(完整版)高考数学三视图题型总结,推荐文档
高考三视图(含解析)理试题(卷)汇总
专题21三视图SUBA. 2 n B • 3 n C【答案】B【解析】综合三视圄可知』几何体是一个半轻炸1的半个球体.且表面积是底面积与半球面积的和丿其表面枳3=丄敦4“+疋2=31t-故选B.2点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧1 •某几何体的三视图如图所示,则其表面积为(【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得AB BD AD 2,当BC 平面ABD时,BC=2,ABD的边AB上的高为、3,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选 B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2•三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()B【答案】BA. 4 B . 2.2 C . 20 D . 83【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形』正方形的边长为2. 口D=3,BF=1,将相同的两个几何体拼在V』构成一个高为斗的长方饥所臥该几何体的体积為煜x仁仪4.如图,正三棱柱ABC ABG的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()【答案】D【解析】依题意知,此正三棱拄底面定边长为4的正三角形,接柱高为也其侧视囹为矩形,其一边长为2語,一启一边长訶4,故其面积2斗><2曲=8曲;故选D点睛:三视图问题的常见类型及解题策略⑴由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图•先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式•当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),A. 16 B 2 3 C . 4 3 D . 8,35.某几何体的三视图如图所示,则该几何体的体积为( )8 8 (C) 16 16 (D) 8 16将三视图还原为原来的几何体,再利用体积公式求解.其体积为V 4 2 2122 4 16 8 .故选A; 26•如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 6,2 (B) 4、2 (C) 6 (D)4【答案】C原几何体为三機锥D-A^C, M 中Aff^BC=i r AC=^D^ = DC=2^ ?QN二旳*叭庁)+4 = 6,故最长的棱的长度为= 选C点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为()24 2【解析】如图所示A【解析】由已知三视图得到几何体是一个正方怀割去半轻为2的丄个球」所以表面积为S3 12试4&一亦於+ —><4亦囚・24巧故选:A4S&已知某空间几何体的三视图如图所示,则该几何体的表面积是()iEttffl 博视图A. 12十2&+2后B . 12+ 也+2 后C . 12 + 2辽十曲D . |12 +V2 + .J【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,1=-5< 2*2 = 221 =-X2M4=421S ABCD =~X(2+4)X2=69.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体如图,P A丄平面ABCD , 朋=2 , AD = 4,医=2 ,经计算,PD = 2石,P匚=«亍,Dt = 2調,•••可••.,故选A.3D. 35 2.2【答案】A 【解析】试題分析;扌艮据三视图可知几何体是组合体;左边罡直三棱柱、右边是半个圆柱,直三棱柱的底面是等腰 亶角三角形,直角边是1,侧犧长是茶圆柱的底面半径是1,母线长是2,二该几何体的体积V =ixlxlx2十丄芝二臥十1・故选;乩2 2考点:由三视图求体积.10•如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积【答案】C 【解析】A.1 B2C. 2 1的体积是(为(3D. 41 2 体积为—2 2 2 1 4 —3 3试题分析:相当于一个圆锥和一个长方体,故考点:三视图.11. 一个几何体的三视图如图所示,则该几何体的体积为(【解析】试题分析:该几何休的直观團如园所示,连接妙,则该几何体由直三棱柱血D-和四棱锥一吨组合而成,其和易22 +扌心后专詈故应选扎12. 一个几何体的三视图如图所示 ,则该几何体的体积为A.14~316~3D. 6【答案】A考点:三视图.1【答案】-3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等•由三视图可知该几何体是底1 1面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为V - 1 1 1 - •3 3。
高考三视图(含解析)理试题汇总(精编文档).doc
【最新整理,下载后即可编辑】专题21 三视图1.某几何体的三视图如图所示,则其表面积为()A.2π B.3π C.4π D.5π【答案】B点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A.B.C.D.【答案】B【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得2⊥平面时,BC=2,===,当BC ABDAB BD AD∆的边AB上的高为3,只有B选项符合,当BC不垂直平面ABD ABD时,没有符合条件的选项,故选B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A . 4B . 22C .203 D . 8【答案】D4.如图,正三棱柱111ABC A B C 的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A . 16B . 23C . 43D . 83【答案】D点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合. (3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.5.某几何体的三视图如图所示,则该几何体的体积为 ( )(A) 168π+ (B) 88π+ (C) 1616π+(D) 816π+【答案】A【解析】将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示), 其体积为21422241682V ππ=⨯⨯+⨯⨯=+.故选A;6.如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 62 (B) 42 (C) 6 (D)4【答案】C【解析】如图所示点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为( )A.24π-B.24π+C.20π-D.20π+【答案】A8.已知某空间几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图,平面,,,,,经计算,,,,∴,∴, ,,,∴,故选A .9.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+C .21π+D .3522π++【答案】A【解析】考点:由三视图求体积.10.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+ C .243π+ D .43π+ 【答案】C【解析】试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+.考点:三视图.11.一个几何体的三视图如图所示,则该几何体的体积为( )A . 143B . 5C . 163D .6【答案】A【解析】考点:三视图.12.一个几何体的三视图如图所示,则该几何体的体积为____.【答案】13【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等.由三视图可知该几何体是底面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为11111V=⨯⨯⨯=.33。
(完整word版)高考数学三视图题型总结,推荐文档
