最优化理论与最优控制31页PPT
最优控制理论
对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。 近年来,智能式的优化方法得到了重视和发展。 (1)神经网络优化方法 人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。 根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。 与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。 由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。 (2)遗传算法 遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。 目前的研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。 (3)模糊优化方法 最优化问题一直是模糊理论应用最为广泛的领域之一。 自从Bellman和Zadeh在 70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。 模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。 在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数
最优化理论与最优控制共33页
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
最优化理论与最优控制
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
ห้องสมุดไป่ตู้
谢谢!
优化理论与最优控制
无约束最优化方法的特点及应用范围
最优化方法 坐标轮换法(变量轮 换法或降维法) 特点及应用范围 不需求导数,方法易懂,程序设计容易,但迭代过程较长,收敛速 度较慢,且问题的维数n愈多求解效率愈低,适用于n≤10的小型无约 束最优化问题,当函数的等值线为圆或为长短轴都平行于坐标轴的 椭圆时此法很有效。 效率高于上法,尤其最初几步迭代函数值下降很快,但愈靠近极值 点愈慢。迭代计算简单,占用计算机单元少,对初始点的选择要求 低。常与其它方法混用。 当初始点选得合适时是目前算法中收敛得最快的一种(尤其对二次函 数),但当初始点选择不当会影响到能否收敛或导致失败。计算较繁 且要求Hessian矩阵是非奇异的。计算量和存贮量都以维数n的平方 (n2)比例增加,故当函数变量较多和因次较高时不宜采用此法。 即使初始点选择不当,此法亦会成功,其它特点与牛顿法相同。 是对最速下降法在收敛速度上的重大改进,其收敛速度比最速下降 法大为加快,而计算又比牛顿法大为简化。计算简单,所需的存储 量少,收敛速度快,常用于多变量的最优化设计。 不需求导数只需计算函数值,适用于中、小型问题的无约束最优化 问题。Powell法是一种求无约束最优化问题较为有效的方法,适用于 中小型无约束最优化问题,但对于多维问题收敛速度较慢。
• 调整(设计、策略、决策)变量 设计变量的数目称为最优化设计的维数。 • 目标函数 在最优化设计中,可将所追求的设计目标(最优 指标)用设计变量的函数(解析或隐含)形式表 达出来,这一过程称为建立目标函数。 • 约束条件 在很多实际问题中,设计变量的取值范围是有限 制的或必须满足一定的条件。以及其他方面的限 制。
f (X ( k 1) )-f (X ( k ) ) 2
③当迭代点逼近极值点时,目标函数在该点的 梯度将变得充分小,故目标函数在迭代点处 的梯度达到充分小时,也可作为终止迭代的 判据:
优化理论课件(变分法与最优控制理论)
