.OA=OC4.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.4√5B.5√5C.5√2D.6√25.如图,在平行四边形ABCD中,⊥A=130°,在AD上取DE=DC,则⊥ECB的度数是()A.65°B.50°C.60°D.75°6.已知▱ABCD中,∠A+∠C=70°,则∠B的度数为()A.125°B.135°C.145°D.155°7.在平行四边形ABCD中,若⊥A+⊥C=80°,则⊥B的度数是()A.140°B.100°C.40°D.120°8.如图,在▱ABCD中,点F是线段CD上一点,点A作▱BFGE,当点F从点C向点D运动过程中,四边形BFGE的面积的变化情况是()A.保持不变B.一直减小C.一直增大D.先增大后减小9.如图,在平行四边形ABCD中,⊥BAD的平分线交BC于点E,⊥ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.如图,在⊥ABCD中,点E是DC边上一点,连接AE,BE,若AE,BE分别是⊥DAB,⊥CBA的角平分线,且AB=4,则⊥ABCD的周长为()A.10B.8 C.5 D.1211.如图,▱ABCD的对角线AC,BD交于点O,EF和GH过点O,且点E,H在边DC上,点G,F 在边AB上,若▱ABCD的面积为10,则阴影部分的面积为()A.6B.4C.3D.5212.如图,平行四边形ABFC的对角线x∈(1,e)相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD、OE,若平行四边形ABFC的面积为48,则SΔEOG的面积为()A.4B.5C.2D.3二、填空题13.如图,E是⊥ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,⊥F=70°,则⊥D=度.14.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若∠1=∠2=50∘,则为.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若⊥BOC的周长比⊥AOB的周长大2cm,则CD=cm.16.在平行四边形ABCD中,⊥BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.17.如图,已知⊥ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标18.如图,E、F分别是⊥ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S⊥APD=10cm2,S⊥BQC=20cm2,则阴影部分的面积为cm2.三、综合题19.如图,▱ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作⊥DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,⊥DAB=60°,求四边形AFED的面积.20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC 是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.21.如图,在▱ABCD中AE⊥BC于E,AF⊥CD于F,且CE=CF.(1)求证:AE=AF;(2)求证:四边形ABCD是菱形.22.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.(1)求证:四边形ACED是矩形;(2)若⊥AOD=120°,AC=4,求对角线CD的长.23.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.24.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是⊥BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若⊥B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)参考答案1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】C7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】D12.【答案】C13.【答案】4014.【答案】105°15.【答案】416.【答案】217.【答案】(3,2),(﹣5,2),(1,﹣2)18.【答案】3019.【答案】(1)证明:∵AE为⊥DAB的角平分线∴⊥DAE=⊥EAF∵AB//CD∴⊥DEA=⊥EAF∴⊥DAE=⊥DEA∴AD=DE∵AD=AF∴DE=AF∵DE//AF∴四边形AFED为平行四边形∵AD=DE∴四边形AFED是菱形.(2)解:连接DF交AE于点O,如图所示:∵⊥DAB=60°,DA=AF ∴⊥DAF为等边三角形∵AD=4∴DF=4,DO=2∴AO= 2√3,AE= 4√3∴S四边形AFED= 12×4×4√3= 8√3.20.【答案】(1)证明:∵四边形ABCD是平行四边形∴AO=CO∵⊥EAC是等边三角形∴EA=EC∴EO⊥AC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,AC=8∴AO=CO=4,DO=BO在Rt⊥ABO中,BO=√AB2−AO2=3∴DO=BO=3在Rt⊥EAO中,EO=√EA2−AO2=4√3∴ED=EO-DO=4√3-3.21.【答案】(1)证明:∵AE⊥BC于E,AF⊥CD于F.∴△ACE与△ACF为直角三角形∵CE=CF,AC=AC∴Rt△ACE≌Rt△ACF(HL)∴AE=AF;(2)证明:∵在▱ABCD中,AE⊥BC于E,AF⊥CD于F ∴∠B=∠D∵AE=AF(已证)∴△ABE≌△ADF(AAS)∴AB=AD∴▱ABCD为菱形.22.【答案】(1)证明:四边形ABCD是平行四边形AD⊥BC,AD=BC,AB=DCCE=BCAD=CE,AD⊥CE四边形ACED是平行四边形AB=DC,AE=ABAE=DC四边形ACED是矩形;(2)解:四边形ACED是矩形,OA= 12AE,OC=12CD,AE=CD,OA=OC⊥AOC=180°-⊥AOD=180°-120°=60°⊥AOC是等边三角形OC=AC=4CD=8.23.【答案】(1)解:如图1,如图2;(2)624.【答案】(1)证明:如图(1)∵AE 是⊥BAD 的平分线 ∴⊥BAF=⊥DAF∵在平行四边形ABCD 中 ∴AB⊥DF ,AD⊥BC ∴⊥BAF=⊥F ,⊥DAF=⊥CEF ∴⊥F=⊥DAF=⊥CEF ∴CE=FC(2)解:四边形ABFC 是矩形 理由:如图(2)∵⊥B=60°,AD⊥BC ∴⊥BAD=120° ∵⊥BAF=⊥DAF ∴⊥BAF=60°则⊥ABE 是等边三角形可得AB=BE=AE ,⊥BEA=⊥AFC=60° ∵BC=2AB ∴AE=BE=EC∴⊥ABC 是直角三角形,⊥BAC=90° 在⊥ABE 和⊥FCE 中 ∵{∠ABE =∠FCE BE =EC ∠BEA =∠CEF ∴⊥ABE⊥⊥FCE (ASA ) ∴AB=FC 又∵AB⊥FC∴四边形ABFC 是平行四边形 再由⊥BAC=90°故四边形ABFC 是矩形.。