1 .某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+ 【答案】A 2 .一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C3 .某四棱台的三视图如图所示,则该四棱台的体积是()A.4B.14 3C.163D.6【答案】B4.某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C5.一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A6.某几何体的三视图如图所示, 则其体积为___3π_____.12211正视图俯视图侧视图第5题图1121【答案】3π 7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】248.某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-9.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________43 233正视图侧视图俯视图(第12题图)【答案】12π2 .已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是()A.1cm3 B.2cm3C.3cm3D.6cm35 .将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为7 .如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A.6B.9C.12D.1813.某三棱锥的三视图如图所示,该三棱锥的表面积是()+A.2865+B.3065+C.56125D.60125+15.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是DCBA正、侧视图18. (立体几何)某几何体的三视图如图1所示,它的体积为()A.12πB.45πC.57πD.81π22.一个几何体的三视图如图所示(单位:m),则该几何体的体积________3m.36.一个几何体的三视图如图所示,则该几何体的表面积为______________.第7题图。
专题1:三视图方法总结及例题(解析版)
专题1:三视图方法总结及例题(解析版)一.空间几何体的三视图正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。
反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”二.空间几何体的直观图斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350) ③画对应图形在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半; 直观图与原图形的面积关系:42S ⋅=原图形直观图S一,切割法例1.某几何体的三视图如图所示,则该几何体的体积是( )A.20B.24C.18D.16【答案】A【分析】由三视图还原出该几何体的直观图,如图所示,该几何体是一个直三棱柱去掉一个三棱锥得到的,然后计算体积即可【详解】解:由几何体的三视图还原出该几何体的直观图,如图所示.该几何体是一个直三棱柱去掉一个三棱锥得到的.由题中数据可得三棱柱的体积为1344=242⨯⨯⨯,截去的三棱锥的体积为4,故该几何体的体积是20.故选:A【点睛】此题考查由三视图求几何体的体积,需熟记锥体的体积公式,属于基础题.切割法规律总结:1、还原到常见几何体中2、实线当面切,虚线背后切3、切完后对照三视图进行检验二,三点交汇法例2某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,则该三棱锥的体积为( )A.4B.8C.12D.24【答案】A【分析】由三视图还原几体何体,可知该几何体是从长为4,宽为4,高为3的长方体中截得(如图),直接由三棱锥的体积公式可得答案.【详解】由三视图还原几体何体如图,三棱锥D ABC-是从长为4,宽为4,高为3的长方体中截得,所以11423432D ABCV-=⨯⨯⨯⨯=故选:A【点睛】此题考查由三视图求多面体的体积,关键是由三视图还原几何体,属于中档题. 三点交汇法规律:三线交汇得顶点,各顶必在其中选多顶可能用不完,个中取舍是关键:三、拔高法例3:3某几何体的三视图如图所示,则该几何体的表面积是( )A .424+B .228+C .428+D .12【答案】B【分析】 由三视图可得此几何体为如图所示的四棱锥,然后求出各个面的面积即可【详解】解:由三视图可得此几何体为如图所示的四棱锥E ABCD -,由题可得,2AB BC CD AD CE =====,22DE BE ==,所以该几何体的表面积为112222222282222⨯+⨯⨯⨯+⨯⨯⨯=+, 故选:B拔高法规律总结:1.标出俯视图所有结点,画出俯视图对应的直观图2.由主、侧视图的左中右找出被拔高的点.四、去点法例4:某四棱锥的三视图如图所示,则该四棱锥的体积是()A.6B.12C.24D.36【答案】B【分析】由三视图可得原图,结合原图,利用四棱锥的体积公式即可得解.【详解】原图如图所示,可得1334=123V=⨯⨯⨯,故选:B.【点睛】本题考查了三视图,考查了利用三视图画直观图,同时考查了锥体的体积公式,属于基础题.去点法规律:画立方体删多余点连剩余点六字真言:先去除、再确定针对练习1.一个四棱锥的三视图如图所示,其正视图和侧视图为全等的等腰直角三角形,俯视图是边长为2的正方形,则该几何体的表面积为( )A.4B.23C.23+2D.6【答案】C【分析】首先把几何体进行转换,进一步求出几何体的高,最后求出侧视图的面积.【详解】根据几何体的三视图,转换为几何体为:2的正方形,故底面的对角线长为2.所以四棱锥的高为12×2=1,故四棱锥的侧面高为h22212⎛⎫+⎪⎪⎝⎭6则四棱锥的表面积为164222322S=⨯+=.故选C.【点睛】本题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.某几何体的三视图如下图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )A .4πB .283πC .443πD .20π【答案】B【解析】 由三视图可知,几何体是一个三棱柱,几何体的底面是边长为2 的等边三角形,侧棱长为2 ,三棱柱的两个底面中心的中点与三棱柱的顶点的连线就是半径,2227(3)133r =⨯+= ,球的表面积为27284433r πππ=⨯= ,故选B. 点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.25B.26C.42D.43【答案】C【分析】依据多面体的三视图,画出它的直观图并放入棱长为4的正方体中,求出最长的棱长为AB可得答案.||【详解】依据多面体的三视图,画出它的直观图,如图所示;在棱长为4的正方体中,四面体ABCD就是满足图中三视图的多面体,其中A、B点为所在棱的中点,所以,四面体ABCD最长的棱长为22AB+=||4442故选:C.【点睛】方法点睛:本题考查由三视图还原几何体,考查学生空间想象能力,由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.已知某几何体的三视图如图所示,则该几何体最长的棱长为()A .3B .6C .5D .3【答案】B【分析】 画出直观图,然后计算出最长的棱长.【详解】画出三视图对应的几何体的直观图如下图所示四棱锥P ABCD -.1AB BC CD AD ====,22112PA =+=,2221113PB =++=,22125PD =+=,2221216PC =++=.所以最长的棱长为6.故选:B【点睛】本小题主要考查三视图,属于基础题.5.某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,则该三棱锥的体积为( )A.4B.8C.12D.24【答案】A【分析】由三视图还原几体何体,可知该几何体是从长为4,宽为4,高为3的长方体中截得(如图),直接由三棱锥的体积公式可得答案.【详解】由三视图还原几体何体如图,三棱锥D ABC-是从长为4,宽为4,高为3的长方体中截得,所以11423432D ABCV-=⨯⨯⨯⨯=故选:A【点睛】此题考查由三视图求多面体的体积,关键是由三视图还原几何体,属于中档题.6.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为()A .442+B .262+C .332+D .8 【答案】A【分析】由三视图还原棱锥的直观图,即可求棱锥的表面积. 【详解】由已知三视图,可得:此棱锥ABCD 的直观图如下图所示:ABD △和CBD 都是直角边为2和2ABC 和ADC 均是腰长为2的等腰直角三角形,所以其表面积为21122222244222S =⨯⨯⨯⨯⨯=+.故选:A.【点睛】本题考查了根据三视图求几何体的表面积,空间想象能力,属于基础题.7.一个几何体的三视图如图示,则这个几何体的体积为( )A.3a B.33aC.36aD.356a【答案】D【分析】试题分析:由三视图可知该几何体为正方体去掉一角,其直观图如图缩小,正方体的体积,去掉的三棱锥的体积,因此组合体的体积,故答案为D.考点:由三视图求几何体的体积.8.