大学物理(下)练习题

合集下载

大学物理下习题册答案详解

大学物理下习题册答案详解

解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )

大学物理考卷答案(下学期)

大学物理考卷答案(下学期)

大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。

2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。

3. 惠更斯原理是研究______现象的重要原理。

4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。

5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。

6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。

7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。

8. 光的折射率与光的传播速度成______比。

9. 一个电子在电场中受到的电势能变化量为______。

大学物理(下)习题

大学物理(下)习题
定义电偶极矩为: P ql e
E
Q
E
r
l
Pe
r l

r
2
l /4
2

3/2
E
r
3
p 4 π 0 r
3
q
q
结论:电偶极子中垂线上,距离中心较远处一点
的场强,与电偶极子的电矩成正比,与该点离中心 的距离的三次方成反比,方向与电矩方向相反。
当r R 高斯面内电荷为 0
高斯面 E 0
均匀带电球壳
rR
高斯面
结果表明:
Q
均匀带电球壳外的场强 分布正像球面上的电荷 都集中在球心时所形成 的点电荷在该区的场强 分布一样。在球面内的 场强均为零。
R
r
例5:求无限大均匀带电平板的场强分布。
设面电荷密度为 e 。
解:由于电荷分布对于求场点 p到平面的垂线 op 是对称的, 所以 p 点的场强必然垂直于该 平面。
3 rR Q E r r 3 1 3 1 3 0 r1 4π 0 r1
r1 R
Q
E
r 1 Q E r2 r 3 2 3 0 4π 0 R
r2 R
r
R
例4:均匀带电的球壳内外的场强分布。 设球壳半径为 R,所带总电量为 Q。 解:场源的对称性决定着场强分布的对称性。
需注意方向:
A

