【免费下载】成人高考专升本高等数学一考试大纲
成人高考高起点《数学》考试大纲(文史类)
年成人高考高起点《数学》考试大纲文史财经类1代数1.1集合和简易逻辑1 .了解集台的意义及其表示方法,了解空集、全集、子集、交集并集、补集的概念及其表示方法,了解符号?,=,∈,?的含义,并能运用这些符号表示集合与集合、元素与集合的关系2.了解充分条件、必要条件、充分必要条件的概念1.2函数1.了解函数概念,会求一些常见函数的定义域2.了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性3.理解一次性函数、反比例函数的概念,掌握它们的图象和性质,会求它们的解析式。
4.理解二次函数的概念,掌握它的图象和性质以及函数y=ax+bx+c(a≠0)与y=ax2 (a#0)的图象间的关系,会求二次函数的解析式及最大值或最小值,能运用二次函数的知识解决有关问题5.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
6.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质1.3不等式和不等式组l.了解不等式的性质,会解一元-次不等式、一元一次不等式组和可化为一元一次不等式组的不等式,舍解一元二次不等式。
会表示不等式或不等式组的解集2.会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式1.4数列1.了解数列及其通项、前n项和的概念2.理解等差数列、等差中项的概念,会运用等差数列的通项公式前n项和公式解决有划题3.理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题1.5导数1.理解导数的概念及其几何意义2.掌握面数y=c(c为常数).y=x2“(n∈N+)的导数公式,会求多项式函数的导数3.了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值4.会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值2三角2.1三角函数及其有关概念1.了解任意角的概念,理解象限角和终边相同的角的概念2.了解弧度的概念,会进行弧度与角度的换算3.理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值2.2三角函数式的变换l.掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。
全国各类成人高等学校招生复习考试大纲专升本高等数学
全国各类成人高等学校招生复习考试大纲专升本高等数学The latest revision on November 22, 2020附录三全国各类成人高等学校专升本招生复习考试大纲高等数学(一)本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想像能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、极限和连续(一)极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限唯一性四则运算法则夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较(4)两个重要极限,2.要求(1) 理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解极限的有关性质,掌握极限的四则运算法则.(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与尤穷大量的关系.会进行无穷小量阶的比较(高阶、低阶、同阶和等价).会运用等价无穷小量代换求极限.(4)熟练掌握用两个重要极限求极限的方法.(二)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续和右连续函数在一点连续的充分必要条件函数的间断点(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在——点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的方法.(2)会求函数的间断点.(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限.二、一元函数微分学(一)导数与微分1.知识范围(1)导数慨念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法(2)会求曲线上一点处的切线方程与法线方程.(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的n阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必达(L'Hospital)法则(3)函数增减性的判定法(4)函数的极值与极值点最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义.会用拉格朗日中值定理证明简单的不等式.(2)熟练掌握用洛必达法则求,型未定式的极限的方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式.(4)理解函数极值的概念.掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题.(5)会判断曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与铅直渐近线.三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(5)会求简单有理函数的不定积分.(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的广义积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件.(2)掌握定积分的基本性质.(3)理解变上限的积分是变上限的函数,掌握对变上限积分求导数的方法.(4)熟练掌握牛顿一莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)理解无穷区间的广义积分的概念,掌握其计算方法.(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积四、空间解析几何(一)平面与直线1.