已知某几何体的三视图如图所示,则该几何体的各个面中,面积的最大值为()A .12B .32C .5D .102【答案】B【分析】根据三视图,画出原图,根据原图,判断各个面的面积大小,即可得解.【详解】如图:棱锥P ABC -即为所求图形, 5PC PA ==2AC =,1AB BC ==所以△PAC 面积为32, 而△PBC ,△PAB ,△ABC 的面积分别为551222,,, 故△PAC 的面积最大,故选:B.【点睛】本题考查了立体几何的三视图,本题所用方法是利用长方体的割补进行还原原图,是解三视图的一个重要方法,考查了空间想象能力和空间感,计算量不大,属于中档题.9.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为( )A .()2123cm +B .()2103cm +C .()21023cm+ D .()21223cm +【答案】D【分析】 由三视图可知,该正三棱柱的底面是边长为2cm 的正三角形,高为2cm ,根据面积公式计算可得结果.【详解】正三棱柱如图,有2AB BC AC ===,1112AA BB CC ===,三棱柱的表面积为122322312232⨯⨯+⨯⨯=+故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱的结构特征,属于基础题.10.一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积为( )A .3B .5πC .4πD .6π【答案】D【分析】 根据三视图可知几何体为圆柱体,由已知条件得底面直径2r 和高h 都为2,即可求圆柱体表面积.【详解】由题意知:几何体为底面直径2r 和高h 都为2的圆柱体,∴表面积2226S rh r πππ=+=,故选:D【点睛】本题考查了由几何体三视图求表面积,应用了圆柱体表面积的求法,属于简单题. 11.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的表面积为( )A .735+B .725+C .11352+D .11252+ 【答案】A【解析】 分析:通过三视图可知,该多面体为棱长为2的正方体切割而成的四棱锥O ABCD -,A D 、为棱的中点,再计算该四棱锥各面面积之和即可.详解:根据三视图可知,该几何体为四棱锥O ABCD -,由棱长为2的正方体切割而成. 底面ABCD 为矩形,22=21+2=25ABCD S ⨯ 211===2=222OCD OBC SS S 正方形⨯ 1==52OAD ABCD S S易得5,3,22AB OA OB ===由余弦定理2223(22)(5)2cos 22322OAB +-∠==⨯⨯,得4OAB π∠= 12322322OAB S ∴=⨯⨯⨯= 四棱锥的表面积255223735S =++⨯+=+故选A .点睛:(1)当已知三视图去还原成几何体时,首先根据三视图中关键点和视图形状确定几何体的形状,再根据投影关系和虚线明确内部结构,最后通过三视图验证几何体的正确性.(2)表面积计算中,三角形的面积要注意正弦定理和余弦定理的运用.12.一个几何体的三视图如图所示,则该几何体的最长棱长为( )A .22B .25C .26D .42【答案】C【分析】 将三视图还原直观图,即可找到最长的棱,计算其长度即可.【详解】由题意得:该几何体的直观图是一个四棱锥11 A BCC B -如图所示.其中1AC 为最长棱.由勾股定理得222142226AC =++=.故选:C【点睛】 本题主要考查三视图,将三视图还原直观图是解决本题的关键,属于简单题.13.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为( )A .18B .14C .23D .16【答案】C【分析】观察三视图并将其“翻译”成直观图,要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.【详解】如图所示,三棱锥D ABC -即为所求,正方体的棱长都是2,B 点到底面DAC 的距离是2,所以 11121223323D ABC ADC V S h -=⨯=⨯⨯⨯⨯=. 故选:C.【点睛】 本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力.14.某几何体的三视图如图所示,则该几何体的体积为( )A .23πB .πC .43πD .2π【答案】A【分析】由三视图可知该几何体为一个圆柱内挖去两个与圆柱同底的半球,由圆柱体积减去两个半球体积可得.【详解】由三视图可知该几何体为一个圆柱内挖去两个与圆柱同底的半球,所以该几何体的体积V V =柱-2V⨯半球231421221233πππ=⨯⨯-⨯⨯⨯= 故选:A .【点睛】本题考查三视图,考查几何体的体积,解题关键是由三视图得出几何体的结构.15.某几何体的三视图如图,则几何体的体积为A.8π﹣16B.8π+16C.16π﹣8D.8π+8【答案】A【解析】根据三视图恢复原几何体为两个底面为弓形的柱体,底面积为一个半圆割去一个等腰直角三角形,其面积为221422422ππ⋅-⨯⨯=-,高为4,所以柱体体积为()424π-=816π-.选A【点睛】由于正视图和侧视图均为矩形,所以原几何体为柱体,底面为两个弓形,所以原几何体是由圆柱截得的,三视图问题是近些年高考必考题,根据三视图恢复原几何体,数据要根据“长对正、高平齐,宽相等”的原则,标清几何体中线段的长度,利用面积或体积公式计算.16.某几何体的三视图如图所示,则该几何体的体积为( )A .8B .83C .163D .16【答案】B【分析】 由三视图画出其直观图,再根据锥体的体积公式计算可得;【详解】解:由三视图可知,该几何体是一个竖放的四棱锥(有一条侧棱PA 垂直于底面ABCD ),其直观图如图所示:四棱锥P ABCD -的底面是直角梯形ABCD (上底为1BC =,下底为3AD =,高为2AB =),四棱锥的高是2PA =,所以直角梯形ABCD 的面积为()()132422ABCD BC AD AB S +⨯+⨯===直角梯形,所以该四棱锥P ABCD -的体积为11842333P ABCD ABCD V S PA -=⨯⨯=⨯⨯=直角梯形. 故选:B .【点睛】本题考查由三视图求直观图的体积,属于基础题.17.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()A.B.4 C.D.3【答案】B【详解】试题分析:如图,阴影平行四边形表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,122242V=⨯⨯⨯=.考点:1.三视图;2.正方体的体积18.某几何体的三视图如图所示,则该几何体的表面积为()A .5252++B .2552++C .552++D .525++【答案】D【分析】 依题意,由三视图得到直观图,再求出四棱锥的表面积即可;【详解】 解:由三视图可得如下直观图则SA ⊥面ABCD ,ABCD 为矩形,且2SA =,2AB =,1AD =,所以12222SAB S =⨯⨯=,12112SAD S =⨯⨯=,122ABCD S =⨯=,22121252SCD S =⨯+=22112222SCB S =⨯+=所以表面积为552故选:D【点睛】本题考查由三视图求几何体的表面积,属于基础题.走进高考1,2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13【答案】A【详解】因为加工前的零件半径为3,高为6,所以体积154V π=,又因为加工后的零件,左半部为小圆柱,半径为2,高4,右半部为大圆柱,半径为3,高为2,所以体积2161834V πππ=+=,所以削掉部分的体积与原体积之比为5434105427πππ-=,故选A. 考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力.2,2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)如图,已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】C【解析】如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.3,2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.63B.6C.62D.4【答案】B【详解】由正视图、侧视图、俯视图形状,可判断该几何体为四面体,且四面体的长、宽、高均为4个单位,故可考虑置于棱长为4个单位的正方体中研究,如图所示,该四面体为D ABC -,且4AB BC ==, 42AC =,25DB DC ==,2(42)46DA =+=,故最长的棱长为6,选B .4,2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A .B .C .D .【答案】D【解析】试题分析:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为111111326⨯⨯⨯⨯=,∴剩余部分体积为15166-=,∴截去部分体积与剩余部分体积的比值为15. 