小学数学认识平行四边形练习题及答案

小学数学认识平行四边形练习题及答案

小学数学认识平行四边形练习题及答案平行四边形是小学数学中的一个重要概念,它在几何学中具有丰富的性质和应用。

通过练习题的方式,可以帮助小学生更好地理解和掌握平行四边形的特点和运用方法。

本文将针对小学数学认识平行四边形的练习题及答案进行详细介绍。

练习题一:1. 填写下列图形中相等的角度:(1) ∠ABC = ______ ∠CDA = ______(2) ∠BAD = ______ ∠ADC = ______2. 判断下列图形是否为平行四边形:(1)AB || CDAD || BCAB ≠ AC(2)PQ || RSPS || QRPS = QR3. 在下列图形中连接相对的顶点,判断是否形成平行四边形:(1)O——A\ /B——C(2)I——J\ \K——L练习题二:1. 在平行四边形ABCD中,若∠A = 40°,请计算:(1) ∠C = ______(2) ∠B = ______(3) ∠D = ______2. 在平行四边形WXYZ中,若∠Z = 90°,请计算:(1) ∠Y = ______(2) ∠X = ______(3) ∠W = ______3. 已知平行四边形EFGH中,EF = 6 cm,EG = 8 cm,计算其面积。

答案及解析:练习题一:1.(1) ∠ABC = ∠CDA(2) ∠BAD = ∠ADC2.(1) 是平行四边形,因为根据定义,AB || CD,AD || BC,并且AB ≠ AC。