知识范围(1)常见的平面方程点法式方程一般式方程(2)两平面的位置关系(平行、垂直)(3)空间直线方程标准式方程(又称对称式方程或点向式方程) 一般式方程(4)两直线的位置关系(平行、垂直)(5)直线与平面的位置关系(平行、垂直和直线在平面上)2.要求(1)会求平面的点法式方程、一般式方程.会判定两平面的垂直、平行(2)了解直线的一般式方程,会求直线的标准式方程.会判定两直线平行、垂直.(3)会判定直线与平面间的关系(垂直、平行、直线在平面上).(二)简单的二次曲面1.知识范围球面母线平行于坐标轴的柱面旋转抛物面圆锥面椭球面2.要求了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形.五、多元函数微积分学(一)多元函数微分学1.知识范围(1)多元函数多元函数的定义二元函数的几何意义二元函数极限与连续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的五条件极值与条件极值2.要求(1)了解多元函数的概念、二元函数的几何意义.会求二元函数的表达式及定义域.了解二元函数的极限与连续概念(对计算不作要求).(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件.(3)掌握二元函数的一、二阶偏导数计算方法.(4)掌握复合函数一阶偏导数的求法.(5)会求二元函数的全微分.(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法.(7)会求二元函数的五条件极值.会用拉格朗日乘数法求二元函数的条件极值.(二)二重积分1.知识范围(1)二重积分的概念二重积分的定义二重积分的几何意义(2)二重积分的性质(3)二重积分的计算(4)二重积分的应用2.要求(1)理解二重积分的概念及其性质.(2)掌握二重积分在直角坐标系及极坐标系下的计算方法.(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板的质量).六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质.(2)会用正项级数的比值判别法与比较判别法.(3)掌握几何级数、调和级数与P级数的收敛性.(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法.(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念.(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分).(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法.(4)会运用头的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或-的幂级数.七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解.(2)掌握可分离变量方程的解法.(3)掌握一阶线性方程的解法.(二)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构.(2)掌握二阶常系数齐次线性微分方程的解法.(3)掌握二阶常系数非齐次线性微分方程的解法[自由项限定为,其中为的次多项式,为实常数].考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:极限和连续约13%一元函数微分学约25%一元函数积分学约25%多元函数微积分(含空间解析几何) 约20%无穷级数约7%常微分方程约10%试卷题型比例:选择题约27%填空题约27%解答题约46%试题难易比例:容易题约30%中等难度题约50%。
2019年成人高考专升本考试大纲—高等数学(一)共8页
2019年成人高考专升本考试大纲高等数学(一)注意:本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
《高等数学》(专升本)考试大纲
《高等数学》(专升本)考试大纲函数极值与极值点,最值;曲线的凹凸性、拐点;曲线的水平渐近线与垂直渐近线。
要求:会用罗尔中值定理证明方程根的存在性。
会用拉格朗日中值定理证明简单的不等式。
熟练掌握洛必达法则求未定式的极限方法。
掌握利用导数判定函数单调性的方法,会利用增减性证明简单的不等式。
掌握求函数的极值和最值的方法,并且会解简单的应用问题。
会判定曲线的凹凸性,会求曲线的拐点。
会求曲线的水平渐近线与垂直渐近线。
(三)一元函数积分学1.不定积分考试内容:不定积分的概念;换元积分法;分部积分法;一些简单有理函数的积分。
要求:理解原函数与不定积分概念及其关系。
熟练掌握不定积分换元法,分部积分法。
会求简单有理函数的不定积分。
2.定积分考试内容:定积分的概念;定积分的性质;定积分的计算;无穷区间的广义积分;定积分的应用:平面图形的面积、旋转体的体积。
要求:掌握定积分的基本性质。
理解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。
掌握牛顿—莱布尼茨公式。
掌握定积分的换元积分法与分部积分法。
掌握无穷区间广义积分的计算方法。
掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。
(四)多元函数的微积分学及应用1.多元函数的微分学考试内容:多元函数的概念;二元函数的极限与连续的概念;多元函数偏导数的概念与几何意义;全微分的概念;全微分存在的必要条件和充分条件;多元复合函数,隐函数的求导方法;二阶偏导数。
要求:理解多元函数的概念;了解二元函数的几何意义;了解二元函数的极限与连续的概念。
理解多元函数偏导数和全微分的概念,知道全微分存在的必要条件和充分条件。
掌握偏导数与微分的四则运算法则,掌握复合函数的求导法则,会求一些函数的二阶偏导数。
2.多元函数的微分学的应用考试内容:多元函数极值的概念;多元函数极值的必要条件;二元函数极值的充分条件;多元函数极值和最值的求法及简单应用。
要求:了解多元函数极值和条件极值的概念,知道多元函数极值存在的必要条件。
成人高考专升本高等数学(一)考试辅导复习资料【全】
成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。
2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。
3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。