优化理论课件(2)第二部分动态优化:变分法和最优控制理论变分法是处理动态优化的古典方法,现在较少使用,在蒋中一的书中,变分法的思路可用来解释庞特里亚金最大值原理(一阶条件)。
本部分内容主要来自蒋中一《动态最优化基础》。
目录一、什么是动态优化? (3)(一)动态优化问题的基本要素 (4)(二)泛函及其相关概念 (4)(三)可变终结点 (5)(四)横截条件 (7)(五)目标泛函 (7)二、变分法 (8)(一)基本问题:固定终结点问题 (8)(1)基本问题及其假定 (8)(2)一阶条件:欧拉方程 (8)(二)推广:多状态变量与高阶导数 (11)(1)多状态变量 (11)(2)高阶导数 (11)(三)可变端点问题 (12)(1)一般性横截条件 (12)(2)垂直终结线问题 (13)(3)水平终结线问题 (14)(4)终结曲线问题,即错误!不能通过编辑域代码创建对象。
(14)(5)截断的垂直终结线问题 (14)(6)截断的水平终结线问题 (14)(7)多变量和高阶导数情形 (15)(四)二阶条件(充分条件) (15)(1)固定端点问题的二阶条件及其二次型检验 (15)(2)凹凸性充分条件 (16)(3)变分 (17)(五)无限期界问题 (18)(1)收敛性 (18)(2)横截条件 (19)(3)充分条件 (19)(六)带约束的优化问题 (19)(1)等式约束 (19)(2)不等式约束 (21)(3)积分约束(等周问题) (21)三、最优控制理论 (22)(一)最优控制理论导论 (22)(二)最大值原理及其横截条件 (23)(1)最简单问题及最大值原理(一阶必要条件) (23)(2)最大值原理的理论基础及其横截条件 (26)(3)自控问题的汉密尔顿函数不变性 (29)(4)推广到多变量 (29)(三)最大值原理的经济学解释及现值的汉密尔顿函数 (30)(1)最大值原理的经济学解释 (30)(2)现值的汉密尔顿函数 (32)(四)充分条件(二阶条件) (32)(1)曼加萨林定理 (32)(2)阿罗条件 (34)(五)无限期界问题 (35)(1)横截条件与反例 (35)(2)作为充分条件一部分的横截条件 (36)(六)有约束的最优控制问题 (36)(1)涉及控制变量的约束 (37)(2)状态空间约束 (43)四、拉姆齐模型 (47)(一)相关理论发展背景 (47)(二)最简单的拉姆齐模型及其动力系统 (49)(三)微分方程定性稳定性判别方法简介 (53)(1)稳定性与渐进稳定性 (53)(2)稳定性判别基本定理 (53)(2)平面动力系统的奇点 (54)一、什么是动态优化?例:一个企业将原料从初始状态A通过五道工序,变为总结状态Z,每个阶段的选择对应一个阶段的成本,如何选择路径使得总成本最小化?从这个例子中可以看到:首先,动态强调的是时期之间的联系,而不仅仅是有时间的顺序;其次,这里也包含了Bellman方程的基本原理。
最优控制理论课件
第一章绪论1.1 引言近50年来,科学技术的迅速发展,对许多被控对象如宇宙飞船、导弹、卫星和现代工业设备与生产过程的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。
这就要求人们对控制问题都必须从最优控制的角度进行研究分析和设计。
最优控制理论是现代控制理论的重要组成部分。
其形成与发展奠定了整个现代控制理论的基础。
早在20世纪50年代初九开始了对最短时间控制问题的研究。
随后,由于空间技术的发展,越来越多的学者和工程技术人员投身于这一领域的研究和开发,逐步形成了较为完整的最优控制理论体系。
最优化问题就是根据各种不同的研究对象以及人们预期要达到的目标,寻找一个最优控制规律,或设计出一个最优控制方案或最优控制系统。
最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使给定的某性能指标达到最优值。
从数学的观点来看,最优控制理论研究的问题是求解一类带有约束条件的泛函取值问题,属于变分学的理论范畴。