(2) 不是平行四边形,因为虽然PQ || RS,PS || QR,但是PS ≠ QR,无法满足平行四边形的定义。

3.(1) 形成平行四边形,因为OB || AC,OA || BC。

(2) 不是平行四边形,因为IK和JL不平行。

练习题二:1.(1) ∠C = ∠A = 40°,根据平行四边形的性质,相对角相等。

(2) ∠B = ∠D = 180° - ∠A = 180° - 40° = 140°,根据角的性质,相邻补角和为180°。

平行四边形习题及答案

平行四边形习题及答案
9、如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5则△CDE周长___。
10、正方形的对称轴有___条
11、如图4,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是______
12、要从一张长为40cm,宽为20cm的矩形纸片中,剪出长为18cm,宽为12cm的矩形纸片,最多能剪出______张。
5、已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为__________cm。
6、菱形ABCD中,∠A=60o,对角线BD长为7cm,则此菱形周长_____cm。
7、如果一个正方形的对角线长为 ,那么它的面积______。
8、如图2矩形ABCD的两条对角线相交于O,∠AOB=60o,AB=8,则矩形对角线的长___。
A、AO=OC,OB=OD B、AO=BO=CO=DO,AC⊥BD
C、AO=OC,OB=OD,AC⊥BD D、AO=OC=OB=OD
16、给出下列四个命题
⑴一组对边平行的四边形是平行四边形 ⑵一条对角线平分一个内角的平行四边形是菱形
⑶两条对角线互相垂直的矩形是正方形(4)D. 菱形的相邻两边可以通过旋转而相互得到
同理,只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形。
过P、D分别作BC的垂线交BC于E、F,则
二、选择题
13、在□ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A、1:2:3:4 B、1:2:2:1 C、2:2:1:1 D、2:1:2:1
14、菱形和矩形一定都具有的性质是( )
A、对角线相等 B、对角线互相垂直
C、对角线互相平分 D、对角线互相平分且相等

平行四边形习题及答案

平行四边形习题及答案

一、填空:1、对角线_____平行四边形是矩形。

2、如图⑴已知O 是□ ABCD的对角线交点,AC= 24, BD= 38, AD= 14,那么△ OBC的周长等于___AD A D A D AFDO OEB C B C B C B C⑴⑵⑶ E⑷3、在平行四边形ABCD 中,∠ C=∠ B+∠ D,则∠ A=___,∠ D=___。

4、一个平行四边形的周长为70cm,两边的差是10cm,则平行四边形各边长为____cm。

5、已知菱形的一条对角线长为12cm,面积为 30cm2,则这个菱形的另一条对角线长为__________cm 。

6、菱形 ABCD中,∠ A= 60o,对角线 BD 长为 7cm,则此菱形周长_____ cm。

7、假如一个正方形的对角线长为 2 ,那么它的面积______。

8、如图 2 矩形 ABCD 的两条对角线订交于O,∠ AOB= 60o ,AB= 8,则矩形对角线的长___。

9、如图3,等腰梯形 ABCD 中, AD∥ BC, AB∥ DE, BC= 8, AB= 6, AD=5 则△ CDE周长___。

10、正方形的对称轴有___条11、如图 4, BD 是□ ABCD 的对角线,点E、 F 在 BD 上,要使四边形AECF是平行四边形,还需增添的一个条件是______12 、要从一张长为40cm,宽为 20cm 的矩形纸片中,剪出长为18cm,宽为 12cm 的矩形纸片,最多能剪出______张。