C
B

由图可知,在A 区和B区场强均为零。C 区场强 的方向从带正电的平板指向带负电的平板。 场强大小为一个带电平板产生的场强的两倍。

2 0
EC E E 2

0
A

大学物理(第五版)下册

大学物理(第五版)下册

第9、10章振动与波动习题一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F =(B) abx F -=(C) b ax F +-=(D) a bx F /-=2. 如图4-1-5所示,一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T3. 在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是 [ ] (A) 表征了简谐振子t 时刻所在的位置 (B) 表征了简谐振子t 时刻的振动状态 (C) 给出了简谐振子t 时刻加速度的方向(D) 给出了简谐振子t 时刻所受回复力的方向角, 然后放手任其作微4. 如图4-1-9所示,把单摆从平衡位置拉开, 使摆线与竖直方向成小的摆动.若以放手时刻为开始观察的时刻, 用余弦函数表示这一振动,则其振动的初相位为[ ] (A) (B) 2π或π23(C) 0 (D) π5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为 [ ] (A) π (B)π32 (C) π34(D) π54 6. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x .则在2Tt =(T 为振动周期)时, 质点的速度为 [ ] (A) ϕωsin A - (B) ϕωsin A (C) ϕωcos A - (D) ϕωcos A7. 一物体作简谐振动, 其振动方程为)4πcos(+=t A x ω.则在2Tt = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 223ωA8. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A)6T (B) 8T (C) 12T(D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 010. 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2Ax =处向x 轴正方图4-1-9图4-1-5向运动, 则其运动方程可表示为[ ] (A) )21cos(t A x ω= (B))cos(2t A x ω= (C) )3π2sin(--=T t A x ω (D))3π2cos(-=T t A x ω11. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ] (A) ν4(B) ν2(C) ν (D)2ν 12. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值一半的位置是 [ ] (A)(B)(C)(D)3. 简谐振动的振幅由哪些因素决定?[ ] (A) 谐振子所受的合外力 (B) 谐振子的初始加速度 (C) 谐振子的能量和力常数(D) 谐振子的放置位置14. 如果两个同方向同频率简谐振动的振动方程分别为π)433cos(73.11+=t x (cm)和π)413cos(2+=t x (cm),则它们的合振动方程为[ ] (A) π)433cos(73.0+=t x (cm) (B) π)413cos(73.0+=t x (cm) (C) π)1273cos(2+=t x (cm) (D) π)1253cos(2+=t x (cm) 15. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为 [ ] (A)2π (B) 3π2 (C) 4π (D) π 16. 将一个弹簧振子分别拉离平衡位置1 cm 和2 cm 后, 由静止释放(弹簧形变在弹性范围内), 则它们作谐振动的[ ] (A)周期相同 (B) 振幅相同 (C) 最大速度相同 (D) 最大加速度相同17. 关于振动和波, 下面几句叙述中正确的是 [ ] (A) 有机械振动就一定有机械波 (B) 机械波的频率与波源的振动频率相同(C) 机械波的波速与波源的振动速度相同(D) 机械波的波速与波源的振动速度总是不相等的18. 下列函数f ( x , t )可以用来表示弹性介质的一维波动, 其中a 和b 是正常数.则下列函数中, 表示沿x 轴负方向传播的行波是[ ] (A))sin(),(bt ax A t x f +=(B) )sin(),(bt ax A t x f -= (C) )cos()cos(),(bt ax A t x f =(D) )sin()sin(),(bt ax A t x f =19. 已知一列机械波的波速为u , 频率为ν, 沿着x 轴负方向传播.在x 轴的正坐标上有两个点x 1和x 2.如果x 1<x 2 , 则x 1和x 2的相位差为 [ ] (A) 0 (B))(π221x x u -ν (C) π (D) )(π212x x u-ν20. 已知一平面余弦波的波动方程为)01.05.2π(cos 2x t y -=, 式中 x 、y 均以cm 计.则在同一波线上, 离x =5cm 最近、且与 x = 5cm 处质元振动相位相反的点的坐标为[ ] (A) 7.5 cm (B) 55 cm (C) 105 cm (D) 205 cm21. 若一平面简谐波的波动方程为)cos(cx bt A y -=, 式中A 、b 、c 为正值恒量.则 [ ] (A) 波速为c (B) 周期为b 1 (C) 波长为c π2 (4) 角频率为bπ2 22. 一平面简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] (A) 方向总是相同 (B) 方向有时相同有时相反 (C) 方向总是相反 (D) 大小总是不相等23. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如图4-1-56所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]24. 平面简谐机械波在弹性介质中传播时, 在传播方向上某介质元在负的最大位移处, 则它的能量是 [ ] (A) 动能为零, 势能最大 (B) 动能为零, 势能为零 (C) 动能最大, 势能最大 (D) 动能最大, 势能为零25. 有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波 [ ] (A) 是相干波 (B) 相干后能形成驻波 (C) 是非相干波 (D) 以上三种情况都有可能26. 已知两相干波源所发出的波的相位差为 , 到达某相遇点P 的波程差为半波长的两倍, 则P 点的合成情况是[ ] (A) 始终加强 (B) 始终减弱(C) 时而加强, 时而减弱, 呈周期性变化(D) 时而加强, 时而减弱, 没有一定的规律27. 两列完全相同的余弦波左右相向而行, 叠加后形成驻波.下列叙述中, 不是驻波特性的是 [ ] (A) 叠加后, 有些质点始终静止不动 (B) 叠加后, 波形既不左行也不右行(C) 两静止而相邻的质点之间的各质点的相位相同(D) 振动质点的动能与势能之和不守恒28. 平面正弦波)π3π5sin(4y t x +=与下面哪一列波相叠加后能形成驻波?[ ] (A) )2325π(2sin 4x t y += (B) )2325π(2sin 4x t y -= (C) )2325π(2sin 4y t x += (D) )2325π(2sin 4yt x -=二、填空题AωsD ωsω-ω-s图4-1-561. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A . (1) 若t =0 时质点过x =0处且向x 轴正方向运动,则振动方程为x =.(2) 若t =0时质点在2Ax =处且向x 轴负方向运动,则质点方程为x =. 2. 一质点沿x 轴作简谐振动, 其振动方程为: π)31π2cos(4-=t x (cm).从t =0时刻起, 直到质点到达2-=x cm 处、且向x 轴正方向运动的最短时间间隔为.3. 一个作简谐振动的质点,其谐振动方程为π)23cos(π1052+⨯=-t x (SI).它从计时开始到第一次通过负最大位移所用的时间为.4. 一质点作简谐振动, 频率为2Hz .如果开始时质点处于平衡位置, 并以-1s m π⋅的速率向x 轴的负方向运动, 则该质点的振动方程为.5. 一谐振动系统周期为0.6s, 振子质量为200g .若振子经过平衡位置时速度为-1s cm 12⋅,则再经0.2s 后该振子的动能为.6.劲度系数为100N ⋅m -1的轻质弹簧和质量为10g 的小球组成一弹簧振子.第一次将小球拉离平衡位置4cm, 由静止释放任其振动; 第二次将小球拉离平衡位置2cm 并给以2m.s -1的初速度任其振动.这两次振动的能量之比为.为-1m N 40⋅的竖直放7. 如图4-2-9所示,将一个质量为20g 的硬币放在一个劲度系数置的弹簧上, 然后向下压硬币使弹簧压缩 1.0cm, 突然释放后, 这个硬币将飞离原来位置的高度为.8. 质量为0.01 kg 的质点作简谐振动, 振幅为0.1m, 最大动能为0.02 J .如果开始时质点处于负的最大位移处, 则质点的振动方程为.9 一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐运动,物体和水平木板之间的静摩擦系数50.0=s μ,物体在木板上不滑动的最大振幅max A =.10. 如果两个同方向同频率简谐振动的振动方程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为.11. 已知由两个同方向同频率的简谐振动合成的振动,其振动的振幅为20 cm, 与第一个简谐振动的相位差为6π.若第一个简谐振动的振幅为cm 3.17cm 310=, 则第二个简谐振动的振幅为cm ,两个简谐振动的相位差为.12. 已知一平面简谐波的方程为: )π(2cos λνxt A y -=, 在ν1=t 时刻λ411=x 与λ432=x 两点处介质质点的速度之比是.13. 已知一入射波的波动方程为)4π4πcos(5xt y +=(SI), 在坐标原点x = 0处发生反射, 反射端为一自由端.则对于x = 0和x = 1 m 的两振动点来说, 它们的相位关系是相位差为.14. 有一哨子, 其空气柱两端是打开的, 基频为5000 Hz, 由此可知,此哨子的长度最接近cm .图4-2-915. 已知一平面简谐波沿x 轴正向传播,振动周期T = 0.5 s ,波长λ = 10 m , 振幅A = 0.1m .当t = 0时波源振动的位移恰好为正的最大值.若波源处为原点,则沿波传播方向距离波源为2λ处的振动方程为.当2T t =时,4λ=x 处质点的振动速度为.16. 图4-2-20表示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为 0.2 m ,周期为4s .则图中P 点处质点的振动方程为.17. 一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π2cos 11=.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为()ππ2cos 22+=t A y .P 点与B 点相距0.40 m ,与C 点相距0.50 m ,如图4-2-21所示.波速均为u =0.20 m ⋅s -1.则两波在P 的相位差为.18. 如图4-2-22所示,一平面简谐波沿Ox 轴正方向传播,波长为λ,若1P 点处质点的振动方程为)π2cos(1ϕν+=t A y ,则2P 点处质点的振动方程为,与1P 点处质点振动状态相同的那些点的位置是.19. 两相干波源1S 和2S 的振动方程分别是t A y ωcos 1=和π)21(cos 2+=t A y ω.1S 距P 点3个波长,2S 距P 点421个波长.两波在P 点引起的两个振动的相位差的绝对值是.20. 如图4-2-26所示,1S 和2S 为同相位的两相干波源,相距为L ,P 点距1S 为r ;波源1S 在P 点引起的振动振幅为1A ,波源2S 在P 点引起的振动振幅为2A ,两波波长都是λ,则P 点的振幅A =. 三、计算题1. 一质量为10 g 的物体在x 方向作简谐振动,振幅为24 cm ,周期为4 s .当t =0时该物体位于x = 24 cm 处.求:(1) 当t =0.5 s 时物体的位置及作用在物体上力的大小.(2) 物体从初位置到x =-12 cm 处所需的最短时间,此时物体的速度. 系数k =241-m N ⋅,重2. 如图 4-3-5所示,有一水平弹簧振子,弹簧的劲度力F =10 N 向左作用物的质量m =6 kg .最初重物静止在平衡位置上,一水平恒此时撤去力F .当重物于物体,(不计摩擦),使之由水平位置向左运动了0.05 m ,运动到左方最远位置时开始计时,求该弹簧振子的运动方程.3. 如图4-3-12所示,一质点作简谐振动,在一个周期内相继通过距离为12cm 的两点A 、B ,历时2s ,并且在A、B 两点处具有相同的速度;再经过2 s 后,质点又从另一方向通过B点.试求质点运动的周期和振幅.4. 有两个振动方向相同的简谐振动,其振动方程分别为图4-3-5图4-3-12A图4-2-20图4-2-21PB1r 2r ...C12图4-2-26x12图4-2-22(cm)2ππ2cos 3(cm)π)π2cos(421⎪⎭⎫⎝⎛+=+=t x t x (1)求它们的合振动方程;(2)另有一同方向的简谐振动(cm))π2cos(233ϕ+=t x ,问当3ϕ为何值时,31x x +的振幅为最大值?当3ϕ为何值时,31x x +的振幅为最小值?5. 一简谐波,振动周期21=T s ,波长λ =10m ,振幅A = 0.1m. 当t = 0时刻,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) 41T t =时刻,41λ=x 处质点的位移; (3) 42T t =时刻,41λ=x 处质点振动速度.6 已知一平面简谐波的方程为(SI))24(πcos x t A y +=(1) 求该波的波长λ,频率ν和波速度u 的值;(2) 写出t = 4.2s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置; (3) 求t = 4.2s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .7. 有一平面波沿x 轴负方向传播,s 1=t 时的波形如图4-3-23所示,波速1s m 2-⋅=u ,求该波的波函数. 8. 一弦上的驻波方程式为 I)(S )π550cos()π6.1cos (1000.32t x y -⨯=(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两列波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求s 1000.33-⨯=t 时,位于m 625.0=x 处质点的振动速度. 