然而,经典变分学理论只能解决容许控制属于开机的一类,为适应工程实践的需要,20世纪50年代中期出现了现代变分理论。
在现代变分理论中最常用的两种分法是动态规划和极小值原理。
动态规划时美国学者R.E贝尔曼于1953-1957年为了解决多级决策问题的算法而逐步创立的。
最小值原理时前苏联科学院院士π.C.庞特里亚金与1956年-1958年间逐步创立的。
近年来,由于数字计算机的飞速发展和完善,逐步形成了最优控制理论中的数值计算法,参数优化方法。
当性能指标比较复杂或者不能用变量或函数表示时,可以采用直接搜索法,经过若干次迭代,都所到最优点。
常用的方法有邻近极值法、梯度法、共轭梯度法及单纯形法等。
同时由于可以把计算机作为控制系统的一个组成部分,以实现在线控制,从而使最优控制理论的工程实现成为现实。
因此,最优控制理论提出的求解方法,既是一种数学方法,又是一种计算机算法。
最优化及最优化方法讲稿
最优化及最优化方法讲稿ppt xx年xx月xx日CATALOGUE目录•最优化问题概述•线性规划问题及其求解方法•非线性规划问题及其求解方法•动态规划问题及其求解方法•最优化算法的收敛性分析•最优化算法的鲁棒性分析•最优化算法的应用举例 - 解决生产调度问题01最优化问题概述最优化问题是一个寻找某个或多个函数的特定输入,以使该函数的输出达到最小或最大的问题。
定义根据不同的分类标准,可以将最优化问题分为线性规划、非线性规划、多目标规划、约束规划等。
分类最优化问题的定义与分类描述所追求的最小或最大值的函数。
目标函数约束条件数学模型限制搜索范围的约束条件。
目标函数和约束条件的数学表达。
03最优化问题的数学模型0201最优化问题的求解方法牛顿法利用目标函数的Hessian矩阵(二阶导数矩阵)进行搜索。
梯度下降法迭代搜索,逐步逼近最优解。
混合整数规划将整数变量引入优化模型中,求解整数规划问题。
模拟退火算法以概率接受劣质解,避免陷入局部最优解。
进化算法模拟生物进化过程的启发式搜索算法。
02线性规划问题及其求解方法线性规划问题定义:在一组线性约束条件下,求解一组线性函数的最大值或最小值的问题。
数学模型:将实际问题转化为线性规划模型,包括决策变量、目标函数和约束条件。
线性规划问题的求解方法 - 单纯形法基本概念:介绍单纯形法的相关概念,如基、可行解、最优解等。
单纯形法步骤:阐述单纯形法的基本步骤和算法流程,包括初始基可行解的求解、最优解的迭代搜索和最终最优解的确定。
单纯形法改进:介绍一些改进的单纯形法,如简化单纯形法、对偶单纯形法等。
线性规划问题的定义与数学模型通过一个具体的生产计划问题,说明如何建立线性规划模型并进行求解。
生产计划问题通过一个配货问题,说明如何运用线性规划模型解决实际问题。
配货问题通过一个投资组合优化问题,说明如何运用线性规划进行风险和收益的平衡。
投资组合优化问题线性规划问题的应用举例03非线性规划问题及其求解方法非线性规划问题定义:非线性规划问题是一类求最优解的问题,其中目标函数和约束条件均为非线性函数。
最优化理论与最优控制.ppt
静态最优化方法:
a. 解 析法(间接法) 无约束条件 有约束条件
b. 数值计算法(直接法) 区间消去法
黄金分割法(0.618法) 插值法
2) 有关数学模型中变量的边界条件,即系统的初态和终态,
即 确定:X (t0 ) ,X (t f ) 。
一个动态过程,归根到底,是状态空间中的状态由初态
课程参考教材:1 系统最优化及控制 付曦 著 机械工业出版社 电气自动化新丛书
2 最优控制理论及应用 解学书著 清华大学 出
版社
第一章
容,是现代理论的一个 研究热点和中心话题。
现代控制理论:以多变量系统控制、最优控制、系统辩识为 主要内容,最优控制发展早。20世纪60年 代,现代控制理论才得以迅速发展。我国 著名学者:钱学森 1945年编著的《工程
研究和解决如何从一切可能的方案中寻找最优方案, 其间包括以下任务 1)根据所提出的最优化问题,建立最优化问题数学模型。