4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。
5、掌握性质掌握基本初等函数的简单性质及其图象。
6、掌握概念掌握初等函数的概念。
第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。
函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。
函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。
两个函数只有在它们的定义域和对应法则都相同时,才是相同的。
例:研究函数y=x和y=2是不是表示相同的函数。
解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。
例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。
函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。
《高等数学》考试大纲.doc
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
成人高考高起点《数学》考试大纲
xx年成人高考高起点《数学》考试大纲理工农医类1.了解集合的意义及其表示方法了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号?,=,∈,?的含义,并能运用这些符号表示集合与集台、元素与集台的关系2.理解充分条件、必要条件、充分必要条件的概念1.理解函数概念,会求一些常见函数的定义域2.了解函数的单调性和奇偶性的概念,会判断一些常见由数的单词性和奇偶性。
3.理解一次函数、反比例函数的概念,掌握它们的图象和性质,会求它们的解析式。
4.理解二伙函数的概念,掌握它的图象和性质以及函数y=ax2÷bx+c(a≠0)与y=ax2(a≠0)的图象间的关系,会求二次函数的解析式及最大值或最小值,能灵活运用二次函数的知识解决有关问题5.了解反函数的意义,会求一些简单函数的反函数6.理解分数指数幂的概念,掌握有理指数幂的运算性质掌握指数函数的概念、图像和性质。
7.理解对数的概念,掌握对数的运算性质、掌握对散函数的概念、图象和性质。
1.理解不等式的性质,会用不等式的性质和根本不等式a2+b2≥2ab(a,b∈R),|a+b|≤|a2+b2|(a,b∈R)解决一些简单的问题。
2.会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式、会解一元一次不等式、会表示不等式或不等式组的解集3.了解绝对值不等式的性质,会解形如|ax+b|≥c和|ax+b|≤c 的绝对值不等式1.了解数列及其通项、前n项和的概念2.理解等差数列、等差中项的概念,会灵活运用等差数列的通项公式、前n项和公式解决有关问题。
3.理解等比数列、等比中项的概念,会灵活运用等比数列的通公式、前n项和公式解决有关问题。
1.了解复数的概念及复数的代数表示和几何意义2.会进行复数的代数形式的加、减、乘、除运算1.了解函数极限的概念,了解函数连续的意义2.理解导数的概念及其几何意义3.会用根本导数公式(y=c,y=x2(n为有理数),y=sinx,y=cosx,y=c2的导数),掌握两个函数和、差、积、商的求导法那么。
《高等数学》考试大纲.doc
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
专升本《高等数学(一)》课程考试大纲
专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。
二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。
三、考试的内容要求第一章 函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。
(2)了解函数的有界性、单调性、周期性和奇偶性。
(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。
2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。
(2)掌握极限四则运算法则,会应用两个重要极限。
3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。
(2)了解无穷大的概念及其与无穷小的关系。
4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。
第二章 导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义。
2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。
3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。
4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
第三章 微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理及其简单应用。
2.洛必达法则掌握用洛必达法则求未定式极限的方法。
《高等数学》考试大纲.doc
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
高等数学(专升本)考试大纲
《高等数学》(专升本)考试大纲一、考试内容与要求(一)函数、极限和连续1.函数考试内容:函数的简单性质;反函数;函数的四则运算与复合运算基本初等函数;初等函数。
要求:会求函数的定义域、表达式及函数值。
并会作出简单的分段函数图像。
理解和掌握函数的简单性质,会判断所给函数的类别。
会求单调函数的反函数。
掌握基本初等函数的简单性质及其图象。
2.极限考试内容:数列极限的概念,性质,收敛准则;函数极限的概念,函数极限的定理;无穷小量和无穷大量;两个重要极限。
要求:理解极限的概念。
会求函数在一点处的左极限与右极限。
了解极限的有关性质,掌握极限的四则运算法则。
掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较。
会运用等价无穷小量代换求极限。
熟练掌握用两个重要极限求极限的方法。
3.连续考试内容:函数连续的概念;函数在一点处连续的性质;闭区间上连续函数的性质;初等函数的连续性。
要求:理解函数连续与间断的概念,理解函数在一点连续与极限存在的关系。