9. 一沿弹性绳的简谐波的波动方程为⎪⎭⎫⎝⎛-=210π2cos x t A y (SI),波在m 11=x 的固定端反射.设传播中无能量损失,反射是完全的.试求:(1) 该简谐波的波长和波速; (2) 反射波的波动方程;(3) 驻波方程,并确定波节的位置.第11章光学练习题一、 选择题11. 如图所示,用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为 , 此时屏上原来的中央明纹处被第三级明纹所占据, 则该介质的厚度为 [] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ17. 如图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[] (A) 条纹间距减小(B) 条纹间距增大(C) 整个条纹向上移动(D) 整个条纹向下移动18. 如图所示,在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [] (A) 条纹间距增大(B)整个干涉条纹将向上移动(C) 条纹间距减小(D) 整个干涉条纹将向下移动26. 如图(a)所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)右边条纹的直线部分的切线相切.则工件的上表面缺陷是[] (A) 不平处为凸起纹,最大高度为500 nm(B) 不平处为凸起纹,最大高度为250 nm (C) 不平处为凹槽,最大深度为500 nm (D) 不平处为凹槽,最大深度为250 nm 43. 光波的衍射现象没有声波显著, 这是由于 [] (A) 光波是电磁波, 声波是机械波(B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多53. 在图所示的单缝夫琅禾费衍射实验中,将单缝K[] (A)衍射条纹移动,条纹宽度不变 (B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽(D) 衍射条纹不动,条纹宽度不变54. 在图所示的单缝夫琅禾费衍射实验中,将单缝宽度a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将 [] (A)变窄,同时上移(B) 变窄,同时下移 (C) 变窄,不移动(D) 变宽,同时上移55. 在图所示的单缝夫琅禾费衍射实验中,将单缝宽度a 稍稍变窄,同时使汇聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[] (A)变宽,同时上移(B) 变宽,同时下移(C)变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300nm 、中心间距为900nm 的缝构成, 当波长为600nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为[] (A) 2条 (B) 3条(C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ= 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[] (A) 1 (B) 2 (C) 3 (D) 483. 如图所示,起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为 [ ] (A) 0(B)2I(C)8I(D) 以上答案都不对84. 如图所示,一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为80II =.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90° 86. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为 [ ] (A) 光强单调增加(B) 光强先增加,后又减小至零 (C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 1. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[] (A) 传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相2. 真空中波长为 的单色光, 在折射率为n 的均匀透明介质中从a 点沿某一路径传到b 点.若a 、b 两点的相位差为π3,则此路径的长度为[] (A)n23λ (B)nλ3 (C)λ23(D) λn 233. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及[] (A) 传播方向相同 (B) 振幅相同 (C) 振动方向相同 (D) 位置相同4. 如图所示,有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是[] (A) 玻璃劈形膜(B) 空气劈形膜I AC I1P 3P 2P(C) 两劈形膜干涉条纹间距相同 (D) 已知条件不够, 难以判定5. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[] (A) 明纹间距逐渐减小, 并背离劈棱移动 (B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动6. 牛顿环实验中, 透射光的干涉情况是[] (A) 中心暗斑, 条纹为内密外疏的同心圆环 (B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环7. 若用波长为 的单色光照射迈克耳孙干涉仪, 并在迈克耳孙干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为[] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-8. 如图12-1-44所示,波长为 的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中,[](A) na f λ(B) na f λ(C) naf λ2(D) anf λ29. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小10. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3, 6, 9, …等级次的主极大均不出现.[] (A) a b a 2=+ (B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+11. 自然光以 60的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为 30 (B) 折射光为部分线偏振光,折射角为 30 (C) 折射光为线偏振光,折射角不能确定 (D) 折射光为部分线偏振光,折射角不能确定 12. 关于光的干涉,下面说法中唯一正确的是[](A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ(B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ(C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ(D) 牛顿干涉圆环属于分波振面法干涉 二、 填空题1. 如图12-2-1所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是2. 真空中波长 = 400 nm 的紫光在折射率为 n =1.5 的介质中从A 点传到B 点时, 光振动的相位改变了5 , 该光从A 到B 所走的光程为.4. 如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ____________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm.6. 将一块很薄的云母片(n = 1.58)覆盖在杨氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ= 550nm,则该云母片的厚度为___________. 9. 如图所示,在玻璃(折射率n 3 = 1.60)表面镀一层MgF 2(折射n 2=1.38)薄膜作为增透膜.为了使波长为500nm 的光从空气(折射率n 1=1.00)正入射时尽可能减少反射,MgF 2膜的最小厚度应是.10. 用白光垂直照射厚度e =350nm 的薄膜,若膜的折射率n 2=1.4 ,薄膜上面的介质折射率为n 1,薄膜下面的介质折射率为n 3,且n 1<n 2<n 3.则透射光中可看到的加强光的波长为.14. 波长为λ的平行单色光垂直地照射到劈尖薄膜上,劈尖薄膜的折射率为n ,第二级明纹与第五条明纹所对应的薄膜厚度之差是 _____________. 15. 两玻璃片中夹满水(水的折射率34=n )形成一劈形膜, 用波长为λ的单色光垂直照射其上, 若要使某一条纹从明变为暗, 则需将上面一片玻璃向上平移.22. 若在迈克耳孙干涉仪的可动反射镜M 移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为.23. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明介质薄片,放入后,这条光路的光程改变了.25. 如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为 30=ϕ的方位上,所用的单色光波长为nm 500=λ,则单缝宽度为.26. 一束平行光束垂直照射宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 mm 的汇聚透镜.已知位于透镜焦平面处的中央明纹的宽度为2.0 mm ,则入射光波长约为.29 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第三个暗条纹中心相对应的半波带的数目是__________.30. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第三级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P 点处将是_________级________纹.36. 一衍射光栅, 狭缝宽为a , 缝间不透明部分宽为b .当波长为600 nm 的光垂直照射时, 在某一衍射角ϕ处出现第二级主极大.若换为400nm 的光垂直入射时, 则在上述衍射角ϕ处出现缺级, b 至少是a 的倍.38. 已知衍射光栅主极大公式(a +b ) sin ϕ=±k λ,k =0,1,2, ….在k =2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差∆=_____________.40. 当自然光以58︒角从空气射入到玻璃板表面上时, 若反射光为线偏振光, 则透射光的折射角为_________. 41. 一束自然光入射到空气和玻璃的分界面上, 当入射角为60︒时反射光为完全偏振光, 则此玻璃的折射率为_________.44. 一束由自然光和线偏振光组成的混合光,让它垂直通过一偏振片.若以此入射光束轴旋转偏振片,测得透射光强度的最大值是最小值的7倍;那么入射光束自然光和线偏振光的光强比为_____________ 三、 计算题8. 用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?13. 图12-3-13所示为一牛顿环装置,设平凸透镜中心恰好与平玻璃接触,透镜凸表面的曲率半径是R =400cm .用单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长;(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.18. 在某个单缝衍射实验中,光源发出的光含有两种波长1λ和2λ,并垂直入射于单缝上.假如1λ的第一级衍射极小与2λ的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?19. 某种单色平行光垂直地入射在一单缝上, 单缝的宽度a = 0.15mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.30. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a = 2⨯10-3 cm ,在光栅后方一焦距f = 1m 的凸透镜.现以nm 600=λ的单色平行光垂直照射光柵,求:(1) 透光缝a 的单缝衍射中央明区条纹宽度; (2)在透光缝a 的单缝衍射中央明纹区内主极大条数.31.波长λ= 600nm 的单色光垂直入射到一光柵上,测得第二级主级大的衍射角为30o ,且第三级是缺级. (1) 光栅常量(a +b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a +b )和a 之后,求在屏幕上可能呈现的全部主极大的级次.36 两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?第13章 热力学基础一、选择题2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外做的功也不一样 (D) 系统具有的能量等于系统对外做的功5. 理想气体物态方程在不同的过程中有不同的微分表达式, 式T R MmV p d d 表示 [ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程 9. 热力学第一定律表明[ ] (A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等体膨胀 (C) 等压膨胀 (D) 绝热膨胀13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p .一次是等温压缩到2V, 外界做功A ;另一次为绝热压缩到2V, 外界做功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较19. 同一种气体的摩尔定压热容大于摩尔定容热容, 其原因是 [ ] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要做功 (D) 分子引力不同28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2.在上述三过程中, 气体的 [ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时, 绝热压缩比等温压缩的终。