确定变量,列出约束条件,确定目标函数(性能指标) 2) 模型分析,选择合适的最优化求解方法。 3)根据选定的最优化算法,编程,求解 。
最优化的基本问题: 就是寻找一个最优的控制方案或控制规律,使所研究
2)动态规划法和最优化原理 3)极大值原理
总结:最优控制是现代控制理论的核心,它的主要内容是: 在满足一定的约束条件下,根据控制系统的数学模型,寻求最 优控制,使目标函数为极大或极小。 用最优控制设计系统与传统解析法相比,特点如下:
1) 适用于多变量,非线性,时变系统的设计 2) 初始条件可任意 3) 可以满足多个目标函数的要求,并可用于多个约束的情 况 4) 便于计算机求解
最优化及最优化方法讲稿课件
最优化的发展简史
以苏联 Л.В.康托罗维奇和美国G.B.丹齐克为 代表的线性规划;
以美国库恩和塔克尔为代表的非线性规划;以 美国R.贝尔曼为代表的动态规划;
以苏联Л.С.庞特里亚金为代表的极大值原理 等。这些方法后来都形成体系,成为近代很活跃 的学科,对促进运筹学、管理科学、控制论和系 统工程等学科的发展起了重要作用。
最优化的发展简史
第二次世界大战前后,由于军事上的需要和科 学技术和生产的迅速发展,许多实际的最优化问 题已经无法用古典方法来解决,这就促进了近代 最优化方法的产生。
近代最优化方法的形成和发展过程中最重要 的事件有:
1847年法国数学家Cauchy研究了函数值沿什么方向下 降最快的问题,提出最速下降法。
② 最优最计划优:现化代方国民法经的济具或部体门应经济用的举计划例,直
至企业的发展规划和年度生产计划,尤其是农业 规划、种植计划、能源规划和其他资源、环境和 生态规划的制订,都已开始应用最优化方法。一个 重要的发展趋势是帮助领导部门进行各种优化决策。
③最优管理:一般在日常生产计划的制订、调度和 运行中都可应用最优化方法。随着管理信息系统 和决策支持系统的建立和使用,使最优管理得到 迅速的发展。
最优化的发展简史
但是最优化方法真正形成为科学方法则在17世 纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创 建的微积分中,提出求解具有多个自变量的实值 函数的最大值和最小值的方法,后来又出现 Lagrange乘数法。以后又进一步讨论具有未知 函数的函数极值,从而形成变分法。这一时期的 最优化方法可以称为古典最优化方法。
现代控制工程最优控制课件
03
优化目标
最小化损失函数,即达到最优控制效果。
线性调节器问题的解法
01
极点配置法
通过选择控制器的极点位置, 使得系统的传递函数在频率域
上具有理想的性能指标。
02
最优反馈增益
通过求解 Riccati 方程,得到 最优反馈增益,使得系统的性
能达到最优。
03
LQR 设计步骤
确定系统的状态空间模型、选 择适当的参考信号、设计控制
定义
非线性最优控制问题可以定 义为在给定初始状态和初始 时刻,寻找一个控制输入, 使得系统在结束时刻的状态
和性能指标达到最优。
特点
非线性最优控制问题具有复 杂性,其解决方案通常需要
借助数学工具和算法。
应用
非线性最优控制问题在许多 领域都有广泛的应用,如航 空航天、机器人、车辆控制 等。
利用梯度下降法求解非线性最优控制问题
移方程。
利用动态规划法求解非线性最优控制问题
3. 定义性能指标函数
根据问题的要求,定义性能 指标函数。
4. 求解最优子问题
利用动态规划法,依次求解 每个子问题,得到每个时刻 的最优控制输入。
5. 得到最优解
通过逆向递推,得到初始时 刻的最优控制输入和最优状 态。
04
动态规划基础上的最优控 制
多阶段决策过程的动态规划
利用动态规划法求解非线性最优控制问题
• 基本思想:动态规划法是一种通过将原问题分解为一 系列子问题,并逐个求解子问题,最终得到原问题最 优解的方法。
利用动态规划法求解非线性最优控制问题
01
步骤
02
1. 初始化:选择一个初始状 态和初始时刻。
03
2. 定义状态转移方程:根据 系统动态方程,定义状态转