故选D .考点:由三视图求体积5,2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )A .1B .2C .4D .8【答案】B【解析】【详解】【分析】 由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱, ∴其表面积为:22222111142222542222r r r r r r r r r πππππ⨯+⨯+⨯⨯+⨯+⨯=+ , 又∵该几何体的表面积为16+20π,∴22541620r r ππ+=+ ,解得r=2,本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.6,2016年全国普通高等学校招生统一考试理科数学(新课标3卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.B.C.90D.81【答案】B【解析】【详解】试题分析:解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:.故选:B.点睛:本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.7,2016年全国普通高等学校招生统一考试理科数学(新课标2)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.B.C.D.【答案】C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和。
高考数学立体几何题型全归纳
高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。
解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。
侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。
所以表面积S=2S_{底}+S_{侧}=2√(3)+6。
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。
解析:该几何体是一个四棱台。
上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。
根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。
高考题中三视图的考点分类解析
高考题中三视图的考点分类解析三视图是高中新课标的新增内容,也是近年高考数学常考的热点内容。
三视图有助于培养学生的观察能力、空间想象能力、形象思维能力和几何直观能力,对发展空间观念,增强对数学价值的认识起到一定的作用,因而备受高考命题者的青睐。
这类题型多以选择题、填空题为主,只有少数出现在解答题。
本文拟对2011年高考题中三视图的考点进行分类解析,仅供参考。
考点一:给出几何体的直观图,考查三视图中某种视图的画法。
例1(2011年江西卷)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()解析:左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案是D。
评注:本题考查简单几何体的三视图画法规则,对常见几何体的感知、领悟能力和空间想象能力,属基础题。
考点二:给出几何体的三视图,考查直观图的画法。
例2 (2011年浙江卷)几何体的三视图如图所示,则这个几何体的直观图可以是()解析:由正视图可排除A、C;由侧视图可判断该几何体的直观图是B。
评注:本题考查由三视图还原几何体的方法,主要考查空间想象能力。
准确还原空间几何体的实际形状时一般以正视图和俯视图为主,结合侧视图进行综合考虑。
应注意观察三视图中的实线(可见轮廓线)与虚线(不可见轮廓线)。
考点三:给出几何体的部分三视图,考查其它视图的画法。
例3(2011年全国新课标卷)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()解析:条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的,故选D。
评注:本题是已知正视图和俯视图,考查侧视图的画法,准确还原几何体是解题的关键。
考点四:给出几何体的三视图,考查原几何体的表面积、体积及相关计算问题等。
例4 (2011年安徽卷)一个空间几何体得三视图如图所示,则该几何体的表面积为( )(A )48(B )32+817(C )48+817(D )80解析:由三视图可知几何体是底面是等腰梯形的直棱柱。
三视图高考题选答案版
三视图高考题选一、知识点1、三视图的名称几何体的三视图包括:主视图、左视图、俯视图.2、三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.【题型一】空间几何体的三视图1、若某几何体的三视图如图7-1-4所示,则这个几何体的直观图可以是( )图7-1-4【解析】根据主视图与俯视图可排除A、C,根据左视图可排除D.故选B.2、(2012·陕西高考)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为( )图7-1-73、[2014·福建卷]某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱[解析]A由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.4、[2014·江西卷]一几何体的直观图如图1-1所示,下列给出的四个俯视图中正确的是( )图1-1A B C D图1-2[解析]B易知该几何体的俯视图为选项B中的图形.【题型二】三视图与面积1、(2013·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧(左)视图是一个面积为的矩形,则该正方体的正(主)视图的面积等于( )A. B.1 C. D.【解析】由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为的矩形,因此该几何体的主视图是一个长为,宽为1的矩形,其面积为.【答案】D2、[2014·安徽卷]一个多面体的三视图如图1-2所示,则该多面体的表面积为( )A.21+B.8+C.21D.18图1-2[解析]A如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S=6×4-×6+2×××=21+.3、[2014·浙江卷]几何体的三视图(单位:cm)如图1-1所示,则此几何体的表面积是( )图1-1A.90 cm2B.129 cm2 C.132 cm2D.138 cm2[解析].D此几何体是由长方体与三棱柱组合而成的,其直观图如图,所以该几何体的表面积为2(4×3+6×3+6×4)+2××3×4+4×3+3×5-3×3=138(cm2),故选D.4、[2014·重庆卷]某几何体的三视图如图1-2所示,则该几何体的表面积为( )图1-2A.54B.60 C.66D.72[解析]B由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S=×3×4++×4+×5+3×5=60.【题型三】三视图与体积1、(2013·广东高考)某三棱锥的三视图如图7-1-8所示,则该三棱锥的体积是( )图7-1-8A. B.C. D.1【解析】如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V=××1×1×2=,故选B.【答案】B2、[2014·辽宁卷]某几何体三视图如图1-1所示,则该几何体的体积为( )A.8-2πB.8-πC.8-D.8-图1-1[解析]B根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分后余下的部分,故该几何体体积为2×2×2-2××π×2=8-π.3、[2014·天津卷]一个儿何体的三视图如图1-3所示(单位:m),则该几何体的体积为________m3.图1-3[解析]由三视图可得,该几何体为圆柱与圆锥的组合体,其体积V=π×12×4+π×22×2=.4、(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为()A .168π+B .88π+C .1616π+D .816π+ 【答案】A 5、(2013年广东(理))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6 【答案】B 正视俯视侧视第5题。
高中数学(超全面的)_三视图完整
考考你
正视图( A ) 左视图 ( A ) 俯视图 ( B )
A
.B
C
试一试:
• 1、如下图几何体,请画出这个物体的三种视图。
主主视主主视图视视图图图
左左左左视视视视图图图图
俯俯俯俯视视视视图图图图
.