大学物理(下)练习题

大学物理(下)练习题

大学物理(下)练习题第十章10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。

解:此题可利用运动电荷产生的磁场计算,也可利用圆电流产生的磁场计算。

以下根据圆电流在轴线产生的磁感应强度来计算的。

如图电荷dq 旋转在O 处产生的磁感应强度为3202R dIr dB μ=3202)sin (2RR Rd θπωθλμ= ⎰πθθπλωμ=020sin 4d B 240ππλωμ=80λωμ= RQπωμ=80 方向沿轴线向上。

10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。

试求轴线上长直导线单位长度所受的磁力。

解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有θππμ==Rd R IR I BldI dF 20θπμ=d RI 2202=θ=⎰sin dF F θθπμ⎰πd RI 0220sin 2 RI 220πμ=习题 10-8图习题 10-15图x10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。

解:此电流结构如图,对称分析可知,合力沿x 轴负向,有r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d II cos 2210=θ=⎰cos dF F θθθπμ=⎰πd I I cos cos 220210⎰πθπμ=202102d II 210I μ=10-19一半径为R 的薄圆盘,放在磁感应强度为B的均匀磁场中,B 的方向与盘面平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。

解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为rdr r rdrr dI dm σω=ππωπσ=π=2222 整个圆盘的磁矩为44R rdr dm m Rσωπ=σω==⎰⎰作用在圆盘上的磁力矩为B m M ⨯====mB mB M 090sin B R 44σωπ,方向垂直纸面向里。

大学物理下考试题及答案

大学物理下考试题及答案

大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。

江西理工大学大学物理(下)习题册及答案详解

江西理工大学大学物理(下)习题册及答案详解

班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。

求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。

解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。

大学物理下复习题(附答案)

大学物理下复习题(附答案)

大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。

()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。

()错电荷电量是量子化的。

()对物体所带电量可以连续地取任意值。

()错物体所带电量只能是电子电量的整数倍。

()对库仑定律只适用于真空中的点电荷。

()对电场线稀疏处的电场强度小。

()对电场线稀疏处的电场强度大。

()错静电场是有源场。

()对静电场是无源场。

()错静电场力是保守力。

()对静电场力是非保守力。

()错静电场是保守力场。

()对静电场是非保守力场。

()错电势是矢量。

()错电势是标量。

()对等势面上的电势一定相等。

()对沿着电场线的方向电势降落。

()对沿着电场线的方向电势升高。

()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。

()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。

()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。

()错电荷在电场中某点受到电场力很大,该点场强E一定很大。

()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。

()对在以点电荷为中心,r为半径的球面上,场强E处处相等。

()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。

()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。

()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。

()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。

()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。

对导体达到静电平衡时,导体内部的场强处处为零。

()对第一章填空题已一个电子所带的电量的绝对值e= C。

1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。

8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。

大学物理下考试题及答案

大学物理下考试题及答案

大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。

答案:保持不变2. 电场强度的定义式为______。

答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。

答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。

答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。

答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。

在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。

2. 什么是电磁感应定律?请给出其数学表达式。

答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。

其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。

3. 简述热力学第一定律的内容。

答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。

大学物理习题下(完整版)

大学物理习题下(完整版)

物理(下)作业专业班级:姓名:学号:第十章真空中的静电场(1)一、选择题1、根据电场强度定义式0/q F E(0q 为正的实验点电荷),下列说法中哪个是正确的?(A)、若场中某点不放实验电荷0q ,则F =0,从而E=0;(B)、电场中某点场强的大小与实验点电荷q 0的大小成反比;(C)、电场中某点场强的方向,就是正电荷在该点所受电场力的方向;(D)、以上说法都不正确。

[]2、如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)xq04 ;(B)30xqa;(C)302xqa;(D)204xq 。

[]3、(2010年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互作用力为F ,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变为:(A)F/2;(B)F/4;(C)3F/8;(D)F/10.[]二、填空题1、一电量为–5×10―9C 的试验电荷放在电场中某点时,受到20×10―9N 向下的力,则该点的电场强度大小为___________________,方向__________________。

2、(2011年电子科技大学)由一根绝缘细线围成的边长为l 的正方形线框,今使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度大小E=__________________。

3、铁原子核里两质子间相距4.0×10-15米,每个质子的电荷都是1.6×10-19库仑,则它们之间的库仑力应为______________牛顿。

三、计算题1、(2012年深圳大学)如图,在O x 轴上有长为a 的细杆OM ,其电荷线密度为Cx ,其中C为大于零的常量,求:(1)在OM 延长线上距M点为b的P点的电场强度的大小;(2)如果在P点放置一个带电量为+q 的点电荷,该点电荷所受库仑力大小为多少?2、有一半径为R的半圆细环上均匀地分布电荷Q,若在其环心处放置一电荷量为q的点电荷,求该点电荷q所受到的电场力的大小及方向。