最优控制全部PPT课件
给定一个线性系统,其平衡状态X(0)=0,设计的目的是保持系统处于平衡状态,即 这个系统应能从任何初始状态返回平衡状态。这种系统称为线性调节器。
线性调节器的性能指标为:
J
tf t0
n
xi 2 (t)dt
i 1
加权后的性能指标为:
J
tf t0
n
qi xi 2 (t)dt
i1
对u(t)有约束的性能指标为: J t f 1 [ X T (t)QX (t) uT (t)Ru(t)]dt
上述由控制约束所规定的点集称为控制域U,凡在t0-tf上有定义,且在控制域U 内取值的每一个控制函数u(t)均称为容许控制。
4:性能指标
通常情况下,最优控制问题的性能指标形如:
J
(x(t f ),t f)
tf t0
F(x(t),u(t),t)dt
其中第一项是接近目标集程度,即末态控制精度的度量,称为末值型性能指标。
第6页/共184页
从工程实际考虑,约束条件为 0 F(t) maxF(t)
如果我们既要求拦截过程的时间尽量短,又要求燃料消耗尽量少,则可取性能指标:
J
tf t0
[c1
F (t )]d t
为最小
综上所述,所谓最优防天拦截问题,即选择满足约束条件的控制F(t),驱使系统从初始 状态出发的解,在某个时刻满足终端条件,且使性能指标为极值(极小值)。
第14页/共184页
5:线性跟踪器
若要求状态X(t)跟踪或尽可能接近目标轨迹Xd(t),则这种系统称为状态跟踪器,其相 应的性能指标为:
J
tf t0
1 [ X (t) 2
Xd
(t )] T
Q[ X (t)
最优控制理论课件
2019年12月16日星期一
现代控制理论
41
最优控制问题
(4) 性能指标
T
J (u( )) (x(T),T) L(x(t),u(t),t)dt t0
对状态、控制以及终点状态的要求,复合型性能指标
(x(T ),T ) 0 积分型性能指标,表示对整个状态和
控制过程的要求
指标
J x(T), y(T), x(T), y(T) x(T)
2019年12月16日星期一
现代控制理论
18
最优控制问题
例1.2 导弹发射问题
x F (t) cos (t)
m
y F (t) sin (t)
m
初始条件 x(0) 0 y(0) 0 x(0) 0
控制过程的要求
L(x(t),u(t),t) 0 终点型指标,表示仅对终点状态的要求
2019年12月16日星期一
现代控制理论
43
最优控制问题
第2章 求解最优控制的变分方法
2.1 泛函与变分法基础 2.2 欧拉方程 2.3 横截条件 2.4 含有多个未知函数泛函的极值 2.5 条件极值 2.6 最优控制问题的变分解法
2019年12月16日星期一
现代控制理论
1
最优控制理论
东北大学信息科学与工程学院 井元伟教授
二○○九年十一月
2019年12月16日星期一
2
第1章 最优控制问题 第2章 求解最优控制的变分方法 第3章 最大值原理 第4章 动态规划 第5章 线性二次型性能指标的最优控制 第6章 快速控制系统
2019年12月16日星期一
为n维状态向量向量
2019年12月16日星期一
最优控制理论PPT课件
生产计划与调度
在企业生产管理中,利用 最优控制理论对生产计划 和调度进行优化,提高生 产效率和降低成本。
08
总结与展望
最优控制理论的重要性和应用前景
总结
最优控制理论是现代控制理论的重要组成部分,它在解决复杂系统的优化和控制问题方面 具有显著的优势。该理论通过数学模型和算法,寻求在给定条件下实现系统性能最优化的 控制策略。
非线性最优控制理论
20世纪70年代,基于微分几何、非 线性分析和最优控制问题的研究。
智能优化算法与最优控制
20世纪80年代,考虑系统不确定性 ,引入概率论和随机过程理论。
03
最优控制问题的数学模型
状态方程与性能指标
状态方程
描述系统动态行为的数学方程,通常表示为状态变量对时间 的导数等于其函数。
性能指标
态。这种控制策略的关键在于如何根据当前状态信息快速、准确地计算出最优控制输入。