第二课时
.
9.下面所给的三视图表示什么几何体?
圆锥
.
例4 根据三视图说出立体图形的名称
.
例5 根据物体的三视图,描述物体的形状.
1
思考方法
21 2
先根据俯视图确定正视图有 列,再根据数字确定每列的方块 有 个。(取最多个数)
正视图
:
侧视图:
主侧视图有 23 列,第一列的方块 有 12 个,
第二列的方块有有 2 个个.。
第三列的方块有. 1 个.
4、试画出如图所示物体的三视图
正
视 图
图
侧 视
俯
视
.
GO
图
主 视
.
从三个方向看
142244216162 2.
故选B。
4、(广东文9)
如图,某几何体的正视图(主视图),
侧视图(左视图)和俯视图分别是等边
三角形,等腰三角形和菱形,则该几何
体的体积为
4 A.4 3 B.
√ 2 C. 2 3
,
D.
正视图
该几何体是一个底面为菱形
2
侧视图
的四棱锥,则该几何体的体积
V1Sh123323
33
主视图
左视图
俯视图
从正面看
.
挑战自我
画出如图所示四棱锥的三视图。
.
四菱锥的三视图:
正视图
高考数学:立体几何——三视图——命题类型规律和解题技巧
高考数学:立体几何——三视图——命题类型规律和解题技巧三视图问题是高考中的重要题型。
此类问题要求学生有较强的空间想象能力,因此成为很多考生做题的难点。
下面将三视图考题的出题规律和解题技巧,归结如下。
根据高考所考查几何体的结构特征,其出题类型分为三种:单体型、组合型和切削型,现逐一分析。
一、单体型所谓单体型,即根据三视图还原后的几何体是一个我们常见的基本几何体,如长方体、三棱锥、圆锥、三棱柱、球等。
一般情况下,我们可以根据下列结论来判断所求几何体的结构特征:(1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形和一个四边形,对应四棱锥;(3)三视图为两个三角形和一个圆,对应圆锥;(4)三视图为一个三角形和两个四边形,对应三棱柱;(5)三视图为两个四边形和一个圆,对应圆柱。
二、组合型所谓组合型,即根据三视图还原后的几何体是两个或两个以上的几何单体组合而成的,此时我们只需根据三视图看懂相应部分对应的每个单体的结构特征即可。
三、切削型所谓切削型.即根据三视图还原后的几何体可以看成是从某一熟悉的几何单体(我们可以将其看成所求几何体的载体)中截去一部分后得到的。
对于此类问题,我们的解决方案是:先画出所求几何体的载体,再根据题意截去其中一部分,最后根据题目中的位置关系和数量关系进行推理和计算。
例1:[2018全国卷Ⅲ,3,5分]中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()思路分析:根据题意画出带卯眼的木构件的直观图,借助直观图判断俯视图。
解析:由题意带卯眼的木构件的直观图如下图所示,由直观图知其俯视图应选A。
答案:A注意:不要忽视木构件俯视图中的虚线。
例2:[2018北京卷,5,5分]某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4思路分析:根据还原出来几何体的形状,判断直角三角形的个数。
三视图高考题解题技巧
三视图高考题解题技巧
三视图高考题解题技巧
1、主视图和左视图如果都是三角形的必然是椎体,要么是棱锥要么是圆锥。
还有两种特殊的情况:
1、是棱锥和半圆锥的组合体。
2、就是半圆锥。
到底如何如确定就是通过俯视图观察。
(1) 若俯视图是三角形时,就是三棱锥。
(2) 若俯视图是多边形时,就是多棱锥。
(3) 若俯视图是半圆和三角形时,就是是棱锥和半圆锥的组合体。
(4) 若俯视图是半圆时,就是半圆锥。
(5) 注意虚线和实线的意义,虚线代表的是看不到的线,实线代表的是能看的见得都是一种平行投影所创造出来的。
2、三视图求体积时候,先观察主视图和侧视图,注意主视图和侧视图的高一定都是一样的,并且肯定是立体图形的高,先通过观察判定图形到底是什么立体图形,看看到底是棱锥,棱柱,还是组合体,通常的组合体都是较为简单的.组合体,无需过多考虑。
(1) 如果是棱锥的话,就看俯视图是什么图形,判定后算出俯视图的面积即可,应用体积公式。
(2) 如果是棱柱的话,同样看俯视图的图形,求出面积,应用公式即可。
(3) 如果是组合体,要分辨出是哪两种规则图形的组合,分别算出体积相加即可。
(完整word版)高考数学题型归纳完整版,推荐文档
第一章集合与常用逻辑用语第一节集合题型1-1集合的基本概念题型1-2集合间的基本关系题型1-3集合的运算第二节命题及其关系、充分条件与必要条件题型1-4四种命题及关系题型1-5充分条件、必要条件、充要条件的判断与证明题型1-6求解充分条件、必要条件、充要条件中的参数取值范围第三节简单的逻辑联结词、全称量词与存在量词题型1-7判断命题的真假题型1-8含有一个量词的命题的否疋题型1-9结合命题真假求参数的取值范围第二章函数第一节映射与函数题型2-1映射与函数的概念题型2-2同一函数的判断题型2-3函数解析式的求法第二节函数的定义域与值域(最值)题型2-4函数定义域的求解题型2-5函数定义域的应用题型2-6函数值域的求解第三节函数的性质一一奇偶性、单调性、周期性题型2-7函数奇偶性的判断题型2-8函数单调性(区间)的判断题型2-9函数周期性的判断题型2-10函数性质的综合应用第四节二次函数题型2-11二次函数、一元二次方程、二次不等式的关系题型2-12二次方程的实根分布及条件题型2-13二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14指数运算及指数方程、指数不等式题型2-15指数函数的图象及性质题型2-16指数函数中恒成立问题第六节对数与对数函数题型2-17对数运算及对数方程、对数不等式题型2-18对数函数的图象与性质题型2-19对数函数中恒成立问题第七节幕函数题型2-20求幕函数的定义域题型2-21幕函数性质的综合应用第八节函数的图象题型2-22判断函数的图象题型2-23函数图象的应用第九节函数与方程题型2-24求函数的零点或零点所在区间题型2-25利用函数的零点确定参数的取值范围题型2-26方程根的个数与函数零点的存在性问题第十节函数综合题型2-27函数与数列的综合题型2-28函数与不等式的综合题型2-29函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1导数的定义题型3-2求函数的导数第二节导数的应用题型3-3利用原函数与导函数的关系判断图像题型3-4利用导数求函数的单调性和单调区间题型3-5函数的极值与最值的求解题型3-6已知函数在区间上单调或不单调,求参数的取值范围题型3-7讨论含参函数的单调区间题型3-8利用导数研究函数图象的交点和函数零点个数问题题型3-9不等式恒成立与存在性问题题型3-10利用导数证明不等式题型3-11导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12定积分的计算题型3-13求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1终边相同角的集合的表示与识别题型4-2 a是第几象限角2题型4-3弧长与扇形面积公式的计算题型4-4三角函数定义题型4-5三角函数线及其应用题型4-6象限符号与坐标轴角的三角函数值题型4-7同角求值----- 条件中出现的角和结论中出现的角是相同的题型4-8诱导求值与变形第二节三角函数的图象与性质题型4-9已知解析式确定函数性质题型4-10根据条件确定解析式题型4-11三角函数图象变换第三节三角恒等变换题型4-12两角和与差公式的证明题型4-13化简求值第四节解三角形题型4-14正弦定理的应用题型4-15余弦定理的应用题型4-16判断三角形的形状题型4-17正余弦定理与向量的综合题型4-18解三角形的实际应用第五章平面向量第一节向量的线性运算题型5-1平面向量的基本概念题型5-2共线向量基本定理及应用题型5-3平面向量的线性运算题型5-4平面向量基本定理及应用题型5-5向量与三角形的四心题型5-6利用向量法解平面几何问题第二节向量的坐标运算与数量积题型5-7向量的坐标运算题型5-8向量平行(共线)、垂直充要条件的坐标表示题型5-9平面向量的数量积题型5-10平面向量的应用第六章数列第一节等差数列与等比数列题型6-1等差、等比数列的通项及基本量的求解题型6-2等差、等比数列的求和题型6-3等差、等比数列的性质应用题型6-4判断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合第二节数列的通项公式与求和题型6-6数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式第二节均值不等式和不等式的应用题型7-3 均值不等式及其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 绝对值不等式的解法第四节二元一次不等式(组)与简单的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简单线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球第二节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图? 