大学物理(下)练习题及答案

大学物理(下)练习题及答案

xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。

P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。

求圆心o 处的电场强度。

3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。

求圆心O 处的电场强度。

4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。

求P 点的场强。

5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。

[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。

[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。

大学物理下册习题及答案

大学物理下册习题及答案

大学物理下册习题及答案热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示.(B)不是平衡过程,但它能用P—V图上的一条曲线表示.(C)不是平衡过程,它不能用P—V图上的一条曲线表示.(D)是平衡过程,但它不能用P—V图上的一条曲线表示. [ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程.(2)热平衡过程一定是可逆过程.(3)热平衡过程是无限多个连续变化的平衡态的连接.(4)热平衡过程在P—V图上可用一连续曲线表示.(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升.(3)冰溶解为水.(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程.(2)平衡过程一定是可逆的.(3)不可逆过程一定是非平衡过程.(4)非平衡过程一定是不可逆的.(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[ ](A)一定都是平衡态.(B)不一定都是平衡态.(C)前者一定是平衡态,后者一定不是平衡态.(D)后者一定是平衡态,前者一定不是平衡态.7、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 [ ](A)一定都是平衡过程.(B)不一定是平衡过程.(C)前者是平衡态,后者不是平衡态.(D)后者是平衡态,前者不是平衡态.8、一定量的理想气体,开始时处于压强,体积,温度分别为P1、V1、T1,的平衡态,后来变到压强、体积、温度分别为P2、V2、T2的终态.若已知V2 > V1, 且T2 = T1 , 则以下各种说法正确的是: [ ](A)不论经历的是什么过程,气体对外净做的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净做功和外界净吸热的正负皆无法判断.二、填空题:1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的.2、设在某一过程P中,系统由状态A变为状态B,如果______________________________________________________,则过程P为可逆过程;如果______________________________________________________则过程P为不可逆过程.3、同一种理想气体的定压摩尔热容C p大于定容摩尔热容C v,其原因是_____________________________________________________________________.4、将热量Q传给一定量的理想气体,(1)若气体的体积不变,则热量转化为________________________________.(2)若气体的温度不变,则热量转化为________________________________.(3)若气体的压强不变,则热量转化为________________________________.5、常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i),在等压过程中吸热为Q,对外作功为A,内能增加为ΔE,则A / Q = ____________. ΔE / Q = _____________.6、3 mol的理想气体开始时处在压强P1 = 6 at m、温度T1 = 500K的平衡态.经过一个等温过程,压强变为P2 = 3 atm.该气体在等温过程中吸收的热量为Q = _____________J.(摩尔气体常量R = 8.31 J•mol-1•K-1)7、2 mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,若该过程为准静态过程,气体吸收的热量为_________;若为不平衡过程,气体吸收的热量为___________.8、卡诺制冷机,其低温热源温度为T2 = 300 K,高温热源温度为T1 = 450 K,每一循环从低温热源吸收Q2 = 400 J.已知该制冷机的制冷系数为1212TTTAQw-==(式中A为外界对系统作的功),则每一循环中外界必须作功A = _________.三、计算题:1、有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27˚C,若经过一绝热过程,使其压强增加到16 atm .试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1 atm = 1.013×105 Pa,玻耳滋曼常数k = 1.38×10-23J•K-1摩尔气体常量R=8.31J•mol-1•K-1)2、如图所示,a b c d a为1 mol单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外做的净功;(3)证明Ta Tc = T b T d.3、一气缸内盛有一定量的单原子理想气体.若绝热压缩使其容积减半,问气体分子的平均速率为原来的几倍?热力学(二)1、理想气体向真空作绝热膨胀. [ ](A)膨胀后,温度不变,压强减小.(B)膨胀后,温度降低,压强减小.(C)膨胀后,温度升高,压强减小.(D)膨胀后,温度不变,压强不变.2、氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使他们在体积不变情况下吸收相等的热量,则 [ ](A)它们的温度升高相同,压强增加相同.(B)它们的温度升高相同,压强增加不相同.(C)它们的温度升高不相同,压强增加不相同.(D)它们的温度升高不相同,压强增加相同.3、一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2和O2.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A)H2比O2温度高.(B)O2比H2温度高.(C)两边温度相等且等于原来的温度.(D)两边温度相等但比原来的温度降低了.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Po,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是[ ](A)Po (B)Po/2 (C)2 r / Po (D)Po/2 r ( r = Cp / Cv )5、1 mol理想气体从P-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta < Tb,则这两过程中气体吸收的热量Q1和Q2的关系是 [ ](A)Q1 > Q2 > 0 (B)Q2 > Q1 > 0 (C)Q2 < Q1 < 0(D)Q1 < Q2 < 0 (E)Q1 = Q2 > 06、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子理想气体),它们的温度和压强都相等,现将5 J的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 [ ](A)6 J (B)5 J(C)3 J (D)2 J7、一定量的理想气体经历acb过程时吸热200 J.则经历acbda过程时,吸热为(A)–1200 J (B)–1000 J(C)–700 J (D)1000 J [ ]8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A / Q等于 [ ](A)1 / 3 (B)1 / 4(C)2 / 5 (D)2 / 79、如果卡诺热机的循环曲线所包围的面积从图中的a b c d a增大为a b’c’d a,那么循环ab cda与a b’c’da所作的净功和热机效率变化情况是: [ ](A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.一、填空题:1、如图所示,已知图中画不同斜线的两部分分别为S1和S2,那么(1)如果气体的膨胀过程为a—1—b,则气体对外做功A= ;(2)如果气体进行a—2—b—1—a的循环过程,则它对外做功A =2、已知1 mol的某种理想气体(可视为刚性分子),在等压过程中温度上升1 K,内能增加了20.78 J,则气体对外做功为__________,气体吸收热量为__________.3、刚性双原子分子的理想气体在等压下膨胀所作的功为A,则传递给气体的热量为___ ____________.4、热力学第二定律的克劳修斯叙述是:_________________________________________;开尔文叙述是____________________________________________.5、从统计的意义来解释:不可逆过程实质上是一个________________________________________的转变过程.一切实际过程都向着____________________________________________的方向进行.6、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边是真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_________(升高、降低或不变),气体的熵___________(增加、减小或不变).二、计算题:1、一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.2、如果一定量的理想气体,其体积和压强依照V = a / 的规律变化,其中a为已知常数.试求:(1)气体从体积V1膨胀到V2所作的功;(2)体积为V1时的温度T1与体积为V2时的温度T2之比.3、一卡诺热机(可逆的),当高温热源的温度为127°C、低温热源温度为27°C时,其每次循环对外作净功8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功10000 J.若两个卡诺循环都工作在相同的两条绝缘线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4、一定量的刚性双原子分子的理想气体,处于压强P1= 10 atm、温度T1 = 500K的平衡态,后经历一绝热过程达到压强P2 = 5 atm、温度为T2的平衡态.求T2.热力学(三)一、选择题1、设高温热源的热力学温度是低温热源的热力学温度的n倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A) n倍 (B) n–1倍(C) 倍 (D) 倍 [ ]2、一定量理想气体经历的循环过程用V-T曲线表示如题2图,在此循环过程中,气体从外界吸热的过程是(A) A→B (B) B→C(C) C→A (D) B→C和C→A [ ]3、所列题3图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]V P (A)P (B)绝热绝热C B 等温等容等容O V O 等温 VP 等压(C)P (D)A 等温绝热绝热绝热绝热O T O V O V题图题3图4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分),分割为S1和S2,则二者的大小关系是(A) S1 > S2 (B) S1 = S2(C) S1 < S2 (D) 无法确定 [ ]PS2 S1V.对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]6、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ]7、一定量的理想气体向真空作绝热自由膨胀,体积由V1增至V2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加. [ ]8、给定理想气体,从标准状态 (P0,V0,T0)开始作绝热膨胀,体积增大到3倍,膨胀后温度T、压强P与标准状态时T0、P0之关系为 (γ为比热比) [ ](A) T = ( ) r T0 ; P = ( ) r-1 P0. (B) T = ( ) r-1 T0 ; P = ( ) r P0.(C) T = ( ) -r T0 ; P = ( ) r-1 P0. (D) T = ( ) r-1 T0 ; P = ( ) -r P0.一、填空题:1、在P-V图上(1) 系统的某一平衡态用来表示;(2) 系统的某一平衡过程用来表示;(3) 系统的某一平衡循环过程用来表示.2、P-V图上的一点,代表;P-V图上任意一条曲线,表示;3、一定量的理想气体,从P-V图上状态A出发,分别经历等压、等温、绝热三种过程,由体积V1膨胀到体积V2,试画出这三种过程的P—V图曲线,在上述三种过程中:(1)气体对外作功最大的是过程;(2) 气体吸热最多的是过程;V2( 均视为刚性分子的理想气体),它们的质量比为m1:m2E1:E2 = ,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为A1:A2 = .(各量下角标1表示氢气,2表示氦气)5、质量为2.5 g的氢气和氦气的混合气体,盛于某密闭的气缸里 ( 氢气和氦气均视为刚性分子的理想气体),若保持气缸的体积不变,测得此混合气体的温度每升高1K,需要吸收的热量等于2.25 R ( R为摩尔气体常量).由此可知,该混合气体中有氢气 g,氦气 g;若保持气缸内的压强不变,要使该混合气体的温度升高1K,则该气体吸收的热量为 . (氢气的M mol = 2×10 -3 kg,氦气的M mol = 4×10 -3 kg)6、一定量理想气体,从A状态 (2P1,V1) 经历如图所示的直线过程变到B状态 (P1,2V1),则AB过程中系统作功A = ;内能改变△E = .第6题图第7题图7、如图所示,理想气体从状态A出发经ABCDA循环过程,回到初态A点,则循环过程中气体净吸的热量Q = .8、有一卡诺热机,用29kg空气为工作物质,工作在27℃的高温热源与–73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3kg·mol-1)二、计算题:1、一定量的某种理想气体,开始时处于压强、体积、温度分别为P0 = 1.2×106 P0,V0 = 8.31×10-3m3,T0 = 300K的初态,后经过一等容过程,温度升高到T1 = 450 K,再经过一等温过程,压强降到P = P0的末态.已知该理想气体的等压摩尔热容与等容摩尔热容之比C P/C V=5/3,求:(1)该理想气体的等压摩尔热容C P和等容量摩尔热容C V.(2)气体从始态变到末态的全过程中从外界吸收的热量.2、某理想气体在P-V图上等温线与绝热线相交于A点,如图,已知A点的压强P1=2×105P0,体积V1 = 0.5×10-3 m3,而且A点处等温线斜率与绝热线斜率之比为0.714,现使气体从A点绝热膨胀至B点,其体积V2 = 1×10-3 m3,求(1) B 点处的压强;(2) 在此过程中气体对外作的功.3、1 mol单原子分子的理想气体,经历如图所示的可逆循环,联结AC两点的曲线III的方程为P = P0 V2 / V20,A点的温度为T0.(1)试以T0,R表示I、II、III过程中气体吸收的热量.(2)求此循环的效率.(提示:循环效率的定义式η= 1– Q2 / Q1, Q1循环中气体吸收的热量,Q2为循环中气体放出的热量).气体动理论 (一)一、选择题:1、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1和P2,则两者的大小关系是:(A) P1 > P2 (B) P1 < P2(C) P1 = P2 (D) 不确定的. [ ]2、若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A) PV / m . (B) PV/(KT).(C) PV / (RT). (D) PV/(mT). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气质量为:[ ](A) 1 / 16 kg (B) 0.8 kg(C) 1.6 kg (D) 3.2 kg4、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态,A种气体的分子数密度为n1,它产生的压强为P1,B种气体的分子数密度为2 n1,C种气体的分子数密度为3 n1,则混合气体的压强P为(A) 3 P1 (B) 4 P1(C) 5 P1 (D) 6 P1 [ ]5、一定量某理想气体按PV2 = 恒量的规律膨胀,则膨胀后理想气体温度(A) 将升高 (B) 将降低(C) 不变 (D)升高还是降低,不能确定 [ ]6、如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大?(A)氧气的密度大. (B)氢气的密度大.(C)密度一样大. (D)无法判断. [ ]一、填空题:1、对一定质量的理想气体进行等温压缩,若初始时每立方米体积内气体分子数为1.96×1024,当压强升高到初值的两倍时,每立方米体积内气体分子数应为 .2、在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) .3、某理想气体在温度为27℃和压强为1.0×10-2 atm情况下,密度为11.3 g / m3,则这气体的摩尔质量M= .(摩尔气体常量R = 8.31 J·mol-1·K-1)mol4、在定压下加热一定量的理想气体,若使其温度升高1K时,它的体积增加了0.005倍,则气体原来的温度是 .5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1) p d V = (M / M mol) R d T表示过程.(2) V d p = (M / M mol) R d T表示过程.(3) p d V + V d p = 0 表示过程.6、氢分子的质量3.3×10 –24 g,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm·s-1的速率撞击在2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为 .7、一气体分子的质量可以根据该气体的定容比热容来计算,氩气的定容比热容Cv = 0.314 kJ·kg-1·K-1,则氩原子的质量m = .(1 k c a l = 4.18×103 J)8、分子物理是研究的学科,它应用的基本方法是方法.9、解释下列分子运动论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:;二、计算题:1、黄绿光的波长是5000 Å (1 Å =10-10m),理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻耳兹曼常量k = 1.38×10 -23J·K-1)2、两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示,当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央,试问,当左边容器温度由0℃增到5℃,而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?3、假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T相等.试根据玻璃尔兹曼分布律计算大气层分子的平均重力势能εp.(已知积分公式 X n e -ax d x = n !/ a n+1)热力学(一) (答案)一、 1.C 2.B 3.D 4.D 5.A 6.B 7.B 8.D二、 1.物体作宏观位移,分子之间的相互作用.2.能使系统进行逆向变化,回复状态,而且周围一切都回复原状.系统不能回复到初;态;或者系统回复到初态时,周围并不能回复原状.3.在等压升温过程中,气体要膨胀而作功,所以要比气体等体升温过程多吸收一部分热量.4.(1)气体的内能,(2)气体对外所做的功,(3)气体的内能和对外所做的功5.2/i+2,i/i+2 6.8.64×103 7.7.48×103 J ,7.48×103 J8.200J热力学(二)答案一、1.A 2.C 3.B 4.B 5.A 6.C 7.B 8.D 9.D二、1.S1+S2,-S1 2. 8.31J, 29.09J 3.7A/24、不可能把热量从低温物体自动传到高温物体而不引起外界变化不可能制造出这样循环工作的热机,它只从单一热源吸热来作功,而不放出热量给其他物体,或者说不使外界发生任何变化.5. 从概率较小的状态到概率较大的状态,状态概率增大(或熵增大)6.不变; 增加热力学(三)答案一、1、C 2、A 3、B 4、B 5、C 6、A 7、A 8、D二、1、一个点,一条曲线,一条封闭线 2、(参看1题)3、等压,等压 4、1:2,5:3,5:7 5、1.5,1,3.25R 6、23P 1V 1,0 7、1.62×104J 8、33.3%,831×105J气体动理论(一)答案一、1.C 2. B 3.C 4.D 5.B 6.A二、1、3.92×1024 2、(1)沿空间各方向运动的分子数相等;(2)v x 2=v y 2=v z 23、27.9g/mol4、200K5、等压,等容,等温6、2.33×103 Pa7、6.59×10-26 kg8、物体热现象和热运动规律、统计9、(1)描述物体运动状态的物理量;(2)表征个别分子状况的物理量,如分子大小、质量、速度等;(3)表征大量分子集体特征的物理量,如P 、V 、T 、C 等.气体动理论(二) 答案。