二、选择题13 、在□ ABCD中,∠ A:∠ B:∠ C:∠ D 的值能够是()A、1: 2: 3: 4B、1:2: 2:1C、2: 2: 1: 1D、2:1:2:114 、菱形和矩形必定都拥有的性质是()A、对角线相等B、对角线相互垂直C、对角线相互均分D、对角线相互均分且相等15 、四边形 ABCD 的对角线 AC、 BD 交于点 O,能判断它是正方形的是()A、 AO= OC, OB= ODB、 AO= BO= CO= DO, AC⊥ BDC、 AO= OC, OB= OD, AC⊥ BDD、 AO= OC=OB= OD16 、给出以下四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线均分一个内角的平行四边形是菱形⑶两条对角线相互垂直的矩形是正方形( 4) D. 菱形的相邻两边能够经过旋转而相互获得此中正确命题的个数为()A、1 个B、2 个C、3个D、4 个17、以下矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是()中点中点中点A B C D三、解答题18.以下图所示是一块平行四边形木板的表示图,能不可以用一条直线把这块木板分红面积相等的两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形练习题及答案一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b-(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.如图,在边长为5的正方形ABCD 中,以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形的个数为( )A .3B .4C .5D .6 3.将个边长都为1cm 的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D .4.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .1325.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m6.如图,ABCD 中,对角线,AC BD 交于点O ,2BD AD =,, , E F G 分别是,OC OD ,AB 的中点.下列结论正确的是( )①EG EF =;②EFG GBE ≌△△;③FB 平分EFG ;④EA 平分GEF ∠;⑤四边形BEFG 是菱形.A .③⑤B .①②④C .①②③④D .①②③④⑤7.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .28.如图,平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,且AB AE =,延长AB 与DE 的延长线交于点F ,连接AC ,CF .下列结论:①ABC EAD ∆∆≌;②ABE ∆是等边三角形;③AD BF =;④BEF ACD S S ∆∆=;⑤CEF ABE S S ∆∆=中正确的有( )A .1个B .2个C .3个D .4个9.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于O ,2BD AD =,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①BE AC ⊥;②EG GF =;③EFG GBE ∆∆≌;④EA 平分GEF ∠;⑤四边形BEFG 是菱形.其中正确的是( )A .①②③B .①③④C .①②⑤D .②③⑤10.已知菱形ABCD 的面积为3,对角线AC 的长为3BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A .3B .2C .23D .4二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.14.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.15.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.18.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+3BD 的长为___________.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..23.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC 等于多少度时,四边形OCFD 为菱形?请说明理由.24.如图,四边形OABC 中,BC ∥AO ,A (4,0),B (3,4),C (0,4).点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)当t 为何值时,四边形BNMP 为平行四边形?(2)设四边形BNPA 的面积为y ,求y 与t 之间的函数关系式.(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.25.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠= 又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .26.如图①,已知正方形ABCD 的边长为3,点Q 是AD 边上的一个动点,点A 关于直线BQ 的对称点是点P ,连接QP 、DP 、CP 、BP ,设AQ =x .(1)BP +DP 的最小值是_______,此时x 的值是_______;(2)如图②,若QP 的延长线交CD 边于点M ,并且∠CPD =90°.①求证:点M 是CD 的中点;②求x 的值.(3)若点Q 是射线AD 上的一个动点,请直接写出当△CDP 为等腰三角形时x 的值.27.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG =,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.28.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.29.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF 的值是_____________(结果用含n 的式子表示).30.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过小正方形的边长表示出大正方形的边长,再利用a 、b 为正整数的条件分析求解.【详解】解:由题意可知,212a a AD b b=⨯+⨯=∴(42)(42a a b ---=∵a 、b 都是正整数∴4a - =0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a 、b 是关键.2.C解析:C【分析】分别以3为底和以3为腰构造等腰三角形即可.注意等腰三角形的大小不同.【详解】①以A 为圆心,以3为半径作弧,交AD 、AB 两点,连接即可,此时三角形为腰为3的等腰三角形;②连接AC ,在AC 上,以A 为端点,截取1.5个单位,过这个点作AC 的垂线,交AD 、AB 两点,连接即可理由如下:∵四边形ABCD 为正方形,∴∠BAC=∠DAC=45°,∵EF⊥AC∴△AEH 与△AHF 为等腰直角三角形∴EF=EH+FH=AH+AH=3.