会求函数的间断点及确定其类型。
掌握在闭区间上连续函数的性质,会运用介值定理推证一些简单命题。
会利用连续性求极限。
(二)一元函数微分学1.导数与微分考试内容:导数概念;求导法则,方法;高阶导数的概念;微分。
要求:了解可导性与连续性的关系,会用定义求函数在一点处的导数。
会求各类函数的导数。
会求简单函数的高阶导数。
理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
2.中值定理及导数的应用考试内容:中值定理;洛必达法则;函数增减性的判定法;函数极值与极值点,最值;曲线的凹凸性、拐点;曲线的水平渐近线与垂直渐近线。
要求:会用罗尔中值定理证明方程根的存在性。
会用拉格朗日中值定理证明简单的不等式。
熟练掌握洛必达法则求未定式的极限方法。
掌握利用导数判定函数单调性的方法,会利用增减性证明简单的不等式。
掌握求函数的极值和最值的方法,并且会解简单的应用问题。
专升本《高等数学(一)》课程考试大纲
专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。
二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。
三、考试的内容要求第一章函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。
(2)了解函数的有界性、单调性、周期性和奇偶性。
(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。
2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。
(2)掌握极限四则运算法则,会应用两个重要极限。
3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。
(2)了解无穷大的概念及其与无穷小的关系。
4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。
第二章导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。
2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。
3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。
4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
第三章微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理,了解柯西中值定理,掌握这三个定理的简单应用。
专升本数学考试大纲
专升本数学考试大纲
根据我所查找的资料,以下是一个可能的专升本数学考试大纲:
一、函数和极限
1. 函数及其表示法
2. 函数的性质和常用函数
3. 极限的概念和性质
4. 极限的计算方法
二、导数和微分
1. 导数的概念和性质
2. 导数的计算方法
3. 微分的概念和性质
4. 微分的应用
三、积分
1. 不定积分的概念和性质
2. 不定积分的计算方法
3. 定积分的概念和性质
4. 定积分的计算方法和应用
四、一元函数的应用
1. 函数的单调性和极值
2. 函数的凹凸性和拐点
3. 函数的图像和方程的应用
4. 一元函数的应用问题
五、多元函数及其微分学
1. 多元函数的概念和性质
2. 二元函数的偏导数
3. 多元函数的极值和最值
4. 多元函数的泰勒公式
六、概率论与数理统计
1. 随机事件与概率
2. 随机变量及其分布
3. 大数定律与中心极限定理
4. 统计学基本概念和方法
以上是一个参考的大纲,实际考试内容可能会有所不同。
建议你在参加考试前查阅相关教材或官方资料,确保你掌握了所有的考试重点。
专接本《数学一》考试大纲及重点知识总结
专接本《数学一》考试大纲及重点知识总结第一篇:专接本《数学一》考试大纲及重点知识总结考试内容与要求(数一)一、内容概述与总要求参加数学(一)考试的考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以及《线性代数》中行列式、矩阵、线性方程组的基本概念与基本理论;参加数学二、考试形式与试卷结构考试采用闭卷、笔试形式,全卷满分为100分,考试时间为60分钟。
考试包括选择题、填空题、计算题、解答题和证明题。
选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推理过程;计算题、解答题、证明题均应写出文字说明、演算步骤或推理过程。
选择题和填空题分值合计为46分。
计算题、解答题和证明题分值合计为54分。
数学(一)中《高等数学》与《线性代数》试题的分值比例约为85:15。
一、函数、极限与连续(一)函数 1.知识范围函数的概念及表示方法分段函数函数的奇偶性、单调性、有界性和周期性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题函数关系的建立函数的概念:给定两个实数集D和M,若有对应法则f,使对D内每一个数x,都有唯一的一个数y∈Mf:D→M,xαy与它相对应,则称f是定义在数集D上的函数,记作数集D称为函数f的定义域,x所对应的数y,称为f在点x的函数值,常记为f(x)。
全体函数值的集合 f(D)={yy=f(x),x∈D}(⊂M) 称为函数f的值域。
函数的表示法:在中学课程里,我们已经知道函数的表示法主要有三种,即解析法(或称公式法)、列表法和图象法。
有些函数在其定义域的不同部分用不同的公式表达,这类函数通常称为分段函数。
设f为定义在D上的函数,若存在正数M,使得对每一个x∈D有f(x)≤M,则称f为D上的有界函数。
设f为定义在D上的函数,若对任何x1,x2∈D,当x1<x2时,总有(i)f(x1)≤f(x2),则称f为D上的增函数,特别当成立严格不等式f(x1)<f(x2)时,称f为D上的严格增函数;(ii)f(x1)≥f(x2),则称f为D上的减函数,特别当成立严格不等式f(x1)>f(x2)时,称f为D上的严格减函数;增函数和减函数统称为单调函数,严格增函数和严格减函数统称为严格单调函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已有131免费做试题知识点考点
函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x一
∞,x→+∞,x→—∞)时函数的极限,唯一性,法则,夹逼定理
(3)无穷小量与无穷大量