直观图——简单几何体基本量的计算题型8-7 三视图? 直观图——简单组合体基本量的计算题型8-8 部分三视图? 其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”“、点共面” 或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12 证明空间中直线、平面的垂直关系第六节空间向量及其应用题型8-13 空间向量及其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程第二节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的判断题型9-9 圆的一般方程的充要条件题型9-10与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的判断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值及取值范围题型10-3 焦点三角形第二节双曲线题型10-4 双曲线的标准方程题型10-5双曲线离心率的求解及其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面向量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 根据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简单排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简单排列组合问题的结合第二节排列问题题型12-4 特殊元素或特殊位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和分配问题第四节二项式定理题型12-12 证明二项式定理题型12-13 ????+1的系数与??幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式展开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率及其计算题型13-1 古典概型题型13-2 几何概型的计算第二节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回归方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理第二节直接证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{???} 通项公式的猜证及有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节几何证明选讲(选修4-1)题型16-1 圆和直角三角形中长度和角的计算题型16-2 证明题题型16-3 空间图形问题转化为平面问题第二节坐标系与参数方程(选修4-4)题型16-4 参数方程化为普通方程题型16-5 普通方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第三节不等式选讲(选修4-5)题型16-7 含绝对值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。
专题29.2 三视图(解析版)
专题29.2 三视图1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
【例题1】如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.【点拨】本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.【例题2】如图是由一个长方体和一个球组成的几何体,它的主视图是()A. B. C. D.【答案】C【解析】从正面看几何体,确定出主视图即可.几何体的主视图为:【点拨】主视图就是从几何体正面看得到的图形。
【例题3】如图所示的几何体的俯视图是()A B C D【答案】D【解析】此几何体的俯视图如图:【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【例题4】下列几何体中,俯视图不是圆的是()A.四面体 B.圆锥C.球 D.圆柱【答案】A【解析】分别找出从图形的上面看所得到的图形即可.A.俯视图是三角形,故此选项正确;B.俯视图是圆,故此选项错误;C.俯视图是圆,故此选项错误;D.俯视图是圆,故此选项错误。
【点拨】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的上面看所得到的图形.1.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.【答案】B【解析】主视图有2列,每列小正方形数目分别为1,2.如图所示:它的主视图是:.【点拨】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.2.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A. B. C. D.【答案】D【解析】根据俯视图是从上面看到的图象判定则可.从上面看下来,上面一行是横放3个正方体,左下角一个正方体.【点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(+1)π【答案】C【解析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为2π×2=2π,∵底面积为πr2=π,∴全面积是3π.4.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个C.6个 D.7个【答案】B.【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.5.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C.【解析】根据俯视图是从物体的上面看得到的视图进行解答即可.从上往下看,可以看到选项C所示的图形.故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C.【解析】根据从上边看得到的图形是俯视图,可得答案.从上边看是一个田字,“田”字是中心对称图形.7.如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A. B.C. D.【答案】C【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:【点拨】本题考查了三种视图中的主视图,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8.下列图形中,主视图为①的是()A.B.C. D.【答案】B.【解析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.A.主视图是等腰梯形,故此选项错误;B.主视图是长方形,故此选项正确;C.主视图是等腰梯形,故此选项错误;D.主视图是三角形,故此选项错误.9.下列几何体中,主视图与俯视图不相同的是()A.正方体 B.四棱锥 C.圆柱 D.球【答案】B.【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.四棱锥的主视图与俯视图不同.10.下列几何体的左视图为长方形的是()A. B.C.D.【答案】C.【解析】找到个图形从左边看所得到的图形即可得出结论.A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.11.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【答案】D.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看是一个等腰三角形,高线是虚线.12.