且故△AEF 为底为3的等腰三角形;③以A 为端点在AB 上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC 一个点,连接即可,此时三角形为腰为3的等腰三角形;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;理由如下:与②同理可证EF=3,且EC=FC,在△DEC和△DFC中,∵AC=AC,∠ACE=∠ACF,EC=FC∴△DEC≌△DFC∴AE=AF,故△AEF为底为3的等腰三角形.⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可根据垂直平分线上的点到线段两端距离相等,三角形为底为3的等腰三角形.故满足条件的所有图形如图所示:故选C.【点睛】本题考查作图——应用与设计作图, 等腰三角形的性质与判定, 勾股定理, 正方形的性质. 明确等腰三角形的性质是解答本题的关键.3.B解析:B【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.由此即可解答.【详解】由题意可得一个阴影部分面积等于正方形面积的,即一个阴影部分的面积为如图,5个这样的正方形重叠部分(阴影部分)的面积和为×4,∴n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1),∴2019个正方形重叠形成的重叠部分的面积和为×(2019-1)=.故选B.【点睛】本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.4.B解析:B【解析】【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则3432CH AB ==,4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠=,ABC ∆∴为等边三角形,3432CH AB ∴==,4AH BH ==, 3PB =,1HP ∴=,在Rt CHP ∆中,32(43)17CP =+=,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选:B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.5.C解析:C【解析】设正方形O 3KJP 的边长为a ,根据正方形的性质知:O 3O 4=22a , 正方形O 2IHJ 的边长为2a ,O 2O 3=2a ,正方形O 1GFH 的边长为4a ,O 1O 2=22a ,正方形OCDF 的边长为8a ,OO 1=42a ,∵AO=2OO 1=82am , ∴22a+2a+22a+42a+82a=312, 解得:a=2m ,∴FD=8a=16m , ∴长方形花坛ABCD 的周长是2×(2FD+CD )=6FD=96m ,故选C .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线与边长的关系,正方形的中心到顶点的距离等于到边的距离的2倍,熟记性质是解题的关键.6.B解析:B【分析】由中点的性质可得出//EF CD ,且12EF CD BG ,结合平行即可证得②结论成立,由2BD BC =得出BO BC =,即而得出BE AC ⊥,由中线的性质可知//GP BE ,且12GP BE ,AO EO =,通过证APG EPG 得出AG EG EF 得出①成立,再证GPE FPE 得出④成立,此题得解.【详解】解:令GF 和AC 的交点为点P ,如图E 、F 分别是OC 、OD 的中点,//EF CD ∴,且12EF CD =, 四边形ABCD 为平行四边形,//AB CD ∴,且AB CD =,//AB EF ∴FEG BGE (两直线平行,内错角相等),点G 为AB 的中点, 1122BG AB CD FE ,在EFG ∆和GBE ∆中,BG FE FEG BGE GE EG ,()EFGGBE SAS ,即②成立, EGF GEB ,FE BG ,//GF BE (内错角相等,两直线平行),2BD BC =,点O 为平行四边形对角线交点,12BO BD BC ,E 为OC 中点, BE OC ∴⊥, GP AC ,90APG EPG//GP BE ,G 为AB 中点, P ∴为AE 中点,即AP PE =,且12GPBE , 在APG ∆和EGP ∆中,AP EP APG EPG GP GP , ()APGEPG SAS , 12AG EG AB , EG EF ∴=,即①成立,//EF BG ,//GF BE ,∴四边形BGFE 为平行四边形,GF BE ∴=, 1122GP BE GF , GPFP , GF AC ,90GPE FPE在GPE 和FPE ∆中,GP FP GPE FPE EP EP ,GPE FPE SAS,()GEP FEP,∠,即④成立,∴平分GEFEA综上所述,正确的有①②④,故选:B.【点睛】本题考查了全等三角形的判定与性质、中位线定理以及平行线的性质定理,解题的关键是利用中位线,寻找等量关系,借助于证明全等三角形找到边角相等.7.B解析:B【分析】①③利用正方形的性质、翻折不变性即可解决问题;②构造全等三角形即可解决问题;④如图2,过B作BQ⊥PH,垂足为Q.证明△ABP≌△QBP(AAS),以及△BCH≌△BQH 即可判断;⑤利用特殊位置,判定结论即可;【详解】解:根据翻折不变性可知:PE=BE,故①正确;∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH−∠EPB=∠EBC−∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∠,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∠APB=∠BPH,∠A=∠BQP,BP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)∴QH=HC,∴PH=PQ+QH=AP+HC,故④正确;当点P与A重合时,显然MH>MF,故⑤错误,故选:B.【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.8.C解析:C【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF ,⑤正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴△ABE 是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE ,BC=AD ,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB=CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确;若AD 与AF 相等,即∠AFD=∠ADF=∠DEC ,即EC=CD=BE ,即BC=2CD ,题中未限定这一条件,∴③④不一定正确;故选C .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.9.B解析:B【分析】由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.