大学物理(下)习题精选

大学物理(下)习题精选

1. 磁场复习题1、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。

(提示:无限长载流平板可看成许多无限长的载流直导线组成) 解:利用无限长载流直导线的公式求解。

(1)取离P 点为X 宽度为dx 的无限长载流细条,它的电流di=δdx(2)这载流长条在P 点产生的磁感应强度xdxx di dB o o πδμπμ22==方向垂直纸面向里。

(3)所有载流长条在P 点产生的磁感应强度的方向都相同,所以载流平板在P 点产生的磁感应强度⎰⎰+===+bb a x x dx dB B o b a bln 22πδμπδμο,方向垂直纸面向里。

2、书上习题7-16解:(1)取半径为r 的园为回路 ()()22222a r ab I rB -⋅-=ππμπ 所以, ()r a r ab IB 222202-⨯-=πμ (2) ⎰⋅=bardr j I π2⎰⋅=bardr Kr π23233a b K -⋅=π 因此,()3323a b IK -=π又根据环路定理,⎰⋅⋅=rrdr Kr rB απμπ22032330a r K -⋅=πμ故有 3333033023a b a r r I a r r K B --⋅=-⋅=∴πμμ3、如图所示,长直导线中通有电流I=5A ,另一矩形线框共1000匝,宽a =10cm ,长L=20cm , 以s m v /2=的速度向右平动,求当cm d 10=线圈中的感应电动势。