离散系统的最优输出反馈控制
总结词
离散系统的最优输出反馈控制是一种基 于系统输出的反馈控制策略,通过最优 控制算法计算出在当前输出下的最优控 制输入,使得系统状态在有限时间内达 到预期目标。
VS
详细描述
离散系统的最优输出反馈控制是一种有效 的最优控制策略,它根据系统的输出信息 ,通过最优控制算法计算出在当前输出下 的最优控制输入,使得系统状态在有限的 时间步内以最优的方式达到目标状态。这 种控制策略的关键在于如何根据输出信息 快速、准确地计算出最优控制输入。
控制问题分类
确定性和不确定性控制、线性与 非线性控制、连续和离散控制等 。
重要性及应用领域
重要性
在实际工程和科学问题中,许多问题 都需要通过最优控制理论来解决,如 航天器轨道控制、机器人运动控制、 电力系统优化等。
最优化理论与算法ppt
x 为的严格局部极小值点(极大值)
Page 17
凸集、凸函数与凸优化问题
凸组合:已知 D ,Rn任取k个点,如果存在常 数
k
使得ai
0
(i 1则, 2称,, k为) ai i 1
1
如果函数在点P(x, y) 是可微分的,那末函数在该点沿任意 方向L的方向导数都存在,且有
f f cos f sin
l x
y
其中为x轴到方向L的转角
Page 11
函数的方向导数与极值问题
梯度
函数在一点的梯度是这样一个向量, 它的方向与取得最 大方向导数的方向一致, 而它的模为方向导数的最大值。
(2) 若 f (x0)T P 0,则P的方向是函数在点x0 处的上升方向。
方向导数的正负决定了函数值 的升降,而升降的快慢就由它的 绝对值大小决定.绝对值越大, 升降的速度就越快
Page 14
结论:
(1)梯度方向是函数值的最速上升方向; (2)函数在与其梯度正交的方向上变化率为零; (3)函数在与其梯度成锐角的方向上是上升的,而在与其梯度
以 f (x) 的n个偏导数为分量的向量称为在处的梯度,
记为
f
(
x)
f (x) x1
,
f (x) ,
x2
,
f (x)T
xn
梯度也可以称为函数关于向量的一阶导数。
Page 12
Hesse矩阵
2 f (x)
x12
2 f (x)
2
f
( x)
H (x)
x2x1
2 f (x)
2c 0
xnx1
目标函数的等值面(线) 对于简单的问题,可用等值线或等值面来描述函数的
《最优化理论》课件
递归地求解子问题,并存 储子问题的解以避免重复
计算。
备忘录法
使用备忘录存储子问题的 解,以避免重复计算,同 时避免因重复计算而导致
的内存消耗。
迭代法
通过迭代的方式求解子问 题,并逐渐逼近最优解。
动态规划的应用
生产计划问题
在生产过程中,需要制定生产计 划以满足市场需求,同时最小化 生产成本。动态规划可以用于求 解此类问题。
线性规划问题具有形式化 的特征,包括决策变量、 目标函数和约束条件。
线性规划问题通常用于解 决资源分配、生产计划、 运输和分配等问题。
线性规划的解法
线性规划的解法有多种,包括 单纯形法、椭球法、分解算法
等。
单纯形法是最常用的线性规 划解法,它通过迭代过程寻 找最优解,每次迭代都使目
标函数值减小。
椭球法和分解算法也是常用的 解法,但它们在处理大规模问
谢谢您的聆听
THANKS
线性规划问题
在目标函数和约束条 件均为线性时,寻找 最优解的问题。
非线性规划问题
在目标函数或约束条 件为非线性时,寻找 最优解的问题。
整数规划问题
在变量取整数值且约 束条件为整数时,寻 找最优解的问题。
最优化问题的求解方法
牛顿法
通过构造一个二次函数近似目 标函数,并利用牛顿公式求解 最优解。
共轭梯度法
要点二
详细描述
在生产领域,整数规划可以用于生产计划、资源分配等问 题,如安排生产线的生产计划、分配原材料等资源。在管 理领域,整数规划可以用于物流调度、车辆路径等问题, 如优化物流配送路线、制定车辆行驶计划等。在经济领域 ,整数规划可以用于投资组合、风险管理等问题,如优化 投资组合以实现最大收益或最小风险。