如图所示的几何体的主视图是()A.B.C.D.【答案】B.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.13.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【答案】C.【解析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.从左边看竖直叠放2个正方形.14.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层是两个正方形,第二层是左边一个正方形.15.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B.【解析】根据从上面看得到的图形是俯视图,可得答案.从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形.16.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【答案】C.【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.17.如图所示的几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看是两个等宽的矩形,矩形的公共边是虚线。
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
高考立体几何题型归纳
高考立体几何题型归纳高考立体几何题型主要涉及到在三维空间中对各种几何体的性质、关系和计算进行分析和求解。
这些题型在高考中常常以选择题、填空题和解答题的形式出现。
理解和掌握这些题型对于高考数学考试的顺利通过非常重要。
本文将详细介绍高考立体几何题型的分类、特点以及解题技巧。
一、基本概念和性质在解决立体几何题目时,首先要了解一些基本概念和性质。
包括:1. 三视图:一个物体从不同的方向观察所得到的投影图。
通常包括俯视图、正视图和左视图。
2. 空间直角坐标系:在立体几何问题中用来描述物体位置和计算几何量的坐标系。
3. 空间平面:三维空间中的一个二维平面。
4. 空间曲面:三维空间中的一个非平面曲面。
5. 空间直线:三维空间中的无限延伸的直线。
6. 空间角:由两个曲面或者两条直线夹角所围成的角。
7. 空间棱:一个多面体的两个相邻面之间的交线段。
8. 空间对称:一个物体和它的镜像是重合的。
二、几何体的性质和计算在解答立体几何题目时,需要掌握各种几何体的性质和计算方法。
以下是几个常见的几何体:1. 球体:具有所有点到中心的距离相等的几何体。
2. 圆锥:由直角圆锥和斜角圆锥组成。
3. 圆柱:由直角圆柱和斜角圆柱组成。
4. 正方体:六个平面都是正方形的立体几何体。
5. 长方体:六个平面都是长方形的立体几何体。
6. 正六面体:八个等边三角形所构成的几何体。
7. 正四面体:四个等边三角形和六个等边三角形所构成的几何体。
根据几何体的性质和计算方法,可以解决不同类型的问题。
例如,通过计算体积可以求解几何体的容积;通过计算表面积可以求解几何体的表面积等。
三、高考立体几何题型分类高考立体几何题型主要包括以下几种类型:1. 体积计算:要求计算立体几何体的体积。
常见的题目包括球体、圆锥、圆柱、正方体、长方体等。
2. 表面积计算:要求计算立体几何体的表面积。
常见的题目包括球体、圆锥、圆柱、正方体、长方体等。
3. 相交关系:要求判断不同几何体之间的位置关系和相交情况。
高考数学热点集锦 三视图
三视图【两年真题重温】【2011⋅新课标全国】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧【解析】正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥、四棱锥等等.命题意图:本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力. 【2010⋅新课标全国文】一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的_______(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱【答案】①②③⑤【命题意图猜想】1.2011年的题目给出三视图中的正视图和俯视图,考查几何体的侧视图;2010年试题比较开放,考查几何体的正视图.连续两年没有和几何体的体积和表面积联系到一起.试题题目变的较为简单.猜想2012年高考题对本热点的考查有两种可能,一是与几何体的体积或表面积相联系,若与组合体相联系,题目难度会增大;二是可能在解答题中出现,根据三视图得到几何体,一般难度较低.2.从近几年的高考试题来看,几何体的三视图是高考的热点,题型多为选择题、填空题,难度中、低档.主要考查几何体的三视图,以及由三视图构成的几何体,在考查三视图的同时,又考查了学生的空间想象能力及运算与推理能力.预测2012年高考仍将以空间几何体的三视图为主要考查点,重点考查学生读图、识图能力以及空间想象能力.【最新考纲解读】1.能画出简单空间图形的三视图,能识别三视图所表示的立体模型,会用斜二测画法画出它们的直观图.2.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.3.会画某些建筑物的三视图与直观图.【回归课本整合】三视图的画法要求:(1)在画三视图时,重叠的线只画一条,挡住的线要画成虚线,尺寸线用细实线标出.(2)三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求是:主俯一样长,俯左一样宽,主左一样高.由三视图想象几何体特征时要根据“长对正、宽相等、高平齐”的原则作出判断.【方法技巧提炼】1.画三视图时,应牢记其要求的“长对正、高平齐、宽相等”,注意虚、实线的区别,同时应熟悉一些常见几何体的三视图.解决由三视图想象几何体,进而进行有关计算的题目,关键是准确把握三视图和几何体之间的关系.2.要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理,才能迅速破解三视图问题,由三视图画出其直观图.【考场经验分享】对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置.解题时一定耐心加细心,观察准确线与线的位置关系,区分好实线和虚线的不同.此类题目若只是单纯考查三视图,一般难度较低,需保证的全分;若与体积、表面积或组合体相结合,有时难度较大,需要较强的空间想象能力和准确的画图能力,此时若空间想象能力不够的同学,不要花费过多的时间.【新题预测演练】1.【山东省枣庄市2012届高三上学期期末测试试题】若一个底面是正三角形的三棱柱的正视图如图所示,则其体积等于2.【山东省青岛市2012届高三期末检测】已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是1800020202033V=⨯⨯⨯=.3.【唐山市2011—2012学年度高三年级第一学期期末考试】一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.163πB.83πC.43D.23π【答案】A4.【河南省南阳市2012届高中三年级期终质量评估】已知一个几何体的三视图如图所示,则该几何体的体积为A .2B .23C .4D .43【答案】C【解析】该几何体如图所示,在四棱锥中,底面ABCD 为正方形,棱SB ⊥面ABCD ,所以其体积为1211233⨯⨯⨯=。
高考数学三视图