无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较
(4)两个重要极限
2.要求
(1)理解极限的概念(对极限定义中等形式的描述不作要求)会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件
(2)了解极限的有关性质,掌握极限的四则运算法则
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系会进行无穷小量的比较(高阶、低阶、同阶和等价)会运用等价无穷小量代换求极限
(4)熟练掌握用两个重要极限求极限的方法
二、连续
1知识范围
(1)函数连续的概念
函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点
(2)函敖在一点处连续的性质
连续函数的四则运算,复台函数的连续性,反函数的连续性
(3)闭区间上连续函数的性质
有界性定理,最大值与最小值定理,介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的判断方法
(2)会求函数的间断点
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限,一元函数微分学
三、导数与微分
1知识范围
(1)导数概念
导数的定义,左导数与右导数,函数在一点处可导的充分必要条件,导数的几何意义与物理意义,可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算反函数的导数导数的基本公式
(3)求导方法
复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数
(4)高阶导数
高阶导数的定义高阶导数的计算
(5)微分
微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性
2.要求
(l)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导散的方法
(2)会求曲线上一点址的切线方程与法线方程
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数
(5)理解高阶导数的概念,会求简单函数的n阶导数
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分
(二)微分中值定理及导致的应用
1.知识范围
(l)微分中值定理
罗尔(Rolle)定理拉格朗日(Lagrange)中值定理
(2)洛必迭(I,’Hospital)法则
(3)函数单调性的判定法
(4)函数的极值与极值点、最大值与最小值
(5)曲线的凹凸性、拐点
(6)曲线的水平渐近线与铅直渐近线
2.要求
(l)理解罗尔定理、拉格朗日中值定理及它们的几何意义会用拉格朗日中值定理证明简单的不等式
(2)熟练掌握用洛必达法则求型未定式的极限的方法
(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式
(4)理解函数扳值的概念掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题
(5)会判断曲线的凹凸性,会求曲线的拐点
(6)会求曲线的水平渐近线与铅直渐近线
2、一元函数积分学
(一)不定积分
1.知识范围
(1)不定积分
原函数与不定积分的定义原函数存在定理不定积分的性质
(2)基本积分公式
(3)换元积分法
第一第换元法(凑微分法)第二换元法
(4)分部积分法
(5) -些简单有理函数的积分
2.要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理
(一)多元函数微分学
1、知识范围围
(1)多元函数
多元函数的定义- 二元函数的几何意义二元函数极限与连续的概念
(2)偏导数与全微分
偏导数全微分二阶偏导数
(3)复合函数的偏导数
(4)隐函数的偏导数
(5)二元函数的无条件椴值与条件擞值
2.要求
(l) 了解多元函数的概念、二元函数的几何意义会求二元函数的表达式及定义域丁解二元函数的极限与连续概念(对计算不作要求)。
(2)理解偏导数概念,了解偏导数的几何意义,了解盘微分概念.了解全微分存在的必要条件与充分条件。
(3)掌握二元函数的一、二阶偏导数计算方法
(4)掌握复合函数一阶偏导数的求洁
(5)会求二元函数的生微分
(6)掌握由方程F( x.y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法
(7)会求二元函数的无条件极值会用拉格朗日乘数法求一元函数的条件极值
(二)二重积分
1.知识范围
(l)二重积分的概念
二重积分的定义二重积分的几何意义
(2)二重积分的性质
(3)二重积分的计算
(4)二重积分的应用
2.要求
(1)理解二重积分的概念及其性质
(2)掌握二重积分在直角坐标系及极坐标系下的计算方法
(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板的质量)
六、无穷级数
(一)数项级数
1.知识范围
(1)数项级数
数项级数的概念级散的收敛与发敬级数的基本性质级数收敛的必要条件
(2)正项级数收敛性的判别法
比较判别法比值判别法
(3)任意项级数
交错级数绝对收敛条件收敛莱布尼茨判别法
2.要求
(1)理解级数收敛、发散的概念掌握级数收敛的必要条件,了解级数的基本性质
(2)会用正项级数的比值判别法与比较判别法,掌握几何级数的收敛性
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法
(二)幂级数
1.知识范围
(1)幂级数的概念
收敛半径收敛区间
(2)幂级数的基本性质
(3)将简单的初等函数展开为幂级数
2.要求
(l)了解幂级数的概念
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法
七、常微分方程
(一) 阶微分方程
1.知识范围
(1)微分方程的概念
微分方程的定义阶解通解初始条件特解
(2)可分离变量的方程
(3) -阶线性方程
2.要求
(l)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解
(2)掌握可分离变量方程的解法
(3)掌握一阶线性方程的解法
(二)二阶线性微分方程
l.知识范围
(1)二阶线性微分方程解的结构
(2)二阶常系数齐次线性微分方程
(3)二阶常系数非齐次线性微分方程
2.要求
(1)了解二阶线性微分方程解的结构
(2)掌握二阶常系数齐次线性微分方程的解法
考试形式及试卷结构。