解:xIB πμ20=,设绕行方向为顺时针方向,则BLdx BdS d ==φ yay IL x ILdx d ay yay y +===⎰⎰++ln2200πμπμφφ =-=dt d Nφε)(20a y y vaIL N +πμ 当cm d y 10==时 ,mV 21.0)1.01.0(21.021042.0510007=+⨯⨯⨯⨯⨯=-ππε*上题中若线圈不动,而长导线中通有交变电流t i π100sin 5=A, 线圈内的感应电动势为多大? 解:同上有:yay IL x ILdx d ay yay y+===⎰⎰++ln2200πμπμφφ =-=dtd Nφε t y a y t L N πππμ100cos 1.02.0ln 2.010********ln 100cos 25070⨯⨯⨯⨯⨯-=+⨯-=- t π100cos 104.42-⨯-=V*上题中若线圈向右平动,而长导线中仍有交变电流,则线圈内感应电动势又为多大? 线圈在向右平动的同时,电流也在变化,则有=-=dt d Nφεy a y dt Ldi N +-ln 2/0πμ+)(20a y y vaiL N +πμ t π100cos 104.42-⨯-=+t π100sin 100.23-⨯I4、一无限长直导线通有电流I=I o e -3t ,一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示。

大学物理下册练习及答案

大学物理下册练习及答案

电磁学 磁力图所示,一电子经过A 点时,具有速率s m /10170⨯=υ。

(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场大小和方向;(2) 求电子自A 运动到C 所需的时间。

解:(1)电子所受洛仑兹力提供向心力 Rv m B ev 200=得出T eR mv B 3197310101.105.0106.11011011.9---⨯=⨯⨯⨯⨯⨯== 磁场方向应该垂直纸面向里。

(2)所需的时间为s v R T t 870106.110105.0222-⨯=⨯⨯===ππ eV 3100.2⨯的一个正电子,射入磁感应强度B =0.1T 的匀强磁场中,其速度矢量与B 成B 的方向。

试求这螺旋线运动的周期T 、螺距h 和半径r 。

解:正电子的速率为731193106.21011.9106.110222⨯=⨯⨯⨯⨯⨯==--m E v k m/s 做螺旋运动的周期为101931106.31.0106.11011.922---⨯=⨯⨯⨯⨯==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --⨯=⨯⨯⨯⨯==T v h m半径为3197310105.1.0106.189sin 106.21011.989sin ---⨯=⨯⨯⨯⨯⨯⨯==eB mv rm d =1.0mm ,放在B =1.5T 的磁立方厘米有8.42210⨯个自由电子,每个电子的电荷19106.1-⨯-=-e C ,当铜片中有I =200A 的电流流通时,(1)求铜片两侧的电势差'aa U ;(2)铜片宽度b 对'aa U 有无影响?为什么?解:(1)531928'1023.2100.1)106.1(104.85.1200---⨯-=⨯⨯⨯-⨯⨯⨯==nqd IB U aa V ,负号表示'a 侧电势高。

(2)铜片宽度b 对'aa U =H U 无影响。

大学物理考试卷及答案下

大学物理考试卷及答案下

汉A一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得3分,共15分)1、强度为的自然光,经两平行放置的偏振片,透射光强变为,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为【】A。

30º;B。

45º;C.60º;D。

90º.2、下列描述中正确的是【】A。

感生电场和静电场一样,属于无旋场;B。

感生电场和静电场的一个共同点,就是对场中的电荷具有作用力;C.感生电场中可类似于静电场一样引入电势;D。

感生电场和静电场一样,是能脱离电荷而单独存在.3、一半径为R的金属圆环,载有电流,则在其所围绕的平面内各点的磁感应强度的关系为【】A。

方向相同,数值相等; B。

方向不同,但数值相等;C.方向相同,但数值不等;D.方向不同,数值也不相等。

4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【】A。

感生电场和涡旋磁场; B。

位移电流和位移电流密度;C。

位移电流和涡旋磁场; D.位移电流和感生电场.5、当波长为λ的单色光垂直照射空气中一薄膜(n〉1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【】A。

; B。

;C. ;D。

;二、填空题(本大题共15小空,每空2分,共30 分.)6、设杨氏双缝缝距为1mm,双缝与光源的间距为20cm,双缝与光屏的距离为1m.当波长为0。

6μm的光正入射时,屏上相邻暗条纹的中心间距为.7、一螺线管的自感系数为0。

01亨,通过它的电流为4安,则它储藏的磁场能量为焦耳。

8、一质点的振动方程为(SI制),则它的周期是,频率是,最大速度是。

9、半径为R的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设为已知,则感生电场在r〈R区域为,在r〉R区域为.10、一个电子射入的均匀磁场中,当电子速度为时,则电子所受的磁力=。

11、自然光入射到两种媒质的分界面上,当入射角等于布儒斯特角i B时,反射光线与Id折射光线之间的夹角等于.12、铝的逸出功为4。

大学物理下练习题答案

大学物理下练习题答案

大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。

(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。

(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。

( D )以上说法都不正确。

3.图所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A )i a02πελ. (B) 0.(C)i a 04πελ. (D))(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图所示的点电荷,则中心O 处场强(C)(A) 大小为零.(B) 大小为q/(20a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.5. 如图所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) R 2E . (B) R 2E /2 .(C) 2R 2E .(D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+(0, a )xyO图O qa2q q 2q xy图 E O 图 xy(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。

大学物理(下)试试题库

大学物理(下)试试题库

大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。

2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。

4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。

5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。

7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。

8、【 】两个点电荷21q q 和固定在一条直线上。

相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。

大学物理(下册)习题与答案

大学物理(下册)习题与答案

大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。

(B)不是平衡过程,但它能用P—V图上的一条曲线表示。

(C)不是平衡过程,它不能用P—V图上的一条曲线表示。

(D)是平衡过程,但它不能用P—V图上的一条曲线表示。

[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。

(2)热平衡过程一定是可逆过程。

(3)热平衡过程是无限多个连续变化的平衡态的连接。

(4)热平衡过程在P—V图上可用一连续曲线表示。

(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。

(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。

(3)冰溶解为水。

(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。

其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。

(2)准静态过程一定是可逆过程。

(3)不可逆过程就是不能向相反方向进行的过程。

(4)凡有摩擦的过程,一定是不可逆过程。

以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。

(2)平衡过程一定是可逆的。

(3)不可逆过程一定是非平衡过程。

(4)非平衡过程一定是不可逆的。

(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理(下)练习题第十章10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。

解:此题可利用运动电荷产生的磁场计算,也可利用圆电流产生的磁场计算。

以下根据圆电流在轴线产生的磁感应强度来计算的。

如图电荷dq 旋转在O 处产生的磁感应强度为3202R dIr dB μ=3202)sin (2RR Rd θπωθλμ= ⎰πθθπλωμ=020sin 4d B 240ππλωμ=80λωμ= RQπωμ=80 方向沿轴线向上。

10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。

试求轴线上长直导线单位长度所受的磁力。

解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有θππμ==Rd R IR I BldI dF 20θπμ=d RI 2202=θ=⎰sin dF F θθπμ⎰πd RI 0220sin 2 RI 220πμ=ω R习题 10-8图r dqθO习题 10-15图x dFdFθ10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。

解:此电流结构如图,对称分析可知,合力沿x 轴负向,有r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d II cos 2210=θ=⎰cos dF F θθθπμ=⎰πd I I cos cos 220210⎰πθπμ=202102d II 210I I μ=10-19一半径为R 的薄圆盘,放在磁感应强度为B 的均匀磁场中,B 的方向与盘面平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。