【详解】解:∵四边形ABCD是平行四边形∴BO=DO=12BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E 是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=12 CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=12AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=12 AB,∴∠BAC=30°与题意不符合,故⑤错误故选:B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.10.C解析:C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423-CD CM-=故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.二、填空题11.5【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中,5考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴22(AC+CP),当AC=2,CP=CD=1时,OC=2×(2+1)=2,当AC=2,CP=CB=5时,OC=2×(2+5)=2,∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长=2-2.故答案为点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.13.4:9【分析】设DP =DN =m ,则PN m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN m ,∴m=MC ,,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14.4【分析】根据三个角都是直角的四边形是矩形,得四边形AEPF 是矩形,根据矩形的对角线相等,得EF =AP ,则EF 的最小值即为AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角三角形ABC 斜边上的高.【详解】解:连接AP ,∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP ,∵AP 的最小值即为直角三角形ABC 斜边上的高,设斜边上的高为h ,则S △ABC =1122BC h AB AC ⋅=⋅ ∴1153422h ⨯⋅=⨯⨯ ∴h=2.4,∴EF 的最小值为2.4,故答案为:2.4.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.15.72;【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=故答案为.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.16.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可17.10+55【分析】取DE 的中点N ,连结ON 、NG 、OM .根据勾股定理可得55NG =.在点M 与G 之间总有MG ≤MO+ON+NG (如图1),M 、O 、N 、G 四点共线,此时等号成立(如图2).可得线段MG 的最大值.【详解】如图1,取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM=12AB =5. 同理ON =5.∵正方形DGFE ,N 为DE 中点,DE =10,∴222210555NG DN DG ++===.在点M 与G 之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG 的大小为定值,只要∠DON=12∠DNG,且M 、N 关于点O 中心对称时,M 、O 、N 、G 四点共线,此时等号成立,∴线段MG 取最大值5故答案为:5【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M 、O 、N 、G 四点共线,则线段MG 长度的最大是解题关键.18.(-2,0)【分析】先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,∴对角线的交点D 的坐标是(2,2), ∴22222OD =+=将菱形绕点O 以每秒45︒的速度逆时针旋转,旋转1次后坐标是(0,22),旋转2次后坐标是(-2,2),旋转3次后坐标是(-2,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-22旋转6次后坐标是(2,-2),旋转7次后坐标是(2,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,22由此得到点D 旋转后的坐标是8次一个循环,∵201982523÷=,∴第2019秒时,菱形两对角线交点D 的坐标为(-2,0)故答案为:(-220).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.20.答案不唯一,例AC=BD 等【分析】连接AC 、BD ,先证明四边形ABCD 是平行四边形,再根据菱形的特点添加条件即可.【详解】连接AC ,∵点E 、F 分别是AB 、BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AC ,EF=12AC ,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,连接BD,同理EH=FG,EF∥FG,当AC=BD时,四边形EFGH是平行四边形,故答案为:答案不唯一,例AC=BD 等.【点睛】此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.三、解答题21.(1)AG2=GE2+GF2,理由见解析;(2326+【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,3,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(3x)2,解得62-,推出62+BG=BN÷cos30°即可解决问题.【详解】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG 2=GF 2+GE 2.(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x ,MN=3x , 在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x 2+(2x+3x )2,解得x=624-, ∴BN=624+, ∴BG=BN÷cos30°=3266+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.22.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,3【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC ∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥ ∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-= ∴222725213AD AH DH ++=∴132221321326322AFD ADEF S S ∆==⨯⨯=菱形 【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB ≌△FAC 是解本题的关键.23.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,。

相关文档
最新文档