高中数学必考------三视图1、分类①正视图:光线从几何体的前面向后面正投影,得到的投影图;②侧视图:光线从几何体的左面向右面正投影,得到的投影图;③俯视图:光线从几何体的上面向下面正投影,得到的投影图.2、三视图的画法规则①主、俯视图都反映物体的长度——“长对正”;②主、左视图都反映物体的高度——“高平齐”;③俯、左视图都反映物体的宽度——“宽相等”.3、三视图的排列顺序先画正视图,侧视图在正视图的右边,俯视图在正视图的下面.4、画三视图应注意的问题(1)三视图的排列规则是:先画正视图,俯视图安排在正视图的正下方,长度与正视图一样,侧视图安排在正视图的正右方,高度与正视图一样.正视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图与侧视图共同反映物体的宽度要相等.正视图又称为主视图,侧视图又称为左视图.(2)画三视图时,要遵循“长对正,高平齐,宽相等”的原则,若相邻两个几何体的表面相交,表面的交线是它们原分界线.在三视图中,分界线和可见轮廓线都用实线画出,不可见的轮廓线用虚线画出.5、画简单组合体三视图的注意事项(1)画组合体的三视图时,一定要注意组合体由哪些简单几何体组成,注意它们的组合方式,特别要注意它们的交线位置.(2)选择视图:一般以最能反映该组合体各部分形状和位置特征的一个视图为正视图;选择的角度不同,画出的三视图可能不同.结合三视图的一般画法,依次画出三视图,且分界线和可见的轮廓线用实线画出,不可见的用虚线画出.画几何体三视图的注意事项:(1)务必做到正视图、侧视图高平齐,正视图、俯视图长对正俯视图、侧视图宽相等.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π 【答案】A2 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 【答案】A3 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则A 、1243V V V V <<<B 、1324V V V V <<<C 、2134V V V V <<<D 、2314V V V V <<<【答案】C 4 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A.1B.2C.2-12D.2+12【答案】C 5 .(2013年普通高等学校招生统一考试广东省数学(理)卷)某四棱台的三视图如图所示,则该四棱台的体积是A.4B.143C.163D.6【答案】B 6.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题图所示,则该几何体的体积为A.B.C.D.【答案】C7.(2013年普通高等学校招生统一考试辽宁数学(理)试题)已知三棱柱111ABC A B C-的6个顶点都在球O 的球面上,若34AB AC==,,AB AC⊥,112AA=,则球O的半径为()()556035803200240正视图俯视图侧视图第5题图A .2B .C .132D .【答案】C8.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为A .B .C .D . 【答案】A二、填空题 9.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为__【答案】3π10.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.【答案】 11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学))如图,在三棱柱ABC C B A -111中,FE D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V _____1B【答案】1:2412.(2013年普通高等学校招生统一考试浙江数学(理)试题)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】2413.(2013年普通高等学校招生统一考试安徽数学(理)试题)如图,正方体1111ABCD A BC D -的棱长为1,P为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤A BC 1A D E F1B 1C14.(2013年普通高等学校招生统一考试辽宁数学(理)试题)某几何体的三视图如图所示,则该几何体的体积是__________π-【答案】1616 15.(2013年普通高等学校招生统一考试福建数学(理)试题)已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_____________【答案】12π。
高考热点:三视图原还方法归类与题型总结,最全类型都在此了
高考热点:三视图原还方法归类与题型总结,最全类型都在此了三视图几乎可以说是高考的必考题,一般在选择题中,此类题看上去简单,实际上有些题型很容易失分,很难搞定,今天我们从基础题型出发,重点分析切割类型的三视图还原问题。
1三视图还原基础题同学们要做到对一些常规立体图形非常熟悉,柱、锥、台、球体,它们规律如下:1.三视图中如果有两个识图是矩形,那么该几何体为柱体。
若第三个视图是圆形,则为圆柱,否则就是棱柱;2.三视图中如果有两个视图是三角形,那么该几何体为锥体。
若第三个视图是圆形,则为圆锥,否则为棱锥;3.三视图中如果有两个视图是梯形,那么该几何体为台体,若第三个视图是圆形,则为圆台,否则为棱台,球体的三视图都是圆形,最容易识别;根据此三点可以快速还原几何体。
题型1.直接还原此题明显是直接还原的题型,还原并不难大多数同学是可以搞定的此题还原也并不困难,锥体顶点的位置要结合三个视图进行,P点在底面上的投影在BC中点上。
题型2直接切割型一般是由一个几何体切割一部分而形成的立体图形“实线表示当面切割,虚线表示背后切割”例1直接在三棱柱中进行切割,由于是实线切割,难度不大。
例2此题可以直观得出是一个三棱锥,但是直接去还原时,很多同学还原不出来。
此时可以借助长方体或者正方体进行切割,如下图所示:例3大家可以先思考此题,此题是一个正方切被一个平面截去一部分得到的三视图,答案看结尾处题型3背面切割一般三视图中有虚线部分,也即从某一方向上看不到的切割,此类还原有时有一定的难度此题依旧可以借助长方体来进行切割,但是俯视图中的实线与虚线怎么还原是难点,虚线是背面切割,实线是正面切割。
还原图如下所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. .某几何体的三视图如图所示,则该几何体的体积为
( )
A .
B .
C .
D .168π+88π+1616π+816π
+【答案】A
2. .一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别
记为,,,,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则
1V 2V 3V 4V 有( )
A .
B .1243V V V V <<<1324
V V V V <<<C .D .2134V V V V <<<2314
V V V V <<<
【答案】C
3. .某四棱台的三视图如图所示,则该四棱台的体积是
( )
正视图俯视图侧视图
第5题图
A .
B .
C .
D .414316
36
【答案】B
4..某几何体的三视图如题()5图所示,则该几何体的体积为
( )A .560
3B .580
3C .200D .240
【答案】C
5..一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画
该四面体三视图中的正视图时,以zOx
平面为投影面,则得到正视图可以为
( )
A .
B .
C .
D .
【答案】A 6..某几何体的三视图如图所示, 则其体积为________.3π
【答案】
3π
7..若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________.
2
cm
【答案】24
8..某几何体的三视图如图所示,则该几何体的体积是____________.
【答案】
1616π-9..已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图
所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________
【答案】12π
2 .已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是(
)
A.1cm3B.2cm3
C.3cm3D.6cm3
5 .将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图
为
7 .如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何
体的体积为
A.6
B.9
C.12
D.18
13.某三棱锥的三视图如图所示,该三棱锥的表面积是( )
A.28+
B.30+
C
.56+D
.60+
15.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是
D C B A 、、、、
、18. (立体几何)某几何体的三视图如图1所示,它的体积为( )
A .12π
B .45π
C .57π
D .81π22.一个几何体的三视图如图所示(单位:m ),则该几何体的体积________3m
.36.一个几何体的三视图如图所示,则该几何体的表面积为______________.
第7
题图。