解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为rdr r rdrr dI dm σω=ππωπσ=π=2222 整个圆盘的磁矩为44R rdr dm m Rσωπ=σω==⎰⎰作用在圆盘上的磁力矩为B m M ⨯====mB mB M 090sin B R 44σωπ,方向垂直纸面向里。

10-24 有一同轴电缆,其尺寸如图所示。

两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3(4)r>R 3;面出B -r 曲线。

解:由安培环路定理I d 0μ=⋅⎰l B L(1))( 2I 21210220R r R Ir B r R πr B <=→=πμππμ dF dFxB ⊗ B • I 2I 1θ 习题 10-16图or习题 10-19图dIdm习题 10-24图(2))( 222100R r R rI B I πr B <<=→=πμμ (3) ])()([222232220R R R r I I πr B ---=ππμ222322302R R r R r I B --πμ=→)( 32R r R << (4))( 0023R r B πr B >=→=6. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I ,今取一矩形平面S (长为1m ,宽为2R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量。

解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路安律可得:B I Rr r R =μπ≤022,() 因而,穿过导体内画斜线部分平面的磁能φ1为φμπμπ102024====⎰⎰⎰B d S Bds IR rdr I o R . 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(,20R r rIB >=πμ因而,穿过导体外画斜线部分平面的磁通量φ2为⎰⎰===RRI dr r I S d B 20022ln 22.πμπμφ穿过整个平面的磁通量ln 24400021πμπμπμφφφI I I ++=+=9. 一无限长直导线通以电流I ,其旁有一直角三角形线圈通以电流I 2,线圈与直导线共面,相对位置如图,试求电流I 1对AB 、CA 两段载流导体的作用力。

解:dl l l a I dF AB 210.)(2+=πμ ⎰+=+=b AB ab a I I dl l a I I F 0210210ln 2)(2πμπμ 方向垂直AB 向下计算题6图I 12计算题9图)cos (2cos /210θπθμl a dl I I dF AC +=l =l /cos θab a I I l a dl I I F t o AC+=+=⎰ln cos 1.2)cos (2 210210θπμθπμ第十二章12-1在通有电流I=5A 的长直导线近旁有一导线ab ,长l =20cm ,离长直导线距离d=10cm (如图)。

当它沿平行于长直导线的方向以v =10m/s 速率平移时,导线中的感应电动势多大?a 、b 哪端的电势高?解:根据动生电动势的公式E =⎰⋅⨯Ll B v d )(E 3ln 22030100πμ=πμ=⎰Ivx dx IvV 57101.13ln 2105104--⨯=π⨯⨯⨯π=方向沿x 轴负向,a 电势高。

12-8 在水平放置的光滑平行导轨上,放置质量为m 的金属杆,其长度ab=l ,导轨一端由一电阻R 相连(其他电阻忽略),导轨又处于竖直向下的均匀磁场B 中,当杆以初速v 0运动时,求(1)金属杆能移动的距离;(2)在此过程中R 所发出的焦耳热。

解:(1)依题意,根据牛顿定律有dxvdvm dt dv m R l vB IBl F -=-===22分离变量积分220220l B mRv x dv v m dx mRl vB v x=→-=⎰⎰(2)2021mv Q =12-10均匀磁场B (t)被限制在半径为R 的圆柱形空间,磁场对时间的变化率为dB/dt ,在与磁场垂直的平面内有一正三角形回路aob ,位置如图所示,试求回路中的感应电动势dlabv I习题12-1图xov 0习题12-8图的大小。

解:B R BS 261π==ϕ,回路中的感应电动势的大小为 E dt d ϕ=dtdB R BS 261π==ϕ12-16在如图所示的电路中,线圈II 连线上有一长为l 的导体棒CD ,可在垂直于均匀磁场B 的平面内左右滑动并保持与线圈II 连线接触,导体棒的速度与棒垂直。

设线圈I 和II 的互感系数为M ,电阻为R 1和R 2。

分别就以下两情形求通过线圈I 和II 的电流:(1)CD 以匀速v 运动;(2)CD 由静止开始以加速度a 运动。

解:(1)CD 以匀速v 运动时111R BvlR I =ε=,I 1是恒量,故I 2=0 (2)CD 由静止开始以加速度a 运动111R Blat R I =ε=,I 1是时间的函数,故I 2不为零 112R Bla M dt dI M ==ε, a R R MBl R I 21222=ε= 12-20一圆柱形长直导线中各处电流密度相等,总电流为I ,试证每单位长度导线内贮藏的磁能为πμ1620I 。

证:根据安培环路定理∑⎰μ=⋅I d 0Ll B202202022RIr B r R I r j r B πμ=→ππμ=πμ=π ⎰πμ=Rrldr B W 020221,单位长度l =1习题12-10图II I习题12-16图⎰ππμμ=Rrdr Rr I W 042222002421⎰πμ=Rdr r R I W 034204πμ=1620I ,本题得证。

1.如图,一长直导线中通有电流I ,另有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内,以恒定的速度v 沿与棒成θ角的方向移动,开始时,棒距导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高。

cos sin :θθ解∥⊥v v v v ==sin 212⎰⎰==x x o i i dx v x I d θπμεε θθ式中cos cos :21vt a x vt l a x +=++=θθθπμεcos cos ln sin 2vt a vt l a v x I o i +++=A 端的电势高2.如图,导体矩形框的平面与磁感应强度为B 的均匀磁场垂直,在此矩形框上有一质量为m ,长为L 的可移动细导体棒AB ,矩形框还接有一电阻R ,其值较之导线的电阻值要大得多,若开始时(t=0),细导体棒以速度v 0沿图示所示的矩形框运动,试求棒的速率随时间变化的函数关系。

解:按图中所示的o x 坐标,棒的初速度v 0与o x 轴的正向相同。

当棒的速率v 时,棒中动生电动势为ε=v B L其方向由A 端指向B 端,故在图中矩形导体框 中的电流是逆时针流动,值为RvBLRI ==ε由安培定律可知作用在棒上的安培力为RL vB IBL F 22==安培力的方向与o x 轴反向,它使棒的运动速率越来越小,根据牛顿第二定律,有RL vB dt dv m 22-= 分离变量得Ia l B θ A v计算题1题RIdt mRL B v dv 22-= 式中B 、L 、m 、R 均为常量,依题意,t=0时,v =v 0,上式积分得⎰⎰-=tvv dt mRL B v dv 0220t mRL B v v 220ln -= 则任意时刻t 棒的速率即棒的速率随时间变化的函数关系为t mRL B ev v 220-=第十六章16-8用很薄的、折射率为1.58的云母片覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹位置上,如果入射光波长为550nm ,试问此云母片的厚度为多少? 解:零级明条纹移到第七级明条纹上,则 原来零级明纹的地方出现的为-7级明纹,设b 为云母片厚度,则光程1为: r b nb -+ 光程2为: r7r b nb r λ∴∆=-+-=-解得:36.610()b mm -=⨯16-12 一折射率为1.5表面附有一层折射率为1.32油膜,今用一波长连续可调的单色光束垂直照射油面。

当波长为485nm 时,反射光干涉相消。

当波长增为670nm 时,反射光再次干涉相消。

求油膜的厚度。

解:12(21)2nd k λ=+22[2(1)1]2nd k λ=-+O习题16-8用图其中 1.38n =,1485nm λ=,2670nm λ=,代入数据,可得3k =, 643d nm =16-17 白光照射到折射率为1.33的肥皂膜上,若从450角方向观察薄膜呈现绿色(500nm ),试求薄膜最小厚度。

相关文档
最新文档